1
|
Gaszler P, Lőrinczy D, Szatmári D, Bódis B, Türmer K. Thermal and morphological properties of human erythrocytes from patients afflicted with type 1 diabetes mellitus. Heliyon 2025; 11:e41046. [PMID: 39801990 PMCID: PMC11720900 DOI: 10.1016/j.heliyon.2024.e41046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Red blood cells (RBC), are the most unique and abundant cell types. The diameter of RBCs is 7-8 μm. They have an essential role in transporting circulatory oxygen. The RBCs travel through varioussized capillaries throughout the entire body, some significantly smaller than the RBCs due to their incredible deformability. The RBC membrane allows the cell to resist stress as it squeezes the cytoplasm. Permanent stress or altered blood plasma conditions can result in decreased membrane deformability. Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases. In diabetes, the primary influence is increased glucose levels in the blood plasma that can result in the oxidation of lipids and proteins and the glycation of proteins. The damage changes the conformation and organization of various lipids and proteins, which can result in the loss of function and decreased deformability. Hemoglobin A1c (HbA1c) or glycohemoglobin is a form of hemoglobin found in RBCs. Glucose and fructose can bind to hemoglobin by non-enzymes, and different glycated forms of hemoglobin can be formed. The ratio of glucose-bound (glycated) hemoglobin to total hemoglobin (expressed as a percentage) is a critical laboratory parameter in managing diabetes. It can be used to determine the average blood glucose level of the patient over the past 60-120 days. Here, we investigate the effect of diabetes on RBCs' shape and membrane stability due to microscopy and DSC (Differential Scanning Calorimetry) methods. The comparison of the RBCs from diabetic and non-diabetic patients was classified by the HbA1c, showing that the conditions in diabetes caused atypical cell morphology and then, in a casedependent manner, increased or decreased the thermal stability of cytoplasm or the cell membrane, respectively. It shows the importance of DSC application in routine quality screening of diabetic erythrocytes and that it can be a crucial parameter of T1DM.
Collapse
Affiliation(s)
- Péter Gaszler
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Dénes Lőrinczy
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Beáta Bódis
- Department of Internal Medicine I, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Katalin Türmer
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Chen S, Zhou H, Liu S, Meng L. Causal relationship between varicose veins and mean corpuscular hemoglobin concentration based on Mendelian randomization study. Thromb J 2024; 22:79. [PMID: 39227935 PMCID: PMC11370081 DOI: 10.1186/s12959-024-00647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Increased hemoglobin concentrations may increase the risk of varicose veins. However, the underlying relationship between them was not yet understood. METHODS Mendelian randomization (MR) analysis was performed to investigate causal effect between mean corpuscular hemoglobin concentration (MCHC, exposure factor) and varicose veins (outcome). Afterward, sensitivity analysis was used to ensure the reliability of MR analysis results. Then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of SNPs were performed. A search tool for recurring instances of neighbouring genes (STRING) database was used to construct a protein-protein interaction (PPI) network. RESULTS Therefore, the inverse-variance weighted (IVW) results showed there existed a causal relationship between MCHC and varicose veins (p = 0.0026), with MCHC serving as a significant risk factor. (odd ratio [OR] = 1.2321). In addition, the validity of the results of the forward MR analysis was verified by sensitivity analysis. Further, a PPI network of 92 single-nucleotide polymorphisms (SNPs) which used for forward MR analysis related genes was constructed. And they were found to be closely associated with the peroxisome proliferator-activated receptor (PPAR) signalling pathway and cellular response to external stimulus by enrichment analysis. In addition, we clarified that the effect of varicose veins on MCHC was minimal by reverse MR analysis, suggesting that the results of forward MR analysis were not disturbed by reverse results. CONCLUSION This study found a causal relationship between varicose veins and MCHC, which provided strong evidence for the effect of hemoglobin on varicose veins, and a new thought for the diagnosis and prevention of varicose veins in the future.
Collapse
Affiliation(s)
- Shiwei Chen
- The Third People's Hospital of Hangzhou, Zhejiang Province, 310009, China.
| | - Huandong Zhou
- The Third People's Hospital of Hangzhou, Zhejiang Province, 310009, China
| | - Shicheng Liu
- The Third People's Hospital of Hangzhou, Zhejiang Province, 310009, China
| | - Luyang Meng
- The Third People's Hospital of Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
3
|
Xiong Y, Wang F, Mu H, Zhang A, Zhao Y, Han K, Zhang J, Zhang H, Wang Z, Ma J, Wei R, Luan X. hPMSCs prevent erythrocytes dysfunction caused by graft versus host disease via promoting GSH synthesis. Int Immunopharmacol 2024; 139:112689. [PMID: 39029234 DOI: 10.1016/j.intimp.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and β-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and β-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Huanmei Mu
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zhuoya Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China
| | - Rongxia Wei
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
4
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
5
|
Guo W, Ji P, Xie Y. Genetic Diagnosis and Treatment of Inherited Renal Tubular Acidosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:371-383. [PMID: 37901710 PMCID: PMC10601937 DOI: 10.1159/000531556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 10/31/2023]
Abstract
Background Renal tubular acidosis (RTA) is caused by various disruptions to the secretion of H+ by distal renal tubules and/or dysfunctional reabsorption of HCO3- by proximal renal tubules, which causes renal acidification dysfunction, ultimately leading to a clinical syndrome characterized by hyperchloremic metabolic acidosis with a normal anion gap. With the development of molecular genetics and gene sequencing technology, inherited RTA has also attracted attention, and an increasing number of RTA-related pathogenic genes have been discovered and reported. Summary This paper focuses on the latest progress in the research of inherited RTA and systematically reviews the pathogenic genes, protein functions, clinical manifestations, internal relationship between genotypes and clinical phenotypes, diagnostic clues, differential diagnosis, and treatment strategies associated with inherited RTA. This paper aims to deepen the understanding of inherited RTA and reduce the missed diagnosis and misdiagnosis of RTA. Key Messages This review systematically summarizes the pathogenic genes, pathophysiological mechanisms, differential diagnosis, and treatment of different types of inherited RTA, which has good clinical value for guiding the diagnosis and treatment of inherited RTA.
Collapse
Affiliation(s)
- Wenkai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Kotepui KU, Mahittikorn A, Masangkay FR, Kotepui M. Association between ovalocytosis and Plasmodium infection: a systematic review and meta-analysis. Sci Rep 2023; 13:7164. [PMID: 37137935 PMCID: PMC10156661 DOI: 10.1038/s41598-023-34170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
Reports of an association between ovalocytosis and protection against Plasmodium infection are inconsistent. Therefore, we aimed to synthesise the overall evidence of the association between ovalocytosis and malaria infection using a meta-analysis approach. The systematic review protocol was registered with PROSPERO (CRD42023393778). A systematic literature search of the MEDLINE, Embase, Scopus, PubMed, Ovid, and ProQuest databases, from inception to 30 December 2022, was performed to retrieve studies documenting the association between ovalocytosis and Plasmodium infection. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. Data synthesis included a narrative synthesis and a meta-analysis to calculate the pooled effect estimate (log odds ratios [ORs]) and 95% confidence intervals (CIs) using the random-effects model. Our database search retrieved 905 articles, 16 of which were included for data synthesis. Qualitative synthesis revealed that over half of the studies showed no association between ovalocytosis and malaria infections or severity. Furthermore, our meta-analysis demonstrated no association between ovalocytosis and Plasmodium infection (P = 0.81, log OR = 0.06, 95% CI - 0.44 to 0.19, I2: 86.20%; 11 studies). In conclusion, the meta-analysis results demonstrated no association between ovalocytosis and Plasmodium infection. Hence, the role of ovalocytosis in relation to protection against Plasmodium infection or disease severity should be further investigated in larger prospective studies.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
7
|
Yang M, Sheng Q, Ge S, Song X, Dong J, Guo C, Liao L. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: Analysis based on published patients. Front Pediatr 2023; 11:1077120. [PMID: 36776909 PMCID: PMC9910804 DOI: 10.3389/fped.2023.1077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS The genetic and clinical characteristics of patients with distal renal tubular acidosis (dRTA) caused by SLC4A1 mutations have not been systematically recorded before. Here, we summarized the SLC4A1 mutations and clinical characteristics associated with dRTA. METHODS Database was searched, and the mutations and clinical manifestations of patients were summarized from the relevant articles. RESULTS Fifty-three eligible articles involving 169 patients were included and 41 mutations were identified totally. Fifteen mutations involving 100 patients were autosomal dominant inheritance, 21 mutations involving 61 patients were autosomal recessive inheritance. Nephrocalcinosis or kidney stones were found in 72.27%, impairment in renal function in 14.29%, developmental disorders in 61.16%, hematological abnormalities in 33.88%, and muscle weakness in 13.45% of patients. The age of onset was younger (P < 0.01), urine pH was higher (P < 0.01), and serum potassium was lower (P < 0.001) in recessive patients than patients with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients (P < 0.05). CONCLUSIONS The children present with metabolic acidosis with high urinary pH, accompanying hypokalemia, hyperchloremia, nephrocalcinosis, growth retardation and hematological abnormalities should be suspected as dRTA and suggested a genetic testing. The patients with recessive dRTA are generally more severely affected than that with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients, and more attentions should be paid to the Asian patients.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
| | - Qiqi Sheng
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Shenghui Ge
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Xinxin Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| |
Collapse
|
8
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
9
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
10
|
Remigante A, Morabito R, Marino A. Band 3 protein function and oxidative stress in erythrocytes. J Cell Physiol 2021; 236:6225-6234. [PMID: 33559172 DOI: 10.1002/jcp.30322] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Band 3 protein (B3p), anion transporter, allows the HCO3 - /Cl- exchange across plasma membrane and plays an important role for erythrocytes homeostasis. In addition, B3p is linked to proteins cytoskeleton, thus contributing to cell shape and deformability, essential to erythrocytes adjustment within narrowest capillaries. Taking into account that erythrocytes are a suitable cell model to investigate the response of the oxidative stress effects, B3p functions, and specifically anion exchange capability, determining the rate constant for SO4 2- uptake, has been considered. As, in the latter years, rising attention has been addressed to membrane transport system, and particularly to this protein, the present mini-review has been conceived to report the most recent knowledge about B3p, with specific regard to its functions in oxidative stress conditions, including oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alessia Remigante
- Institute of Biophysics, National Research Council, Genoa, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Chien HJ, Xue YT, Chen HC, Wu KY, Lai CC. Proteomic analysis of rat kidney under maleic acid treatment by SWATH-MS technology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8633. [PMID: 31677360 DOI: 10.1002/rcm.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Maleic acid is an industrial-grade chemical that is often used in adhesives, stabilizers, and preservatives. It is unknown whether long-term consumption of maleic acid modified starch is harmful to humans. However, many studies have indicated that maleic acid causes renal tubular damage in animal models, even as the associated pathways remain unclear. Sequential window acquisition of all theoretical fragment ion spectra (SWATH) is the most innovative of the label-free quantitative technologies which have better quantification performance. Therefore, SWATH technology was used to investigate the effect of maleic acid on the rat kidney proteome in this study. METHODS Sprague-Dawley(SD) rats were treated with 0 mg/kg (control), 6 mg/kg (low-dose), 10 mg/kg (medium-dose), and 60 mg/kg (high-dose) of maleic acid. After kidney protein extraction, 28% SDS-PAGE was used, followed by in-gel digestion and desalting. Next, the samples were analyzed with ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS), and data-dependent acquisition (DDA) and SWATH technology were also used. The gene ontology and pathway analysis were accomplished. Ultimately, these protein biomarkers were validated by using scheduled high-resolution multiple reaction monitoring (sMRMHR ). RESULTS Comparisons of the control group with the other three groups revealed that 95, 130, and 103 proteins were expressed at significantly different levels in the control group and in the low-dose, medium-dose, and high-dose groups, respectively. According to the gene ontology analysis, the major processes that these proteins were involved in were metabolic processes, biological regulation, cellular processes, and responses to stimuli; the major functions that these proteins were involved in were binding, hydrolase activity, catalytic activity, and oxidoreductase activity; and the major cellular components hat they were involved in were the cytoplasm, extracellular region, membrane, and mitochondria. According to the KEGG pathway analysis, these proteins were involved in 35 pathways, five of which, the carbohydrate metabolism, folate biosynthesis, renal tubular resorption, amino acid metabolism, and Ras signaling pathways, are discussed in this study. Ultimately, 19 proteins involved in 12 important pathways were validated by sMRMHR . CONCLUSIONS It was demonstrated that maleic acid caused insufficient energy production, which might lead to a decrease in the activity of the sodium-potassium ATP pump and hydrogen ion ATP pump, which could in turn have caused renal tubular resorption and hydrogen ion regulation to be blocked, thus leading to the accumulation of hydrogen ions in the renal tubules, which would then result in renal tubular acidification followed finally by Fanconi syndrome.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ting Xue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Road, Taipei, 10055, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Road, Taipei, 10055, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 40447, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40402, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan
| |
Collapse
|
12
|
Farsaci F, Tellone E, Russo A, Galtieri A, Ficarra S. Thermodynamic characterization of RBCs highlights correlations between different hemoglobin types and Band 3 interactions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Szigyártó IC, Deák R, Mihály J, Rocha S, Zsila F, Varga Z, Beke-Somfai T. Flow Alignment of Extracellular Vesicles: Structure and Orientation of Membrane-Associated Bio-macromolecules Studied with Polarized Light. Chembiochem 2018; 19:545-551. [PMID: 29237098 DOI: 10.1002/cbic.201700378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) are currently in scientific focus, as they have great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, and thus, additional insight into their molecular-level properties, membrane-protein interactions, and membrane rigidity is still needed. We here demonstrate the use of red-blood-cell-derived EVs (REVs) that polarized light spectroscopy techniques, linear and circular dichroism, can provide molecular-level structural information on these systems. Flow-linear dichroism (flow-LD) measurements show that EVs can be oriented by shear force and indicate that hemoglobin molecules are associated to the lipid bilayer in freshly released REVs. During storage, this interaction ceases; this is coupled to major protein conformational changes relative to the initial state. Further on, the degree of orientation gives insight into vesicle rigidity, which decreases in time parallel to changes in protein conformation. Overall, we propose that both linear dichroism and circular dichroism spectroscopy can provide simple, rapid, yet efficient ways to track changes in the membrane-protein interactions of EV components at the molecular level, which may also give insight into processes occurring during vesiculation.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Róbert Deák
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chemical Biology, Kemigården 4, 41296, Göteborg, Sweden
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| |
Collapse
|
14
|
He BJ, Liao L, Deng ZF, Tao YF, Xu YC, Lin FQ. Molecular Genetic Mechanisms of Hereditary Spherocytosis: Current Perspectives. Acta Haematol 2018; 139:60-66. [PMID: 29402830 DOI: 10.1159/000486229] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Abstract
With the widespread use of genetic diagnostic technologies, many novel mutations have been identified in hereditary spherocytosis (HS)-related genes, including SPTA1, SPTB, ANK1, SLC4A1, and EPB42. However, mutations in HS-related genes are dispersed and nonspecific in the diagnosis of some HS patients, indicating significant heterogeneity in the molecular deficiency of HS. It is necessary to provide the molecular and genetic characteristics of these 5 genes for clinicians to examine HS. Here, we reviewed the recent proposed molecular genetic mechanisms of HS.
Collapse
|
15
|
Kager L, Bruce LJ, Zeitlhofer P, Flatt JF, Maia TM, Ribeiro ML, Fahrner B, Fritsch G, Boztug K, Haas OA. Band 3 null VIENNA , a novel homozygous SLC4A1 p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis. Pediatr Blood Cancer 2017; 64. [PMID: 27718309 DOI: 10.1002/pbc.26227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Abstract
We describe the second patient with anionic exchanger 1/band 3 null phenotype (band 3 nullVIENNA ), which was caused by a novel nonsense mutation c.1430C>A (p.Ser477X) in exon 12 of SLC4A1. We also update on the previous band 3 nullCOIMBRA patient, thereby elucidating the physiological implications of total loss of AE1/band 3. Besides transfusion-dependent severe hemolytic anemia and complete distal renal tubular acidosis, dyserythropoiesis was identified in the band 3 nullVIENNA patient, suggesting a role for band 3 in erythropoiesis. Moreover, we also, for the first time, report that long-term survival is possible in band 3 null patients.
Collapse
Affiliation(s)
- Leo Kager
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute Vienna, Vienna, Austria
| | - Lesley J Bruce
- NHS Blood and Transplant, Bristol Institute for Transfusion Sciences, Bristol, UK
| | | | - Joanna F Flatt
- NHS Blood and Transplant, Bristol Institute for Transfusion Sciences, Bristol, UK
| | - Tabita M Maia
- Serviço de Hematologia, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - M Leticia Ribeiro
- Serviço de Hematologia, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Bernhard Fahrner
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
| | - Gerhard Fritsch
- Children's Cancer Research Institute Vienna, Vienna, Austria
| | - Kaan Boztug
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Oskar A Haas
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute Vienna, Vienna, Austria
| |
Collapse
|
16
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
17
|
Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 2015; 350:680-4. [PMID: 26542571 DOI: 10.1126/science.aaa4335] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takami Kobayashi-Yurugi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hinako Hatae
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoya Hino
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiyo Ikeda-Suno
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kuma
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Murata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Alexander D Cameron
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Takuya Kobayashi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Hamasaki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - So Iwata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Morande PE, Borge M, Abreu C, Galletti J, Zanetti SR, Nannini P, Bezares RF, Pantano S, Dighiero G, Oppezzo P, Gamberale R, Giordano M. Surface localization of high-mobility group nucleosome-binding protein 2 on leukemic B cells from patients with chronic lymphocytic leukemia is related to secondary autoimmune hemolytic anemia. Leuk Lymphoma 2015; 56:1115-22. [DOI: 10.3109/10428194.2014.957205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RAF. A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem 2013; 288:33848-33860. [PMID: 24121512 DOI: 10.1074/jbc.m113.511865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Anion exchanger 1 (AE1; Band 3; SLC4A1) is the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters that includes chloride/bicarbonate AEs and Na(+)-bicarbonate co-transporters (NBCs). These membrane proteins consist of an amino-terminal cytosolic domain involved in protein interactions and a carboxyl-terminal membrane domain that carries out the transport function. Mutation of a conserved arginine residue (R298S) in the cytosolic domain of NBCe1 (SLC4A4) is linked to proximal renal tubular acidosis and results in impaired transport function, suggesting that the cytosolic domain plays a role in substrate permeation. Introduction of single and double mutations at the equivalent arginine (Arg(283)) and at an interacting glutamate (Glu(85)) in the cytosolic domain of human AE1 (cdAE1) had no effect on the cell surface expression or the transport activity of AE1 expressed in HEK-293 cells. In addition, the membrane domain of AE1 (mdAE1) efficiently mediated anion transport. A 2.1-Å resolution crystal structure of cdΔ54AE1 (residues 55-356 of cdAE1) lacking the amino-terminal and carboxyl-terminal disordered regions, produced at physiological pH, revealed an extensive hydrogen-bonded network involving Arg(283) and Glu(85). Mutations at these residues affected the pH-dependent conformational changes and stability of cdΔ54AE1. As these structural alterations did not impair functional expression of AE1, the cytosolic and membrane domains operate independently. A substrate access tunnel within the cytosolic domain is not present in AE1 and therefore is not an essential feature of the SLC4 family of bicarbonate transporters.
Collapse
Affiliation(s)
- Volodymyr Shnitsar
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xuyao Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles Calmettes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arghya Basu
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
21
|
Otsu W, Kurooka T, Otsuka Y, Sato K, Inaba M. A new class of endoplasmic reticulum export signal PhiXPhiXPhi for transmembrane proteins and its selective interaction with Sec24C. J Biol Chem 2013; 288:18521-32. [PMID: 23658022 DOI: 10.1074/jbc.m112.443325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) depends on the interaction between a signal motif on the cargo and a cargo recognition site on the coatomer protein complex II. A hydrophobic sequence in the N terminus of the bovine anion exchanger 1 (AE1) anion exchanger facilitated the ER export of human AE1Δ11, an ER-retained AE1 mutant, through interaction with a specific Sec24 isoform. The cell surface expression and N-glycan processing of various substitution mutants or chimeras of human and bovine AE1 proteins and their Δ11 mutants in HEK293 cells were examined. The N-terminal sequence (V/L/F)X(I/L)X(M/L), (26)VSIPM(30) in bovine AE1, which is comparable with ΦXΦXΦ, acted as the ER export signal for AE1 and AE1Δ11 (Φ is a hydrophobic amino acid, and X is any amino acid). The AE1-Ly49E chimeric protein possessing the ΦXΦXΦ motif exhibited effective cell surface expression and N-glycan maturation via the coatomer protein complex II pathway, whereas a chimera lacking this motif was retained in the ER. A synthetic polypeptide containing the N terminus of bovine AE1 bound the Sec23A-Sec24C complex through a selective interaction with Sec24C. Co-transfection of Sec24C-AAA, in which the residues (895)LIL(897) (the binding site for another ER export signal motif IXM on Sec24C and Sec24D) were mutated to (895)AAA(897), specifically increased ER retention of the AE1-Ly49E chimera. These findings demonstrate that the ΦXΦXΦ sequence functions as a novel signal motif for the ER export of cargo proteins through an exclusive interaction with Sec24C.
Collapse
Affiliation(s)
- Wataru Otsu
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
22
|
CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN HEMATOLOGY 2013; 2013:614619. [PMID: 23401787 PMCID: PMC3564380 DOI: 10.1155/2013/614619] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion.
Collapse
|
23
|
Per-Arne O. Role of CD47 and Signal Regulatory Protein Alpha (SIRPα) in Regulating the Clearance of Viable or Aged Blood Cells. ACTA ACUST UNITED AC 2012; 39:315-20. [PMID: 23801922 DOI: 10.1159/000342537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/14/2012] [Indexed: 01/11/2023]
Abstract
SUMMARY The ubiquitously expressed cell surface glycoprotein CD47 is expressed by virtually all cells in the host, where it can function to regulate integrin-mediated responses, or constitute an important part of the erythrocyte band 3/Rh multi-protein complex. In addition, CD47 can protect viable cells from being phagocytosed by macrophages or dendritic cells. The latter mechanism is dependent on the interaction between target cell CD47 and SIRPα on the phagocyte. In this context, SIRPα functions to inhibit prophagocytic signaling from Fcγ receptors, complement receptors, and LDL receptor-related protein-1 (LRP-1), but not scavenger receptors. The expression level and/or distribution of CD47 may be altered on the surface of apoptotic/senescent cells, rendering the phagocytosis inhibitory function of the CD47/SIRPα interaction reduced or eliminated. Instead, the interaction between these 2 proteins may serve to enhance the binding of apoptotic/senescent target cells to the phagocyte to promote phagocytosis.
Collapse
Affiliation(s)
- Oldenborg Per-Arne
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Duangtum N, Junking M, Sawasdee N, Cheunsuchon B, Limjindaporn T, Yenchitsomanus PT. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B). Biochem Biophys Res Commun 2011; 413:69-74. [PMID: 21871436 DOI: 10.1016/j.bbrc.2011.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl(-)/HCO(3)(-) exchange and the failure of proton (H(+)) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.
Collapse
Affiliation(s)
- Natapol Duangtum
- Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
25
|
Wu F, Satchwell TJ, Toye AM. Anion exchanger 1 in red blood cells and kidney: Band 3's in a pod. Biochem Cell Biol 2011; 89:106-14. [PMID: 21455263 DOI: 10.1139/o10-146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bicarbonate/chloride exchanger 1 (AE1, Band 3) is abundantly expressed in the red blood cell membrane, where it is involved in gas exchange and functions as a major site of cytoskeletal attachment to the erythrocyte membrane. A truncated kidney isoform (kAE1) is highly expressed in type A intercalated cells of the distal tubules, where it is vital for urinary acidification. Recently, kAE1 has emerged as a novel physiologically significant protein in the kidney glomerulus. This minireview will discuss the known interactions of kAE1 in the podocytes and the possible mechanisms whereby this important multispanning membrane protein may contribute to the function of the glomerular filtration barrier and prevent proteinuria.
Collapse
Affiliation(s)
- Fiona Wu
- School of Clinical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
26
|
Abstract
Antigens of 23 of the 30 human blood group systems are defined by the amino acid sequence of red cell membrane proteins. The antigens of DI, RH, RHAG, MNS, GE and CO systems are carried on blood group-active proteins (Band 3, D and CE polypeptides, RhAG, Glycophorins A and B, Glycophorins C and D and Aquaporin 1, respectively) which are expressed at high levels (>200,000 copies/red cell). These major proteins contribute to essential red cell functions either directly as membrane transporters and by providing linkage to the underlying red cell skeleton or by facilitating the membrane assembly of the protein complexes involved in these processes. The proteins expressing antigens of the remaining 17 blood group systems are much less abundant (<20,000 copies/red cell) and their functional importance for the circulating red cell is largely unknown. Human gene knock-outs (null phenotypes) have been described for many of these minor blood group-active proteins, but only absence of Kx glycoprotein has been clearly linked with pathology directly related to the function of circulating red cells. Recent evidence suggesting the normal quality control system for glycoprotein synthesis is altered during the latter stages of red cell production raises the possibility that many of these low abundance blood group-active proteins are vestigial. In sickle cell disease and polycythaemia vera, elevated Lutheran glycoprotein expression may contribute to pathology. Dyserythropoiesis with reduced antigen expression can result from mutations in the erythroid transcription factors GATA-1 and EKLF.
Collapse
Affiliation(s)
- D J Anstee
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.
| |
Collapse
|
27
|
Duarte CD, Greferath R, Nicolau C, Lehn JM. myo-Inositol trispyrophosphate: a novel allosteric effector of hemoglobin with high permeation selectivity across the red blood cell plasma membrane. Chembiochem 2011; 11:2543-8. [PMID: 21086482 DOI: 10.1002/cbic.201000499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
myo-Inositol trispyrophosphate (ITPP), a novel membrane-permeant allosteric effector of hemoglobin (Hb), enhances the regulated oxygen release capacity of red blood cells, thus counteracting the effects of hypoxia in diseases such as cancer and cardiovascular ailments. ITPP-induced shifting of the oxygen-hemoglobin equilibrium curve in red blood cells (RBCs) was inhibited by DIDS and NAP-taurine, indicating that band 3 protein, an anion transporter mainly localized on the RBC membrane, allows ITPP entry into RBCs. The maximum intracellular concentration of ITPP, determined by ion chromatography, was 5.5×10(-3) M, whereas a drop in concentration to the limit of detection was observed in NAP-taurine-treated RBCs. The dissociation constant of ITPP binding to RBC ghosts was found to be 1.72×10(-5) M. All data obtained indicate that ITPP uptake is mediated by band 3 protein and is thus highly tissue-selective towards RBCs, a feature of major importance for its potential therapeutic use.
Collapse
Affiliation(s)
- Carolina D Duarte
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
28
|
Barneaud-Rocca D, Borgese F, Guizouarn H. Dual transport properties of anion exchanger 1: the same transmembrane segment is involved in anion exchange and in a cation leak. J Biol Chem 2011; 286:8909-16. [PMID: 21257764 PMCID: PMC3059035 DOI: 10.1074/jbc.m110.166819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/19/2011] [Indexed: 11/06/2022] Open
Abstract
Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1.
Collapse
Affiliation(s)
- Damien Barneaud-Rocca
- From the Institut de Biologie du Développement et Cancer, UMR6543 Université de Nice-Centre National de la Recherche Scientifique, 28 avenue Valrose, 06108 Nice cedex 2, France
| | - Franck Borgese
- From the Institut de Biologie du Développement et Cancer, UMR6543 Université de Nice-Centre National de la Recherche Scientifique, 28 avenue Valrose, 06108 Nice cedex 2, France
| | - Hélène Guizouarn
- From the Institut de Biologie du Développement et Cancer, UMR6543 Université de Nice-Centre National de la Recherche Scientifique, 28 avenue Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
29
|
Guizouarn H, Borgese F, Gabillat N, Harrison P, Goede JS, McMahon C, Stewart GW, Bruce LJ. South-east Asian ovalocytosis and the cryohydrocytosis form of hereditary stomatocytosis show virtually indistinguishable cation permeability defects. Br J Haematol 2011; 152:655-64. [DOI: 10.1111/j.1365-2141.2010.08454.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Oxygen-linked modulation of erythrocyte metabolism: state of the art. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8 Suppl 3:s53-8. [PMID: 20606750 DOI: 10.2450/2010.009s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A). Biochem Biophys Res Commun 2010; 401:85-91. [DOI: 10.1016/j.bbrc.2010.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 01/04/2023]
|
32
|
Patterson ST, Reithmeier RAF. Cell surface rescue of kidney anion exchanger 1 mutants by disruption of chaperone interactions. J Biol Chem 2010; 285:33423-33434. [PMID: 20628050 DOI: 10.1074/jbc.m110.144261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human kidney anion exchanger 1 (kAE1) membrane glycoprotein cause impaired urine acidification resulting in distal renal tubular acidosis (dRTA). Dominant and recessive dRTA kAE1 mutants exhibit distinct trafficking defects with retention in the endoplasmic reticulum (ER), Golgi, or mislocalization to the apical membrane in polarized epithelial cells. We examined the interaction of kAE1 with the quality control system responsible for the folding of membrane glycoproteins and the retention and degradation of misfolded mutants. Using small molecule inhibitors to disrupt chaperone interactions, two functional, dominant kAE1 mutants (R589H and R901stop), retained in the ER and targeted to the proteasome for degradation by ubiquitination, were rescued to the basolateral membrane of Madin-Darby canine kidney cells. In contrast, the Golgi-localized, recessive G701D and the severely misfolded, ER-retained dominant Southeast Asian ovalocytosis (SAO) mutants were not rescued. These results show that functional dRTA mutants are retained in the ER due to their interaction with molecular chaperones, particularly calnexin, and that disruption of these interactions can promote their escape from the ER and cell surface rescue.
Collapse
Affiliation(s)
- Sian T Patterson
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reinhart A F Reithmeier
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
33
|
Wu F, Saleem MA, Kampik NB, Satchwell TJ, Williamson RC, Blattner SM, Ni L, Toth T, White G, Young MT, Parker MD, Alper SL, Wagner CA, Toye AM. Anion exchanger 1 interacts with nephrin in podocytes. J Am Soc Nephrol 2010; 21:1456-67. [PMID: 20576809 DOI: 10.1681/asn.2009090921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The central role of the multifunctional protein nephrin within the macromolecular complex forming the glomerular slit diaphragm is well established, but the mechanisms linking the slit diaphragm to the cytoskeleton and to the signaling pathways involved in maintaining the integrity of the glomerular filter remain incompletely understood. Here, we report that nephrin interacts with the bicarbonate/chloride transporter kidney anion exchanger 1 (kAE1), detected by yeast two-hybrid assay and confirmed by immunoprecipitation and co-localization studies. We confirmed low-level glomerular expression of kAE1 in human and mouse kidneys by immunoblotting and immunofluorescence microscopy. We observed less kAE1 in human glomeruli homozygous for the NPHS1(FinMaj) nephrin mutation, whereas kAE1 expression remained unchanged in the collecting duct. We could not detect endogenous kAE1 expression in NPHS1(FinMaj) podocytes in primary culture, but heterologous re-introduction of wild-type nephrin into these podocytes rescued kAE1 expression. In kidneys of Ae1(-/-) mice, nephrin abundance was normal but its distribution was altered along with the reported kAE1-binding protein integrin-linked kinase (ILK). Ae1(-/-) mice had increased albuminuria with glomerular enlargement, mesangial expansion, mesangiosclerosis, and expansion of the glomerular basement membrane. Glomeruli with ILK-deficient podocytes also demonstrated altered AE1 and nephrin expression, further supporting the functional interdependence of these proteins. These data suggest that the podocyte protein kAE1 interacts with nephrin and ILK to maintain the structure and function of the glomerular basement membrane.
Collapse
Affiliation(s)
- Fiona Wu
- Department of Clinical Sciences, South Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol Dis 2010; 45:1-8. [DOI: 10.1016/j.bcmd.2010.02.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 02/02/2023]
|
36
|
Ungsupravate D, Sawasdee N, Khositseth S, Udomchaiprasertkul W, Khoprasert S, Li J, Reithmeier RAF, Yenchitsomanus PT. Impaired trafficking and intracellular retention of mutant kidney anion exchanger 1 proteins (G701D and A858D) associated with distal renal tubular acidosis. Mol Membr Biol 2010; 27:92-103. [DOI: 10.3109/09687681003588020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Sharabi K, Lecuona E, Helenius IT, Beitel GJ, Sznajder JI, Gruenbaum Y. Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 2009; 13:4304-18. [PMID: 19863692 PMCID: PMC4515048 DOI: 10.1111/j.1582-4934.2009.00952.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carbon dioxide (CO2) is an important gaseous molecule that maintains biosphere homeostasis and is an important cellular signalling molecule in all organisms. The transport of CO2 through membranes has fundamental roles in most basic aspects of life in both plants and animals. There is a growing interest in understanding how CO2 is transported into cells, how it is sensed by neurons and other cell types and in understanding the physiological and molecular consequences of elevated CO2 levels (hypercapnia) at the cell and organism levels. Human pulmonary diseases and model organisms such as fungi, C. elegans, Drosophila and mice have been proven to be important in understanding of the mechanisms of CO2 sensing and response.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Chang YH, Shaw CF, Jian SH, Hsieh KH, Chiou YH, Lu PJ. Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis. Kidney Int 2009; 76:774-83. [DOI: 10.1038/ki.2009.258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hereditary stomatocytosis and cation leaky red cells — Recent developments. Blood Cells Mol Dis 2009; 42:216-22. [DOI: 10.1016/j.bcmd.2009.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/20/2009] [Indexed: 12/22/2022]
|
40
|
Derangement of Erythrocytic AE1 in Beta-Thalassemia by Caspase 3: Pathogenic Mechanisms and Implications in Red Blood Cell Senescence. J Membr Biol 2009; 228:43-9. [DOI: 10.1007/s00232-009-9157-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/27/2009] [Indexed: 12/15/2022]
|
41
|
|
42
|
Abstract
Hereditary spherocytosis is a common inherited disorder that is characterised by anaemia, jaundice, and splenomegaly. It is reported worldwide and is the most common inherited anaemia in individuals of northern European ancestry. Clinical severity is variable with most patients having a well-compensated haemolytic anaemia. Some individuals are asymptomatic, whereas others have severe haemolytic anaemia requiring erythrocyte transfusion. The primary lesion in hereditary spherocytosis is loss of membrane surface area, leading to reduced deformability due to defects in the membrane proteins ankyrin, band 3, beta spectrin, alpha spectrin, or protein 4.2. Many isolated mutations have been identified in the genes encoding these membrane proteins; common hereditary spherocytosis-associated mutations have not been identified. Abnormal spherocytes are trapped and destroyed in the spleen and this is the main cause of haemolysis in this disorder. Common complications are cholelithiasis, haemolytic episodes, and aplastic crises. Splenectomy is curative but should be undertaken only after careful assessment of the risks and benefits.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Paediatrics, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
43
|
Walsh S, Borgese F, Gabillat N, Unwin R, Guizouarn H. Cation transport activity of anion exchanger 1 mutations found in inherited distal renal tubular acidosis. Am J Physiol Renal Physiol 2008; 295:F343-50. [PMID: 18524859 DOI: 10.1152/ajprenal.00587.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anion exchanger 1 (AE1) is encoded by SLC4A1 and mediates electroneutral anion exchange across cell membranes. It is the most abundant protein in the red cell membrane, but it is also found in the basolateral membrane of renal alpha-intercalated cells, where it is required for normal urinary acidification. Recently, four point mutations in red cell AE1 have been described that convert the anion exchanger to a cation conductance. SLC4A1 mutations can also cause type 1 hypokalemic distal renal tubular acidosis (dRTA). We investigated the properties of four dRTA-associated AE1 mutations (R589H, G609R, S613F, and G701D) by heterologous expression in Xenopus laevis oocytes. Although these AE1 mutants are functional anion exchangers, unlike the red cell disease mutants, we found that they also demonstrated a cation leak. We found a large cation leak in the G701D mutant. This mutant normally requires coexpression with glycophorin A for surface membrane expression in red blood cells and oocytes. However, we found that coexpressing wild-type kidney AE1 with G701D in oocytes still caused a cation leak, consistent with heterodimerized G701D reaching the cell membrane and retaining its cation conductance property. These findings have potential structural and functional implications for AE1, and they indicate that while anion exchange and cation conductance properties are distinct, they can coexist.
Collapse
Affiliation(s)
- Stephen Walsh
- Laboratoire de Physiologie des Membranes Cellulaires, UMR6548, Centre National de la Recherche Scientifique-Université de Nice, Bâtiment de Sciences Naturelles, Nice, France.
| | | | | | | | | |
Collapse
|
44
|
Khositseth S, Sirikanaerat A, Khoprasert S, Opastirakul S, Kingwatanakul P, Thongnoppakhun W, Yenchitsomanus PT. Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies. Am J Hematol 2008; 83:465-71. [PMID: 18266205 DOI: 10.1002/ajh.21151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations of the human SLC4A1 gene encoding erythroid and kidney isoforms of anion exchanger 1 (AE1, band 3) result in erythrocyte abnormalities or distal renal tubular acidosis (dRTA) and such mutations are observed in Southeast Asia, where hemoglobinopathies are prevalent. Genetic and hematological studies in 18 Thai patients with dRTA have shown that 12 of them (67%) carried SLC4A1 mutations (7 G701D/G701D, 3 SAO/G701D, and 2 G701D/A858D). Of these 12 patients, three had homozygous G701D/G701D and heterozygous Hb E; one compound heterozygous SAO/G701D and heterozygous alpha(+)-thalassemia; and one compound heterozygous G701D/A858D and heterozygous Hb E. Of 6 patients without SLC4A1 mutation, two each carried heterozygous or homozygous Hb E and one of the latter also had Hb H disease (--(SEA)/-alpha(4.2)). The blood smears of patients with homozygous G701D/G701D showed approximately 25% ovalocytes. Strikingly, the patients with coexistence of homozygous G701D/G701D and heterozygous Hb E had 58% ovalocytes. Similarly, the patients who had compound heterozygous SAO/G701D showed 49% ovalocytes, but the patient with coexistence of compound heterozygous SAO/G701D and heterozygous alpha(+)-thalassemia had 70% ovalocytes. Our previous study has shown that under metabolic acidosis, the patients with homozygous G701D/G701D or compound heterozygous SAO/G701D had reticulocytosis, indicating compensated hemolysis. A patient with compound heterozygous SAO/G701D and heterozygous alpha(+)-thalassemia presented with hemolytic anemia and hepatosplenomegaly which was alleviated by alkaline therapy. Taken together, the coexistence of both homozygous or compound heterozygous SLC4A1 mutations and hemoglobinopathy has a combined effect on red cell morphology and degree of hemolytic anemia, which is aggravated by acidosis.
Collapse
|
45
|
|
46
|
Abstract
Studies during the last three decades have enabled the development of detailed molecular insights into the structural basis of altered function in various inherited red cell membrane disorders. This review highlights our current understanding of molecular and mechanistic insights into various inherited red cell membrane disorders involving either altered membrane structural organization (hereditary spherocytosis, hereditary elliptocytosis and hereditary ovalocytosis) or altered membrane transport function (hereditary stomatocytosis). The molecular basis for the vast majority of cases of hereditary spherocytosis, elliptocytosis and ovalocytosis have been fully defined while little progress has been made in defining the molecular basis for hereditary stomatocytosis. Mutations in a number of distinct genes account for hereditary spherocytosis and elliptocytosis, while a single genetic defect accounts for all cases of hereditary ovalocytosis. Based on these molecular insights, a comprehensive understanding of the structural basis for altered membrane function has been developed. Loss of vertical linkage between membrane skeleton and lipid bilayer leads to membrane loss in hereditary spherocytosis, while weakening of lateral linkages between skeletal proteins leads to membrane fragmentation and surface area loss in hereditary elliptocytosis. Importantly, the severity of anaemia in both these disorders is directly related to extent of membrane surface area loss. Splenectomy results in amelioration of anaemia.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
47
|
Williamson RC, Toye AM. Glycophorin A: Band 3 aid. Blood Cells Mol Dis 2008; 41:35-43. [PMID: 18304844 DOI: 10.1016/j.bcmd.2008.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 11/24/2022]
Abstract
Band 3 (B3) is a major site of cytoskeletal attachment to the erythrocyte membrane and is important for gas exchange. A truncated isoform of B3 (kB3) is expressed in the alpha-intercalated cells of the kidney and its functional activity and basolateral localization are essential for acid secretion. B3 mutations generally lead to red blood cell (RBC) specific disease (hereditary spherocytosis (HS), Southeast Asian Ovalocytosis or hereditary stomatocytosis) or kidney disease (distal Renal Tubular Acidosis--dRTA). It is rare for both the RBC and kidney disease phenotypes to co-exist, but this does occur in knockout mice, and also in humans (B3 Coimbra and B3 Courcouronne) or cattle with homozygous HS mutations. This is because RBCs express a B3 chaperone-like molecule in the form of Glycophorin A that can rescue the majority of B3 mutations that cause dRTA but probably not the majority of HS mutations. The study of naturally occurring B3 variant blood and expression of B3 or kB3 mutants in heterologous expression systems has provided valuable information concerning B3 trafficking and interactions in the RBC and kidney. This article will review these studies and comment on our current understanding of the interaction between GPA with B3 and also on the proposed B3 centred macrocomplex.
Collapse
Affiliation(s)
- Rosalind C Williamson
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
48
|
Abstract
The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.
Collapse
Affiliation(s)
- G Daniels
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Bristol, UK.
| |
Collapse
|
49
|
Band 3 Courcouronnes (Ser667Phe): a trafficking mutant differentially rescued by wild-type band 3 and glycophorin A. Blood 2008; 111:5380-9. [PMID: 18174378 PMCID: PMC2605348 DOI: 10.1182/blood-2007-07-099473] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a mutation in human erythrocyte band 3 (anion exchanger 1; SLC4A1) causing both hereditary spherocytosis and distal renal tubular acidosis. The proband developed a transfusion-dependent, hemolytic anemia following birth. Immunoblotting showed band 3 was reduced to approximately 35% of wildtype; other proteins of the band 3/Rh macrocomplex were also reduced. DNA sequence analysis revealed a novel homozygous mutation, c.2000C>T, leading to the amino acid substitution Ser667Phe. The parents were heterozygous for the same mutation. Sulfate influx in the patient's erythrocytes was approximately 40% wild type. The mutant band 3 produced very little chloride influx when expressed in Xenopus oocytes. Influx was partially rescued by coexpression of glycophorin A and also rescued by coexpression of wild-type band 3. At 2 years of age, an ammonium chloride challenge showed the child has incomplete distal renal tubular acidosis (dRTA). Stable expression of mutant kidney band 3 in both nonpolarized and polarized Madin-Darby canine kidney cells showed that most of the mutant protein was retained in the endoplasmic reticulum. Overall our results suggest that the Ser667Phe does not affect the anion transport function of band 3, but causes a trafficking defect in both erythrocytes and kidney cells.
Collapse
|
50
|
De Rosa MC, Carelli Alinovi C, Galtieri A, Scatena R, Giardina B. The plasma membrane of erythrocytes plays a fundamental role in the transport of oxygen, carbon dioxide and nitric oxide and in the maintenance of the reduced state of the heme iron. Gene 2007; 398:162-71. [PMID: 17573207 DOI: 10.1016/j.gene.2007.02.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Here we review new insights into the role of the erythrocyte membrane and the implications of its architecture on the several functions accomplished by the red blood cells. The picture which emerges highlights the capability of Hb and band 3 to modulate erythrocyte metabolism and to meet the needs of the cell.
Collapse
Affiliation(s)
- Maria Cristina De Rosa
- Institute of Biochemistry and Clinical Biochemistry and C.N.R. Institute of Chemistry of Molecular Recognition, Catholic University of Rome, 00168 Rome, Italy
| | | | | | | | | |
Collapse
|