1
|
Yordanova J, Nicolardi V, Malinowski P, Simione L, Aglioti SM, Raffone A, Kolev V. EEG oscillations reveal neuroplastic changes in pain processing associated with long-term meditation. Sci Rep 2025; 15:10604. [PMID: 40148498 PMCID: PMC11950376 DOI: 10.1038/s41598-025-94223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The experience of pain is a combined product of bottom-up and top-down influences mediated by attentional and emotional factors. Meditation states and traits are characterized by enhanced attention/emotion regulation and expanded self-awareness that can be expected to modify pain processing. The main objective of the present study was to explore the effects of long-term meditation on neural mechanisms of pain processing. EEG pain-related oscillations (PROs) were analysed in highly experienced practitioners and novices during a non-meditative resting state with respect to (a) local frequency-specific and temporal synchronizing characteristics to reflect mainly bottom-up mechanisms, (b) spatial synchronizing patterns to reflect the neural communication of noxious information, (c) pre-stimulus oscillations to reflect top-down mechanisms during pain expectancy, and (d) the P3b component of the pain-related potential to compare the emotional/cognitive reappraisal of pain events by expert and novice meditators. Main results demonstrated that in experienced (long-term) meditators as compared to non-experienced (short-term) meditators (1) the temporal and spatial synchronizations of multispectral (from theta-alpha to gamma) PROs were substantially suppressed at primary and secondary somatosensory regions contra-lateral to pain stimulation within 200 ms after noxious stimulus; (2) pre-stimulus alpha activity was significantly increased at the same regions, which predicted the suppressed synchronization of PROs in long-term meditators; (3) the decrease of the P3b component was non-significant. These novel observations provide evidence that even when subjected to pain outside of meditation, experienced meditators exhibit a pro-active top-down inhibition of somatosensory areas resulting in suppressed processing and communication of sensory information at early stages of painful input. The emotional/cognitive appraisal of pain is reduced but remains preserved revealing a capacity of experienced meditators to dissociate pro-active and reactive top-down processes during pain control.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Salvatore M Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroscience and Society Lab, Istituto Italiano Di Tecnologia, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Ma W, Polgár E, Dickie AC, Hajer MA, Quillet R, Gutierrez-Mecinas M, Yadav M, Hachisuka J, Todd AJ, Bell AM. Anatomical characterisation of somatostatin-expressing neurons belonging to the anterolateral system. Sci Rep 2025; 15:9549. [PMID: 40108302 PMCID: PMC11923155 DOI: 10.1038/s41598-025-93816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Anterolateral system (ALS) spinal projection neurons are essential for pain perception. However, these cells are heterogeneous, and there has been extensive debate about the roles of ALS populations in the different pain dimensions. We recently performed single-nucleus RNA sequencing on a developmentally-defined subset of ALS neurons, and identified 5 transcriptomic populations. One of these, ALS4, consists of cells that express Sst, the gene coding for somatostatin, and we reported that these were located in the lateral part of lamina V. Here we use a SstCre mouse line to characterise these cells and define their axonal projections. We find that their axons ascend mainly on the ipsilateral side, giving off collaterals throughout their course in the spinal cord. They target various brainstem nuclei, including the parabrachial internal lateral nucleus, and the posterior triangular and medial dorsal thalamic nuclei. We also show that in the L4 segment Sst is expressed by ~ 75% of ALS neurons in lateral lamina V and that there are around 120 Sst-positive lateral lamina V cells on each side. Our findings indicate that this is a relatively large population, and based on projection targets we conclude that they are likely to contribute to the affective-motivational dimension of pain.
Collapse
Affiliation(s)
- Wenhui Ma
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mai Abu Hajer
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Raphaëlle Quillet
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mansi Yadav
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Junichi Hachisuka
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Andrew M Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
3
|
Qiu Z, Liu T, Zeng C, Yang M, Yang H, Xu X. Exploratory study on the ascending pain pathway in patients with chronic neck and shoulder pain based on combined brain and spinal cord diffusion tensor imaging. Front Neurosci 2025; 19:1460881. [PMID: 40012685 PMCID: PMC11861079 DOI: 10.3389/fnins.2025.1460881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To explore the changes in the white matter microstructure of the ascending pain conduction pathways in patients with chronic neck and shoulder pain (CNSP) using combined brain and spinal cord diffusion tensor imaging techniques, and to assess its correlation with clinical indicators and cognitive functions. Materials and methods A 3.0T MRI scanner was used to perform combined brain and spinal cord diffusion tensor imaging scans on 31 CNSP patients and 24 healthy controls (HCs), extracting the spinothalamic tract (STT) and quantitatively analyzing the fractional anisotropy (FA) and mean diffusivity (MD) which reflect the microstructural integrity of nerve fibers. Additionally, these differences were subjected to partial correlation analysis in relation to Visual Analog Scale (VAS) scores, duration of pain, Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Results Compared to HCs, CNSP patients showed decreased mean FA values and increased mean MD values in bilateral intracranial STT compared to the HC group, but two-sample t-test results indicated no statistically significant differences (p > 0.05). FA values of the left STT (C2 segment, C5 segment) and right STT (C1 segment, C2 segment) were significantly decreased in bilateral cervical STTs of CNSP patients; MD values of the left STT (C1 segment, C2 segment, C5 segment) and right STT (C1 segment, C5 segment) were significantly increased (p < 0.05). Partial correlation analysis results showed that FA values of STT in CNSP patients were negatively correlated with VAS scores, duration of pain, SAS scores, and SDS scores, while MD values were positively correlated with VAS scores and duration of pain (Bonferroni p < 0.05). Conclusion This research identified that patients with CNSP exhibited reduced mean FA and increased mean MD in the bilateral intracranial STT, although these differences were not statistically significant (p > 0.05). Conversely, significant abnormalities were observed in specific segments of the bilateral cervical STT (p < 0.05), which were also correlated with variations in pain intensity, illness duration, and levels of anxiety and depression. These findings contribute a novel neuroimaging perspective to the evaluation and elucidation of the pathophysiological mechanisms underlying chronic pain in the ascending conduction pathways.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianci Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengxi Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Maojiang Yang
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - HongYing Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Dockum AQ, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Modulating nociception networks: the impact of low-intensity focused ultrasound on thalamocortical connectivity. Brain Commun 2025; 7:fcaf062. [PMID: 40040842 PMCID: PMC11878384 DOI: 10.1093/braincomms/fcaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Pain engages multiple brain networks, with the thalamus serving as a critical subcortical hub. This study aims to explore the effects of low-intensity transcranial focused ultrasound-induced suppression on the organization of thalamocortical nociceptive networks. We employed MR-guided focused ultrasound, a potential non-invasive therapy, with real-time ultrasound beam localization feedback and fMRI monitoring. We first functionally identified the focused ultrasound target at the thalamic ventroposterior lateral nucleus by mapping the whole-brain blood oxygenation level-dependent responses to nociceptive heat stimulation of the hand using fMRI in each individual macaque monkey under light anaesthesia. The blood oxygenation level-dependent fMRI signals from the heat-responsive thalamic ventroposterior lateral nucleus were analysed to derive thalamocortical effective functional connectivity network using the psychophysical interaction method. Nineteen cortical regions across sensorimotor, cognitive, associative and limbic networks exhibited strong effective functional connectivity to the thalamic ventroposterior lateral during heat nociceptive processing. Focused ultrasound-induced suppression of heat activity in the thalamic ventroposterior lateral nucleus altered nociceptive responses in most of the 19 regions. Data-driven hierarchical clustering analyses of blood oxygenation level-dependent time courses across all thalamocortical region-of-interest pairs identified two effective functional connectivity subnetworks. The concurrent suppression of thalamic heat response with focused ultrasound reorganized these subnetworks and modified thalamocortical connection strength. Our findings suggest that the thalamic ventroposterior lateral nucleus has extensive and causal connections to a wide array of cortical areas during nociceptive processing. The combination of MR-guided focused ultrasound with fMRI enables precise dissection and modulation of nociceptive networks in the brain, a capability that no other device-based neuromodulation methods have achieved. This presents a promising non-invasive tool for modulating pain networks with profound clinical relevance. The robust modulation of nociceptive effective functional connectivity networks by focused ultrasound strongly supports the thalamic ventroposterior lateral as a viable target for pain management strategies.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allison Q Dockum
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Chen Y, Bajpai AK, Li N, Xiang J, Wang A, Gu Q, Ruan J, Zhang R, Chen G, Lu L. Discovery of Novel Pain Regulators Through Integration of Cross-Species High-Throughput Data. CNS Neurosci Ther 2025; 31:e70255. [PMID: 39924344 PMCID: PMC11807727 DOI: 10.1111/cns.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS Chronic pain is an impeding condition that affects day-to-day life and poses a substantial economic burden, surpassing many other health conditions. This study employs a cross-species integrated approach to uncover novel pain mediators/regulators. METHODS We used weighted gene coexpression network analysis to identify pain-enriched gene module. Functional analysis and protein-protein interaction (PPI) network analysis of the module genes were conducted. RNA sequencing compared pain model and control mice. PheWAS was performed to link genes to pain-related GWAS traits. Finally, candidates were prioritized based on node degree, differential expression, GWAS associations, and phenotype correlations. RESULTS A gene module significantly over-enriched with the pain reference set was identified (referred to as "pain module"). Analysis revealed 141 pain module genes interacting with 46 pain reference genes in the PPI network, which included 88 differentially expressed genes. PheWAS analysis linked 53 of these genes to pain-related GWAS traits. Expression correlation analysis identified Vdac1, Add2, Syt2, and Syt4 as significantly correlated with pain phenotypes across eight brain regions. NCAM1, VAMP2, SYT2, ADD2, and KCND3 were identified as top pain response/regulator genes. CONCLUSION The identified genes and molecular mechanisms may enhance understanding of pain pathways and contribute to better drug target identification.
Collapse
Affiliation(s)
- Ying Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Nan Li
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
| | - Jiahui Xiang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Angelina Wang
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Qingqing Gu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of CardiologyAffiliated Hospital of Nantong UniversityJiangsuChina
| | - Junpu Ruan
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Ran Zhang
- Medical CollegeNantong UniversityNantongJiangsuChina
| | - Gang Chen
- Department of Histology and Embryology, Medical CollegeNantong UniversityNantongJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityJiangsu ProvinceChina
| | - Lu Lu
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
6
|
Walling I, Baumgartner S, Patel M, Crone SA. Electrical stimulation of the sciatic nerve restores inspiratory diaphragm function in mice after spinal cord injury. Front Neural Circuits 2025; 18:1480291. [PMID: 39911754 PMCID: PMC11794311 DOI: 10.3389/fncir.2024.1480291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Spinal cord injury in the high cervical cord can impair breathing due to disruption of pathways between brainstem respiratory centers and respiratory motor neurons in the spinal cord. Electrical stimulation of limb afferents can increase ventilation in healthy humans and animals, but it is not known if limb afferent stimulation can improve breathing following a cervical injury. Methods We stimulated the sciatic nerve while using electromyography to measure diaphragm function in anesthetized mice following a cervical (C2) hemisection spinal cord injury, as well as in uninjured controls. The amplitude and frequency of inspiratory bursts was analyzed over a range of stimulation thresholds. Results We show that electrical stimulation (at sufficient current thresholds) of either the left or right sciatic nerve could restore inspiratory activity to the previously paralyzed diaphragm ipsilateral to a C2 hemisection injury at either acute (1 day) or chronic (2 months) stages after injury. We also show that sciatic nerve stimulation can increase the frequency and amplitude of diaphragm inspiratory bursts in uninjured mice. Discussion Our findings indicate that therapies targeting limb afferents could potentially be used to improve breathing in patients with cervical spinal cord injury and provide an experimental model to further investigate the neural pathways by which limb afferents can increase respiratory muscle activity.
Collapse
Affiliation(s)
- Ian Walling
- Neuroscience Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah Baumgartner
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Mitesh Patel
- Neurobiology Program, University of Cincinnati, College of Arts and Sciences, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Qiu Z, Liu T, Zeng C, Yang M, Xu X. Local abnormal white matter microstructure in the spinothalamic tract in people with chronic neck and shoulder pain. Front Neurosci 2025; 18:1485045. [PMID: 39834699 PMCID: PMC11743484 DOI: 10.3389/fnins.2024.1485045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain. Materials and methods A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers. Correlations of these differences with duration of pain and visual analog scale (VAS) scores were analyzed. Results No significant differences in the mean FA or MD values of the bilateral STT were observed between people with CNSP and HCs (p > 0.05), as indicated by the two-sample t test. Further point-by-point comparison along 100 equidistant nodes within the STT pathway revealed significant reductions in FA values in the left (segments 12-18, 81-89) and right (segments 9-19, 76-80) STT in the CNSP group compared to HCs; significant increases in MD values were observed in the left (segments 1-13, 26-30, 71-91) and right (segments 8-17, 76-91) STT (p < 0.05, FWE corrected). Partial correlation analysis indicates that in people with CNSP, the FA values of the STT in regions with damaged white matter structure show a negative correlation with VAS scores and duration of pain, whereas MD values show a positive correlation with VAS scores and duration of pain. Conclusion This study found that people with CNSP exhibit white matter microstructural abnormalities in the specific segments of STT. These abnormalities are associated with the patient's pain intensity and disease duration. The findings offer a new neuroimaging perspective on the pathophysiological basis of chronic pain in the ascending conduction process and its potential role in developing targeted intervention strategies. However, due to the limited sample size and the lack of statistical significance when analyzing the entire spinothalamic tract, these conclusions should be interpreted with caution. Further research with larger cohorts is necessary to validate these results.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianci Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengxi Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Maojiang Yang
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Bonanno M, Papa GA, Calabrò RS. The Neurophysiological Impact of Touch-Based Therapy: Insights and Clinical Benefits. J Integr Neurosci 2024; 23:214. [PMID: 39735966 DOI: 10.31083/j.jin2312214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The evidence on how touch-based therapy acts on the brain activity opens novel cues for the treatment of chronic pain conditions for which no definitive treatment exists. Touch-based therapies, particularly those involving C-tactile (CT)-optimal touch, have gained increasing attention for their potential in modulating pain perception and improving psychological well-being. While previous studies have focused on the biomechanical effects of manual therapy, recent research has shifted towards understanding the neurophysiological mechanisms underlying these interventions. CT-optimal touch, characterized by gentle stroking that activates CT afferents, may be used to reduce pain perception in chronic pain conditions and to enhance psychological well-being. Further research is needed to fully elucidate the neurophysiological mechanisms involved and to establish the therapeutic efficacy of CT-optimal touch in various clinical populations.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| | | | | |
Collapse
|
9
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
10
|
de Bézenac C, Leek N, Adan G, Mohanraj R, Biswas S, Marson A, Keller S. Subcortical Alterations in Newly Diagnosed Epilepsy and Associated Changes in Brain Connectivity and Cognition. Hum Brain Mapp 2024; 45:e70069. [PMID: 39508641 PMCID: PMC11542292 DOI: 10.1002/hbm.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with chronic focal epilepsy commonly exhibit subcortical atrophy, particularly of the thalamus. The timing of these alterations remains uncertain, though preliminary evidence suggests that observable changes may already be present at diagnosis. It is also not yet known how these morphological changes are linked to the coherence of white matter pathways throughout the brain, or to neuropsychological function often compromised before antiseizure medication treatment. This study investigates localized atrophy in subcortical regions using surface shape analysis in individuals with newly diagnosed focal epilepsy (NDfE) and assesses their implications on brain connectivity and cognitive function. We collected structural (T1w) and diffusion-weighted MRI and neuropsychological data from 104 patients with NDfE and 45 healthy controls (HCs) matched for age, sex, and education. A vertex-based shape analysis was performed on subcortical structures to compare patients with NDfE and HC, adjusting for age, sex, and intracranial volume. The mean deformation of significance areas (pcor < 0.05) was used to identify white matter pathways associated with overall shape alterations in patients relative to controls using correlational tractography. Additionally, the relationship between significant subcortical shape values and neuropsychological outcomes was evaluated using a generalized canonical correlation approach. Shape analysis revealed bilateral focal inward deformation (a proxy for localized atrophy) in anterior areas of the right and left thalamus and right pallidum in patients with NDfE compared to HC (FWE corrected). No structures showed areas of outward deformation in patients. The connectometry analysis revealed that fractional anisotropy (FA) was positively correlated with thalamic and pallidal shape deformation, that is, reduced FA was associated with inward deformation in tracts proximal to and or connecting with the thalamus including the fornix, frontal, parahippocampal, and corticothalamic pathways. Thalamic and pallidal shape changes were also related to increased depression and anxiety and reduced memory and cognitive function. These findings suggest that atrophy of the thalamus, which has previously been associated with the generation and maintenance of focal seizures, may present at epilepsy diagnosis and relate to alterations in both white matter connectivity and cognitive performance. We suggest that at least some alterations in brain structure and consequent impact on cognitive and affective processes are the result of early epileptogenic processes rather than exclusively due to the chronicity of longstanding epilepsy, recurrent seizures, and treatment with antiseizure medication.
Collapse
Affiliation(s)
- Christophe E. de Bézenac
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Nicola Leek
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Guleed H. Adan
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Rajiv Mohanraj
- Department of NeurologyManchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation TrustSalfordUK
| | | | - Anthony G. Marson
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Simon S. Keller
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
11
|
Browne TJ, Smith KM, Gradwell MA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord. Sci Rep 2024; 14:26354. [PMID: 39487174 PMCID: PMC11530558 DOI: 10.1038/s41598-024-73620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024] Open
Abstract
Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons. Brainbow assisted analysis confirmed that virally labelled PN cell bodies formed a discrete cell column in the lateral part of Lamina V (LVlat) and the adjoining white matter. These PNs exhibited large dendritic territories biased to regions lateral and ventral to the cell body column and extending considerable rostrocaudal distances. Optogenetic activation of LVLat PNs confirmed this population mediates widespread signalling within spinal cord circuits, including activation in the superficial dorsal horn. This signalling was also demonstrated with patch clamp recordings during LVLat PN photostimulation, with a range of direct and indirect connections identified and evidence of a postsynaptic population of inhibitory interneurons. Together, these findings confirm a substantial role for PNs in local spinal sensory processing, as well as relay of sensory signals to the brain.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| | - Kelly M Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
12
|
Gim S, Hong SJ, Reynolds Losin EA, Woo CW. Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience. PLoS Biol 2024; 22:e3002910. [PMID: 39536050 PMCID: PMC11602096 DOI: 10.1371/journal.pbio.3002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.
Collapse
Affiliation(s)
- Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, New York State, United States of America
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| | - Elizabeth A. Reynolds Losin
- Department of Psychology, University of Miami, Coral Gables, Florida, United States of America
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
13
|
Wang C, He J, Feng X, Qi X, Hong Z, Dun W, Zhang M, Liu J. Characteristics of pain empathic networks in healthy and primary dysmenorrhea women: an fMRI study. Brain Imaging Behav 2024; 18:1086-1099. [PMID: 38954259 DOI: 10.1007/s11682-024-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear. Using resting-state functional magnetic resonance imaging (fMRI) and machine learning analysis, we identified the brain functional network connectivity (FNC)-based features that are associated with pain empathy in two studies. Specifically, Study 1 examined 41 healthy controls (HCs), while Study 2 investigated 45 women with PDM. Additionally, in Study 3, a classification analysis was performed to examine the differences in FNC between HCs and women with PDM. Pain empathy was evaluated using a visual stimuli experiment, and trait and state of menstrual pain were recorded. In Study 1, the results showed that pain empathy in HCs relied on dynamic interactions across whole-brain networks and was not concentrated in a single or two brain networks, suggesting the dynamic cooperation of networks for pain empathy in HCs. In Study 2, PDM exhibited a distinctive network for pain empathy. The features associated with pain empathy were concentrated in the sensorimotor network (SMN). In Study 3, the SMN-related dynamic FNC could accurately distinguish women with PDM from HCs and exhibited a significant association with trait menstrual pain. This study may deepen our understanding of the neural mechanisms underpinning pain empathy and suggest that menstrual pain may affect pain empathy through maladaptive dynamic interaction between brain networks.
Collapse
Affiliation(s)
- Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Juan He
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Xingang Qi
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, 710126, PR China.
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
14
|
Robertson RV, Meylakh N, Crawford LS, Tinoco Mendoza FA, Macey PM, Macefield VG, Keay KA, Henderson LA. Differential activation of lateral parabrachial nuclei and their limbic projections during head compared with body pain: A 7-Tesla functional magnetic resonance imaging study. Neuroimage 2024; 299:120832. [PMID: 39236852 DOI: 10.1016/j.neuroimage.2024.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Pain is a complex experience that involves sensory, emotional, and motivational components. It has been suggested that pain arising from the head and orofacial regions evokes stronger emotional responses than pain from the body. Indeed, recent work in rodents reports different patterns of activation in ascending pain pathways during noxious stimulation of the skin of the face when compared to noxious stimulation of the body. Such differences may dictate different activation patterns in higher brain regions, specifically in those areas processing the affective component of pain. We aimed to use ultra-high field functional magnetic resonance imaging (fMRI at 7-Tesla) to determine whether noxious thermal stimuli applied to the surface of the face and body evoke differential activation patterns within the ascending pain pathway in awake humans (n=16). Compared to the body, noxious heat stimulation to the face evoked more widespread signal changes in prefrontal cortical regions and numerous brainstem and subcortical limbic areas. Moreover, facial pain evoked significantly different signal changes in the lateral parabrachial nucleus, substantia nigra, paraventricular hypothalamus, and paraventricular thalamus, to those evoked by body pain. These results are consistent with recent preclinical findings of differential activation in the brainstem and subcortical limbic nuclei and associated cortices during cutaneous pain of the face when compared with the body. The findings suggest one potential mechanism by which facial pain could evoke a greater emotional impact than that evoked by body pain.
Collapse
Affiliation(s)
- Rebecca V Robertson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia
| | - Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia
| | - Fernando A Tinoco Mendoza
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia
| | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | | | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 2006, Australia.
| |
Collapse
|
15
|
Ayoub LJ, Honigman L, Barnett AJ, McAndrews MP, Moayedi M. Mechanical pain sensitivity is associated with hippocampal structural integrity. Pain 2024; 165:2079-2086. [PMID: 39159941 PMCID: PMC11331818 DOI: 10.1097/j.pain.0000000000003221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Rodents and human studies indicate that the hippocampus, a brain region necessary for memory processing, responds to noxious stimuli. However, the hippocampus has yet to be considered a key brain region directly involved in the human pain experience. One approach to answer this question is to perform quantitative sensory testing on patients with hippocampal damage-ie, medial temporal lobe epilepsy. Some case studies and case series have performed such tests in a handful of patients with various types of epilepsy and have reported mixed results. Here, we aimed to determine whether mechanical pain sensitivity was altered in patients diagnosed with temporal lobe epilepsy. We first investigated whether mechanical pain sensitivity in patients with temporal lobe epilepsy differs from that of healthy individuals. Next, in patients with temporal lobe epilepsy, we evaluated whether the degree of pain sensitivity is associated with the degree of hippocampal integrity. Structural integrity was based on hippocampal volume, and functional integrity was based on verbal and visuospatial memory scores. Our findings show that patients with temporal lobe epilepsy have lower mechanical pain sensitivity than healthy individuals. Only left hippocampal volume was positively associated with mechanical pain sensitivity-the greater the hippocampal damage, the lower the sensitivity to mechanical pain. Hippocampal measures of functional integrity were not significantly associated with mechanical pain sensitivity, suggesting that the mechanisms of hippocampal pain processing may be different than its memory functions. Future studies are necessary to determine the mechanisms of pain processing in the hippocampus.
Collapse
Affiliation(s)
- Lizbeth J. Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Liat Honigman
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Alexander J. Barnett
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
16
|
Pohl H, Neumeier MS, Gantenbein AR, Wegener S, Rosio M, Hennel F, Sandor PS, Weller M, Michels L. Circadian functional changes of pain-processing brainstem nuclei and implications for cluster headache: A 7 Tesla imaging study. Headache 2024; 64:729-737. [PMID: 38923561 DOI: 10.1111/head.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pain thresholds and primary headaches, including cluster headache attacks, have circadian rhythmicity. Thus, they might share a common neuronal mechanism. OBJECTIVE This study aimed to elucidate how the modulation of nociceptive input in the brainstem changes from noon to midnight. Insights into the mechanism of these fluctuations could allow for new hypotheses about the pathophysiology of cluster headache. METHODS This repeated measure observational study was conducted at the University Hospital Zurich from December 2019 to November 2022. Healthy adults between 18 and 85 years of age were eligible. All participants were examined at noon and midnight. We tested the pain threshold on both sides of the foreheads with quantitative sensory testing, assessed tiredness levels, and obtained high-field (7 Tesla) and high-resolution functional magnetic resonance imaging (MRI) at each visit. Functional connectivity was assessed at the two visits by performing a region-of-interest analysis. We defined nuclei in the brainstem implicated in processing nociceptive input as well as the thalamus and suprachiasmatic nucleus as the region-of-interest. RESULTS Ten people were enrolled, and seven participants were included. First, we did not find statistically significant differences between noon and midnight of A-delta-mediated pain thresholds (median mechanical pain threshold at noon: left 9.2, right 9.2; at night: left 6.5, right 6.1). Second, after correction for a false discovery rate, we found changes in the mechanical pain sensitivity to have a statistically significant effect on changes in the functional connectivity between the left parabrachial nucleus and the suprachiasmatic nucleus (T = -40.79). CONCLUSION The MRI data analysis suggested that brain stem nuclei and the hypothalamus modulate A-delta-mediated pain perception; however, these changes in pain perception did not lead to statistically significantly differing pain thresholds between noon and midnight. Hence, our findings shed doubt on our hypothesis that the physiologic circadian rhythmicity of pain thresholds could drive the circadian rhythmicity of cluster headache attacks.
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
| | - Maria S Neumeier
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
| | - Andreas R Gantenbein
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Michael Rosio
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter S Sandor
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
18
|
Belviranlı M, Okudan N, Sezer T. Exercise Training Alleviates Symptoms and Cognitive Decline in a Reserpine-induced Fibromyalgia Model by Activating Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuroscience 2024; 549:145-155. [PMID: 38759912 DOI: 10.1016/j.neuroscience.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The purpose of this study was to assess, from a behavioral, biochemical, and molecular standpoint, how exercise training affected fibromyalgia (FM) symptoms in a reserpine-induced FM model and to look into the potential involvement of the hippocampal PGC-1α/FNDC5/BDNF pathway in this process. Reserpine (1 mg kg-1) was subcutaneously injected once daily for three consecutive days and then the rats were exercised for 21 days. Mechanical allodynia was evaluated 1, 11, and 21 days after the last injection. At the end of the exercise training protocol forced swim, open field and Morris water maze tests were performed to assess depression, locomotion and cognition, respectively. Additionally, biochemical and molecular markers related to the pathogenesis of the FM and cognitive functions were measured. Reserpine exposure was associated with a decrease in locomotion, an increase in depression, an increase in mechanical allodynia, and a decrease in spatial learning and memory (p < 0.05). These behavioral abnormalities were found to be correlated with elevated blood cytokine levels, reduced serotonin levels in the prefrontal cortex, and altered PGC-1α/FNDC5/BDNF pathway in the hippocampus (p < 0.05). Interestingly, exercise training attenuated all the neuropathological changes mentioned above (p < 0.05). These results imply that exercise training restored behavioral, biochemical, and molecular changes against reserpine-induced FM-like symptoms in rats, hence mitigating the behavioral abnormalities linked to pain, depression, and cognitive functioning.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| | - Tuğba Sezer
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
19
|
Humes C, Sic A, Knezevic NN. Substance P's Impact on Chronic Pain and Psychiatric Conditions-A Narrative Review. Int J Mol Sci 2024; 25:5905. [PMID: 38892091 PMCID: PMC11172719 DOI: 10.3390/ijms25115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Charles Humes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Rusbridge C. Neuropathic pain in cats: Mechanisms and multimodal management. J Feline Med Surg 2024; 26:1098612X241246518. [PMID: 38710218 PMCID: PMC11156241 DOI: 10.1177/1098612x241246518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PRACTICAL RELEVANCE Chronic pain is a significant welfare concern in cats, and neuropathic pain, which arises from aberrant processing of sensory signals within the nervous system, is a subcategory of this type of pain. To comprehend this condition and how multimodal pharmacotherapy plays a central role in alleviating discomfort, it is crucial to delve into the anatomy of nociception and pain perception. In addition, there is an intricate interplay between emotional health and chronic pain in cats, and understanding and addressing the emotional factors that contribute to pain perception, and vice versa, is essential for comprehensive care.Clinical approach:Neuropathic pain is suspected if there is abnormal sensation in the area of the distribution of pain, together with a positive response to trial treatment with drugs effective for neuropathic pain. Ideally, this clinical suspicion would be supported by confirmation of a lesion at this neurolocalisation using diagnostic modalities such as MRI and neuroelectrophysiology. Alternatively, there may be a history of known trauma at that site. A variety of therapies, including analgesic, anti-inflammatory and adjuvant drugs, and neuromodulation (eg, TENS or acupuncture), can be employed to address different facets of pain pathways.Aim:This review article, aimed at primary care/ general practitioners, focuses on the identification and management of neuropathic pain in cats. Three case vignettes are included and a structured treatment algorithm is presented to guide veterinarians in tailoring interventions.Evidence base:The review draws on current literature, where available, along with the author's extensive experience and research.
Collapse
Affiliation(s)
- Clare Rusbridge
- BVMS, PhD, DipECVN, FRCVS School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; and Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-on-Tees, UK
| |
Collapse
|
21
|
Li CN, Keay KA, Henderson LA, Mychasiuk R. Re-examining the Mysterious Role of the Cerebellum in Pain. J Neurosci 2024; 44:e1538232024. [PMID: 38658164 PMCID: PMC11044115 DOI: 10.1523/jneurosci.1538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Collapse
Affiliation(s)
- Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
22
|
Wagner MA, Smith EML, Ayyash N, Toledo J, Rasheed Z, Holden JE. Effectiveness of Duloxetine on Oxaliplatin-induced Allodynia and Hyperalgesia in Rats. Biol Res Nurs 2024; 26:248-256. [PMID: 37902612 DOI: 10.1177/10998004231209444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Development of painful oxaliplatin-induced peripheral neuropathy (OIPN) is a major problem in people who receive oxaliplatin as part of cancer treatment. The pain experienced by those with OIPN can be seriously debilitating and lead to discontinuation of an otherwise successful treatment. Duloxetine is currently the only recommended treatment for established painful OIPN recommended by the American Society of Clinical Oncology, but its preventative ability is still not clear. This study examined the ability of duloxetine to prevent signs of chronic OIPN in female (n = 12) and male (n = 21) rats treated with the chemotherapeutic agent oxaliplatin. Using an established model of OIPN, rats were started on duloxetine (15 mg) one week prior to oxaliplatin administration and continued duloxetine for 32 days. Behavioral testing for mechanical allodynia and mechanical hyperalgesia was done with selected von Frey filaments. Significant posttreatment differences were found for allodynia in female (p = .004), but not male rats. Duloxetine was associated with significant differences for hyperalgesia in both female (p < .001) and male (p < .001) rats. These findings provide preliminary evidence of the preventative effects of duloxetine on both oxaliplatin-induced allodynia and hyperalgesia in male and female rats, with a difference noted in response between the sexes.
Collapse
Affiliation(s)
- Monica A Wagner
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | | | - Naji Ayyash
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | | | - Zainab Rasheed
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Janean E Holden
- School of Nursing, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Florence TJ, Bari A, Vivas AC. Functional Stimulation and Imaging to Predict Neuromodulation of Chronic Low Back Pain. Neurosurg Clin N Am 2024; 35:191-197. [PMID: 38423734 DOI: 10.1016/j.nec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Back pain is one of the most common aversive sensations in human experience. Pain is not limited to the sensory transduction of tissue damage; rather, it encompasses a range of nervous system activities including lateral modulation, long-distance transmission, encoding, and decoding. Although spine surgery may address peripheral pain generators directly, aberrant signals along canonical aversive pathways and maladaptive influence of affective and cognitive states can result in persistent subjective pain refractory to classical surgical intervention. The clinical identification of who will benefit from surgery-and who will not-is increasingly grounded in neurophysiology.
Collapse
Affiliation(s)
- Timothy J Florence
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Ausaf Bari
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Andrew C Vivas
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Chen H, Bleimeister IH, Nguyen EK, Li J, Cui AY, Stratton HJ, Smith KM, Baccei ML, Ross SE. The functional and anatomical characterization of three spinal output pathways of the anterolateral tract. Cell Rep 2024; 43:113829. [PMID: 38421871 PMCID: PMC11025583 DOI: 10.1016/j.celrep.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.
Collapse
Affiliation(s)
- Haichao Chen
- Tsinghua Medicine, Tsinghua University, Beijing 100084, China; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Abby Yilin Cui
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harrison J Stratton
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Santana VC, Marmentini BM, Cruz GG, de Jesus LC, Walicheski L, Beffa FH, Maffei THP, Streg RV, Veiga-Junior VF, Andrighetti CR, Freitas de Lima MC, de Sousa Valladão DM, de Oliveira RC, Neyra MOC, de Araújo Berber RC, Falconi-Sobrinho LL, Coimbra NC, de Oliveira R. Copaifera langsdorffii Desf. tree oleoresin-induced antinociception recruits µ 1- and κ -opioid receptors in the ventrolateral columns of the periaqueductal gray matter. Behav Brain Res 2024; 461:114832. [PMID: 38142860 DOI: 10.1016/j.bbr.2023.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Popular medicine has been using oleoresin from several species of copaíba tree for the treatment of various diseases and its clinical administration potentially causes antinociception. Electrical stimulation of ventrolateral (vlPAG) and dorsolateral (dlPAG) columns of the periaqueductal gray matter also causes antinociception. The aim this study was to verify the antinociceptive effect of oleoresin extracted from Copaifera langsdorffii tree and to test the hypothesis that oleoresin-induced antinociception is mediated by µ1- and κ-opioid receptors in the vlPAG and dlPAG. Nociceptive thresholds were determined by the tail-flick test in Wistar rats. The copaíba tree oleoresin was administered at different doses (50, 100 and 200 mg/kg) through the gavage technique. After the specification of the most effective dose of copaíba tree oleoresin (200 mg/kg), rats were pretreated with either the µ1-opioid receptor selective antagonist naloxonazine (at 0.05, 0.5 and 5 µg/ 0.2 µl in vlPAG, and 5 µg/ 0.2 µl in dlPAG) or the κ-opioid receptor selective antagonist nor-binaltorphimine (at 1, 3 and 9 nmol/ 0.2 µl in vlPAG, and 9 nmol/ 0.2 µl in dlPAG). The blockade of µ1 and κ opioid receptors of vlPAG decreased the antinociception produced by copaíba tree oleoresin. However, the blockade of these receptors in dlPAG did not alter copaíba tree oleoresin-induced antinociception. These data suggest that vlPAG µ1 and κ opioid receptors are critically recruited in the antinociceptive effect produced by oleoresin extracted from Copaifera langsdorffii.
Collapse
Affiliation(s)
- Vanessa Cristina Santana
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Bruna Magda Marmentini
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Geórgia Guedes Cruz
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Leila Camila de Jesus
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Luana Walicheski
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Fábio Henrique Beffa
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Talles Henrique Pichinelli Maffei
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Rafaela Vieira Streg
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Valdir Florêncio Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Praça General Tibúrcio, 80, Praia Vermelha, Urca, Rio de Janeiro, 22290-270 Rio de Janeiro, Brazil
| | - Carla Regina Andrighetti
- Laboratory of Pharmacognosy, Institute of Health Sciences, Mato Grosso Federal University (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Milena Campelo Freitas de Lima
- Federal University of Amazonas, Department of Chemistry, Av. General Rodrigo Octávio Jordão Ramos, 1200, Coroado I, Manaus 69067-005, Amazonas, Brazil
| | - Dênia Mendes de Sousa Valladão
- Laboratory of Quality Control, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Milton Omar Cordova Neyra
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Rodolfo Cassimiro de Araújo Berber
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Ricardo de Oliveira
- Laboratory of Experimental Neuropsychobiology and Toxicology, Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, Sinop 78557-267, Mato Grosso, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil.
| |
Collapse
|
26
|
Grayev A. Functional Anatomy of the Spinal Cord. Radiol Clin North Am 2024; 62:263-272. [PMID: 38272619 DOI: 10.1016/j.rcl.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Localization of lesions in the spinal cord requires knowledge of the functional anatomy of gray and white matter tracts. Using decussation points for white matter tracts can help determine lesion level. Pathologies can affect gray and white matter tracts in distinct ways and pattern recognition can help narrow down the differential diagnosis.
Collapse
Affiliation(s)
- Allison Grayev
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E1/318, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| |
Collapse
|
27
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
28
|
Seifert AC, Xu J, Kong Y, Eippert F, Miller KL, Tracey I, Vannesjo SJ. Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla. Hum Brain Mapp 2024; 45:e26597. [PMID: 38375948 PMCID: PMC10877664 DOI: 10.1002/hbm.26597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.
Collapse
Affiliation(s)
- Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Diagnostic, Molecular, and Interventional RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Yazhuo Kong
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Falk Eippert
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Max Planck Research Group Pain PerceptionMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - S. Johanna Vannesjo
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
29
|
Bonanno M, Papa D, Cerasa A, Maggio MG, Calabrò RS. Psycho-Neuroendocrinology in the Rehabilitation Field: Focus on the Complex Interplay between Stress and Pain. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:285. [PMID: 38399572 PMCID: PMC10889914 DOI: 10.3390/medicina60020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Chronic stress and chronic pain share neuro-anatomical, endocrinological, and biological features. However, stress prepares the body for challenging situations or mitigates tissue damage, while pain is an unpleasant sensation due to nociceptive receptor stimulation. When pain is chronic, it might lead to an allostatic overload in the body and brain due to the chronic dysregulation of the physiological systems that are normally involved in adapting to environmental challenges. Managing stress and chronic pain (CP) in neurorehabilitation presents a significant challenge for healthcare professionals and researchers, as there is no definitive and effective solution for these issues. Patients suffering from neurological disorders often complain of CP, which significantly reduces their quality of life. The aim of this narrative review is to examine the correlation between stress and pain and their potential negative impact on the rehabilitation process. Moreover, we described the most relevant interventions used to manage stress and pain in the neurological population. In conclusion, this review sheds light on the connection between chronic stress and chronic pain and their impact on the neurorehabilitation pathway. Our results emphasize the need for tailored rehabilitation protocols to effectively manage pain, improve treatment adherence, and ensure comprehensive patient care.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy; (M.B.); (R.S.C.)
| | - Davide Papa
- International College of Osteopathic Medicine, 20092 Cinisello Balsamo, Italy;
| | - Antonio Cerasa
- S’Anna Institute, 88900 Crotone, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy; (M.B.); (R.S.C.)
| | | |
Collapse
|
30
|
Buhidma Y, Lama J, Duty S. Insight gained from using animal models to study pain in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 174:99-118. [PMID: 38341233 DOI: 10.1016/bs.irn.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Pain is one of the key non-motor symptoms experienced by a large proportion of people living with Parkinson's disease (PD), yet the mechanisms behind this pain remain elusive and as such its treatment remains suboptimal. It is hoped that through the study of animal models of PD, we can start to unravel some of the contributory mechanisms, and perhaps identify models that prove useful as test beds for assessing the efficacy of potential new analgesics. However, just how far along this journey are we right now? Is it even possible to model pain in PD in animal models of the disease? And have we gathered any insight into pain mechanisms from the use of animal models of PD so far? In this chapter we intend to address these questions and in particular highlight the findings generated by others, and our own group, following studies in a range of rodent models of PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Joana Lama
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Sensory, Pain and Regeneration Centre, Guy's Campus, London, United Kingdom.
| |
Collapse
|
31
|
Chiang CC, Wu YC, Lan CH, Wang KC, Tang HC, Chang ST. Exploring CNS Involvement in Pain Insensitivity in Hereditary Sensory and Autonomic Neuropathy Type 4: Insights from Tc-99m ECD SPECT Imaging. Tomography 2023; 9:2261-2269. [PMID: 38133079 PMCID: PMC10747491 DOI: 10.3390/tomography9060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Hereditary sensory and autonomic neuropathy type 4 (HSAN4), also known as congenital insensitivity to pain with anhidrosis (CIPA), is a rare genetic disorder caused by NTRK1 gene mutations, affecting nerve growth factor signaling. This study investigates the central nervous system's (CNS) involvement and its relation to pain insensitivity in HSAN4. We present a 15-year-old girl with HSAN4, displaying clinical signs suggestive of CNS impact, including spasticity and a positive Babinski's sign. Using Technetium-99m ethyl cysteinate dimer single-photon emission computed tomography (Tc-99m ECD SPECT) imaging, we discovered perfusion deficits in key brain regions, notably the cerebellum, thalamus, and postcentral gyrus. These regions process pain signals, providing insights into HSAN4's pain insensitivity. This study represents the first visualization of CNS perfusion abnormality in an HSAN4 patient. It highlights the intricate relationship between the peripheral and central nervous systems in HSAN4. The complexity of HSAN4 diagnosis, involving potential unidentified genes, underscores the need for continued research to refine diagnostic approaches and develop comprehensive treatments.
Collapse
Affiliation(s)
- Cheng-Chun Chiang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (C.-C.C.); (Y.-C.W.)
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Yu-Che Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (C.-C.C.); (Y.-C.W.)
| | - Chiao-Hsin Lan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Kuan-Chieh Wang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Hsuan-Ching Tang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
32
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
33
|
Bozkurt A, Balta S. The effect of methylphenidate on pain perception thresholds in children with attention deficit hyperactivity disorder. Child Adolesc Psychiatry Ment Health 2023; 17:118. [PMID: 37833816 PMCID: PMC10576289 DOI: 10.1186/s13034-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Pain perception is important in children with attention deficit hyperactivity disorder (ADHD) since they are more likely to experience painful events due to increased accident rates. The aim of this study is to contribute to the literature concerning the relationship between ADHD diagnosis, methylphenidate (MPH) therapy, and pain thresholds, since findings regarding the change in pain perception in children with ADHD are scarce and inconsistent. METHODS Children aged 8-13 years constituted both the ADHD group (n = 82) and the healthy controls (n = 41). The ADHD group was divided into two subgroups, ADHD without MPH (not treated pharmacologically) and ADHD with MPH (treated pharmacologically for at least three-months). The Conners' Parent Rating Scale-Revised: Short Form was employed to assess ADHD, a visual analog scale was applied to evaluate chronic pain severity, and a manual pressure algometer was used to assess pain thresholds. RESULT Children with ADHD had lower pain thresholds than the healthy controls (P < 0.05). However, lower regional pain thresholds were observed in the ADHD group without MPH compared to both the healthy control and ADHD with MPH groups. Although pain thresholds in the ADHD with MPH group were regionally lower than in the healthy controls, low pain thresholds were found in fewer regions compared to the ADHD without MPH group. CONCLUSIONS Children with ADHD are more sensitive to pain sensation, and MPH may help normalize these individuals' pain experiences by raising pain thresholds. Families and clinicians must be aware of situations that may cause pain in children with ADHD. In addition, these children's low threshold for pain may lead them to experience it more intensely.
Collapse
Affiliation(s)
- Abdullah Bozkurt
- Department of Child and Adolescent Psychiatry, Ataturk University, Erzurum, Turkey.
| | - Selin Balta
- Department of Pain Medicine, University of Health Sciences, Konya, Turkey
| |
Collapse
|
34
|
Flores-García M, Rizzo A, Garçon-Poca MZ, Fernández-Dueñas V, Bonaventura J. Converging circuits between pain and depression: the ventral tegmental area as a therapeutic hub. Front Pharmacol 2023; 14:1278023. [PMID: 37849731 PMCID: PMC10577189 DOI: 10.3389/fphar.2023.1278023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Chronic pain and depression are highly prevalent pathologies and cause a major socioeconomic burden to society. Chronic pain affects the emotional state of the individuals suffering from it, while depression worsens the prognosis of chronic pain patients and may diminish the effectiveness of pain treatments. There is a high comorbidity rate between both pathologies, which might share overlapping mechanisms. This review explores the evidence pinpointing a role for the ventral tegmental area (VTA) as a hub where both pain and emotional processing might converge. In addition, the feasibility of using the VTA as a possible therapeutic target is discussed. The role of the VTA, and the dopaminergic system in general, is highly studied in mood disorders, especially in deficits in reward-processing and motivation. Conversely, the VTA is less regarded where it concerns the study of central mechanisms of pain and its mood-associated consequences. Here, we first outline the brain circuits involving central processing of pain and mood disorders, focusing on the often-understudied role of the dopaminergic system and the VTA. Next, we highlight the state-of-the-art findings supporting the emergence of the VTA as a link where both pathways converge. Thus, we envision a promising part for the VTA as a putative target for innovative therapeutic approaches to treat chronic pain and its effects on mood. Finally, we emphasize the urge to develop and use animal models where both pain and depression-like symptoms are considered in conjunction.
Collapse
Affiliation(s)
- Montse Flores-García
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Arianna Rizzo
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Maria Zelai Garçon-Poca
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Bonaventura
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
35
|
Cai B, Wu D, Xie H, Chen Y, Wang H, Jin S, Song Y, Li A, Huang S, Wang S, Lu Y, Bao L, Xu F, Gong H, Li C, Zhang X. A direct spino-cortical circuit bypassing the thalamus modulates nociception. Cell Res 2023; 33:775-789. [PMID: 37311832 PMCID: PMC10542357 DOI: 10.1038/s41422-023-00832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.
Collapse
Affiliation(s)
- Bing Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China
| | - Hong Xie
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Institute of Photonic Chips; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Huadong Wang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Yuran Song
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Shiqi Huang
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China
| | - Yingjin Lu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Lan Bao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China.
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
36
|
Bornier N, Mulliez A, Chenaf C, Elyn A, Teixeira S, Authier N, Bertin C, Kerckhove N. Chronic pain is a risk factor for incident Alzheimer's disease: a nationwide propensity-matched cohort using administrative data. Front Aging Neurosci 2023; 15:1193108. [PMID: 37842123 PMCID: PMC10575742 DOI: 10.3389/fnagi.2023.1193108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Chronic pain (CP) is one of the most disabling conditions in the elderly and seems to be a risk factor for the development of Alzheimer's disease and related dementias (ADRD). Only one study, using national administrative health databases, assessed and demonstrated that chronic pain (all types of pain) was a risk factor for dementia, but without assessing the impact of pain medications. Method To assess the impact of all types of chronic pain and the long-term use of pain medications on the person-years incidence of ADRD, a retrospective nationwide healthcare administrative data study was performed using the national inter-regime health insurance information system (SNIIRAM) to the French national health data system (SNDS). Incident people >50 years old with chronic pain, defined by at least 6-months duration analgesics treatment or by a diagnosis/long-term illness of chronic pain between 2006 and 2010, were included. Chronic pain individuals were matched with non-CP individuals by a propensity score. Individuals were followed up from 9 to 13 years to identify occurrences of ADRD from 2006. Results Among 64,496 French individuals, the incidence of ADRD was higher in the chronic pain population than control (1.13% vs. 0.95%, p <0.001). Chronic pain increases the risk of ADRD (HR = 1.23) and the incidence of ADRD was higher for women and increased significantly with age. Discussion Our study highlights the importance of prevention, diagnosis, and management of chronic pain in elderly to reduce the risk of development and/or worsening of dementia.
Collapse
Affiliation(s)
- Nadège Bornier
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélien Mulliez
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chouki Chenaf
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Analgesia, Clermont-Ferrand, France
| | - Antoine Elyn
- Centre D’Évaluation et de Traitement de la Douleur, Service de Neurochirurgie, Pôle Neuroscience, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sarah Teixeira
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Authier
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Analgesia, Clermont-Ferrand, France
| | - Célian Bertin
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Analgesia, Clermont-Ferrand, France
| | - Nicolas Kerckhove
- Service de Pharmacologie Médicale, Direction de la Recherche Clinique et de L’Innovation, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Analgesia, Clermont-Ferrand, France
| |
Collapse
|
37
|
Süß SC, Werner J, Saller AM, Weiss L, Reiser J, Ondracek JM, Zablotski Y, Kollmansperger S, Anders M, Potschka H, Schusser B, Fenzl T, Baumgartner C. Nociception in Chicken Embryos, Part III: Analysis of Movements before and after Application of a Noxious Stimulus. Animals (Basel) 2023; 13:2859. [PMID: 37760259 PMCID: PMC10525827 DOI: 10.3390/ani13182859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Many potentially noxious interventions are performed on chicken embryos in research and in the poultry industry. It is therefore essential and in the interest of animal welfare to be able to precisely define the point at which a chicken embryo is capable of nociception in ovo. The present part III of a comprehensive study examined the movements of developing chicken embryos with the aim of identifying behavioral responses to a noxious stimulus. For this purpose, a noxious mechanical stimulus and a control stimulus were applied in a randomized order. The recorded movements of the embryos were evaluated using the markerless pose estimation software DeepLabCut and manual observations. After the application of the mechanical stimulus, a significant increase in beak movement was identified in 15- to 18-day-old embryos. In younger embryos, no behavioral changes related to the noxious stimulus were observed. The presented results indicate that noxious mechanical stimuli at the beak base evoke a nocifensive reaction in chicken embryos starting at embryonic day 15.
Collapse
Affiliation(s)
- Stephanie C. Süß
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
| | - Julia Werner
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
| | - Anna M. Saller
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
| | - Larissa Weiss
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
| | - Judith Reiser
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
| | - Janie M. Ondracek
- Chair of Zoology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Bavaria, Germany;
| | - Yury Zablotski
- Clinic for Swine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleißheim, Bavaria, Germany;
| | - Sandra Kollmansperger
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.K.); (M.A.); (T.F.)
| | - Malte Anders
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.K.); (M.A.); (T.F.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-Universität München, 80539 Munich, Bavaria, Germany;
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Bavaria, Germany;
| | - Thomas Fenzl
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.K.); (M.A.); (T.F.)
| | - Christine Baumgartner
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Bavaria, Germany; (S.C.S.); (J.W.); (A.M.S.); (L.W.); (J.R.)
- Veterinary Faculty, Ludwig-Maximilians-Universität München, 80539 Munich, Bavaria, Germany
| |
Collapse
|
38
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei. Brain Stimul 2023; 16:1430-1444. [PMID: 37741439 PMCID: PMC10702144 DOI: 10.1016/j.brs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
39
|
Aghili M, Darzikolaee NM, Babaei M, Ghalehtaki R, Farhan F, Razavi SZE, Rezaei S, Esmati E, Samiei F, Azadvari M, Farazmand B, Bayani R, Amiri A. Duloxetine for the Prevention of Oxaliplatin Induced Peripheral Neuropathy: A Randomized, Placebo-Controlled, Double-blind Clinical Trial. J Gastrointest Cancer 2023; 54:467-474. [PMID: 35426033 DOI: 10.1007/s12029-022-00824-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Peripheral neuropathy is a dose-limiting adverse effect of oxaliplatin. The aim of this study was to evaluate the efficacy and safety of duloxetine in the prevention of oxaliplatin-induced peripheral neuropathy (OIPN). METHOD Cancer patients receiving oxaliplatin based chemotherapy were randomized into two arms. Duloxetine 60 mg capsule was given in the first 14 days of each chemotherapy cycle to one arm and placebo was similarly given to another. We compared the two arms based on the incidence of neuropathy and the results of the nerve conduction study (NCS). Grade of complained neuropathy was recorded according to Common Terminology Criteria for Adverse Events (CTCAE). RESULTS Thirty-two patients mostly rectal cancer (90.6%) were randomized to duloxetine and placebo arms. Highest grade of neuropathy in each cycle was not significantly different between the two groups. Six weeks after treatment incidence of neuropathy of any grade was 52.9 in duloxetine arm compared to 76.9% in placebo arm (P: 0.26). Patients in the duloxetine arm had a lower percentage of chemotherapy cycles (mean) in which they reported distal paresthesia (51% vs. 84%, P = 0.01) and throat discomfort (37% vs. 69%, P = 0.01). Results of NCS were mostly comparable between the two arms except for the velocity in two of the examined nerve which was significantly higher in duloxetine group. Duloxetine was safe and well-tolerated. CONCLUSION Although a definite conclusion might be difficult to draw but administering duloxetine for 14 days in each chemotherapy cycle could not decrease the incidence of acute OIPN based on CTCAE grading system.
Collapse
Affiliation(s)
- Mahdi Aghili
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Nima Mousavi Darzikolaee
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran.
| | - Mohammad Babaei
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Farshid Farhan
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Seyede Zahra Emami Razavi
- Department of Physical Medicine and Rehabilitation, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Rezaei
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Ebrahim Esmati
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Farhad Samiei
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Mohaddeseh Azadvari
- Department of Physical Medicine and Rehabilitation, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Borna Farazmand
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Reyhaneh Bayani
- Department of Radiation Oncology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ardavan Amiri
- Radiation Oncology Research Center (RORC), Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| |
Collapse
|
40
|
Deshler BJ, Rockenbach E, Patel T, Monahan BV, Poggio JL. Current update on multimodal analgesia and nonopiate surgical pain management. Curr Probl Surg 2023; 60:101332. [PMID: 37302814 DOI: 10.1016/j.cpsurg.2023.101332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Bailee J Deshler
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Emily Rockenbach
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Takshaka Patel
- Department of Surgery, General Surgery Resident Physician, Temple University Hospital, Philadelphia, PA
| | - Brian V Monahan
- Department of Surgery, General Surgery Resident Physician, Temple University Hospital, Philadelphia, PA
| | - Juan Lucas Poggio
- Division and System Chief, Colorectal Surgery, Department of Surgery, Professor of Surgery, Temple University Health System, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
| |
Collapse
|
41
|
Kowalski JL, Morse LR, Troy K, Nguyen N, Battaglino RA, Falci SP, Linnman C. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin 2023; 38:103414. [PMID: 37244076 PMCID: PMC10238876 DOI: 10.1016/j.nicl.2023.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/29/2023]
Abstract
Many individuals with spinal cord injury live with debilitating chronic pain that may be neuropathic, nociceptive, or a combination of both in nature. Identification of brain regions demonstrating altered connectivity associated with the type and severity of pain experience may elucidate underlying mechanisms, as well as treatment targets. Resting state and sensorimotor task-based magnetic resonance imaging data were collected in 37 individuals with chronic spinal cord injury. Seed-based correlations were utilized to identify resting state functional connectivity of regions with established roles in pain processing: the primary motor and somatosensory cortices, cingulate, insula, hippocampus, parahippocampal gyri, thalamus, amygdala, caudate, putamen, and periaqueductal gray matter. Resting state functional connectivity alterations and task-based activation associated with individuals' pain type and intensity ratings on the International Spinal Cord Injury Basic Pain Dataset (0-10 scale) were evaluated. We found that intralimbic and limbostriatal resting state connectivity alterations are uniquely associated with neuropathic pain severity, whereas thalamocortical and thalamolimbic connectivity alterations are associated specifically with nociceptive pain severity. The joint effect and contrast of both pain types were associated with altered limbocortical connectivity. No significant differences in task-based activation were identified. These findings suggest that the experience of pain in individuals with spinal cord injury may be associated with unique alterations in resting state functional connectivity dependent upon pain type.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Karen Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| | - Scott P Falci
- Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States; Department of Neurosurgery, Swedish Medical Center, 501 E Hampden Ave, Englewood, CO 80113, United States.
| | - Clas Linnman
- Spaulding Neuroimaging Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th St, Charlestown, Boston, MA, United States; Department of Rehabilitation Medicine, University of Minnesota, MMC 297, 420 Delaware St. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
42
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
43
|
Ding Z, Liang X, Wang J, Song Z, Guo Q, Schäfer MKE, Huang C. Inhibition of spinal ferroptosis-like cell death alleviates hyperalgesia and spontaneous pain in a mouse model of bone cancer pain. Redox Biol 2023; 62:102700. [PMID: 37084690 PMCID: PMC10141498 DOI: 10.1016/j.redox.2023.102700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Bone cancer pain (BCP) impairs patients' quality of life. However, the underlying mechanisms are still unclear. This study investigated the role of spinal interneuron death using a pharmacological inhibitor of ferroptosis in a mouse model of BCP. Lewis lung carcinoma cells were inoculated into the femur, resulting in hyperalgesia and spontaneous pain. Biochemical analysis revealed that spinal levels of reactive oxygen species and malondialdehyde were increased, while those of superoxide dismutase were decreased. Histological analysis showed the loss of spinal GAD65+ interneurons and provided ultrastructural evidence of mitochondrial shrinkage. Pharmacologic inhibition of ferroptosis using ferrostatin-1 (FER-1, 10 mg/kg, intraperitoneal for 20 consecutive days) attenuated ferroptosis-associated iron accumulation and lipid peroxidation and alleviated BCP. Furthermore, FER-1 inhibited the pain-associated activation of ERK1/2 and COX-2 expression and prevented the loss of GABAergic interneurons. Moreover, FER-1 improved analgesia by the COX-2 inhibitor Parecoxib. Taken together, this study shows that pharmacological inhibition of ferroptosis-like cell death of spinal interneurons alleviates BCP in mice. The results suggest that ferroptosis is a potential therapeutic target in patients suffering on BCP and possibly other types of pain.
Collapse
Affiliation(s)
- Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiaoshen Liang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Germany; Focus Program Translational Neurosciences (FTN) and Research Center of Immunotherapy of the Johannes Gutenberg-University Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
44
|
Arthurs JW, Bowen AJ, Palmiter RD, Baertsch NA. Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control. Nat Commun 2023; 14:963. [PMID: 36810601 PMCID: PMC9944916 DOI: 10.1038/s41467-023-36603-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Breathing is regulated automatically by neural circuits in the medulla to maintain homeostasis, but breathing is also modified by behavior and emotion. Mice have rapid breathing patterns that are unique to the awake state and distinct from those driven by automatic reflexes. Activation of medullary neurons that control automatic breathing does not reproduce these rapid breathing patterns. By manipulating transcriptionally defined neurons in the parabrachial nucleus, we identify a subset of neurons that express the Tac1, but not Calca, gene that exerts potent and precise conditional control of breathing in the awake, but not anesthetized, state via projections to the ventral intermediate reticular zone of the medulla. Activating these neurons drives breathing to frequencies that match the physiological maximum through mechanisms that differ from those that underlie the automatic control of breathing. We postulate that this circuit is important for the integration of breathing with state-dependent behaviors and emotions.
Collapse
Affiliation(s)
- Joseph W Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Pulmonary Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Moseley GL, Pearson N, Reezigt R, Madden VJ, Hutchinson MR, Dunbar M, Beetsma AJ, Leake HB, Moore P, Simons L, Heathcote L, Ryan C, Berryman C, Mardon AK, Wand BM. Considering Precision and Utility When we Talk About Pain. Comment on Cohen et al. THE JOURNAL OF PAIN 2023; 24:178-181. [PMID: 36549800 DOI: 10.1016/j.jpain.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Graham L Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, Australia.
| | - Neil Pearson
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Roland Reezigt
- School for Physiotherapy, Hanze University of Applied Sciences Groningen, the Netherlands
| | - Victoria J Madden
- Department of Anaesthesia and Perioperative Medicine, Neuroscience Institude, University of Cape Town, Cape Town, South Africa
| | - Mark R Hutchinson
- Adelaide Medical School University of Adelaide, Kaurna Country, Adelaide Australia
| | | | - Anneke J Beetsma
- Research group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences Groningen, the Netherlands
| | - Hayley B Leake
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| | | | - Laura Simons
- Stanford University School of Medicine, Stanford, USA
| | - Lauren Heathcote
- Health Psychology Section, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cormac Ryan
- Centre for Rehabilitation, School of Health and Life Sciences, Teesside University, United Kingdom
| | - Carolyn Berryman
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| | - Amelia K Mardon
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| | - Benedict M Wand
- Faculty of Medicine, Nursing & Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
46
|
Rokhsareh S, Haghighi S, Tavakoli-Ardakani M. Evaluating the effects of duloxetine on prophylaxis of oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancer: A randomized double-blind placebo controlled clinical trial. J Oncol Pharm Pract 2023; 29:60-65. [PMID: 34738855 DOI: 10.1177/10781552211052646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oxaliplatin is a key drug in treatment of gastrointestinal (GI) cancer. Peripheral neuropathy (PN) is a troublesome and dose-dependent adverse effect of oxaliplatin. It can occur in two distinct forms: acute and chronic. Its incidence is estimated about 65-98%, of which 22% of cases need to stop chemotherapy. In some cases, PN has a long-lasting effect on patient's quality of life (QOL). Therefore, this study was done to evaluate efficacy of duloxetine on prevention of oxaliplatin- induced peripheral neuropathy (OIPN) in patients with GI cancer. METHODOLOGY In this randomized and double -blind clinical trial study conducted in a tertiary teaching hospital, eligible patients were divided into two groups. Treatment group received duloxetine the day before initiation of chemotherapy regimen at a dose of 30 mg/day for one week and then, the dose was titrated up to 60 mg/day until 12 weeks. For placebo group, one placebo capsule was prescribed daily for one week followed by 2 capsules daily until 12 weeks. In each of chemotherapy courses, PN was assessed using national cancer institute-common terminology criteria for adverse effects (NCI-CTCAE v4.03). Also, chemotherapy -related QOL at the baseline and 12 weeks was assessed by functional assessment of cancer treatment gynecologic oncology group - neurotoxicity (FACT/GOG-NTX). RESULTS Forty patients were randomly assigned to treatment and placebo groups which were similar to each other in terms of chemotherapy regimen, type, and stage of cancer. Analysis of results obtained from the NCI-CTCAE (v4.03) showed that duloxetine could prevent worsening of paresthesia more than placebo (P = 0.025) and patients in duloxetine group experienced less peripheral sensory neuropathy (P = 0.001) than placebo group. Analysis of results obtained from the FACT/GOG-NTX demonstrated a significant worsening of tingling and discomfort in hands (P = 0.002, 0.001, respectively) and feet (P = 0.017, 0.019, respectively) in placebo group compared to duloxetine group. Also, patients experienced more cold temperature -induced pain in extremities (P = 0.001) in placebo group compared to duloxetine group. On the other hand, duloxetine could not improve QOL (P = 0.06) and had not significant effects on trouble feeling the shape of small objects in hand (P = 0.420) or trouble buttoning buttons (P = 0.086). The P-value < 0.05 was considered to be statistically significant.
Collapse
Affiliation(s)
- Soufi Rokhsareh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Haghighi
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Pharmacuetical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Li HL, Lin M, Tan XP, Wang JL. Role of Sensory Pathway Injury in Central Post-Stroke Pain: A Narrative Review of Its Pathogenetic Mechanism. J Pain Res 2023; 16:1333-1343. [PMID: 37101520 PMCID: PMC10124563 DOI: 10.2147/jpr.s399258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Central post-stroke pain (CPSP) is a severe chronic neuropathic pain syndrome that is a direct result of cerebrovascular lesions affecting the central somatosensory system. The pathogenesis of this condition remains unclear owing to its extensive clinical manifestations. Nevertheless, clinical and animal experiments have allowed a comprehensive understanding of the mechanisms underlying CPSP occurrence, based on which different theoretical hypotheses have been proposed. We reviewed and collected the literature and on the mechanisms of CPSP by searching the English literature in PubMed and EMBASE databases for the period 2002-2022. Recent studies have reported that CPSP occurrence is mainly due to post-stroke nerve injury and microglial activation, with an inflammatory response leading to central sensitization and de-inhibition. In addition to the primary injury at the stroke site, peripheral nerves, spinal cord, and brain regions outside the stroke site are involved in the occurrence and development of CPSP. In the present study, we reviewed the mechanism of action of CPSP from both clinical studies and basic research based on its sensory pathway. Through this review, we hope to increase the understanding of the mechanism of CPSP.
Collapse
Affiliation(s)
- Hai-Li Li
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Min Lin
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Xing-Ping Tan
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Correspondence: Jiang-Lin Wang, Pain Department, The Affiliated Hospital of Southwest Medical University, No. 25 Pacific Street, Luzhou, Sichuan Province, 646000, People’s Republic of China, Tel +8618090880626, Fax +86830-3165469, Email
| |
Collapse
|
48
|
Zhang LB, Lu XJ, Huang G, Zhang HJ, Tu YH, Kong YZ, Hu L. Selective and replicable neuroimaging-based indicators of pain discriminability. Cell Rep Med 2022; 3:100846. [PMID: 36473465 PMCID: PMC9798031 DOI: 10.1016/j.xcrm.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Neural indicators of pain discriminability have far-reaching theoretical and clinical implications but have been largely overlooked previously. Here, to directly identify the neural basis of pain discriminability, we apply signal detection theory to three EEG (Datasets 1-3, total N = 366) and two fMRI (Datasets 4-5, total N = 399) datasets where participants receive transient stimuli of four sensory modalities (pain, touch, audition, and vision) and two intensities (high and low) and report perceptual ratings. Datasets 1 and 4 are used for exploration and others for validation. We find that most pain-evoked EEG and fMRI brain responses robustly encode pain discriminability, which is well replicated in validation datasets. The neural indicators are also pain selective since they cannot track tactile, auditory, or visual discriminability, even though perceptual ratings and sensory discriminability are well matched between modalities. Overall, we provide compelling evidence that pain-evoked brain responses can serve as replicable and selective neural indicators of pain discriminability.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Hui-Juan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Zhuo Kong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
49
|
Jones RJF, Littzen COR. An Analysis of Theoretical Perspectives in Research on Nature-Based Interventions and Pain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12740. [PMID: 36232042 PMCID: PMC9566272 DOI: 10.3390/ijerph191912740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Chronic pain results from a complex series of biomechanical, inflammatory, neurological, psychological, social, and environmental mechanisms. Pain and pain-related diseases are the leading causes of disability and disease burden globally. Employing nature-based interventions for the treatment of pain is an emerging field. Current theory driving the suggested mechanism(s) linking the pain reducing effects of nature-based interventions is lacking. A two-step approach was taken to complete a theoretical review and analysis. First, a literature review was completed to gather a substantive amount of research related to theoretical frameworks on the topic of nature-based interventions and pain. Secondly, a theoretical analysis as proposed by Walker and Avant was completed to explore current theoretical frameworks accepted in the literature on nature-based interventions and pain. Stress reduction theory and attention restoration theory were the most common theoretical frameworks identified. Neither theoretical framework explicitly identifies, describes, or intends to adequately measure the concept of pain, revealing a limitation for their application in research with nature-based interventions and pain. Theoretical development is needed, as it pertains to nature-based interventions and pain. Without this development, research on nature-based interventions and pain will continue to use proxy concepts for measurement and may result in misrepresented findings.
Collapse
Affiliation(s)
- Reo J. F. Jones
- School of Nursing, Oregon Health & Science University, Portland, OR 97239, USA
- School of Nursing and Health Innovations, The University of Portland, Portland, OR 97203, USA
| | - Chloé O. R. Littzen
- School of Nursing and Health Innovations, The University of Portland, Portland, OR 97203, USA
| |
Collapse
|
50
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|