1
|
Li B, Li T, Wang D, Yang Y, Tan P, Wang Y, Yang YG, Jia S, Au KF. Zygotic activation of transposable elements during zebrafish early embryogenesis. Nat Commun 2025; 16:3692. [PMID: 40246845 PMCID: PMC12006353 DOI: 10.1038/s41467-025-58863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Although previous studies have shown that transposable elements (TEs) are conservatively activated to play key roles during early embryonic development, the details of zygotic TE activation (ZTA) remain poorly understood. Here, we employ long-read sequencing to precisely identify that only a small subset of TE loci are activated among numerous copies, allowing us to map their hierarchical transcriptional cascades at the single-locus and single-transcript level. Despite the heterogeneity of ZTA across family, subfamily, locus, and transcript levels, our findings reveal that ZTA follows a markedly different pattern from conventional zygotic gene activation (ZGA): ZTA occurs significantly later than ZGA and shows a pronounced bias for nuclear localization of TE transcripts. This study advances our understanding of TE activation by providing a high-resolution view of TE copies and creating a comprehensive catalog of thousands of previously unannotated transcripts and genes that are activated during early zebrafish embryogenesis. Among these genes, we highlight two that are essential for zebrafish development.
Collapse
Affiliation(s)
- Bo Li
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ting Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Dingjie Wang
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ying Yang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Puwen Tan
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yunhao Wang
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Shunji Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Kin Fai Au
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Ribeiro O, Félix L, Ribeiro C, Torres-Ruiz M, Tiritan ME, Gonçalves VMF, Langa I, Carrola JS. Unveil the toxicity induced on early life stages of zebrafish (Danio rerio) exposed to 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176906. [PMID: 39423890 DOI: 10.1016/j.scitotenv.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The increased detection of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) in aquatic ecosystems, has raised concern worldwide about its possible negative impacts on wildlife. MDMA is produced as racemate but its enantioselective effects on non-target organisms are poorly understood. Therefore, this study aimed to provide a comprehensive study of the toxicity of MDMA and its enantiomers in the early life stages of zebrafish (Danio rerio). Zebrafish embryos (≈3 h post fertilization) were exposed to different concentrations (0.02, 0.2, 2, 20, and 200 μg/L) of (R,S)-MDMA and both pure enantiomers. Both enantiomers induced effects on embryonic development, DNA integrity, and behaviour and enantioselective effects were noted. (S)-MDMA exhibits higher toxic effects on embryonic development level with increased mortality and severity of teratogenic effects, and behavioural abnormalities in acoustic startle-habituation response. (R)-MDMA affected general activity and avoidance behaviour, showing greater inhibitory effects on behavioural activity. Additionally, (R,S)-MDMA induced higher genotoxic effects than the two isolated enantiomers. These results are of concern at populational levels since effects on mortality, development, and behaviour were observed even at environmentally relevant concentrations, which can cause a reduction of larval viability and in the number of individuals in each generation, and an increase in the risk of predation of the organisms. Yet, the bioaccumulation studies showed that MDMA is not accumulated in zebrafish. Therefore, this work demonstrated for the first time the occurrence of MDMA enantiotoxicity in the early life stages of zebrafish, which should be considered in further environmental risk assessments involving fish species or other non-target aquatic organisms.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal
| | - Cláudia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Monica Torres-Ruiz
- Toxicology Department, National Centre for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Maria Elizabeth Tiritan
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Virgínia M F Gonçalves
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - Ivan Langa
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, 5000-801 Vila Real, Portugal.
| |
Collapse
|
4
|
Reimão-Pinto MM, Behrens A, Forcelloni S, Fröhlich K, Kaya S, Nedialkova DD. The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish. EMBO J 2024; 43:5747-5779. [PMID: 39402326 PMCID: PMC11574265 DOI: 10.1038/s44318-024-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Embryogenesis entails dramatic shifts in mRNA translation and turnover that reprogram gene expression during cellular proliferation and differentiation. Codon identity modulates mRNA stability during early vertebrate embryogenesis, but how the composition of tRNA pools is matched to translational demand is unknown. By quantitative profiling of tRNA repertoires in zebrafish embryos during the maternal-to-zygotic transition, we show that zygotic tRNA repertoires are established after the onset of gastrulation, succeeding the major wave of zygotic mRNA transcription. Maternal and zygotic tRNA pools are distinct, but their reprogramming does not result in a better match to the codon content of the zygotic transcriptome. Instead, we find that an increase in global translation at gastrulation sensitizes decoding rates to tRNA supply, thus destabilizing maternal mRNAs enriched in slowly translated codons. Translational activation and zygotic tRNA expression temporally coincide with an increase of TORC1 activity at gastrulation, which phosphorylates and inactivates the RNA polymerase III repressor Maf1a/b. Our data indicate that a switch in global translation, rather than tRNA reprogramming, determines the onset of codon-dependent maternal mRNA decay during zebrafish embryogenesis.
Collapse
Affiliation(s)
| | - Andrew Behrens
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sergio Forcelloni
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Selay Kaya
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Danny D Nedialkova
- Mechanisms of Protein Biogenesis Laboratory, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, 85748, Garching, Germany.
| |
Collapse
|
5
|
da Silva Pescador G, Baia Amaral D, Varberg JM, Zhang Y, Hao Y, Florens L, Bazzini AA. Protein profiling of zebrafish embryos unmasks regulatory layers during early embryogenesis. Cell Rep 2024; 43:114769. [PMID: 39302832 PMCID: PMC11544563 DOI: 10.1016/j.celrep.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
The maternal-to-zygotic transition is crucial in embryonic development, marked by the degradation of maternally provided mRNAs and initiation of zygotic gene expression. However, the changes occurring at the protein level during this transition remain unclear. Here, we conducted protein profiling throughout zebrafish embryogenesis using quantitative mass spectrometry, integrating transcriptomics and translatomics datasets. Our data show that, unlike RNA changes, protein changes are less dynamic. Further, increases in protein levels correlate with mRNA translation, whereas declines in protein levels do not, suggesting active protein degradation processes. Interestingly, proteins from pure zygotic genes are present at fertilization, challenging existing mRNA-based gene classifications. As a proof of concept, we utilized CRISPR-Cas13d to target znf281b mRNA, a gene whose protein significantly accumulates within the first 2 h post-fertilization, demonstrating its crucial role in development. Consequently, our protein profiling, coupled with CRISPR-Cas13d, offers a complementary approach to unraveling maternal factor function during embryonic development.
Collapse
Affiliation(s)
| | | | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
6
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Xiang K, Ly J, Bartel DP. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell 2024; 59:1058-1074.e11. [PMID: 38460509 DOI: 10.1016/j.devcel.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Cheng X, Jiang W, Wang Q, Liu K, Dai W, Liu Y, Shao C, Li Q. Unveiling Gene Expression Dynamics during Early Embryogenesis in Cynoglossus semilaevis: A Transcriptomic Perspective. Life (Basel) 2024; 14:505. [PMID: 38672775 PMCID: PMC11050975 DOI: 10.3390/life14040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Commencing with sperm-egg fusion, the early stages of metazoan development include the cleavage and formation of blastula and gastrula. These early embryonic events play a crucial role in ontogeny and are accompanied by a dramatic remodeling of the gene network, particularly encompassing the maternal-to-zygotic transition. Nonetheless, the gene expression dynamics governing early embryogenesis remain unclear in most metazoan lineages. We conducted transcriptomic profiling on two types of gametes (oocytes and sperms) and early embryos (ranging from the four-cell to the gastrula stage) of an economically valuable flatfish-the Chinese tongue sole Cynoglossus semilaevis (Pleuronectiformes: Cynoglossidae). Comparative transcriptome analysis revealed that large-scale zygotic genome activation (ZGA) occurs in the blastula stage, aligning with previous findings in zebrafish. Through the comparison of the most abundant transcripts identified in each sample and the functional analysis of co-expression modules, we unveiled distinct functional enrichments across different gametes/developmental stages: actin- and immune-related functions in sperms; mitosis, transcription inhibition, and mitochondrial function in oocytes and in pre-ZGA embryos (four- to 1000-cell stage); and organ development in post-ZGA embryos (blastula and gastrula). These results provide insights into the intricate transcriptional regulation of early embryonic development in Cynoglossidae fish and expand our knowledge of developmental constraints in vertebrates.
Collapse
Affiliation(s)
- Xinyi Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
- BGI Research, Wuhan 430074, China;
| | - Wei Jiang
- BGI Research, Shenzhen 518083, China;
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wei Dai
- BGI Research, Wuhan 430074, China;
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiye Li
- BGI Research, Wuhan 430074, China;
- BGI Research, Shenzhen 518083, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Fishman L, Modak A, Nechooshtan G, Razin T, Erhard F, Regev A, Farrell JA, Rabani M. Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq. Nat Commun 2024; 15:3104. [PMID: 38600066 PMCID: PMC11006943 DOI: 10.1038/s41467-024-47290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the relative contributions of mRNA transcription and degradation to shaping those profiles remains challenging, especially within embryos with diverse cellular identities. Here, we combine single-cell RNA-Seq and metabolic labeling to capture temporal cellular transcriptomes of zebrafish embryos where newly-transcribed (zygotic) and pre-existing (maternal) mRNA can be distinguished. We introduce kinetic models to quantify mRNA transcription and degradation rates within individual cell types during their specification. These models reveal highly varied regulatory rates across thousands of genes, coordinated transcription and destruction rates for many transcripts, and link differences in degradation to specific sequence elements. They also identify cell-type-specific differences in degradation, namely selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types. Our study provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Avani Modak
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Talya Razin
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Chair of Computational Immunology, University of Regensburg, Regensburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA, 02139, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard Cambridge, Cambridge, MA, 02142, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA.
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
10
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
11
|
Takada Y, Fierro L, Sato K, Sanada T, Ishii A, Yamamoto T, Kotani T. Mature mRNA processing that deletes 3' end sequences directs translational activation and embryonic development. SCIENCE ADVANCES 2023; 9:eadg6532. [PMID: 38000026 PMCID: PMC10672166 DOI: 10.1126/sciadv.adg6532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Eggs accumulate thousands of translationally repressed mRNAs that are translated into proteins after fertilization to direct diverse developmental processes. However, molecular mechanisms underlying the translation of stored mRNAs after fertilization remain unclear. Here, we report a previously unknown RNA processing of 3' end sequences of mature mRNAs that activates the translation of stored mRNAs. Specifically, 9 to 72 nucleotides at the 3' ends of zebrafish pou5f3 and mouse Pou5f1 mRNAs were deleted in the early stages of development. Reporter assays illustrated the effective translation of the truncated forms of mRNAs. Moreover, promotion and inhibition of the shortening of 3' ends accelerated and attenuated Pou5f3 accumulation, respectively, resulting in defective development. Identification of proteins binding to unprocessed and/or processed mRNAs revealed that mRNA shortening acts as molecular switches. Comprehensive analysis revealed that >250 mRNAs underwent this processing. Therefore, our results provide a molecular principle that triggers the translational activation and directs development.
Collapse
Affiliation(s)
- Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ludivine Fierro
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Sanada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Ross SE, Vázquez-Marín J, Gert KRB, González-Rajal Á, Dinger ME, Pauli A, Martínez-Morales JR, Bogdanovic O. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res 2023; 51:9658-9671. [PMID: 37615576 PMCID: PMC10570028 DOI: 10.1093/nar/gkad695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.
Collapse
Affiliation(s)
- Samuel E Ross
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Javier Vázquez-Marín
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Álvaro González-Rajal
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Juan Ramon Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
13
|
Eldem V, Zararsız G, Erkan M. Global expression pattern of genes containing positively selected sites in European anchovy (Engraulis encrasicolus L.) may shed light on teleost reproduction. PLoS One 2023; 18:e0289940. [PMID: 37566603 PMCID: PMC10420382 DOI: 10.1371/journal.pone.0289940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
European anchovy is a multiple-spawning and highly fecundate pelagic fish with high economic and ecological significance. Although fecundity is influenced by nutrition, temperature and weight of spawners, high reproductive capacity is related to molecular processes in the ovary. The ovary is an essential and complex reproductive organ composed of various somatic and germ cells, which interact to facilitate the development of the ovary and functional oocytes. Revealing the ovarian transcriptome profile of highly fecundate fishes provides insights into oocyte production in teleosts. Here we use a comprehensive tissue-specific RNA sequencing which yielded 102.3 billion clean bases to analyze the transcriptional profiles of the ovary compared with other organs (liver, kidney, ovary, testis, fin, cauda and gill) and juvenile tissues of European anchovy. We conducted a comparative transcriptome and positive selection analysis of seven teleost species with varying fecundity rates to identify genes potentially involved in oogenesis and oocyte development. Of the 2,272 single copies of orthologous genes found, up to 535 genes were under positive selection in European anchovy and these genes are associated with a wide spectrum of cellular and molecular functions, with enrichments such as RNA methylation and modification, ribosome biogenesis, DNA repair, cell cycle processing and peptide/amide biosynthesis. Of the 535 positively selected genes, 55 were upregulated, and 45 were downregulated in the ovary, most of which were related to RNA and DNA transferase, developmental transcription factors, protein kinases and replication factors. Overall, our analysis of the transcriptome level in the ovarian tissue of a teleost will provide further insights into molecular processes and deepen our genetic understanding of egg production in highly fecund fish.
Collapse
Affiliation(s)
- Vahap Eldem
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Melike Erkan
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Chen Y, Wang J, Yu Z, Xiao L, Xu J, Zhao K, Zhang H, Shang X, Liu C. Transcriptomic and metabolomic analyses revealed epiboly delayed mechanisms of 2,5-dichloro-1, 4-benuinone on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27145-4. [PMID: 37165267 DOI: 10.1007/s11356-023-27145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
2,5-Dichloro-1,4-benzenediol (2,5-DCBQ) is a putative disinfection by-product that belongs to the halogenated benzoquinone class. However, its developmental toxicity and related mechanism remained unclarified. In our study, we used zebrafish embryos as the model and exposed them to graded concentrations of 2,5-DCBQ (100, 200, 300, 400 μg/L). We found that the rate of epiboly abnormalities increased significantly in a concentration-dependent manner. The results of whole-mount in situ hybridization (WISH) indicated that the expression patterns and levels of chordin (dorsoventral marker), foxa2 (endodermal marker), eve1 (ventral mesodermal marker), and foxb1a (ectodermal marker) were altered, suggesting that 2,5-DCBQ might affect the germ layer development of zebrafish embryos. Integrated transcriptomic and metabolomic analyses were adopted to explore the molecular mechanisms of embryonic developmental delays. The results showed that 2,5-DCBQ exposure induced 1163 differentially expressed genes (DEGs) and 37 differential metabolites (DEMs). Bioinformatic analysis enriched the most affected molecular pathways (Wnt signaling pathway, cell adhesion molecules, actin cytoskeleton regulation) and metabolic pathways (purine metabolism, aminoacyl-tRNA biosynthesis, arginine and proline metabolism) in zebrafish embryos. To summarize, our findings broadened the molecular mechanisms of 2,5-DCBQ embryotoxicity through multi-omics and bioinformatic analyses.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People's Republic of China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Fishman L, Nechooshtan G, Erhard F, Regev A, Farrell JA, Rabani M. Single-cell temporal dynamics reveals the relative contributions of transcription and degradation to cell-type specific gene expression in zebrafish embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537620. [PMID: 37131717 PMCID: PMC10153228 DOI: 10.1101/2023.04.20.537620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During embryonic development, pluripotent cells assume specialized identities by adopting particular gene expression profiles. However, systematically dissecting the underlying regulation of mRNA transcription and degradation remains a challenge, especially within whole embryos with diverse cellular identities. Here, we collect temporal cellular transcriptomes of zebrafish embryos, and decompose them into their newly-transcribed (zygotic) and pre-existing (maternal) mRNA components by combining single-cell RNA-Seq and metabolic labeling. We introduce kinetic models capable of quantifying regulatory rates of mRNA transcription and degradation within individual cell types during their specification. These reveal different regulatory rates between thousands of genes, and sometimes between cell types, that shape spatio-temporal expression patterns. Transcription drives most cell-type restricted gene expression. However, selective retention of maternal transcripts helps to define the gene expression profiles of germ cells and enveloping layer cells, two of the earliest specified cell-types. Coordination between transcription and degradation restricts expression of maternal-zygotic genes to specific cell types or times, and allows the emergence of spatio-temporal patterns when overall mRNA levels are held relatively constant. Sequence-based analysis links differences in degradation to specific sequence motifs. Our study reveals mRNA transcription and degradation events that control embryonic gene expression, and provides a quantitative approach to study mRNA regulation during a dynamic spatio-temporal response.
Collapse
Affiliation(s)
- Lior Fishman
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Gal Nechooshtan
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Aviv Regev
- Department of Biology, MIT, Cambridge MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20814, USA
| | - Michal Rabani
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
16
|
Bhat P, Cabrera-Quio LE, Herzog VA, Fasching N, Pauli A, Ameres SL. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep 2023; 42:112070. [PMID: 36757845 DOI: 10.1016/j.celrep.2023.112070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The maternal-to-zygotic transition (MZT) is a key developmental process in metazoan embryos that involves the activation of zygotic transcription (ZGA) and degradation of maternal transcripts. We employed metabolic mRNA sequencing (SLAMseq) to deconvolute the compound embryonic transcriptome in zebrafish. While mitochondrial zygotic transcripts prevail prior to MZT, we uncover the spurious transcription of hundreds of short and intron-poor genes as early as the 2-cell stage. Upon ZGA, most zygotic transcripts originate from thousands of maternal-zygotic (MZ) genes that are transcribed at rates comparable to those of hundreds of purely zygotic genes and replenish maternal mRNAs at distinct timescales. Rapid replacement of MZ transcripts involves transcript decay features unrelated to major maternal degradation pathways and promotes de novo synthesis of the core gene expression machinery by increasing poly(A)-tail length and translation efficiency. SLAMseq hence provides insights into the timescales, molecular features, and regulation of MZT during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Luis E Cabrera-Quio
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
17
|
Kuznetsova K, Chabot NM, Ugolini M, Wu E, Lalit M, Oda H, Sato Y, Kimura H, Jug F, Vastenhouw NL. Nanog organizes transcription bodies. Curr Biol 2023; 33:164-173.e5. [PMID: 36476751 DOI: 10.1016/j.cub.2022.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells.1-3 How proteins of the transcriptional machinery come together to form such bodies, however, is unclear. Here, we take advantage of two large, isolated, and long-lived transcription bodies that reproducibly form during early zebrafish embryogenesis to characterize the dynamics of transcription body formation. Once formed, these transcription bodies are enriched for initiating and elongating RNA polymerase II, as well as the transcription factors Nanog and Sox19b. Analyzing the events leading up to transcription, we find that Nanog and Sox19b cluster prior to transcription. The clustering of transcription factors is sequential; Nanog clusters first, and this is required for the clustering of Sox19b and the initiation of transcription. Mutant analysis revealed that both the DNA-binding domain as well as one of the two intrinsically disordered regions of Nanog are required to organize the two bodies of transcriptional activity. Taken together, our data suggest that the clustering of transcription factors dictates the formation of transcription bodies.
Collapse
Affiliation(s)
- Ksenia Kuznetsova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Noémie M Chabot
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Martino Ugolini
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Edlyn Wu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Manan Lalit
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Florian Jug
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, Area MIND, 20157 Milano, Italy
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Dynamic Transcriptional Landscape of Grass Carp (Ctenopharyngodon idella) Reveals Key Transcriptional Features Involved in Fish Development. Int J Mol Sci 2022; 23:ijms231911547. [PMID: 36232849 PMCID: PMC9569805 DOI: 10.3390/ijms231911547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
A high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.98 percent by combining strand-specific RNA sequencing and single-molecule real-time RNA sequencing technologies, and we obtained temporal expression profiles of 33,055 genes and 77,582 transcripts during development and tissue differentiation. A family of short interspersed elements was preferentially expressed at the early stage of zygotic activation in grass carp, and its possible regulatory components were discovered through analysis. Additionally, after thoroughly analyzing alternative splicing events, we discovered that retained intron (RI) alternative splicing events change significantly in both zygotic activation and tissue differentiation. During zygotic activation, we also revealed the precise regulatory characteristics of the underlying functional RI events.
Collapse
|
19
|
Niescierowicz K, Pryszcz L, Navarrete C, Tralle E, Sulej A, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C. Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish. Nat Commun 2022; 13:5520. [PMID: 36127363 PMCID: PMC9489775 DOI: 10.1038/s41467-022-33260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3'-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.
Collapse
Affiliation(s)
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Cristina Navarrete
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugeniusz Tralle
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Elżbieta Kasprzyk
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrianna Pakuła
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland. .,Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
20
|
Zhou C, Zhao W, Zhang S, Ma J, Sultan Y, Li X. High-throughput transcriptome sequencing reveals the key stages of cardiovascular development in zebrafish embryos. BMC Genomics 2022; 23:587. [PMID: 35964013 PMCID: PMC9375324 DOI: 10.1186/s12864-022-08808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The cardiovascular developmental process is a tightly regulated network involving multiple genes. The current understanding of the molecular mechanism behind cardiovascular development is insufficient and requires further research. RESULTS Transcriptome sequencing of three developmental stages in zebrafish embryos was performed and revealed three key cardiovascular developmental stages. Then, the differentially expressed genes (DEGs) involved in cardiovascular development were screened out. The three developmental stages were 18 (T1), 24 (T2), and 42 h post fertilization (hpf) (T3), and the three stages were confirmed by detecting differences in expression between cardiomyocyte and endothelial marker genes (cmlc2, fli1) using in situ hybridization, which represents the characteristics of cardiovascular development. Thousands of DEGs were identified using transcriptome analysis. Of them, 2605 DEGs were in T1-vs-T2, including 2003 up-regulated and 602 down-regulated genes, 6446 DEGs were in T1-vs-T3, consisting of 4608 up-regulated and 1838 down-regulated genes, and 3275 DEGs were in T2-vs-T3, including 2420 up-regulated and 855 down-regulated genes. There were 644 common DEGs and 167 common five-fold higher differentially expressed genes (HDEGs) identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Significant differences was observed in the levels of gene expression among different developmental stages in multiple GO terms and KEGG pathways, such as cell migration to the midline involved in heart development, cardiovascular system development, circulatory system process for biological processes of GO terms; and cardiac muscle contraction, adrenergic signaling in cardiomyocytes for KEGG pathways. These results demonstrated that these three stages were important period for the development of the cardiovascular system. Lastly, we used quantitative real-time PCR (qPCR) to validate the reliability of RNA-sequencing by selecting 21 DEGs. CONCLUSIONS These results demonstrated that these three stages represented the important periods for cardiovascular system development of zebrafish and some candidate genes was obtained and provided a solid foundation for additional functional studies of the DEGs.
Collapse
Affiliation(s)
- Chune Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shuqiang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
21
|
Liu Z, Wang W, Li X, Zhao X, Zhao H, Yang W, Zuo Y, Cai L, Xing Y. Temporal Dynamic Analysis of Alternative Splicing During Embryonic Development in Zebrafish. Front Cell Dev Biol 2022; 10:879795. [PMID: 35874832 PMCID: PMC9304896 DOI: 10.3389/fcell.2022.879795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is pervasive in mammalian genomes and involved in embryo development, whereas research on crosstalk of alternative splicing and embryo development was largely restricted to mouse and human and the alternative splicing regulation during embryogenesis in zebrafish remained unclear. We constructed the alternative splicing atlas at 18 time-course stages covering maternal-to-zygotic transition, gastrulation, somitogenesis, pharyngula stages, and post-fertilization in zebrafish. The differential alternative splicing events between different developmental stages were detected. The results indicated that abundance alternative splicing and differential alternative splicing events are dynamically changed and remarkably abundant during the maternal-to-zygotic transition process. Based on gene expression profiles, we found splicing factors are expressed with specificity of developmental stage and largely expressed during the maternal-to-zygotic transition process. The better performance of cluster analysis was achieved based on the inclusion level of alternative splicing. The biological function analysis uncovered the important roles of alternative splicing during embryogenesis. The identification of isoform switches of alternative splicing provided a new insight into mining the regulated mechanism of transcript isoforms, which always is hidden by gene expression. In conclusion, we inferred that alternative splicing activation is synchronized with zygotic genome activation and discovered that alternative splicing is coupled with transcription during embryo development in zebrafish. We also unveiled that the temporal expression dynamics of splicing factors during embryo development, especially co-orthologous splicing factors. Furthermore, we proposed that the inclusion level of alternative splicing events can be employed for cluster analysis as a novel parameter. This work will provide a deeper insight into the regulation of alternative splicing during embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Zhe Liu
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wei Wang
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xinru Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, China
| | - Xiujuan Zhao
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongyu Zhao
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Hohhot Science and Technology Bureau, Hohhot, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, China
| | - Lu Cai
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongqiang Xing
- The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
- *Correspondence: Yongqiang Xing,
| |
Collapse
|
22
|
Sato K, Sakai M, Ishii A, Maehata K, Takada Y, Yasuda K, Kotani T. Identification of embryonic RNA granules that act as sites of mRNA translation after changing their physical properties. iScience 2022; 25:104344. [PMID: 35620421 PMCID: PMC9127168 DOI: 10.1016/j.isci.2022.104344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Fertilized eggs begin to translate mRNAs at appropriate times and placements to control development, but how the translation is regulated remains unclear. Here, we found that pou5f3 mRNA encoding a transcriptional factor essential for development formed granules in a dormant state in zebrafish oocytes. Although the number of pou5f3 granules remained constant, Pou5f3 protein accumulated after fertilization. Intriguingly, signals of newly synthesized peptides and a ribosomal protein became colocalized with pou5f3 granules after fertilization and, moreover, nascent Pou5f3 was shown to be synthesized in the granules. This functional change was accompanied by changes in the state and internal structure of granules. Dissolution of the granules reduced the rate of protein synthesis. Similarly, nanog and sox19b mRNAs in zebrafish and Pou5f1/Oct4 mRNA in mouse assembled into granules. Our results reveal that subcellular compartments, termed embryonic RNA granules, function as activation sites of translation after changing physical properties for directing vertebrate development.
Collapse
Affiliation(s)
- Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Moeko Sakai
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Anna Ishii
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaori Maehata
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kyota Yasuda
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
23
|
Liu ZQ, Cheng M, Fu F, Li R, Han J, Yang X, Deng Q, Li LS, Lei TY, Li DZ, Liao C. Identification of differential microRNAs and messenger RNAs resulting from ASXL transcriptional regulator 3 knockdown during during heart development. Bioengineered 2022; 13:9948-9961. [PMID: 35435106 PMCID: PMC9161854 DOI: 10.1080/21655979.2022.2062525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect. Although ASXL transcriptional regulator 3 (ASXL3) has been reported to cause hereditary CHD, ASXL3-mediated mechanisms in heart development remain unclear. In this study, we used dimethyl sulfoxide (DMSO) to induce differentiation in P19 cells, observed cell morphology using light microscopy after ASXL3 knockdown, and determined the levels of associated myocardial cell markers using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, we used microRNA sequencing, messenger RNA (mRNA) sequencing, and bioinformatics to initially identify the possible mechanisms through which ASXL3-related microRNAs and mRNAs affect heart development. The results indicated that DMSO induced P19 cell differentiation, which could be inhibited by ASXL3 knockdown. We screened 1214 and 1652 differentially expressed microRNAs and mRNAs, respectively, through ASXL3 knockdown and sequencing; these differentially expressed miRNAs were largely enriched in PI3K-Akt, mitogen-activated protein kinase, and Rap1 signaling pathways. Additionally, 11 miRNAs associated with heart development were selected through a literature review. Our analysis indicated the involvement of mmu-miR-323-3p in P19 cell differentiation through the PI3K-Akt pathway. In conclusion, ASXL3 may be involved in the regulation of heart development. This comprehensive study of differentially expressed microRNAs and mRNAs through ASXL3 knockdown in P19 cells provides new insights that may aid the prevention and treatment of CHD.
Collapse
Affiliation(s)
- Ze-Qun Liu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Mi Cheng
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Lu-Shan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, GuangzhouGuangdong, China
| |
Collapse
|
24
|
Razmi K, Patil JG. Primordial Germ Cell Development in the Poeciliid, Gambusia holbrooki, Reveals Shared Features Between Lecithotrophs and Matrotrophs. Front Cell Dev Biol 2022; 10:793498. [PMID: 35300414 PMCID: PMC8920993 DOI: 10.3389/fcell.2022.793498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Metazoans exhibit two modes of primordial germ cell (PGC) specification that are interspersed across taxa. However, the evolutionary link between the two modes and the reproductive strategies of lecithotrophy and matrotrophy is poorly understood. As a first step to understand this, the spatio-temporal expression of teleostean germ plasm markers was investigated in Gambusia holbrooki, a poecilid with shared lecitho- and matrotrophy. A group of germ plasm components was detected in the ovum suggesting maternal inheritance mode of PGC specification. However, the strictly zygotic activation of dnd-β and nanos1 occurred relatively early, reminiscent of models with induction mode (e.g., mice). The PGC clustering, migration and colonisation patterns of G. holbrooki resembled those of zebrafish, medaka and mice at blastula, gastrula and somitogenesis, respectively-recapitulating features of advancing evolutionary nodes with progressive developmental stages. Moreover, the expression domains of PGC markers in G. holbrooki were either specific to teleost (vasa expression in developing PGCs), murine models (dnd spliced variants) or shared between the two taxa (germline and somatic expression of piwi and nanos1). Collectively, the results suggest that the reproductive developmental adaptations may reflect a transition from lecithotrophy to matrotrophy.
Collapse
Affiliation(s)
- Komeil Razmi
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| | - Jawahar G. Patil
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| |
Collapse
|
25
|
Moravec CE, Voit GC, Pelegri F. Determining the Role of Maternally-Expressed Genes in Early Development with Maternal Crispants. J Vis Exp 2021:10.3791/63177. [PMID: 35001909 PMCID: PMC8919840 DOI: 10.3791/63177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Early development depends on a pool of maternal factors incorporated into the mature oocyte during oogenesis that perform all cellular functions necessary for development until zygotic genome activation. Typically, genetic targeting of these maternal factors requires an additional generation to identify maternal-effect phenotypes, hindering the ability to determine the role of maternally-expressed genes during development. The discovery of the biallelic editing capabilities of CRISPR-Cas9 has allowed screening of embryonic phenotypes in somatic tissues of injected embryos or "crispants," augmenting the understanding of the role zygotically-expressed genes play in developmental programs. This article describes a protocol that is an extension of the crispant method. In this method, the biallelic editing of germ cells allows for the isolation of a maternal-effect phenotype in a single generation, or "maternal crispants." Multiplexing guide RNAs to a single target promotes the efficient production of maternal crispants, while sequence analysis of maternal crispant haploids provides a simple method to corroborate genetic lesions that produce a maternal-effect phenotype. The use of maternal crispants supports the rapid identification of essential maternally-expressed genes, thus facilitating the understanding of early development.
Collapse
|
26
|
Hansen CL, Chamberlain TJ, Trevena RL, Kurek JE, Pelegri F. Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis 2021; 59:e23452. [PMID: 34617657 DOI: 10.1002/dvg.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/06/2022]
Abstract
In many animal species, germ cell specification requires the inheritance of germ plasm, a biomolecular condensate containing maternally derived RNAs and proteins. Most studies of germ plasm composition and function have been performed in widely evolutionarily divergent model organisms, such as Caenorhabditis elegans, Drosophila, Xenopus laevis, and Danio rerio (zebrafish). In zebrafish, 12 RNAs localize to germ plasm at the furrows of the early embryo. Here, we tested for the presence of these RNAs in three additional species within the Danionin clade: Danio kyathit, Danio albolineatus, and Devario aequipinnatus. By visualizing nanos RNA, we find that germ plasm segregation patterns during early embryogenesis are conserved across these species. Ten additional germ plasm RNAs exhibit localization at the furrows of early embryos in all three non-zebrafish Danionin species, consistent with germ plasm localization. One component of zebrafish germ plasm, ca15b, lacked specific localization in embryos of the more distantly related D. aequipinnatus. Our findings show that within a subset of closely related Danionin species, the vast majority of germ plasm RNA components are conserved. At the same time, the lack of ca15b localization in D. aequipinnatus germ plasm highlights the potential for the divergence of germ plasm composition across a restricted phylogenetic space.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Trevor J Chamberlain
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Ryan L Trevena
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jacob E Kurek
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Moravec CE, Voit GC, Otterlee J, Pelegri F. Identification of maternal-effect genes in zebrafish using maternal crispants. Development 2021; 148:dev199536. [PMID: 34463742 PMCID: PMC8543149 DOI: 10.1242/dev.199536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023]
Abstract
In animals, early development is dependent on a pool of maternal factors, both RNA and proteins, which are required for basic cellular processes and cell differentiation until zygotic genome activation. The role of the majority of these maternally expressed factors is not fully understood. By exploiting the biallelic editing ability of CRISPR-Cas9, we identify and characterize maternal-effect genes in a single generation, using a maternal crispant technique. We validated the ability to generate biallelic mutations in the germ line by creating maternal crispants that phenocopied previously characterized maternal-effect genes: birc5b, tmi and mid1ip1. Additionally, by targeting maternally expressed genes of unknown function in zebrafish, we identified two maternal-effect zebrafish genes, kpna7 and fhdc3. The genetic identity of these maternal crispants was confirmed by sequencing haploid progeny from F0 females, which allowed the analysis of newly induced lesions in the maternal germ line. Our studies show that maternal crispants allow for the effective identification and primary characterization of maternal-effect genes in a single generation, facilitating the reverse genetics analysis of maternal factors that drive embryonic development.
Collapse
Affiliation(s)
| | | | | | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
28
|
Hao X, Wang Q, Hou J, Liu K, Feng B, Shao C. Temporal Transcriptome Analysis Reveals Dynamic Expression Profiles of Gametes and Embryonic Development in Japanese Flounder ( Paralichthys olivaceus). Genes (Basel) 2021; 12:genes12101561. [PMID: 34680958 PMCID: PMC8535655 DOI: 10.3390/genes12101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.
Collapse
Affiliation(s)
- Xiancai Hao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China;
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266072, China; (X.H.); (Q.W.); (K.L.); (B.F.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence:
| |
Collapse
|
29
|
Mizushima S, Sasanami T, Ono T, Matsuzaki M, Kansaku N, Kuroiwa A. Cyclin D1 gene expression is essential for cell cycle progression from the maternal-to-zygotic transition during blastoderm development in Japanese quail. Dev Biol 2021; 476:249-258. [PMID: 33905721 DOI: 10.1016/j.ydbio.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022]
Abstract
Embryogenesis proceeds by a highly regulated series of events. In animals, maternal factors that accumulate in the egg cytoplasm control cell cycle progression at the initial stage of cleavage. However, cell cycle regulation is switched to a system governed by the activated nuclear genome at a specific stage of development, referred to as maternal-to-zygotic transition (MZT). Detailed molecular analyses have been performed on maternal factors and activated zygotic genes in MZT in mammals, fishes and chicken; however, the underlying mechanisms remain unclear in quail. In the present study, we demonstrated that MZT occurred at blastoderm stage V in the Japanese quail using novel gene targeting technology in which the CRISPR/Cas9 and intracytoplasmic sperm injection (ICSI) systems were combined. At blastoderm stage V, we found that maternal retinoblastoma 1 (RB1) protein expression was down-regulated, whereas the gene expression of cyclin D1 (CCND1) was initiated. When a microinjection of sgRNA containing CCND1-targeted sequencing and Cas9 mRNA was administered at the pronuclear stage, blastoderm development stopped at stage V and the down-regulation of RB1 did not occur. This result indicates the most notable difference from mammals in which CCND-knockout embryos are capable of developing beyond MZT. We also showed that CCND1 induced the phosphorylation of the serine/threonine residues of the RB1 protein, which resulted in the degradation of this protein. These results suggest that CCND1 is one of the key factors for RB1 protein degradation at MZT, and the elimination of RB1 may contribute to cell cycle progression after MZT during blastoderm development in the Japanese quail. Our novel technology, which combined the CRISPR/Cas9 system and ICSI, has the potential to become a powerful tool for avian-targeted mutagenesis.
Collapse
Affiliation(s)
- Shusei Mizushima
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka, 422-8529, Japan
| | - Tamao Ono
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano, 399-4598, Japan
| | - Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8528, Japan
| | - Norio Kansaku
- Department of Animal Science and Biotechnology, Azabu University, Fuchinobe, Sagamihara, 229-8501, Japan
| | - Asato Kuroiwa
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
30
|
Cytokinetic abscission is part of the midblastula transition in early zebrafish embryogenesis. Proc Natl Acad Sci U S A 2021; 118:2021210118. [PMID: 33837152 PMCID: PMC8053991 DOI: 10.1073/pnas.2021210118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this work, we show that the last step of cytokinesis, termed abscission, is delayed in early zebrafish embryos. As a result, sibling cells remain connected to one another by a thin membrane bridge for several cycles, forming clusters of interconnected cells. Bridge severing (i.e., abscission) commences at the 10th cell cycle when embryos enter the midblastula transition switch, in which embryonic cells become individualized and exhibit the characteristics of mature cells. Cells connected by intercellular bridges shared similar cellular behaviors, such as transcription onset and cell shape. Our data suggest that cell–cell connectivity is maintained in early embryos through persistent bridge connections that allow cells to coordinate their behavior during embryonic development. Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell–cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.
Collapse
|
31
|
Iuchi H, Hamada M. Jonckheere-Terpstra-Kendall-based non-parametric analysis of temporal differential gene expression. NAR Genom Bioinform 2021; 3:lqab021. [PMID: 33796851 PMCID: PMC7991226 DOI: 10.1093/nargab/lqab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere-Terpstra-Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Redl S, de Jesus Domingues AM, Caspani E, Möckel S, Salvenmoser W, Mendez-Lago M, Ketting RF. Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish. Development 2021; 148:dev193060. [PMID: 33298460 PMCID: PMC7847270 DOI: 10.1242/dev.193060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.
Collapse
Affiliation(s)
- Stefan Redl
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Edoardo Caspani
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, 55128 Mainz, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Willi Salvenmoser
- Institute of Zoology, Evolution and Developmental Biology, University of Innsbruck, Technikerstraβe 25, 6020 Innsbruck, Austria
| | - Maria Mendez-Lago
- Genomics Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
33
|
Trivellin G, Tirosh A, Hernández-Ramírez LC, Gupta T, Tsai-Morris CH, Faucz FR, Burgess HA, Feldman B, Stratakis CA. The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish. Mol Cell Endocrinol 2021; 520:111091. [PMID: 33248229 PMCID: PMC8771005 DOI: 10.1016/j.mce.2020.111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
We recently described X-linked acrogigantism (X-LAG), a condition of early childhood-onset pituitary gigantism associated with microduplications of the GPR101 receptor. The expression of GPR101 in hyperplastic pituitary regions and tumors in X-LAG patients, and GPR101's normally transient pituitary expression during fetal development, suggest a role in the regulation of growth. Nevertheless, little is still known about GPR101's physiological functions, especially during development. By using zebrafish models, we investigated the role of gpr101 during embryonic development and somatic growth. Transient ectopic gpr101 expression perturbed the embryonic body plan but did not affect growth. Loss of gpr101 led to a significant reduction in body size that was even more pronounced in the absence of maternal transcripts, as well as subfertility. These changes were accompanied by gastrulation and hypothalamic defects. In conclusion, both gpr101 loss- and gain-of-function affect, in different ways, fertility, embryonic patterning, growth and brain development.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Mi, Italy.
| | - Amit Tirosh
- NET Service and Endocrine Oncology Bioinformatics Lab, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tripti Gupta
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harold A Burgess
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Benjamin Feldman
- Division of Developmental Biology, NICHD, NIH, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
34
|
Medina-Muñoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML, Salazar MJB, Bazzini AA. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol 2021; 22:14. [PMID: 33402205 PMCID: PMC7783504 DOI: 10.1186/s13059-020-02251-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3' untranslated regions (3'UTRs) have long been considered the central determinants of mRNA stability. However, recent work indicates that the coding sequence also possesses regulatory information. Specifically, translation in cis impacts mRNA stability in a codon-dependent manner. However, the strength of this mechanism during embryogenesis, as well as its relationship with other known regulatory elements, such as microRNA, remains unclear. RESULTS Here, we show that codon composition is a major predictor of mRNA stability in the early embryo. We show that this mechanism works in combination with other cis-regulatory elements to dictate mRNA stability in zebrafish and Xenopus embryos as well as in mouse and human cells. Furthermore, we show that microRNA targeting efficacy can be affected by substantial enrichment of optimal (stabilizing) or non-optimal (destabilizing) codons. Lastly, we find that one microRNA, miR-430, antagonizes the stabilizing effect of optimal codons during early embryogenesis in zebrafish. CONCLUSIONS By integrating the contributions of different regulatory mechanisms, our work provides a framework for understanding how combinatorial control of mRNA stability shapes the gene expression landscape.
Collapse
Affiliation(s)
- Santiago Gerardo Medina-Muñoz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, 36824, Irapuato, Mexico
| | - Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | | | - Michay Diez
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Michelle Lynn DeVore
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - María José Blanco Salazar
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
35
|
Winata CL, Łapiński M, Ismail H, Mathavan S, Sampath P. Exploring Translational Control of Maternal mRNAs in Zebrafish. Methods Mol Biol 2021; 2218:367-380. [PMID: 33606246 DOI: 10.1007/978-1-0716-0970-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of translational regulation requires reliable measurement of both mRNA levels and protein synthesis. Cytoplasmic polyadenylation is a prevalent mode of translational regulation during oogenesis and early embryogenesis. Here the length of the poly(A) tail of an mRNA is coupled to its translatability. We describe a protocol to identify translationally regulated genes and measure their translation rate in the early zebrafish embryo using genome-wide polysome profiling. This protocol relies on the isolation of mRNA by means of an rRNA depletion strategy, which avoids capture bias due to short poly(A) tail that can occur when using conventional oligo(dT)-based methods. We also present a simple PCR-based method to measure the poly(A) tail length of selected mRNAs.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
- Max Planck Institute for Heart and Lung Research, Bad-Nauheim, Germany.
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Hisyam Ismail
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | | | - Prabha Sampath
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Zygotic Genome Activation: Critical Prelude to the Most Important Time of Your Life. Methods Mol Biol 2021; 2218:319-329. [PMID: 33606242 DOI: 10.1007/978-1-0716-0970-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activation of the embryonic genome during development represents a major developmental transition in all species. The history of its exploration began in the 1950s-1960s, when this idea was put forward and proven experimentally by Alexander Neyfakh. He observed the aberrant development of fish embryos upon X-ray irradiation and noted the different developmental outcomes depending on the stage when fertilized eggs were subjected to irradiation. Neyfakh also discriminated a regional difference of X-irradiation between the nucleus and the cytoplasm. By selecting the X-ray dose causing nuclear damage, he determined the beginning of zygotic transcription, which at that time became known as the morphogenetic function of nuclei. His team defined the link of zygotic transcription with the asynchronization of cell division and cell migration, the two other hallmarks, which along with the morphogenetic function (or the zygotic genome activation), are at the core of the mid-blastula transition during development. Within this framework, current studies using maternal mutants and application of modern methods of whole-embryo and single-cell transcriptomics begin to decipher the molecular mechanisms of the mid-blastula transition (or the maternal-zygotic transition).
Collapse
|
37
|
Out-of-season spawning affects the nutritional status and gene expression in both Atlantic salmon female broodstock and their offspring. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110717. [DOI: 10.1016/j.cbpa.2020.110717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
38
|
Diverse species-specific phenotypic consequences of loss of function sorting nexin 14 mutations. Sci Rep 2020; 10:13763. [PMID: 32792680 PMCID: PMC7427099 DOI: 10.1038/s41598-020-70797-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/05/2020] [Indexed: 11/08/2022] Open
Abstract
Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.
Collapse
|
39
|
Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY. Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. Cell Rep 2020; 27:2962-2977.e5. [PMID: 31167141 PMCID: PMC6610736 DOI: 10.1016/j.celrep.2019.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/30/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023] Open
Abstract
Elucidation of the sequence of events underlying the dynamic interaction
between transcription factors and chromatin states is essential. Maternal
transcription factors function at the top of the regulatory hierarchy to specify
the primary germ layers at the onset of zygotic genome activation (ZGA). We
focus on the formation of endoderm progenitor cells and examine the interactions
between maternal transcription factors and chromatin state changes underlying
the cell specification process. Endoderm-specific factors Otx1 and Vegt together
with Foxh1 orchestrate endoderm formation by coordinated binding to select
regulatory regions. These interactions occur before the deposition of enhancer
histone marks around the regulatory regions, and these TFs recruit RNA
polymerase II, regulate enhancer activity, and establish super-enhancers
associated with important endodermal genes. Therefore, maternal transcription
factors Otx1, Vegt, and Foxh1 combinatorially regulate the activity of
super-enhancers, which in turn activate key lineage-specifying genes during
ZGA. How do maternal transcription factors interact with chromatin regions to
coordinate the endodermal gene regulatory program? Paraiso et al. demonstrate
that combinatorial binding of maternal Otx1, Vegt, and Foxh1 to select enhancers
and super-enhancers in the genome controls endodermal cell fate specification
during zygotic gene activation.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Masani Coley
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jessica Cheung
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Norihiro Sudou
- Department of Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
40
|
Cavalieri V. Histones, Their Variants and Post-translational Modifications in Zebrafish Development. Front Cell Dev Biol 2020; 8:456. [PMID: 32582716 PMCID: PMC7289917 DOI: 10.3389/fcell.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental epigenetics. In this review, I focus on the dynamic roles recently emerged for histone post-translational modifications (PTMs), histone modifying enzymes, histone variants and histone themselves in the coordination between the precise execution of transcriptional programs and developmental progression in zebrafish. In particular, I first outline a synopsis of the current state of knowledge in this field during early embryogenesis. Then, I present a survey of histone-based epigenetic mechanisms occurring throughout morphogenesis, with a stronger emphasis on cardiac formation. Undoubtedly, the issues addressed in this review take on particular importance in the emerging field of comparative biology of epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Abstract
Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.
Collapse
Affiliation(s)
- Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
42
|
Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 2020; 8:373. [PMID: 32548116 PMCID: PMC7270345 DOI: 10.3389/fcell.2020.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.
Collapse
Affiliation(s)
- Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kitti Csályi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Bertyák
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- HAS-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard J Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kara L Cerveny
- Biology Department, Reed College, Portland, OR, United States
| | - Dorottya Kövesdi
- Office of Supported Research Groups of the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannah Rouse
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Zsuzsa Vad
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Medical and Biomedical Education, St. George's University of London, London, United Kingdom
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
43
|
High-resolution annotation of the mouse preimplantation embryo transcriptome using long-read sequencing. Nat Commun 2020; 11:2653. [PMID: 32461551 PMCID: PMC7253418 DOI: 10.1038/s41467-020-16444-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The transcriptome of the preimplantation mouse embryo has been previously annotated by short-read sequencing, with limited coverage and accuracy. Here we utilize a low-cell number transcriptome based on the Smart-seq2 method to perform long-read sequencing. Our analysis describes additional novel transcripts and complexity of the preimplantation transcriptome, identifying 2280 potential novel transcripts from previously unannotated loci and 6289 novel splicing isoforms from previously annotated genes. Notably, these novel transcripts and isoforms with transcription start sites are enriched for an active promoter modification, H3K4me3. Moreover, we generate a more complete and precise transcriptome by combining long-read and short-read data during early embryogenesis. Based on this approach, we identify a previously undescribed isoform of Kdm4dl with a modified mRNA reading frame and a novel noncoding gene designated XLOC_004958. Depletion of Kdm4dl or XLOC_004958 led to abnormal blastocyst development. Thus, our data provide a high-resolution and more precise transcriptome during preimplantation mouse embryogenesis.
Collapse
|
44
|
Luo J, Chai J, Wen Y, Tao M, Lin G, Liu X, Ren L, Chen Z, Wu S, Li S, Wang Y, Qin Q, Wang S, Gao Y, Huang F, Wang L, Ai C, Wang X, Li L, Ye C, Yang H, Luo M, Chen J, Hu H, Yuan L, Zhong L, Wang J, Xu J, Du Z, Ma Z(S, Murphy RW, Meyer A, Gui J, Xu P, Ruan J, Chen ZJ, Liu S, Lu X, Zhang YP. From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. SCIENCE ADVANCES 2020; 6:eaaz7677. [PMID: 32766441 PMCID: PMC7385415 DOI: 10.1126/sciadv.aaz7677] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/20/2020] [Indexed: 05/27/2023]
Abstract
A persistent enigma is the rarity of polyploidy in animals, compared to its prevalence in plants. Although animal polyploids are thought to experience deleterious genomic chaos during initial polyploidization and subsequent rediploidization processes, this hypothesis has not been tested. We provide an improved reference-quality de novo genome for allotetraploid goldfish whose origin dates to ~15 million years ago. Comprehensive analyses identify changes in subgenomic evolution from asymmetrical oscillation in goldfish and common carp to diverse stabilization and balanced gene expression during continuous rediploidization. The homoeologs are coexpressed in most pathways, and their expression dominance shifts temporally during embryogenesis. Homoeolog expression correlates negatively with alternation of DNA methylation. The results show that allotetraploid cyprinids have a unique strategy for balancing subgenomic stabilization and diversification. Rediploidization process in these fishes provides intriguing insights into genome evolution and function in allopolyploid vertebrates.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Jing Chai
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Yanling Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Guoliang Lin
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Xiaochuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zeyu Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shigang Wu
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Feng Huang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Cheng Ai
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaobo Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Chengxi Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Huimin Yang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Mi Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Jie Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Hong Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Liujiao Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Jing Wang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Jian Xu
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Zhenglin Du
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhanshan (Sam) Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Peng Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Peng Cheng Laboratory, Shenzhen 518052, China
| | - Z. Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-0159, USA
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish and College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource and School of Life Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| |
Collapse
|
45
|
Rengaraj D, Hwang YS, Lee HC, Han JY. Zygotic genome activation in the chicken: a comparative review. Cell Mol Life Sci 2020; 77:1879-1891. [PMID: 31728579 PMCID: PMC11104987 DOI: 10.1007/s00018-019-03360-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
46
|
Akdogan-Ozdilek B, Duval KL, Goll MG. Chromatin dynamics at the maternal to zygotic transition: recent advances from the zebrafish model. F1000Res 2020; 9. [PMID: 32528656 PMCID: PMC7262572 DOI: 10.12688/f1000research.21809.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Early animal development is characterized by intense reorganization of the embryonic genome, including large-scale changes in chromatin structure and in the DNA and histone modifications that help shape this structure. Particularly profound shifts in the chromatin landscape are associated with the maternal-to-zygotic transition, when the zygotic genome is first transcribed and maternally loaded transcripts are degraded. The accessibility of the early zebrafish embryo facilitates the interrogation of chromatin during this critical window of development, making it an important model for early chromatin regulation. Here, we review our current understanding of chromatin dynamics during early zebrafish development, highlighting new advances as well as similarities and differences between early chromatin regulation in zebrafish and other species.
Collapse
Affiliation(s)
| | | | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
47
|
Conant GC. The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 2020; 15:e0231356. [PMID: 32298330 PMCID: PMC7161988 DOI: 10.1371/journal.pone.0231356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The ancestor of most teleost fishes underwent a whole-genome duplication event three hundred million years ago. Despite its antiquity, the effects of this event are evident both in the structure of teleost genomes and in how the surviving duplicated genes still operate to drive form and function. I inferred a set of shared syntenic regions that survive from the teleost genome duplication (TGD) using eight teleost genomes and the outgroup gar genome (which lacks the TGD). I then phylogenetically modeled the TGD's resolution via shared and independent gene losses and applied a new simulation-based statistical test for the presence of bias toward the preservation of genes from one parental subgenome. On the basis of that test, I argue that the TGD was likely an allopolyploidy. I find that duplicate genes surviving from this duplication in zebrafish are less likely to function in early embryo development than are genes that have returned to single copy at some point in this species' history. The tissues these ohnologs are expressed in, as well as their biological functions, lend support to recent suggestions that the TGD was the source of a morphological innovation in the structure of the teleost retina. Surviving duplicates also appear less likely to be essential than singletons, despite the fact that their single-copy orthologs in mouse are no less essential than other genes.
Collapse
Affiliation(s)
- Gavin C. Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
- Program in Genetics, North Carolina State University, Raleigh, NC, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
48
|
Nguyen H, Das U, Xie J. Genome-wide evolution of wobble base-pairing nucleotides of branchpoint motifs with increasing organismal complexity. RNA Biol 2019; 17:311-324. [PMID: 31814500 DOI: 10.1080/15476286.2019.1697548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
How have the branchpoint motifs evolved in organisms of different complexity? Here we identified and examined the consensus motifs (R1C2T3R4A5Y6, R: A or G, Y: C or T) of 898 fungal genomes. In Ascomycota unicellular yeasts, the G4/A4 ratio is mostly (98%) below 0.125 but increases sharply in multicellular species by about 40 times on average, and in the more complex Basidiomycota, it increases further by about 7 times. The global G4 increase is consistent with A4 to G4 transitions in evolution. Of the G4/A4-interacting amino acids of the branchpoint binding protein MSL5 (SF1) and the HSH155 (SF3B1), as well as the 5' splice sites (SS) and U2 snRNA genes, the 5' SS G3/A3 co-vary with the G4 to some extent. However, corresponding increase of the G4-complementary GCAGTA-U2 gene is rare, suggesting wobble-base pairing between the G4-containing branchpoint motif and GTAGTA-U2 in most of these species. Interestingly, the G4/A4 ratio correlates well with the abundance of alternative splicing in the two phyla, and G4 enriched significantly at the alternative 3' SS of genes in RNA metabolism, kinases and membrane proteins. Similar wobble nucleotides also enriched at the 3' SS of multicellular fungi with only thousands of protein-coding genes. Thus, branchpoint motifs have evolved U2-complementarity in unicellular Ascomycota yeasts, but have gradually gained more wobble base-pairing nucleotides in fungi of higher complexity, likely to destabilize branchpoint motif-U2 interaction and/or branchpoint A protrusion for alternative splicing. This implies an important role of relaxing the branchpoint signals in the multicellularity and further complexity of fungi.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Applied Computer Sciences, University of Winnipeg, Winnipeg, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
49
|
Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos. Int J Mol Sci 2019; 20:ijms20246359. [PMID: 31861170 PMCID: PMC6940819 DOI: 10.3390/ijms20246359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of less abundant proteins. We developed an efficient procedure to reduce the amount of yolk in zebrafish early embryos to improve the Liquid chromatography-tandem mass spectrometry (LC-MS)-based shotgun proteomics analysis. We demonstrated that the deyolking procedure resulted in a greater number of proteins being identified. This protocol resulted in approximately 2-fold increase in the number of proteins identified in deyolked samples at cleavage stages, and the number of identified proteins increased greatly by 3-4 times compared to non-deyolked samples in both oblong and bud stages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a high number of functional proteins differentially accumulated in the deyolked versus non-deyolked samples. The most prominent enrichments after the deyolking procedure included processes, functions, and components related to cellular organization, cell cycle, control of replication and translation, and mitochondrial functions. This deyolking procedure improves both qualitative and quantitative proteome analyses and provides an innovative tool in molecular embryogenesis of polylecithal animals, such as fish, amphibians, reptiles, or birds.
Collapse
|
50
|
Stanney W, Ladam F, Donaldson IJ, Parsons TJ, Maehr R, Bobola N, Sagerström CG. Combinatorial action of NF-Y and TALE at embryonic enhancers defines distinct gene expression programs during zygotic genome activation in zebrafish. Dev Biol 2019; 459:161-180. [PMID: 31862379 DOI: 10.1016/j.ydbio.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023]
Abstract
Animal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts regulatory control to the embryo during blastula stages. ZGA is thought to be mediated by maternally provided transcription factors (TFs), but few such TFs have been identified in vertebrates. Here we report that NF-Y and TALE TFs bind zebrafish genomic elements associated with developmental control genes already at ZGA. In particular, co-regulation by NF-Y and TALE is associated with broadly acting genes involved in transcriptional control, while regulation by either NF-Y or TALE defines genes in specific developmental processes, such that NF-Y controls a cilia gene expression program while TALE controls expression of hox genes. We also demonstrate that NF-Y and TALE-occupied genomic elements function as enhancers during embryogenesis. We conclude that combinatorial use of NF-Y and TALE at developmental enhancers permits the establishment of distinct gene expression programs at zebrafish ZGA.
Collapse
Affiliation(s)
- William Stanney
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ian J Donaldson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Teagan J Parsons
- Program in Molecular Medicine and Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - René Maehr
- Program in Molecular Medicine and Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|