1
|
Wang H, Meng L, Otaegi-Ugartemendia S, Condezo GN, Blanc-Mathieu R, Stokke R, Langvad MR, Brandt D, Kalinowski J, Dahle H, San Martín C, Ogata H, Sandaa RA. Haptophyte-infecting viruses change the genome condensing proteins of dinoflagellates. Commun Biol 2025; 8:510. [PMID: 40155463 PMCID: PMC11953307 DOI: 10.1038/s42003-025-07905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Giant viruses are extraordinary members of the virosphere due to their structural complexity and high diversity in gene content. Haptophytes are ecologically important primary producers in the ocean, and all known viruses that infect haptophytes are giant viruses. However, little is known about the specifics of their infection cycles and the responses they trigger in their host cells. Our in-depth electron microscopic, phylogenomic and virion proteomic analyses of two haptophyte-infecting giant viruses, Haptolina ericina virus RF02 (HeV RF02) and Prymnesium kappa virus RF02 (PkV RF02), unravel their large capacity for host manipulation and arsenals that function during the infection cycle from virus entry to release. The virus infection induces significant morphological changes in the host cell that is manipulated to build a virus proliferation factory. Both viruses' genomes encode a putative nucleoprotein (dinoflagellate/viral nucleoprotein; DVNP), which was also found in the virion proteome of PkV RF02. Phylogenetic analysis suggests that DVNPs are widespread in marine giant metaviromes. Furthermore, the analysis shows that the dinoflagellate homologues were possibly acquired from viruses of the order Imitervirales. These findings enhance our understanding of how viruses impact the biology of microalgae, providing insights into evolutionary biology, ecosystem dynamics, and nutrient cycling in the ocean.
Collapse
Affiliation(s)
- Haina Wang
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - David Brandt
- Bielefeld University, CeBiTec, Bielefeld, Germany
| | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Bousquet L, Fainsod S, Decelle J, Murik O, Chevalier F, Gallet B, Templin R, Schwab Y, Avrahami Y, Koplovitz G, Ku C, Frada MJ. Life cycle and morphogenetic differentiation in heteromorphic cell types of a cosmopolitan marine microalga. THE NEW PHYTOLOGIST 2025; 245:1969-1984. [PMID: 39721990 PMCID: PMC11798906 DOI: 10.1111/nph.20360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid. Here, we investigated the fate of decoupled cells during culture observations and we compared the transcriptome profiles and the cellular ultrastructure of the three life cycle cell types. We found that decoupled cells can revert to the calcified form in the absence of viral pressure, revealing the ability of G. huxleyi to modulate cell differentiation as a function of external conditions. Ultrastructural analyses showed distinct nuclear organization with variations in chromatin volume. Transcriptomic analyses revealed gene expression patterns specific to each life phase. These included multiple regulatory functions in chromatin remodeling, broader epigenetic mechanisms and life cycling, likely contributing to cell differentiation. Finally, analyses of available host-virus transcriptomes support life cycle transition during viral infection. This study provides cellular and molecular foundations for nuclear remodeling and cell differentiation in coccolithophores and the identification of gene markers for studying coccolithophore life cycles in natural populations.
Collapse
Affiliation(s)
- Laurie Bousquet
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Shai Fainsod
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Johan Decelle
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Omer Murik
- Translation Genomics Lab and Medical Genetics InstituteShaare Zedek Medical CenterJerusalem93722Israel
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Benoit Gallet
- Université Grenoble Alpes, CNRS, CEA, IRIG‐IBSGrenoble38044France
| | - Rachel Templin
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yoav Avrahami
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Miguel J. Frada
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| |
Collapse
|
3
|
Homola M, Büttner CR, Füzik T, Křepelka P, Holbová R, Nováček J, Chaillet ML, Žák J, Grybchuk D, Förster F, Wilson WH, Schroeder DC, Plevka P. Structure and replication cycle of a virus infecting climate-modulating alga Emiliania huxleyi. SCIENCE ADVANCES 2024; 10:eadk1954. [PMID: 38598627 PMCID: PMC11006232 DOI: 10.1126/sciadv.adk1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The globally distributed marine alga Emiliania huxleyi has cooling effect on the Earth's climate. The population density of E. huxleyi is restricted by Nucleocytoviricota viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here, we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane. EhV-201 virions infect E. huxleyi by using fivefold vertices to bind to and fuse the virus' inner membrane with the cell plasma membrane. Progeny virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. The genome-filled capsids acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which enables the continuous release of virions by exocytosis.
Collapse
Affiliation(s)
- Miroslav Homola
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Carina R. Büttner
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Křepelka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radka Holbová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marten L. Chaillet
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Danyil Grybchuk
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Friedrich Förster
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - William H. Wilson
- Marine Biological Association, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Joffe N, Kuhlisch C, Schleyer G, Ahlers NS, Shemi A, Vardi A. Cell-to-cell heterogeneity drives host-virus coexistence in a bloom-forming alga. THE ISME JOURNAL 2024; 18:wrae038. [PMID: 38452203 PMCID: PMC10980834 DOI: 10.1093/ismejo/wrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.
Collapse
Affiliation(s)
- Nir Joffe
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Nadia S Ahlers
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Hevroni G, Vincent F, Ku C, Sheyn U, Vardi A. Daily turnover of active giant virus infection during algal blooms revealed by single-cell transcriptomics. SCIENCE ADVANCES 2023; 9:eadf7971. [PMID: 37824628 PMCID: PMC10569711 DOI: 10.1126/sciadv.adf7971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Giant viruses infect many unicellular eukaryotes, including algae that form massive oceanic blooms. Despite the major impact of viruses on the marine ecosystem, the ability to quantify and assess active viral infection in nature remains a major challenge. We applied single-cell RNA sequencing, to profile virus and host transcriptomes of 12,000 single algal cells from a coccolithophore bloom. Viral infection was detected already at early exponential bloom phase, negatively correlating with the bloom intensity. A consistent percent of infected coccolithophores displayed the early phase of viral replication for several consecutive days, indicating a daily turnover and continuous virocell-associated metabolite production, potentially affecting the surrounding microbiome. Linking single-cell infection state to host physiology revealed that infected cells remained calcified even in the late infection stage. These findings stress the importance of studying host-virus dynamics in natural populations, at single-cell resolution, to better understand virus life cycle and its impact on microbial food webs.
Collapse
|
8
|
Meng L, Delmont TO, Gaïa M, Pelletier E, Fernàndez-Guerra A, Chaffron S, Neches RY, Wu J, Kaneko H, Endo H, Ogata H. Genomic adaptation of giant viruses in polar oceans. Nat Commun 2023; 14:6233. [PMID: 37828003 PMCID: PMC10570341 DOI: 10.1038/s41467-023-41910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus-host network at the polar-nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.
Collapse
Affiliation(s)
- Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Chaffron
- Research Federation for the study of Global Ocean systems ecology and evolution, FR2022/Tara GOsee, F-75016, Paris, France
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Russell Y Neches
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hiroto Kaneko
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan.
| |
Collapse
|
9
|
Garrett O, Whalen KE. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front Microbiol 2023; 14:1266972. [PMID: 37869665 PMCID: PMC10587436 DOI: 10.3389/fmicb.2023.1266972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacterium Pseudoalteromonas spp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophore Emiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version of E. huxleyi DHODH was heterologously expressed in E. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Ki of 2.3 nM) of E. huxleyi DHODH. E. huxleyi cells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposed E. huxleyi including significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Kristen E. Whalen
- Department of Biology, Haverford College, Haverford, PA, United States
| |
Collapse
|
10
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
11
|
Zhang E, Zhang S, Li G, Zhang Z, Liu J. Identification and Verification of Candidate miRNA Biomarkers with Application to Infection with Emiliania huxleyi Virus. Genes (Basel) 2023; 14:1716. [PMID: 37761856 PMCID: PMC10531489 DOI: 10.3390/genes14091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions of Emiliania huxleyi and its specific lytic virus (EhV) have a profound influence on marine biogeochemical carbon-sulfur cycles and play a prominent role in global climate change. MicroRNAs (miRNAs) have emerged as promising candidates with extensive diagnostic potential due to their role in virus-host interactions. However, the application of miRNA signatures as diagnostic markers in marine viral infection has made limited progress. Based on our previous small-RNA sequencing data, one host miRNA biomarker that is upregulated in early infection and seven viral miRNA biomarkers that are upregulated in late infection were identified and verified using qRT-PCR and a receiver operating characteristic curve analysis in pure culture, mixed culture, and natural seawater culture. The host ehx-miR20-5p was able to significantly differentiate infection groups from the control in the middle (24 h post-infection, hpi) and late infection (48 hpi) phases, while seven virus-derived miRNA biomarkers could diagnose the early and late stages of EhV infection. Functional enrichment analysis showed that these miRNAs participated in numerous essential metabolic pathways, including gene transcription and translation, cell division-related pathways, protein-degradation-related processes, and lipid metabolism. Additionally, a dual-luciferase reporter assay confirmed the targeted relationship between a viral ehv-miR7-5p and the host dihydroceramide desaturase gene (hDCD). This finding suggests that the virus-derived miRNA has the ability to inhibit the host sphingolipid metabolism, which is a specific characteristic of EhV infection during the late stage. Our data revealed a cluster of potential miRNA biomarkers with significant regulatory functions that could be used to diagnose EhV infection, which has implications for assessing the infectious activity of EhV in a natural marine environment.
Collapse
Affiliation(s)
| | | | | | | | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, No. 43, Jiyuan Road, Xiamen 361021, China; (E.Z.); (S.Z.); (G.L.); (Z.Z.)
| |
Collapse
|
12
|
Abada A, Beiralas R, Narvaez D, Sperfeld M, Duchin-Rapp Y, Lipsman V, Yuda L, Cohen B, Carmieli R, Ben-Dor S, Rocha J, Huang Zhang I, Babbin AR, Segev E. Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse. THE ISME JOURNAL 2023:10.1038/s41396-023-01427-8. [PMID: 37173383 DOI: 10.1038/s41396-023-01427-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions between Phaeobacter inhibens bacteria and Gephyrocapsa huxleyi algae are mediated through inorganic nitrogen exchange. Under oxygen-rich conditions, aerobic bacteria reduce algal-secreted nitrite to nitric oxide (NO) through denitrification, a well-studied anaerobic respiratory mechanism. The bacterial NO is involved in triggering a cascade in algae akin to programmed cell death. During death, algae further generate NO, thereby propagating the signal in the algal population. Eventually, the algal population collapses, similar to the sudden demise of oceanic algal blooms. Our study suggests that the exchange of inorganic nitrogen species in oxygenated environments is a potentially significant route of microbial communication within and across kingdoms.
Collapse
Affiliation(s)
- Adi Abada
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Beiralas
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Delia Narvaez
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yemima Duchin-Rapp
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valeria Lipsman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Yuda
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bar Cohen
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raanan Carmieli
- Depertment of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Jorge Rocha
- CIDEA Consortium Conacyt-Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Irene Huang Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Einat Segev
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Diaz BP, Gallo F, Moore RH, Bidle KD. Virus infection of phytoplankton increases average molar mass and reduces hygroscopicity of aerosolized organic matter. Sci Rep 2023; 13:7361. [PMID: 37147322 PMCID: PMC10163044 DOI: 10.1038/s41598-023-33818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Viral infection of phytoplankton is a pervasive mechanism of cell death and bloom termination, which leads to the production of dissolved and colloidal organic matter that can be aerosolized into the atmosphere. Earth-observing satellites can track the growth and death of phytoplankton blooms on weekly time scales but the impact of viral infection on the cloud forming potential of associated aerosols is largely unknown. Here, we determine the influence of viral-derived organic matter, purified viruses, and marine hydrogels on the cloud condensation nuclei activity of their aerosolized solutions, compared to organic exudates from healthy phytoplankton. Dissolved organic material derived from exponentially growing and infected cells of well-characterized eukaryotic phytoplankton host-virus systems, including viruses from diatoms, coccolithophores and chlorophytes, was concentrated, desalted, and nebulized to form aerosol particles composed of primarily of organic matter. Aerosols from infected phytoplankton cultures resulted in an increase in critical activation diameter and average molar mass in three out of five combinations evaluated, along with a decrease in organic kappa (hygroscopicity) compared to healthy cultures and seawater controls. The infected samples also displayed evidence of increased surface tension depression at realistic cloud water vapor supersaturations. Amending the samples with xanthan gum to simulate marine hydrogels increased variability in organic kappa and surface tension in aerosols with high organic to salt ratios. Our findings suggest that the pulses of increased dissolved organic matter associated with viral infection in surface waters may increase the molar mass of dissolved organic compounds relative to surface waters occupied by healthy phytoplankton or low phytoplankton biomass.
Collapse
Affiliation(s)
- Ben P Diaz
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, USA
| | - Francesca Gallo
- NASA Langley Research Center, Hampton, VA, USA
- NASA Postdoctoral Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, USA.
| |
Collapse
|
14
|
Lobb B, Shapter A, Doxey AC, Nissimov JI. Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome. Viruses 2023; 15:v15051116. [PMID: 37243202 DOI: 10.3390/v15051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host-virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good-high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Anson Shapter
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Jiang T, Du K, Wang P, Wang X, Zang L, Peng D, Chen X, Sun G, Zhang H, Fan Z, Cao Z, Zhou T. Sugarcane mosaic virus orchestrates the lactate fermentation pathway to support its successful infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1099362. [PMID: 36699858 PMCID: PMC9868461 DOI: 10.3389/fpls.2022.1099362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Viruses often establish their own infection by altering host metabolism. How viruses co-opt plant metabolism to support their successful infection remains an open question. Here, we used untargeted metabolomics to reveal that lactate accumulates immediately before and after robust sugarcane mosaic virus (SCMV) infection. Induction of lactate-involved anaerobic glycolysis is beneficial to SCMV infection. The enzyme activity and transcriptional levels of lactate dehydrogenase (LDH) were up-regulated by SCMV infection, and LDH is essential for robust SCMV infection. Moreover, LDH relocates in viral replicase complexes (VRCs) by interacting with SCMV-encoded 6K2 protein, a key protein responsible for inducing VRCs. Additionally, lactate could promote SCMV infection by suppressing plant defense responses. Taken together, we have revealed a viral strategy to manipulate host metabolism to support replication compartment but also depress the defense response during the process of infection.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Kaitong Du
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Pei Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xinhai Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, Tai’an, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Geng Sun
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Funaoka Y, Hiromoto H, Morimoto D, Takahashi M, Wada K, Nagasaki K. Diversity in Infection Specificity between the Bloom-forming Microalga Heterosigma akashiwo and Its dsDNA Virus, Heterosigma akashiwo Virus. Microbes Environ 2023; 38:n/a. [PMID: 37302846 DOI: 10.1264/jsme2.me23036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Heterosigma akashiwo virus (HaV) is a dsDNA virus that infects the bloom-forming raphidoflagellate Heterosigma akashiwo. Both the host and its virus are phenotypically diverse in terms of infection specificity. Their relationships have been examined based on the occurrence or absence of algal lysis following virus inoculation; however, variations in the strain-level host-virus relationship regarding infectivity and lysis rates remain unclear. Therefore, we performed a series of cross-infectivity tests using 60 H. akashiwo and 22 HaV strains isolated from the coastal waters of western Japan. The host strains were divided into 5 different groups and viruses into 4 groups. Using a representative strain from each group, algal lysis was observed in 14 of the (5×4=) 20 host-virus combinations; the concentration of infectious units in each HaV suspension was then assessed using the most probable number (MPN) assay on the five host strains. Virus titers ranged between 1.1×101 and 2.1×107 infectious units mL-1; the titer of each viral lysate was differently estimated using distinct H. akashiwo strains as hosts. These results suggest that (1) a clonal viral lysate comprises virions with different intraspecific infection specificities and/or (2) the efficiency and error rates of each intracellular replication process vary in each host-virus combination.
Collapse
Affiliation(s)
- Yusaku Funaoka
- Faculty of Agriculture and Marine Science, Kochi University
| | | | | | | | - Kei Wada
- Department of Medical Sciences, University of Miyazaki
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University
- Faculty of Science and Technology, Kochi University
| |
Collapse
|
17
|
Zhang E, Gao J, Wei Z, Zeng J, Li J, Li G, Liu J. MicroRNA-mediated regulation of lipid metabolism in virus-infected Emiliania huxleyi. THE ISME JOURNAL 2022; 16:2457-2466. [PMID: 35869388 PMCID: PMC9561107 DOI: 10.1038/s41396-022-01291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The interactions between Emiliania huxleyi and E. huxleyi virus (EhV) regulate marine carbon and sulfur biogeochemical cycles and play a prominent role in global climate change. As a large DNA virus, EhV has developed a novel "virocell metabolism" model to meet its high metabolic needs. Although it has been widely demonstrated that EhV infection can profoundly rewire lipid metabolism, the epigenetic regulatory mechanisms of lipid metabolism are still obscure. MicroRNAs (miRNAs) can regulate biological pathways by targeting hub genes in the metabolic processes. In this study, the transcriptome, lipidome, and miRNAome were applied to investigate the epigenetic regulation of lipid metabolism in E. huxleyi cells during a detailed time course of viral infection. Combined transcriptomic, lipidomic, and physiological experiments revealed reprogrammed lipid metabolism, along with mitochondrial dysfunction and calcium influx through the cell membrane. A total of 69 host miRNAs (including 1 known miRNA) and 7 viral miRNAs were identified, 27 of which were differentially expressed. Bioinformatic prediction revealed that miRNAs involved in the regulation of lipid metabolism and a dual-luciferase reporter assay suggested that phosphatidylinositol 3-kinase (PI3K) gene might be a target of ehx-miR5. Further qPCR and western blot analysis showed a significant negative correlation between the expression of ehx-miR5 and its target gene PI3K, along with the lower activity of its downstream components (p-Akt, p-TOR, SREBP), indicating that lipid metabolism might be regulated by ehx-miR5 through the PI3K-Akt-TOR signaling pathway. Our findings reveal several novel mechanisms of viral strategies to manipulate host lipid metabolism and provide evidence that ehx-miR5 negatively modulates the expression of PI3K and disturbs lipid metabolism in the interactions between E. huxleyi and EhV.
Collapse
Affiliation(s)
- Enquan Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jingjing Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zehua Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
18
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
19
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
20
|
Altabella T, Ramirez-Estrada K, Ferrer A. Phytosterol metabolism in plant positive-strand RNA virus replication. PLANT CELL REPORTS 2022; 41:281-291. [PMID: 34665312 DOI: 10.1007/s00299-021-02799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.
Collapse
Affiliation(s)
- Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, San Nicolás de los Garza, NL, 66451, México
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, 08193, Barcelona, Spain.
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
22
|
Resolving the microalgal gene landscape at the strain level: A novel hybrid transcriptome of Emiliania huxleyi CCMP3266. Appl Environ Microbiol 2021; 88:e0141821. [PMID: 34757817 DOI: 10.1128/aem.01418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi, which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed "synthetic genome" (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a "synthetic genome", we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.
Collapse
|
23
|
Feldmesser E, Ben-Dor S, Vardi A. An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Sci Rep 2021; 11:20795. [PMID: 34675226 PMCID: PMC8531018 DOI: 10.1038/s41598-021-00072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan coccolithophore widespread in temperate oceans. This unicellular photoautotroph forms massive recurring blooms that play an important role in large biogeochemical cycles of carbon and sulfur, which play a role in climate change. The mechanism of bloom formation and demise, controlled by giant viruses that routinely infect these blooms, is poorly understood. We generated a pan-transcriptome of E. huxleyi, derived from three strains with different susceptibility to viral infection. Expression profiling of E. huxleyi sensitive and resistant strains showed major basal differences, including many genes that are induced upon viral infection. This suggests that basal gene expression can affect the host metabolic state and the susceptibility of E. huxleyi to viruses. Due to its ecological importance, the pan-transcriptome and its protein translation, applicable to many E. huxleyi strains, is a powerful resource for investigation of eukaryotic microbial communities.
Collapse
Affiliation(s)
- Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
24
|
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, Steen IH, Grimsley N, Edvardsen B, Ogata H, Lawrence J. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc 2021; 97:179-194. [PMID: 34514703 DOI: 10.1111/brv.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Collectively known as phytoplankton, photosynthetic microbes form the base of the marine food web, and account for up to half of the primary production on Earth. Haptophytes are key components of this phytoplankton community, playing important roles both as primary producers and as mixotrophs that graze on bacteria and protists. Viruses influence the ecology and diversity of phytoplankton in the ocean, with the majority of microalgae-virus interactions described as 'boom and bust' dynamics, which are characteristic of acute virus-host systems. Most haptophytes are, however, part of highly diverse communities and occur at low densities, decreasing their chance of being infected by viruses with high host specificity. Viruses infecting these microalgae have been isolated in the laboratory, and there are several characteristics that distinguish them from acute viruses infecting bloom-forming haptophytes. Herein we synthesise what is known of viruses infecting haptophyte hosts in the ocean, discuss the adaptive evolution of haptophyte-infecting viruses -from those that cause acute infections to those that stably coexist with their host - and identify traits of importance for successful survival in the ocean.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Haina Wang
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Université Grenoble Alpes, CNRS, INRA, IRIG, Grenoble, France
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | - Bente Edvardsen
- Department of Biosciences, University of Oslo, Postbox 1066, N-0316, Oslo, Norway
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Janice Lawrence
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
25
|
Schatz D, Schleyer G, Saltvedt MR, Sandaa RA, Feldmesser E, Vardi A. Ecological significance of extracellular vesicles in modulating host-virus interactions during algal blooms. ISME JOURNAL 2021; 15:3714-3721. [PMID: 34083751 PMCID: PMC8630046 DOI: 10.1038/s41396-021-01018-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022]
Abstract
Extracellular vesicles are produced by organisms from all kingdoms and serve a myriad of functions, many of which involve cell-cell signaling, especially during stress conditions and host-pathogen interactions. In the marine environment, communication between microorganisms can shape trophic level interactions and population succession, yet we know very little about the involvement of vesicles in these processes. In a previous study, we showed that vesicles produced during viral infection by the ecologically important model alga Emiliania huxleyi, could act as a pro-viral signal, by expediting infection and enhancing the half-life of the virus in the extracellular milieu. Here, we expand our laboratory findings and show the effect of vesicles on natural populations of E. huxleyi in a mesocosm setting. We profile the small-RNA (sRNA) cargo of vesicles that were produced by E. huxleyi during bloom succession, and show that vesicles applied to natural assemblages expedite viral infection and prolong the half-life of this major mortality agent of E. huxleyi. We subsequently reveal that exposure of the natural assemblage to E. huxleyi-derived vesicles modulates not only host-virus dynamics, but also other components of the microbial food webs, thus emphasizing the importance of extracellular vesicles to microbial interactions in the marine environment.
Collapse
Affiliation(s)
- Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marius R Saltvedt
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Kuhlisch C, Schleyer G, Shahaf N, Vincent F, Schatz D, Vardi A. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. SCIENCE ADVANCES 2021; 7:7/25/eabf4680. [PMID: 34144983 PMCID: PMC8213229 DOI: 10.1126/sciadv.abf4680] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Algal blooms are hotspots of primary production in the ocean, forming the basis of the marine food web and fueling the dissolved organic matter (DOM) pool. Viruses are key players in controlling algal demise, thereby diverting biomass from higher trophic levels to the DOM pool, a process termed the "viral shunt." To decode the metabolic footprint of the viral shunt in the environment, we induced a bloom of Emiliania huxleyi and followed its succession using untargeted exometabolomics. We show that bloom succession induces dynamic changes in the exometabolic landscape. We found a set of chlorine-iodine-containing metabolites that were induced by viral infection and released during bloom demise. These metabolites were further detected in virus-infected oceanic E. huxleyi blooms. Therefore, we propose that halogenation with both chlorine and iodine is a distinct hallmark of the virus-induced DOM of E. huxleyi, providing insights into the metabolic consequences of the viral shunt.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Shahaf
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Zanchetta E, Damergi E, Patel B, Borgmeyer T, Pick H, Pulgarin A, Ludwig C. Algal cellulose, production and potential use in plastics: Challenges and opportunities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Gann ER, Kang Y, Dyhrman ST, Gobler CJ, Wilhelm SW. Metatranscriptome Library Preparation Influences Analyses of Viral Community Activity During a Brown Tide Bloom. Front Microbiol 2021; 12:664189. [PMID: 34135876 PMCID: PMC8200674 DOI: 10.3389/fmicb.2021.664189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the use of metatranscriptomics to study virus community dynamics. We used RNA samples collected from harmful brown tides caused by the eukaryotic alga Aureococcus anophagefferens within New York (United States) estuaries and in the process observed how preprocessing of libraries by either selection for polyadenylation or reduction in ribosomal RNA (rRNA) influenced virus community analyses. As expected, more reads mapped to the A. anophagefferens genome in polyadenylation-selected libraries compared to the rRNA-reduced libraries, with reads mapped in each sample correlating to one another regardless of preprocessing of libraries. Yet, this trend was not seen for reads mapping to the Aureococcus anophagefferens Virus (AaV), where significantly more reads (approximately two orders of magnitude) were mapped to the AaV genome in the rRNA-reduced libraries. In the rRNA-reduced libraries, there was a strong and significant correlation between reads mappings to AaV and A. anophagefferens. Overall, polyadenylation-selected libraries produced fewer viral contigs, fewer reads mapped to viral contigs, and different proportions across viral realms and families, compared to their rRNA-reduced pairs. This study provides evidence that libraries generated by rRNA reduction and not selected for polyadenylation are more appropriate for quantitative characterization of viral communities in aquatic ecosystems by metatranscriptomics.
Collapse
Affiliation(s)
- Eric R Gann
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Yoonja Kang
- Department of Ocean Integrated Science, School of Marine Technology, Chonnam National University, Yeosu, South Korea
| | - Sonya T Dyhrman
- Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory, Columbia University, New York, NY, United States.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
29
|
Darnet S, Blary A, Chevalier Q, Schaller H. Phytosterol Profiles, Genomes and Enzymes - An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:665206. [PMID: 34093623 PMCID: PMC8172173 DOI: 10.3389/fpls.2021.665206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.
Collapse
Affiliation(s)
| | | | | | - Hubert Schaller
- Plant Isoprenoid Biology Team, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J Virol 2021; 95:JVI.02446-20. [PMID: 33536167 PMCID: PMC8103676 DOI: 10.1128/jvi.02446-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses have long been viewed as entities possessing extremely limited metabolic capacities. Over the last decade, however, this view has been challenged, as metabolic genes have been identified in viruses possessing large genomes and virions-the synthesis of which is energetically demanding. Here, we unveil peculiar phenotypic and genomic features of Prymnesium kappa virus RF01 (PkV RF01), a giant virus of the Mimiviridae family. We found that this virus encodes an unprecedented number of proteins involved in energy metabolism, such as all four succinate dehydrogenase (SDH) subunits (A-D) as well as key enzymes in the β-oxidation pathway. The SDHA gene was transcribed upon infection, indicating that the viral SDH is actively used by the virus- potentially to modulate its host's energy metabolism. We detected orthologous SDHA and SDHB genes in numerous genome fragments from uncultivated marine Mimiviridae viruses, which suggests that the viral SDH is widespread in oceans. PkV RF01 was less virulent compared with other cultured prymnesioviruses, a phenomenon possibly linked to the metabolic capacity of this virus and suggestive of relatively long co-evolution with its hosts. It also has a unique morphology, compared to other characterized viruses in the Mimiviridae family. Finally, we found that PkV RF01 is the only alga-infecting Mimiviridae virus encoding two aminoacyl-tRNA synthetases and enzymes corresponding to an entire base-excision repair pathway, as seen in heterotroph-infecting Mimiviridae These Mimiviridae encoded-enzymes were found to be monophyletic and branching at the root of the eukaryotic tree of life. This placement suggests that the last common ancestor of Mimiviridae was endowed with a large, complex genome prior to the divergence of known extant eukaryotes.IMPORTANCE Viruses on Earth are tremendously diverse in terms of morphology, functionality, and genomic composition. Over the last decade, the conceptual gap separating viruses and cellular life has tightened because of the detection of metabolic genes in viral genomes that express complex virus phenotypes upon infection. Here, we describe Prymnesium kappa virus RF01, a large alga-infecting virus with a unique morphology, an atypical infection profile, and an unprecedented number of genes involved in energy metabolism (such as the tricarboxylic (TCA) cycle and the β-oxidation pathway). Moreover, we show that the gene corresponding to one of these enzymes (the succinate dehydrogenase subunit A) is transcribed during infection and is widespread among marine viruses. This discovery provides evidence that a virus has the potential to actively regulate energy metabolism with its own gene.
Collapse
|
31
|
Zeng J, Li J, Liu S, Yang Z, Zhong Y, Chen X, Li G, Li J. Lipidome disturbances in preadipocyte differentiation associated with bisphenol A and replacement bisphenol S exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141949. [PMID: 32891999 DOI: 10.1016/j.scitotenv.2020.141949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is the major substitute for the production of bisphenol A (BPA)-free products and detected in both food and environment. Although the relationship between BPA exposure and increased risk of obesity and diabetes has been noted, the potential influence of BPS is not fully understood. Herein, a non-targeted lipidomic study was performed to explore BPA/BPS exposure actions using the 3T3-L1 preadipocyte differentiation model, and revealed the comprehensive lipidome disturbance induced by either BPA or BPS exposure at different doses of 0.01, 1 and 100 μM. BPA was more potent than BPS in disturbance of lipid metabolism. A considerable similarity of BPS exposure to BPA was discovered. The key lipid remodeling in response to exposure was found to involve the cardiolipins, phosphatidylglycerols and fatty acids metabolic pathways, providing novel clues of potential mechanism in which both BPA and BPS exposure could be associated with increased risk of insulin resistance. Our study supplies the perspective into the lipidome response to environmental stress induced by BPA/BPS, and shows that BPA-free products are not necessarily safer. Substitution of BPA by its structural analog BPS should be therefore performed with caution.
Collapse
Affiliation(s)
- Jun Zeng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| | - Junli Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Sishangyu Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhiqiang Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yue Zhong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Guiling Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
32
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
33
|
Sun TW, Yang CL, Kao TT, Wang TH, Lai MW, Ku C. Host Range and Coding Potential of Eukaryotic Giant Viruses. Viruses 2020; 12:E1337. [PMID: 33233432 PMCID: PMC7700475 DOI: 10.3390/v12111337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced genomes in the last two decades have substantially advanced our knowledge of their host diversity, gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms. The seven well-recognized viral clades (taxonomic families) have drastically different host range. Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory experiments and comparative genomics have shed light on the unprecedented functional potential of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular conditions and cell-environment interactions. Evolutionary genomics can illuminate how current and past hosts shape viral gene repertoires, although it becomes more obscure with divergent sequences and deep phylogenies. Continued works to characterize giant viruses from marine and other environments will further contribute to our understanding of their host range, coding potential, and virus-host coevolution.
Collapse
Affiliation(s)
- Tsu-Wang Sun
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Tong Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Ming-Wei Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (T.-W.S.); (C.-L.Y.); (T.-T.K.); (T.-H.W.); (M.-W.L.)
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
34
|
Marlhens J. [The coccolithovirus and Emiliania huxleyi: Viral hijacking of extracellular vesicles]. Med Sci (Paris) 2020; 36:1091-1094. [PMID: 33151875 DOI: 10.1051/medsci/2020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jérémie Marlhens
- École normale supérieure de Lyon, Département de biologie, Master biologie, Lyon, France
| |
Collapse
|
35
|
Mausz MA, Segovia M, Larsen A, Berger SA, Egge JK, Pohnert G. High CO 2 concentration and iron availability determine the metabolic inventory in an Emiliania huxleyi-dominated phytoplankton community. Environ Microbiol 2020; 22:3863-3882. [PMID: 32656913 DOI: 10.1111/1462-2920.15160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 11/27/2022]
Abstract
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 μatm) or future CO2 levels predicted for the year 2100 (900 μatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.
Collapse
Affiliation(s)
- Michaela A Mausz
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany.,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstr. 11a, Jena, 07745, Germany.,School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, United Kingdom
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain
| | - Aud Larsen
- NORCE Norwegian Research Centre AS, Nygårdsgaten 112, Bergen, 5038, Norway.,Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway
| | - Stella A Berger
- Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway.,Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, 16775, Germany
| | - Jorun K Egge
- Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway
| | - Georg Pohnert
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| |
Collapse
|
36
|
Takebe H, Tominaga K, Fujiwara K, Yamamoto K, Yoshida T. Differential Responses of a Coastal Prokaryotic Community to Phytoplanktonic Organic Matter Derived from Cellular Components and Exudates. Microbes Environ 2020; 35. [PMID: 32554942 PMCID: PMC7511794 DOI: 10.1264/jsme2.me20033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phytoplanktonic production and prokaryotic consumption of organic matter significantly contribute to marine carbon cycling. Organic matter released from phytoplankton via three processes (exudation of living cells, cell disruption through grazing, and viral lysis) shows distinct chemical properties. We herein investigated the effects of phytoplanktonic whole-cell fractions (WF) (representing cell disruption by grazing) and extracellular fractions (EF) (representing exudates) prepared from Heterosigma akashiwo, a bloom-forming Raphidophyceae, on prokaryotic communities using culture-based experiments. We analyzed prokaryotic community changes for two weeks. The shift in cell abundance by both treatments showed similar dynamics, reaching the first peak (~4.1×106 cells mL–1) on day 3 and second peak (~1.1×106 cells mL–1) on day 13. We classified the sequences obtained into operational taxonomic units (OTUs). A Bray-Curtis dissimilarity analysis revealed that the OTU-level community structure changed distinctively with the two treatments. Ten and 13 OTUs were specifically abundant in the WF and EF treatments, respectively. These OTUs were assigned as heterotrophic bacteria mainly belonging to the Alteromonadales (Gammaproteobacteria) and Bacteroidetes clades and showed successive dynamics following the addition of organic matter. We also analyzed the dynamics of these OTUs in the ocean using publicly available metagenomic data from a natural coastal bloom in Monterey Bay, USA. At least two WF treatment OTUs showed co-occurrence with H. akashiwo, indicating that the blooms of H. akashiwo also affect these OTUs in the ocean. The present results strongly suggest that the thriving and dead cells of uninfected phytoplankton differentially influence the marine prokaryotic community.
Collapse
Affiliation(s)
| | | | | | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | | |
Collapse
|
37
|
Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, Rosenwasser S, Vardi A. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. SCIENCE ADVANCES 2020; 6:eaba4137. [PMID: 32490206 PMCID: PMC7239649 DOI: 10.1126/sciadv.aba4137] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
The discovery of giant viruses infecting eukaryotes from diverse ecosystems has revolutionized our understanding of the evolution of viruses and their impact on protist biology, yet knowledge on their replication strategies and transcriptome regulation remains limited. Here, we profile single-cell transcriptomes of the globally distributed microalga Emiliania huxleyi and its specific giant virus during infection. We detected profound heterogeneity in viral transcript levels among individual cells. Clustering single cells based on viral expression profiles enabled reconstruction of the viral transcriptional trajectory. Reordering cells along this path unfolded highly resolved viral genetic programs composed of genes with distinct promoter elements that orchestrate sequential expression. Exploring host transcriptome dynamics across the viral infection states revealed rapid and selective shutdown of protein-encoding nuclear transcripts, while the plastid and mitochondrial transcriptomes persisted into later stages. Single-cell RNA-seq opens a new avenue to unravel the life cycle of giant viruses and their unique hijacking strategies.
Collapse
Affiliation(s)
- Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arnau Sebé-Pedrós
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Gann ER, Hughes BJ, Reynolds TB, Wilhelm SW. Internal Nitrogen Pools Shape the Infection of Aureococcus anophagefferens CCMP 1984 by a Giant Virus. Front Microbiol 2020; 11:492. [PMID: 32269558 PMCID: PMC7109300 DOI: 10.3389/fmicb.2020.00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/06/2020] [Indexed: 11/13/2022] Open
Abstract
The pelagophyte Aureococcus anophagefferens blooms annually in shallow bays around the world, where it is hypothesized to outcompete other phytoplankton in part by using alternative nitrogen sources. The high proportion of natural populations that are infected during the late stages of the bloom suggest viruses cause bloom collapse. We hypothesized that the Aureococcus anophagefferens Virus (AaV) infection cycle would be negatively influenced in cultures acclimated to decreasing external nitrogen conditions, but that the real-time external nitrogen concentration would not influence the infection cycle. Cultures acclimated in NO 3 - concentrations (0.0147 mM; N:P = 0.1225) that showed reduced end point cell abundances, forward scatter (a proxy for size) and red fluorescence (a proxy for chlorophyll a), also produced fewer viruses per cell at a slower rate. Decreasing the external concentration of nitrogen post infection did not alter burst size or time to lysis. These data suggest that the nitrogen used for new viral progeny is present within host cells at the time of infection. Flow cytometric data of an infection cycle showed a reduction in red fluorescence around twelve hours post infection, consistent with degradation of nitrogen-rich chloroplasts during the infection cycle. Using cell and virus quota estimates, we determined that A. anophagefferens cells had sufficient nitrogen and carbon for the lower ranges of burst sizes determined but did not contain enough phosphorous. Consistent with this observation, expression of nitrate and sugar transporters did not increase in the publicly available transcriptome data of the infection cycle, while several phosphorus transporters were. Our data demonstrate that dynamics of viruses infecting Aureococcus over the course of a bloom is dictated by the host cell state upon infection, which is set a priori by external nutrient supplies.
Collapse
Affiliation(s)
- Eric R Gann
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Brennan J Hughes
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B Reynolds
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Steven W Wilhelm
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
39
|
Fabris M, George J, Kuzhiumparambil U, Lawson CA, Jaramillo-Madrid AC, Abbriano RM, Vickers CE, Ralph P. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synth Biol 2020; 9:598-612. [PMID: 32032487 DOI: 10.1021/acssynbio.9b00455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom Phaeodactylum tricornutum, for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that P. tricornutum, unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered P. tricornutum through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, P. tricornutum reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of P. tricornutum endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of P. tricornutum as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
40
|
Biswas S, Tiwari PK, Bona F, Pal S, Venturino E. Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses. J Biol Phys 2020; 46:1-31. [PMID: 32180076 DOI: 10.1007/s10867-020-09538-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
In any ecosystem, chaotic situations may arise from equilibrium state for different reasons. To overcome these chaotic situations, sometimes the system itself exhibits some mechanisms of self-adaptability. In this paper, we explore an eco-epidemiological model consisting of three aquatic groups: phytoplankton, zooplankton, and marine free viruses. We assume that the phytoplankton population is infected by external free viruses and zooplankton get affected on consumption of infected phytoplankton; also, the infected phytoplankton do not compete for resources with the susceptible one. In addition, we model a mechanism by which zooplankton recognize and avoid infected phytoplankton, at least when susceptible phytoplankton are present. The zooplankton extinction chance increases on increasing the force of infection or decreasing the intensity of avoidance. Further, when the viral infection triggers chaotic dynamics, high zooplankton avoidance intensity can stabilize again the system. Interestingly, for high avoidance intensity, nutrient enrichment has a destabilizing effect on the system dynamics, which is in line with the paradox of enrichment. Global sensitivity analysis helps to identify the most significant parameters that reduce the infected phytoplankton in the system. Finally, we compare the dynamics of the system by allowing the infected phytoplankton also to share resources with the susceptible phytoplankton. A gradual increase of the virus replication factor turns the system dynamics from chaos to doubling state to limit cycle to stable state and the system finally settles down to the zooplankton-free equilibrium point. Moreover, on increasing the intensity of avoidance, the system shows a transcritical bifurcation from the zooplankton-free equilibrium to the coexistence steady state and remains stable thereafter.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Mathematics, University of Kalyani, Kalyani, 741235, India
| | | | - Francesca Bona
- DBIOS, University of Turin, via Accademia Albertina 13, 10123, Turin, Italy
| | - Samares Pal
- Department of Mathematics, University of Kalyani, Kalyani, 741235, India
| | - Ezio Venturino
- Dipartimento di Matematica "Giuseppe Peano", Università di Torino, via Carlo Alberto 10, 10123, Turin, Italy.
| |
Collapse
|
41
|
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2019; 18:21-34. [PMID: 31690825 DOI: 10.1038/s41579-019-0270-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | | | - David M Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Vallet M, Baumeister TUH, Kaftan F, Grabe V, Buaya A, Thines M, Svatoš A, Pohnert G. The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom. Nat Commun 2019; 10:4938. [PMID: 31666506 PMCID: PMC6821873 DOI: 10.1038/s41467-019-12908-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023] Open
Abstract
Flagellated oomycetes frequently infect unicellular algae, thus limiting their proliferation. Here we show that the marine oomycete Lagenisma coscinodisci rewires the metabolome of the bloom-forming diatom Coscinodiscus granii, thereby promoting infection success. The algal alkaloids β-carboline and 4-carboxy-2,3,4,9-tetrahydro-1H-β-carboline are induced during infection. Single-cell profiling with AP-MALDI-MS and confocal laser scanning microscopy reveals that algal carbolines accumulate in the reproductive form of the parasite. The compounds arrest the algal cell division, increase the infection rate and induce plasmolysis in the host. Our results indicate that the oomycete manipulates the host metabolome to support its own multiplication. Flagellated oomycetes frequently infect unicellular algae, thus limiting their proliferation. Here, the authors show that an oomycete rewires the metabolome of a marine bloom-forming diatom, thereby promoting infection success.
Collapse
Affiliation(s)
- Marine Vallet
- Research Group Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Tim U H Baumeister
- Research Group Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Research Group Olfactory Coding, Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anthony Buaya
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Department of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Pohnert
- Research Group Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany. .,Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany. .,Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany.
| |
Collapse
|
43
|
Zeng J, Liu S, Cai W, Jiang H, Lu X, Li G, Li J, Liu J. Emerging lipidome patterns associated with marine Emiliania huxleyi-virus model system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:521-528. [PMID: 31254817 DOI: 10.1016/j.scitotenv.2019.06.284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Emiliania huxleyi (Coccolithophore) plays a prominent role in the global carbon cycle and in climate processes. The annual collapse of massive E. huxleyi blooms in the marine environment has been shown to be frequently linked to viral control. These host-virus interactions shape the evolution and dynamics of oceanic microscale ecosystems, yet we still understand little of the molecular mechanism of these virus-mediated processes. Here, we present a detailed characterization of the lipidome of E. huxleyi BOF92 strain, both of uninfected cells and those infected with its specific lytic virus EhV-99B1. Non-targeted lipidomics analysis was performed in order to evaluate the dynamic alterations underlying virus-induced metabolic remodeling. The host lipidome (both lipid content and composition) significantly changed in response to the viral infection. The most statistically significant differential lipids were screened as potential biomarkers for assessing E. huxleyi population sensitivity to EhV infection. Our results reveal that the remodeling of lipid metabolism that underlies the pathogenesis of this infection primarily involved sphingolipid, glycerolipid and fatty acid metabolic pathways. Our study provides insights into how viruses shape their hosts metabolism to support their unique life cycle and a lipid-based chemical arms race during host-virus dynamic interactions in a marine environment.
Collapse
Affiliation(s)
- Jun Zeng
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Sishangyu Liu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Weicong Cai
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Hanrui Jiang
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Xue Lu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Guiling Li
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Jingwen Liu
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
44
|
Nissimov JI, Talmy D, Haramaty L, Fredricks HF, Zelzion E, Knowles B, Eren AM, Vandzura R, Laber CP, Schieler BM, Johns CT, More KD, Coolen MJL, Follows MJ, Bhattacharya D, Van Mooy BAS, Bidle KD. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ Microbiol 2019; 21:2182-2197. [PMID: 31001863 DOI: 10.1111/1462-2920.14633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK
| | - David Talmy
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Ehud Zelzion
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA.,Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christien P Laber
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kuldeep D More
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
45
|
Goode AG, Fields DM, Archer SD, Martínez Martínez J. Physiological responses of Oxyrrhis marina to a diet of virally infected Emiliania huxleyi. PeerJ 2019; 7:e6722. [PMID: 31041150 PMCID: PMC6476294 DOI: 10.7717/peerj.6722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
The coccolithophore Emiliania huxleyi forms some of the largest phytoplankton blooms in the ocean. The rapid demise of these blooms has been linked to viral infections. E. huxleyi abundance, distribution, and nutritional status make them an important food source for the heterotrophic protists which are classified as microzooplankton in marine food webs. In this study we investigated the fate of E. huxleyi (CCMP 374) infected with virus strain EhV-86 in a simple predator-prey interaction. The ingestion rates of Oxyrrhis marina were significantly lower (between 26.9 and 50.4%) when fed virus-infected E. huxleyi cells compared to non-infected cells. Despite the lower ingestion rates, O. marina showed significantly higher growth rates (between 30 and 91.3%) when fed infected E. huxleyi cells, suggesting higher nutritional value and/or greater assimilation of infected E. huxleyi cells. No significant differences were found in O. marina cell volumes or fatty acids profiles. These results show that virally infected E. huxleyi support higher growth rates of single celled heterotrophs and in addition to the “viral shunt” hypothesis, viral infections may also divert more carbon to mesozooplankton grazers.
Collapse
Affiliation(s)
- Andrew G Goode
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America.,School of Marine Sciences, University of Maine, Orono, ME, United States of America
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Stephen D Archer
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | | |
Collapse
|
46
|
Contributions of the microbial community to algal biomass and biofuel productivity in a wastewater treatment lagoon system. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathog 2019; 15:e1007708. [PMID: 31017983 PMCID: PMC6502432 DOI: 10.1371/journal.ppat.1007708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/06/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and metabolome in order to provide essential building blocks to support the high metabolic demand for viral assembly and egress. Host response to viral infection can typically lead to diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral defense response. Nevertheless, there is a major bottleneck to discern between viral hijacking strategies and host defense responses when averaging bulk population response. Here we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific virus (EhV), an ecologically important host-virus model system in the ocean. We quantified host and virus gene expression on a single-cell resolution during the course of infection, using automatic microfluidic setup that captures individual algal cells and multiplex quantitate PCR. We revealed high heterogeneity in viral gene expression among individual cells. Simultaneous measurements of expression profiles of host and virus genes at a single-cell level allowed mapping of infected cells into newly defined infection states and allowed detection specific host response in a subpopulation of infected cell which otherwise masked by the majority of the infected population. Intriguingly, resistant cells emerged during viral infection, showed unique expression profiles of metabolic genes which can provide the basis for discerning between viral resistant and susceptible cells within heterogeneous populations in the marine environment. We propose that resolving host-virus arms race at a single-cell level will provide important mechanistic insights into viral life cycles and will uncover host defense strategies. Almost all of our current understanding of the molecular mechanisms that govern host-pathogen interactions in the ocean is derived from experiments carried out at the population level, neglecting any heterogeneity. Here we used a single cell approach to unmask the phenotypic heterogeneity produced within infected populations of the cosmopolitan bloom-forming alga Emiliania huxleyi by its specific lytic virus. We found high variability in expression of viral genes among individual cells. This heterogeneity was used to map cells into their infection state and allowed to uncover a yet unrecognized host response. We also provide evidence that variability in host metabolic states provided a sensitive tool to decipher between susceptible and resistant cells.
Collapse
|
48
|
Bramucci AR, Case RJ. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi. Sci Rep 2019; 9:5215. [PMID: 30894549 PMCID: PMC6426857 DOI: 10.1038/s41598-018-36847-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
The model coccolithophore, Emiliania huxleyi, forms expansive blooms dominated by the calcifying cell type, which produce calcite scales called coccoliths. Blooms last several weeks, after which the calcified algal cells rapidly die, descending into the deep ocean. E. huxleyi bloom collapse is attributed to E. huxleyi viruses (EhVs) that infect and kill calcifying cells, while other E. huxleyi pathogens, such as bacteria belonging to the roseobacter clade, are overlooked. EhVs kill calcifying E. huxleyi by inducing production of bioactive viral-glycosphingolipids (vGSLs), which trigger algal programmed cell death (PCD). The roseobacter Phaeobacter inhibens was recently shown to interact with and kill the calcifying cell type of E. huxleyi, but the mechanism of algal death remains unelucidated. Here we demonstrate that P. inhibens kills calcifying E. huxleyi by inducing a highly specific type of PCD called apoptosis-like-PCD (AL-PCD). Host death can successfully be abolished in the presence of a pan-caspase inhibitor, which prevents the activation of caspase-like molecules. This finding differentiates P. inhibens and EhV pathogenesis of E. huxleyi, by demonstrating that bacterial-induced AL-PCD requires active caspase-like molecules, while the viral pathogen does not. This is the first demonstration of a bacterium inducing AL-PCD in an algal host as a killing mechanism.
Collapse
Affiliation(s)
- Anna R Bramucci
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
49
|
In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat Microbiol 2019; 4:527-538. [PMID: 30718847 PMCID: PMC6420086 DOI: 10.1038/s41564-018-0336-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 01/02/2023]
Abstract
Tapping into the metabolic cross-talk between a host and its virus can reveal unique strategies employed during infection. Viral infection is a dynamic process that generates an evolving metabolic landscape. Gaining a continuous view into the infection process is highly challenging and is limited by current metabolomics approaches, which typically measure the average of the entire population at various stages of infection. Here, we took an innovative approach to study the metabolic basis of host-virus interactions between the bloom-forming alga Emiliania huxleyi and its specific virus. We combined a classical method in virology, the plaque assay, with advanced mass spectrometry imaging (MSI), an approach we termed ‘in plaque-MSI’. Taking advantage of the spatial characteristics of the plaque, we mapped the metabolic landscape induced during infection in a high spatiotemporal resolution, unfolding the infection process in a continuous manner. Further unsupervised spatially-aware clustering, combined with known lipid biomarkers, revealed a systematic metabolic shift during infection towards lipids containing the odd-chain fatty acid pentadecanoic acid (C15:0). Applying ‘in plaque-MSI’ might facilitate the discovery of bioactive compounds that mediate the chemical arms race of host-virus interactions in diverse model systems.
Collapse
|
50
|
Thamatrakoln K, Talmy D, Haramaty L, Maniscalco C, Latham JR, Knowles B, Natale F, Coolen MJL, Follows MJ, Bidle KD. Light regulation of coccolithophore host-virus interactions. THE NEW PHYTOLOGIST 2019; 221:1289-1302. [PMID: 30368816 DOI: 10.1111/nph.15459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Viruses that infect photoautotrophs have a fundamental relationship with light, given the need for host resources. We investigated the role of light on Coccolithovirus (EhV) infection of the globally distributed coccolithophore, Emiliania huxleyi. Light was required for EhV adsorption, and viral production was highest when host cultures were maintained in continuous light or at irradiance levels of 150-300 μmol m-2 s-1 . During the early stages of infection, photosynthetic electron transport remained high, while RuBisCO expression decreased concomitant with an induction of the pentose phosphate pathway, the primary source of de novo nucleotides. A mathematical model developed and fitted to the laboratory data supported the hypothesis that EhV replication was controlled by a trade-off between host nucleotide recycling and de novo synthesis, and that photoperiod and photon flux could toggle this switch. Laboratory results supported field observations that light was the most robust driver of EhV replication within E. huxleyi populations collected across a 2000 nautical mile transect in the North Atlantic. Collectively, these findings demonstrate that light can drive host-virus interactions through a mechanistic interplay between host metabolic processes, which serve to structure infection and phytoplankton mortality in the upper ocean.
Collapse
Affiliation(s)
- Kimberlee Thamatrakoln
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - David Talmy
- Department of Microbiology, The University of Tennessee, Ken and Blaire Mossman Bldg, 1311 Cumberland Ave #307, Knoxville, TN 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Christopher Maniscalco
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Jason R Latham
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marco J L Coolen
- WA Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, MIT, Cambridge, MA, 02139, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|