1
|
Crespel L, Le Bras C, Dubuc B, Perez-Garcia MD, Carrera E, Rolland A, Gardet R, Sakr S. Divergent Mechanisms of Internode Elongation in Response to Far-Red in Two Rose Genotypes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1115. [PMID: 40219183 PMCID: PMC11990959 DOI: 10.3390/plants14071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
The quality of potted ornamental plants depends on their architecture, which should be compact and branched. Among the techniques for controlling this architecture, LED lighting, by manipulating light quality, offers an effective means of regulating elongation and branching. In rose, the addition of far-red (FR) light stimulated branching but induced excessive stem elongation, i.e., internode elongation. However, some varieties remained insensitive to this effect, demonstrating phenotypic stability. This study investigated the underlying mechanisms of internode elongation in response to FR in two rose cultivars, 'The Fairy' (TF) and Knock Out® Radrazz (KO), selected for their respective architectural plasticity and stability to FR. In TF, exposure to FR induced elongation of internodes, driven by cell division, with an increase in gibberellin A4 (GA4) level and a reduction in defense hormones (salicylic acid and jasmonic acid; JA). In contrast, in KO, exposure to FR did not induce internode elongation but caused cell elongation. This effect was accompanied by a reduction in cell number, modulated by hormonal changes (particularly GA4 and JA) and the inhibition of Block of cell proliferation 1, thereby limiting cell division. A deeper understanding of the mechanisms underlying architectural stability might lead to developing strategies to produce compact, branched plants, regardless of environmental conditions.
Collapse
Affiliation(s)
- Laurent Crespel
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| | - Camille Le Bras
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| | - Bénédicte Dubuc
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| | - Maria-Dolores Perez-Garcia
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| | - Esther Carrera
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, 46022 Valencia, Spain;
| | | | - Rémi Gardet
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| | - Soulaiman Sakr
- Institut Agro, University Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (C.L.B.); (B.D.); (M.-D.P.-G.); (R.G.); (S.S.)
| |
Collapse
|
2
|
Laxalt AM, van Hooren M, Munnik T. Plant PI-PLC signaling in stress and development. PLANT PHYSIOLOGY 2025; 197:kiae534. [PMID: 39928581 PMCID: PMC11809592 DOI: 10.1093/plphys/kiae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 02/12/2025]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) signaling is involved in various plant stress and developmental responses. Though several aspects of this lipid signaling pathway are conserved within animals and plants, clear differences have also emerged. While animal PLC signaling is characterized by the hydrolysis of PIP2 and production of IP3 and DAG as second messengers to activate Ca2+ and PKC signaling, plant PI-PLCs seem to predominantly use PIP as substrate and convert IP2 and DAG into inositolpolyphosphates and phosphatidic acid (PA) as plant second messengers. Sequencing of multiple plant genomes confirmed that plant PLC signaling evolved differently from animals, lacking homologs of the IP3 gated-Ca2+ channel, PKC and TRP channels, and with PLC enzymes resembling the PLCζ subfamily, which lacks the conserved PH domain that binds PIP2. With emerging tools in plant molecular biology, data analyses, and advanced imaging, plant PLC signaling is ready to gain momentum.
Collapse
Affiliation(s)
- Ana M Laxalt
- Instituto de Investigaciones Biológicas, IIB-CONICET, Universidad Nacional de Mar del Plata, Argentina
| | - Max van Hooren
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Teun Munnik
- Plant Cell Biologie, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fatima S, Zeb SZ, Tariq M, Nishat Y, Mohamed HI, Siddiqui MA. Role of CLE peptide signaling in root-knot nematode parasitism of plants. PLANTA 2024; 261:3. [PMID: 39580778 DOI: 10.1007/s00425-024-04576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
MAIN CONCLUSION We summarize recent findings that have provided new insights into the mechanisms underlying CLE signaling systems in the regulation of plant development and phytonematode interactions. CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides are short sequences consisting of 12 or 13 amino acids characterized by hydroxylated proline residues, and their presence has been demonstrated in various plant species and phytonematodes across multiple paralogous genes. Here, we review recently conducted research to understanding the signaling pathway of CLE peptide during plant development and infection caused by phytonematodes. Cell-to-cell communication is important for the coherent functioning of living organisms. CLE peptides combined with their specific transmembrane receptors to induce downstream intracellular signaling pathways shows divergent modes of action in many developmental processes in variable species. Moreover, CLE peptide was also involved in plant disease mechanism caused by various plant parasitic nematodes.
Collapse
Affiliation(s)
- Saba Fatima
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh, 202002, India
| | - Saeeda Zaima Zeb
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh, 202002, India
| | - Moh Tariq
- Key Laboratory of Plant Functional Genomics and Developmental Regulations, College of Biology, Hunan University, Changsha, 410082, China.
| | - Yasar Nishat
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Heba I Mohamed
- Faculty of Education, Biological and Geological Sciences Department, Ain Shams University, Cairo, Egypt.
| | - Mansoor A Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
4
|
Iglesias-Moya J, Benítez Á, Segura M, Alonso S, Garrido D, Martínez C, Jamilena M. Structural and functional characterization of genes PYL-PP2C-SnRK2s in the ABA signalling pathway of Cucurbita pepo. BMC Genomics 2024; 25:268. [PMID: 38468207 PMCID: PMC10926676 DOI: 10.1186/s12864-024-10158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.
Collapse
Affiliation(s)
- Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology. Faculty of Science, University of Granada, 18021, Granada, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
5
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
7
|
Lai L, Ruan J, Xiao C, Yi P. The putative myristoylome of Physcomitrium patens reveals conserved features of myristoylation in basal land plants. PLANT CELL REPORTS 2023; 42:1107-1124. [PMID: 37052714 DOI: 10.1007/s00299-023-03016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
KEYMESSAGE The putative myristoylome of moss P. patens opens an avenue for studying myristoylation substrates in non-canonical model plants. A myristoylation signal was shown sufficient for membrane targeting and useful for membrane dynamics visualization during cell growth. N-myristoylation (MYR) is one form of lipid modification catalyzed by N-myristoyltransferase that enables protein-membrane association. MYR is highly conserved in all eukaryotes. However, the study of MYR is limited to a few models such as yeasts, humans, and Arabidopsis. Here, using prediction tools, we report the characterization of the putative myristoylome of the moss Physcomitrium patens. We show that basal land plants display a similar signature of MYR to Arabidopsis and may have organism-specific substrates. Phylogenetically, MYR signals have mostly co-evolved with protein function but also exhibit variability in an organism-specific manner. We also demonstrate that the MYR motif of a moss brassinosteroid-signaling kinase is an efficient plasma membrane targeting signal and labels lipid-rich domains in tip-growing cells. Our results provide insights into the myristoylome in a basal land plant and lay the foundation for future studies on MYR and its roles in plant evolution.
Collapse
Affiliation(s)
- Linyu Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
8
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
9
|
Liu S, Lu C, Jiang G, Zhou R, Chang Y, Wang S, Wang D, Niu J, Wang Z. Comprehensive functional analysis of the PYL-PP2C-SnRK2s family in Bletilla striata reveals that BsPP2C22 and BsPP2C38 interact with BsPYLs and BsSnRK2s in response to multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:963069. [PMID: 36035678 PMCID: PMC9404246 DOI: 10.3389/fpls.2022.963069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
As the core regulation network for the abscisic acid (ABA) signaling pathway, the PYL-PP2C-SnRK2s family commonly exists in many species. For this study, a total of 9 BsPYLs, 66 BsPP2Cs, and 7 BsSnRK2s genes were identified based on the genomic databases of Bletilla striata, which were classified into 3, 10, and 3 subgroups, respectively. Basic bioinformatics analysis completed, including the physicochemical properties of proteins, gene structures, protein motifs and conserved domains. Multiple cis-acting elements related to stress responses and plant growth were found in promoter regions. Further, 73 genes were localized on 16 pseudochromosomes and 29 pairs of paralogous genes were found via intraspecific collinearity analysis. Furthermore, tissue-specific expression was found in different tissues and germination stages. There were two BsPYLs, 10 BsPP2Cs, and four BsSnRK2 genes that exhibited a difference in response to multiple abiotic stresses. Moreover, subcellular localization analysis revealed six important proteins BsPP2C22, BsPP2C38, BsPP2C64, BsPYL2, BsPYL8, and BsSnRK2.4 which were localized in the nucleus and plasma membrane. Finally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays suggested that BsPP2C22 and BsPP2C38 could interact with multiple BsPYLs and BsSnRK2s proteins. This study systematically reported on the identification and characterization of the PYL-PP2C-SnRK2s family in B. striata, which provided a conceptual basis for deep insights into the functionality of ABA core signal pathways in Orchidaceae.
Collapse
|
10
|
Zhang G, Zhang Z, Luo S, Li X, Lyu J, Liu Z, Wan Z, Yu J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics 2022; 23:563. [PMID: 35933381 PMCID: PMC9356470 DOI: 10.1186/s12864-022-08734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. Results This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11–17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08734-y.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xia Li
- Gansu Institute of Geological and Natural Disaster Prevention, Lanzhou, 730000, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Marković V, Jaillais Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. THE NEW PHYTOLOGIST 2022; 235:867-874. [PMID: 35586972 DOI: 10.1111/nph.18258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is an anionic phospholipid which has been described as a master regulator of the Golgi apparatus in eukaryotic cells. However, recent evidence suggests that PI4P mainly accumulates at the plasma membrane in all plant cells analyzed so far. In addition, many functions that are typically attributed to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) in animal and yeast cells are also supported by PI4P in plants. For example, PI4P is the key anionic lipid that powers the strong electrostatic properties of the plasma membrane. Phosphatidylinositol 4-phosphate is also required for the establishment of stable membrane contacts between the endoplasmic reticulum and the plasma membrane, for exocytosis and to support signaling pathways. Thus, we propose that PI4P has a prominent role in specifying the identity of the plasma membrane and in supporting some of its key functions and should be considered a hallmark lipid of this compartment.
Collapse
Affiliation(s)
- Vedrana Marković
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
12
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022. [PMID: 35681017 DOI: 10.1101/2020.05.12.090415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022; 8:670-681. [PMID: 35681017 PMCID: PMC7617270 DOI: 10.1038/s41477-022-01164-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
DeFalco TA, Anne P, James SR, Willoughby AC, Schwanke F, Johanndrees O, Genolet Y, Derbyshire P, Wang Q, Rana S, Pullen AM, Menke FLH, Zipfel C, Hardtke CS, Nimchuk ZL. A conserved module regulates receptor kinase signalling in immunity and development. NATURE PLANTS 2022; 8:356-365. [PMID: 35422079 PMCID: PMC9639402 DOI: 10.1038/s41477-022-01134-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 06/01/2023]
Abstract
Ligand recognition by cell-surface receptors underlies development and immunity in both animals and plants. Modulating receptor signalling is critical for appropriate cellular responses but the mechanisms ensuring this are poorly understood. Here, we show that signalling by plant receptors for pathogen-associated molecular patterns (PAMPs) in immunity and CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptides (CLEp) in development uses a similar regulatory module. In the absence of ligand, signalling is dampened through association with specific type-2C protein phosphatases. Upon activation, PAMP and CLEp receptors phosphorylate divergent cytosolic kinases, which, in turn, phosphorylate the phosphatases, thereby promoting receptor signalling. Our work reveals a regulatory circuit shared between immune and developmental receptor signalling, which may have broader important implications for plant receptor kinase-mediated signalling in general.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Pauline Anne
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Sean R James
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew C Willoughby
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Florian Schwanke
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
| | - Oliver Johanndrees
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yasmine Genolet
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Pullen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
DeFalco TA, Anne P, James SR, Willoughby AC, Schwanke F, Johanndrees O, Genolet Y, Derbyshire P, Wang Q, Rana S, Pullen AM, Menke FLH, Zipfel C, Hardtke CS, Nimchuk ZL. A conserved module regulates receptor kinase signalling in immunity and development. NATURE PLANTS 2022; 8:356-365. [PMID: 35422079 DOI: 10.1101/2021.01.19.427293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 05/22/2023]
Abstract
Ligand recognition by cell-surface receptors underlies development and immunity in both animals and plants. Modulating receptor signalling is critical for appropriate cellular responses but the mechanisms ensuring this are poorly understood. Here, we show that signalling by plant receptors for pathogen-associated molecular patterns (PAMPs) in immunity and CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptides (CLEp) in development uses a similar regulatory module. In the absence of ligand, signalling is dampened through association with specific type-2C protein phosphatases. Upon activation, PAMP and CLEp receptors phosphorylate divergent cytosolic kinases, which, in turn, phosphorylate the phosphatases, thereby promoting receptor signalling. Our work reveals a regulatory circuit shared between immune and developmental receptor signalling, which may have broader important implications for plant receptor kinase-mediated signalling in general.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Pauline Anne
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Sean R James
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew C Willoughby
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Florian Schwanke
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
| | - Oliver Johanndrees
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yasmine Genolet
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Pullen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Nie L, Xu Z, Wu L, Chen X, Cui Y, Wang Y, Song J, Yao H. Genome-wide identification of protein phosphatase 2C family members in Glycyrrhiza uralensis Fisch. and their response to abscisic acid and polyethylene glycol stress. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2027650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liping Nie
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Xinlian Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yingxian Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Wang G, Sun X, Guo Z, Joldersma D, Guo L, Qiao X, Qi K, Gu C, Zhang S. Genome-wide Identification and Evolution of the PP2C Gene Family in Eight Rosaceae Species and Expression Analysis Under Stress in Pyrus bretschneideri. Front Genet 2021; 12:770014. [PMID: 34858482 PMCID: PMC8632025 DOI: 10.3389/fgene.2021.770014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2C protein phosphatase (PP2C) plays an essential role in abscisic acid (ABA) signaling transduction processes. In the current study, we identify 719 putative PP2C genes in eight Rosaceae species, including 118 in Chinese white pear, 110 in European pear, 73 in Japanese apricot, 128 in apple, 74 in peach, 65 in strawberry, 78 in sweet cherry, and 73 in black raspberry. Further, the phylogenetic analysis categorized PbrPP2C genes of Chinese white pear into twelve subgroups based on the phylogenic analysis. We observed that whole-genome duplication (WGD) and dispersed gene duplication (DSD) have expanded the Rosaceae PP2C family despite simultaneous purifying selection. Expression analysis finds that PbrPP2C genes have organ-specific functions. QRT-PCR validation of nine PbrPP2C genes of subgroup A indicates a role in ABA-mediated response to abiotic stress. Finally, we find that five PbrPP2C genes of subgroup A function in the nucleus. In summary, our research suggests that the PP2C family functions to modulate ABA signals and responds to abiotic stress.
Collapse
Affiliation(s)
- Guoming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem. Peptides 2021; 142:170579. [PMID: 34033873 DOI: 10.1016/j.peptides.2021.170579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
CLAVATA3 (CLV3) is a peptide signal initially identified in the analysis of clv mutants in the model plant Arabidopsis thaliana, as a regulator of meristem homeostasis and floral organ numbers. CLV3 homologs are widely conserved in land plants, collectively called CLV3/ESR-related (CLE) genes. A 12-amino acid CLE peptide with hydroxyproline residues was identified in Zinnia elegans cell culture system, in which cells secrete a CLE peptide called tracheary element differentiation factor (TDIF) into the culture medium. Mature CLV3 peptide is also a post-translationally modified short peptide containing additional triarabinosylation on a hydroxyproline residue. Genetic studies have revealed the involvement of leucin-rich repeat receptor-like kinases (LRR-RLKs) in CLV3 signaling, including CLV1/BAM-CIK, CLV2-CRN and RPK2, although the mechanisms of signal transduction and integration via crosstalk is still largely unknown. Recent studies on bryophyte model species provided a clue to understand evolution and ancestral function of CLV signaling in land plants. Fundamental understanding on CLV signaling provided an opportunity to optimize the crop yield traits using a novel breeding technology with CRISPR/Cas genome editing.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|
20
|
Müller-Xing R, Xing Q. In da club: the cytoplasmic kinase MAZZA joins CLAVATA signaling and dances with CLV1-like receptors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4596-4599. [PMID: 34157119 DOI: 10.1093/jxb/erab203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on:
Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto K, Monaghan J, Simon R. 2021. Receptor-like cytoplasmickinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. Journal of Experimental Botany 72, 4853–4870.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto KG, Monaghan J, Simon R. Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4853-4870. [PMID: 33909893 DOI: 10.1093/jxb/erab183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The receptor-like kinases (RLKs) CLAVATA1 (CLV1) and BARELY ANY MERISTEMs (BAM1-BAM3) form the CLV1 family (CLV1f), which perceives peptides of the CLV3/EMBRYO SURROUNDING REGION (ESR)-related (CLE) family within various signaling pathways of Arabidopsis thaliana. CLE peptide signaling, which is required for meristem size control, vascular development, and pathogen responses, involves the formation of receptor complexes at the plasma membrane. These complexes comprise RLKs and co-receptors in varying compositions depending on the signaling context, and regulate expression of target genes, such as WUSCHEL (WUS). How the CLE signal is transmitted intracellularly after perception at the plasma membrane is not known in detail. Here, we found that the membrane-associated receptor-like cytoplasmic kinase (RLCK) MAZZA (MAZ) and additional members of the Pti1-like protein family interact in vivo with CLV1f receptors. MAZ, which is widely expressed throughout the plant, localizes to the plasma membrane via post-translational palmitoylation, potentially enabling stimulus-triggered protein re-localization. We identified a role for a CLV1-MAZ signaling module during stomatal and root development, and redundancy could potentially mask other phenotypes of maz mutants. We propose that MAZ, and related RLCKs, mediate CLV1f signaling in a variety of developmental contexts, paving the way towards understanding the intracellular processes after CLE peptide perception.
Collapse
Affiliation(s)
- Patrick Blümke
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Carmen Gonzalez-Ferrer
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Sabine Becher
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Urrea Castellanos R, Friedrich T, Petrovic N, Altmann S, Brzezinka K, Gorka M, Graf A, Bäurle I. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:7-17. [PMID: 32654320 DOI: 10.1111/tpj.14927] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Plants can mitigate environmental stress conditions through acclimation. In the case of fluctuating stress conditions such as high temperatures, maintaining a stress memory enables a more efficient response upon recurring stress. In a genetic screen for Arabidopsis thaliana mutants impaired in the memory of heat stress (HS) we have isolated the FORGETTER2 (FGT2) gene, which encodes a type 2C protein phosphatase (PP2C) of the D-clade. Fgt2 mutants acquire thermotolerance normally; however, they are defective in the memory of HS. FGT2 interacts with phospholipase D α2 (PLDα2), which is involved in the metabolism of membrane phospholipids and is also required for HS memory. In summary, we have uncovered a previously unknown component of HS memory and identified the FGT2 protein phosphatase and PLDα2 as crucial players, suggesting that phosphatidic acid-dependent signaling or membrane composition dynamics underlie HS memory.
Collapse
Affiliation(s)
- Reynel Urrea Castellanos
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Thomas Friedrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Nevena Petrovic
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Simone Altmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Krzysztof Brzezinka
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alexander Graf
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Isabel Bäurle
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| |
Collapse
|
23
|
Fan K, Chen Y, Mao Z, Fang Y, Li Z, Lin W, Zhang Y, Liu J, Huang J, Lin W. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genomics 2020; 21:465. [PMID: 32631220 PMCID: PMC7339511 DOI: 10.1186/s12864-020-06877-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) is an important oil provider and ecosystem participant. The protein phosphatase 2C (PP2C) plays important roles in key biological processes. Molecular evolution and functional analysis of the PP2C family in soybean are yet to be reported. RESULTS The present study identified 134 GmPP2Cs with 10 subfamilies in soybean. Duplication events were prominent in the GmPP2C family, and all duplicated gene pairs were involved in the segmental duplication events. The legume-common duplication event and soybean-specific tetraploid have primarily led to expanding GmPP2C members in soybean. Sub-functionalization was the main evolutionary fate of duplicated GmPP2C members. Meanwhile, massive genes were lost in the GmPP2C family, especially from the F subfamily. Compared with other genes, the evolutionary rates were slower in the GmPP2C family. The PP2C members from the H subfamily resembled their ancestral genes. In addition, some GmPP2Cs were identified as the putative key regulator that could control plant growth and development. CONCLUSIONS A total of 134 GmPP2Cs were identified in soybean, and their expansion, molecular evolution and putative functions were comprehensively analyzed. Our findings provided the detailed information on the evolutionary history of the GmPP2C family, and the candidate genes can be used in soybean breeding.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yunrui Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Zhijun Mao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yao Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Weiwei Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yongqiang Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Jianping Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Jinwen Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| |
Collapse
|
24
|
POLTERGEIST and POLTERGEIST-LIKE1 are essential for the maintenance of post-embryonic shoot and root apical meristems as revealed by a partial loss-of-function mutant allele of pll1 in Arabidopsis. Genes Genomics 2019; 42:107-116. [DOI: 10.1007/s13258-019-00894-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
|
25
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
26
|
Wong JH, Spartz AK, Park MY, Du M, Gray WM. Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity. PLANT PHYSIOLOGY 2019; 181:353-366. [PMID: 31311832 PMCID: PMC6716246 DOI: 10.1104/pp.19.00496] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/21/2019] [Indexed: 05/05/2023]
Abstract
The phytohormone auxin promotes the growth of plant shoots by stimulating cell expansion via plasma membrane (PM) H+-ATPase activation, which facilitates cell wall loosening and solute uptake. Mechanistic insight was recently obtained by demonstrating that auxin-induced SMALL AUXIN UP RNA (SAUR) proteins inhibit D-CLADE TYPE 2C PROTEIN PHOSPHATASE (PP2C.D) activity, thereby trapping PM H+-ATPases in the phosphorylated, activated state, but how SAURs bind PP2C.D proteins and inhibit their activity is unknown. Here, we identified a highly conserved motif near the C-terminal region of the PP2C.D catalytic domain that is required for SAUR binding in Arabidopsis (Arabidopsis thaliana). Missense mutations in this motif abolished SAUR binding but had no apparent effect on catalytic activity. Consequently, mutant PP2C.D proteins that could not bind SAURs exhibited constitutive activity, as they were immune to SAUR inhibition. In planta expression of SAUR-immune pp2c.d2 or pp2c.d5 derivatives conferred severe cell expansion defects and corresponding constitutively low levels of PM H+-ATPase phosphorylation. These growth defects were not alleviated by either auxin treatment or 35S:StrepII-SAUR19 coexpression. In contrast, a PM H+-ATPase gain-of-function mutation that results in a constitutively active H+ pump partially suppressed SAUR-immune pp2c.d5 phenotypes, demonstrating that impaired PM H+-ATPase function is largely responsible for the reduced growth of the SAUR-immune pp2c.d5 mutant. Together, these findings provide crucial genetic support for SAUR-PP2C.D regulation of cell expansion via modulation of PM H+-ATPase activity. Furthermore, SAUR-immune pp2c.d derivatives provide new genetic tools for elucidating SAUR and PP2C.D functions and manipulating plant organ growth.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Angela K Spartz
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
27
|
Haider MS, Khan N, Pervaiz T, Zhongjie L, Nasim M, Jogaiah S, Mushtaq N, Jiu S, Jinggui F. Genome-wide identification, evolution, and molecular characterization of the PP2C gene family in woodland strawberry. Gene 2019; 702:27-35. [PMID: 30890476 DOI: 10.1016/j.gene.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
The protein phosphatase 2C (PP2C) gene family is one of the momentous and conserved plant-specific gene families, known to participate in cellular processes via reversible protein phosphorylation and regulates signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and maize, however, the whole-genome analysis of PP2C in strawberry has not yet been reported. In the current research, we found 62 PP2C-encoding genes in total from the strawberry genome. Further, the phylogenetic analysis categorized FvPP2C genes into twelve subgroups with significant structural conservation based on conserved domain and amino acid sequence. Moreover, we observed a strong signature of purifying selection between the comparison of orthologous gene pairs of strawberry and Arabidopsis. The comparison of RNA-sequence (RNA-seq) data published on various vegetative and reproductive tissues of strawberry plant suggested the significant role of FvPP2C genes in organ development. The qRT-PCR validation of thirty FvPP2C genes indicated their critical tolerance-related role under abiotic stress stimuli in strawberry. Finally, the subcellular localization of FvPP2C51 gene proves that it resides and stimulates its function in the nucleus. Our findings provide an overview of the identification of strawberry FvPP2C gene family and demonstrate their critical role in tissue-specific response and abiotic stress-tolerance, thereby, intimating their significance in the strawberry molecular breeding for the resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nadeem Khan
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liu Zhongjie
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Maazullah Nasim
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Naveed Mushtaq
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fang Jinggui
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
28
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
29
|
Dissanayaka DMSB, Plaxton WC, Lambers H, Siebers M, Marambe B, Wasaki J. Molecular mechanisms underpinning phosphorus-use efficiency in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1483-1496. [PMID: 29520969 DOI: 10.1111/pce.13191] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 05/18/2023]
Abstract
Orthophosphate (H2 PO4- , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P-acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P-use efficiency). Improved P-use efficiency may be achieved by producing high-yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P-esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - William C Plaxton
- Department of Biology and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Meike Siebers
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Buddhi Marambe
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-7-1, Higashi-, Hiroshima, 739-8521, Japan
| |
Collapse
|
30
|
Li X, Hamyat M, Liu C, Ahmad S, Gao X, Guo C, Wang Y, Guo Y. Identification and Characterization of the WOX Family Genes in Five Solanaceae Species Reveal Their Conserved Roles in Peptide Signaling. Genes (Basel) 2018; 9:genes9050260. [PMID: 29772825 PMCID: PMC5977200 DOI: 10.3390/genes9050260] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
Members of the plant-specific WOX (WUSCHEL-related homeobox) transcription factor family have been reported to play important roles in peptide signaling that regulates stem cell maintenance and cell fate specification in various developmental processes. Even though remarkable advances have been made in studying WOX genes in Arabidopsis, little is known about this family in Solanaceae species. A total of 45 WOX members from five Solanaceae species were identified, including eight members from Solanum tuberosum, eight from Nicotiana tomentosiformis, 10 from Solanum lycopersicum, 10 from Nicotiana sylvestris and nine from Nicotiana tabacum. The newly identified WOX members were classified into three clades and nine subgroups based on phylogenetic analysis using three different methods. The patterns of exon-intron structure and motif organization of the WOX proteins agreed with the phylogenetic results. Gene duplication events and ongoing evolution were revealed by additional branches on the phylogenetic tree and the presence of a partial WUS-box in some non-WUS clade members. Gene expression with or without CLE (clavata3 (clv3)/embryo surrounding region-related) peptide treatments revealed that tobacco WOX genes showed similar or distinct expression patterns compared with their Arabidopsis homologues, suggesting either functional conservation or divergence. Expression of Nicotiana tabacum WUSCHEL (NtabWUS) in the organizing center could rescue the wus-1 mutant phenotypes in Arabidopsis, implying conserved roles of the Solanaceae WOX proteins in peptide-mediated regulation of plant development.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Madiha Hamyat
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Salman Ahmad
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuanying Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
31
|
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. THE PLANT CELL 2018; 30:543-562. [PMID: 29453228 PMCID: PMC5894833 DOI: 10.1105/tpc.17.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 05/05/2023]
Abstract
N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
32
|
Stanislas T, Platre MP, Liu M, Rambaud-Lavigne LES, Jaillais Y, Hamant O. A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana. BMC Biol 2018; 16:20. [PMID: 29415713 PMCID: PMC5803925 DOI: 10.1186/s12915-018-0490-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In plants, the shoot apical meristem (SAM) has two main functions, involving the production of all aerial organs on the one hand and self-maintenance on the other, allowing the production of organs during the entire post-embryonic life of the plant. Transcription factors, microRNA, hormones, peptides and forces have been involved in meristem function. Whereas phosphatidylinositol phosphates (PIPs) have been involved in almost all biological functions, including stem cell maintenance and organogenesis in animals, the processes in meristem biology to which PIPs contribute still need to be delineated. RESULTS Using biosensors for PI4P and PI(4,5)P2, the two most abundant PIPs at the plasma membrane, we reveal that meristem functions are associated with a stereotypical PIP tissue-scale pattern, with PI(4,5)P2 always displaying a more clear-cut pattern than PI4P. Using clavata3 and pin-formed1 mutants, we show that stem cell maintenance is associated with reduced levels of PIPs. In contrast, high PIP levels are signatures for organ-meristem boundaries. Interestingly, this pattern echoes that of cortical microtubules and stress anisotropy at the meristem. Using ablations and pharmacological approaches, we further show that PIP levels can be increased when the tensile stress pattern is altered. Conversely, we find that katanin mutant meristems, with increased isotropy of microtubule arrays and slower response to mechanical perturbations, exhibit reduced PIP gradients within the SAM. Comparable PIP pattern defects were observed in phospholipase A3β overexpressor lines, which largely phenocopy katanin mutants at the whole plant level. CONCLUSIONS Using phospholipid biosensors, we identified a stereotypical PIP accumulation pattern in the SAM that negatively correlates with stem cell maintenance and positively correlates with organ-boundary establishment. While other cues are very likely to contribute to the final PIP pattern, we provide evidence that the patterns of PIP, cortical microtubules and mechanical stress are positively correlated, suggesting that the PIP pattern, and its reproducibility, relies at least in part on the mechanical status of the SAM.
Collapse
Affiliation(s)
- Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Léa E S Rambaud-Lavigne
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
33
|
N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett 2017; 591:3745-3756. [DOI: 10.1002/1873-3468.12880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
34
|
Abstract
Shoot meristems are maintained by pluripotent stem cells that are controlled by CLAVATA-WUSCHEL feedback signaling. This pathway, which coordinates stem cell proliferation with differentiation, was first identified in Arabidopsis, but appears to be conserved in diverse higher plant species. In this Review, we highlight the commonalities and differences between CLAVATA-WUSCHEL pathways in different species, with an emphasis on Arabidopsis, maize, rice and tomato. We focus on stem cell control in shoot meristems, but also briefly discuss the role of these signaling components in root meristems.
Collapse
Affiliation(s)
- Marc Somssich
- Heinrich-Heine-University, Düsseldorf D-40225, Germany
| | - Byoung Il Je
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rüdiger Simon
- Heinrich-Heine-University, Düsseldorf D-40225, Germany
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
35
|
Abstract
The membranes of eukaryotic cells create hydrophobic barriers that control substance and information exchange between the inside and outside of cells and between cellular compartments. Besides their roles as membrane building blocks, some membrane lipids, such as phosphoinositides (PIs), also exert regulatory effects. Indeed, emerging evidence indicates that PIs play crucial roles in controlling polarity and growth in plants. Here, I highlight the key roles of PIs as important regulatory membrane lipids in plant development and function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06114, Germany
| |
Collapse
|
36
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
37
|
Cao J, Jiang M, Li P, Chu Z. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 2016; 17:175. [PMID: 26935448 PMCID: PMC4776448 DOI: 10.1186/s12864-016-2526-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background The type-2C protein phosphatases (PP2Cs), negatively regulating ABA responses and MAPK cascade pathways, play important roles in stress signal transduction in plants. Brachypodium distachyon is a new model plant for exploring the functional genomics of temperate grasses, cereals and biofuel crops. To date, genome-wide identification and analysis of the PP2C gene family in B. distachyon have not been investigated. Results In this study, 86 PP2C genes in B. distachyon were identified. Domain-based analyses of PP2C proteins showed that they all contained the phosphatase domains featured as 11 conserved signature motifs. Although not all phosphatase domains of BdPP2C members included all 11 motifs, tertiary structure analysis showed that four residues contributing to magnesium/manganese ions (Mg2+/Mn2+) coordination were conserved, except for two noncanonical members. The analysis of their chromosomal localizations showed that most of the BdPP2C genes were located within the low CpG density region. Phylogenetic tree and synteny blocks analyses among B. distachyon, Arabidopsis thaliana and Oryza sativa revealed that all PP2C members from the three species can be phylogenetically categorized into 13 subgroups (A–M) and BdPP2Cs were evolutionarily more closely related to OsPP2Cs than to AtPP2Cs. Segmental duplications contributed particularly to the expansion of the BdPP2C gene family and all duplicated BdPP2Cs evolved mainly from purifying selection. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis showed that BdPP2Cs were broadly expressed in disparate tissues. We also found that almost all members displayed up-regulation in response to abiotic stresses such as cold, heat, PEG and NaCl treatments, but down-regulation to biotic stresses such as Ph14, Guy11 and F0968 infection. Conclusions In the present study, a comprehensive analysis of genome-wide identification and characterization of protein domains, phylogenetic relationship, gene and protein structure, chromosome location and expression pattern of the PP2C gene family was carried out for the first time in a new model monocot, i.e., B. distachyon. Our results provide a reference for genome-wide identification of the PP2C gene family of other species and also provide a foundation for future functional research on PP2C genes in B. distachyon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2526-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianmei Cao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China. .,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
38
|
Kataya ARA, Schei E, Lillo C. Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana. PLANTA 2016; 243:699-717. [PMID: 26649560 DOI: 10.1007/s00425-015-2439-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1) Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser-Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.
Collapse
Affiliation(s)
- Amr R A Kataya
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| | - Edit Schei
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| | - Cathrine Lillo
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| |
Collapse
|
39
|
Woodson JD, Joens MS, Sinson AB, Gilkerson J, Salomé PA, Weigel D, Fitzpatrick JA, Chory J. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science 2015; 350:450-4. [PMID: 26494759 PMCID: PMC4863637 DOI: 10.1126/science.aac7444] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. Thus, we have identified a signal that leads to the targeted removal of ROS-overproducing chloroplasts.
Collapse
Affiliation(s)
| | - Matthew S Joens
- Waitt Advanced Biophotonics Center, The Salk Institute, La Jolla, CA
| | - Andrew B Sinson
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Division of Biological Sciences, University of California-San Diego, La Jolla, CA
| | - Jonathan Gilkerson
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Howard Hughes Medical Institute, The Salk Institute, La Jolla, CA
| | - Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute, La Jolla, CA. Howard Hughes Medical Institute, The Salk Institute, La Jolla, CA.
| |
Collapse
|
40
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
41
|
Singh A, Pandey A, Srivastava AK, Tran LSP, Pandey GK. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 2015; 36:1023-1035. [DOI: 10.3109/07388551.2015.1083941] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India, and
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa, Japan
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India,
| |
Collapse
|
42
|
Boyer F, Simon R. Asymmetric cell divisions constructing Arabidopsis stem cell niches: the emerging role of protein phosphatases. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:935-45. [PMID: 26012742 DOI: 10.1111/plb.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
Plant stem cell niches (SCNs) can be maintained in time through asymmetric cell divisions (ACDs) that allow the production of new cell types while constantly renewing the pools of stem cells (SCs). ACDs in plants require the asymmetric distribution of molecular components inside the cells as well as external asymmetric positional information. These two types of asymmetric information are controlled by inter- and intracellular signalling events. Phosphorylation of proteins is a major intermediate step in these signalling events, serving either as an activator or repressor of signalling, via fast auto- and trans-phosphorylation mechanisms. Whereas protein kinases, which phosphorylate proteins on serine, threonine or tyrosine residues, have been thoroughly studied, less attention has been given to protein phosphatases, which de-phosphorylate their protein targets on these same residues. Phosphatases modulate the activity of signalling pathways by balancing the action of kinases, and are therefore critical in the regulation of ACDs in plants. In this review, we first present the different types of ACDs that operate during Arabidopsis embryonic and post-embryonic development and participate in the construction and maintenance of its root and shoot SCNs; we then give a brief description of the main protein phosphatases so far described in the Arabidopsis genome; and finally discuss their functions toward the regulation of the ACDs introduced in the first part of the paper.
Collapse
Affiliation(s)
- F Boyer
- Institute of Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - R Simon
- Institute of Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
Lambers H, Finnegan PM, Jost R, Plaxton WC, Shane MW, Stitt M. Phosphorus nutrition in Proteaceae and beyond. NATURE PLANTS 2015; 1:15109. [PMID: 27250542 DOI: 10.1038/nplants.2015.109] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proteaceae in southwestern Australia have evolved on some of the most phosphorus-impoverished soils in the world. They exhibit a range of traits that allow them to both acquire and utilize phosphorus highly efficiently. This is in stark contrast with many model plants such as Arabidopsis thaliana and crop species, which evolved on soils where nitrogen is the major limiting nutrient. When exposed to low phosphorus availability, these plants typically exhibit phosphorus-starvation responses, whereas Proteaceae do not. This Review explores the traits that account for the very high efficiency of acquisition and use of phosphorus in Proteaceae, and explores which of these traits are promising for improving the phosphorus efficiency of crop plants.
Collapse
Affiliation(s)
- H Lambers
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - P M Finnegan
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - R Jost
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - W C Plaxton
- Department of Biology and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - M W Shane
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - M Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
44
|
Zermiani M, Begheldo M, Nonis A, Palme K, Mizzi L, Morandini P, Nonis A, Ruperti B. Identification of the Arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. ANNALS OF BOTANY 2015; 116:69-89. [PMID: 26078466 PMCID: PMC4479753 DOI: 10.1093/aob/mcv066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. METHODS Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. KEY RESULTS Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. CONCLUSIONS The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity.
Collapse
Affiliation(s)
- Monica Zermiani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Maura Begheldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Klaus Palme
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 2
| | - Luca Mizzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
45
|
Lee C, Clark SE. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis. PLoS One 2015; 10:e0126006. [PMID: 26011610 PMCID: PMC4444308 DOI: 10.1371/journal.pone.0126006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Clark
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hurst CH, Hemsley PA. Current perspective on protein S-acylation in plants: more than just a fatty anchor? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1599-606. [PMID: 25725093 DOI: 10.1093/jxb/erv053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| | - Piers A Hemsley
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| |
Collapse
|
47
|
Zhang YL, Li E, Feng QN, Zhao XY, Ge FR, Zhang Y, Li S. Protein palmitoylation is critical for the polar growth of root hairs in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:50. [PMID: 25849075 PMCID: PMC4340681 DOI: 10.1186/s12870-015-0441-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Protein palmitoylation, which is critical for membrane association and subcellular targeting of many signaling proteins, is catalyzed mainly by protein S-acyl transferases (PATs). Only a few plant proteins have been experimentally verified to be subject to palmitoylation, such as ROP GTPases, calcineurin B like proteins (CBLs), and subunits of heterotrimeric G proteins. However, emerging evidence from palmitoyl proteomics hinted that protein palmitoylation as a post-translational modification might be widespread. Nonetheless, due to the large number of genes encoding PATs and the lack of consensus motifs for palmitoylation, progress on the roles of protein palmitoylation in plants has been slow. RESULTS We combined pharmacological and genetic approaches to examine the role of protein palmitoylation in root hair growth. Multiple PATs from different endomembrane compartments may participate in root hair growth, among which the Golgi-localized PAT24/TIP GROWTH DEFECTIVE1 (TIP1) plays a major role while the tonoplast-localized PAT10 plays a secondary role in root hair growth. A specific inhibitor for protein palmitoylation, 2-bromopalmitate (2-BP), compromised root hair elongation and polarity. Using various probes specific for cellular processes, we demonstrated that 2-BP impaired the dynamic polymerization of actin microfilaments (MF), the asymmetric plasma membrane (PM) localization of phosphatidylinositol (4,5)-bisphosphate (PIP2), the dynamic distribution of RabA4b-positive post-Golgi secretion, and endocytic trafficking in root hairs. CONCLUSIONS By combining pharmacological and genetic approaches and using root hairs as a model, we show that protein palmitoylation, regulated by protein S-acyl transferases at different endomembrane compartments such as the Golgi and the vacuole, is critical for the polar growth of root hairs in Arabidopsis. Inhibition of protein palmitoylation by 2-BP disturbed key intracellular activities in root hairs. Although some of these effects are likely indirect, the cytological data reported here will contribute to a deep understanding of protein palmitoylation during tip growth in plants.
Collapse
Affiliation(s)
- Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
48
|
Holton N, Nekrasov V, Ronald PC, Zipfel C. The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots. PLoS Pathog 2015; 11:e1004602. [PMID: 25607985 PMCID: PMC4301810 DOI: 10.1371/journal.ppat.1004602] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots. Pests and diseases cause significant agricultural losses. Plants recognize pathogen-derived molecules via plasma membrane-localized immune receptors (called pattern recognition receptors or PRRs), resulting in pathogen resistance. In recent years, the transfer of PRRs across plant species has emerged as a promising biotechnological approach to improve crop disease resistance. Successful transfers of PRRs suggest that immune signaling components are conserved across plant species. In this study, we demonstrate that the PRR XA21 from the monocot plant rice is functional in the dicot plant Arabidopsis thaliana (Arabidopsis) and that it confers quantitatively enhanced resistance to bacteria. Furthermore, we show that the rice XA21 and the Arabidopsis EFR, which are evolutionary-distant but phylogenetically closely related, recruit similar signaling components for their function, revealing an overall conservation of immune pathways across monocots and dicots. These findings demonstrate evolutionary conservation of downstream signaling from PRRs and indicate that transfer of PRRs is possible between different plant families, but also between monocots and dicots.
Collapse
Affiliation(s)
- Nicholas Holton
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Gui J, Zheng S, Shen J, Li L. Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal. FRONTIERS IN PLANT SCIENCE 2015; 6:804. [PMID: 26483819 PMCID: PMC4590517 DOI: 10.3389/fpls.2015.00804] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/15/2015] [Indexed: 05/19/2023]
Abstract
Grain setting defect1 (GSD1), a plant-specific remorin protein specifically localized at the plasma membrane (PM) and plasmodesmata of phloem companion cells, affects grain setting in rice through regulating the transport of photoassimilates. Here, we show new evidence demonstrating that GSD1 is localized at the cytoplasmic face of the PM and a stretch of 45 amino acid residues at its C-terminal is required for its localization. Association with the PM is mediated by S-acylation of cysteine residues Cys-524 and Cys-527, in a sequence of 45 amino acid residues essential for GSD1 function in rice. Furthermore, the coiled-coil domain in GSD1 is necessary for sufficient interaction with OsACT1. Together, these results reveal that GSD1 attaches to the PM through S-acylation and interacts with OsACT1 through its coiled-coil domain structure to regulate plasmodesmata conductance for photoassimilate transport in rice.
Collapse
Affiliation(s)
| | | | | | - Laigeng Li
- *Correspondence: Laigeng Li, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China,
| |
Collapse
|
50
|
Kuppusamy T, Giavalisco P, Arvidsson S, Sulpice R, Stitt M, Finnegan PM, Scheible WR, Lambers H, Jost R. Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata. PLANT PHYSIOLOGY 2014; 166:1891-911. [PMID: 25315604 PMCID: PMC4256859 DOI: 10.1104/pp.114.248930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/10/2014] [Indexed: 05/20/2023]
Abstract
Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.
Collapse
Affiliation(s)
- Thirumurugen Kuppusamy
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick Giavalisco
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Samuel Arvidsson
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ronan Sulpice
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Mark Stitt
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick M Finnegan
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Wolf-Rüdiger Scheible
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Hans Lambers
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ricarda Jost
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| |
Collapse
|