1
|
Tremlett CJ, Stubbs J, Stuart WS, Shaw Stewart PD, West J, Orville AM, Tews I, Harmer NJ. Small but mighty: the power of microcrystals in structural biology. IUCRJ 2025; 12:262-279. [PMID: 40080159 PMCID: PMC12044856 DOI: 10.1107/s2052252525001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
Advancements in macromolecular crystallography, driven by improved sources and cryocooling techniques, have enabled the use of increasingly smaller crystals for structure determination, with microfocus beamlines now widely accessible. Initially developed for challenging samples, these techniques have culminated in advanced beamlines such as VMXm. Here, an in vacuo sample environment improves the signal-to-noise ratio in X-ray diffraction experiments, and thus enables the use of submicrometre crystals. The advancement of techniques such as microcrystal electron diffraction (MicroED) for atomic-level insights into charged states and hydrogen positions, along with room-temperature crystallography to observe physiological states via serial crystallography, has driven a resurgence in the use of microcrystals. Reproducibly preparing small crystals, especially from samples that typically yield larger crystals, requires considerable effort, as no one singular approach guarantees optimal crystals for every technique. This review discusses methods for generating such small crystals, including mechanical crushing and batch crystallization with seeding, and evaluates their compatibility with microcrystal data-collection modalities. Additionally, we examine sample-delivery methods, which are crucial for selecting appropriate crystallization strategies. Establishing reliable protocols for sample preparation and delivery opens new avenues for macromolecular crystallography, particularly in the rapidly progressing field of time-resolved crystallography.
Collapse
Affiliation(s)
- Courtney J. Tremlett
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
| | - Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Diamond Light Source (United Kingdom)Harwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
| | - William S. Stuart
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Defence Science and Technology LaboratoryPorton DownSalisburySP4 0JQUnited Kingdom
| | | | - Jonathan West
- Institute for Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
| | - Allen M. Orville
- Diamond Light Source (United Kingdom)Harwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
- Research Complex at HarwellHarwell Science and Innovation CampusDidcotOX11 0FAUnited Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Institute for Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
| | - Nicholas J. Harmer
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
| |
Collapse
|
2
|
Williams LJ, Thompson AJ, Dijkstal P, Appleby M, Assmann G, Dworkowski FSN, Hiller N, Huang CY, Mason T, Perrett S, Prat E, Voulot D, Pedrini B, Beale JH, Hough MA, Worrall JAR, Owen RL. Damage before destruction? X-ray-induced changes in single-pulse serial femtosecond crystallography. IUCRJ 2025; 12:358-371. [PMID: 40227256 PMCID: PMC12044858 DOI: 10.1107/s2052252525002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Serial femtosecond crystallography (SFX) exploits extremely brief X-ray free-electron laser pulses to obtain diffraction data before destruction of the crystal. However, during the pulse X-ray-induced site-specific radiation damage can occur, leading to electronic state and/or structural changes. Here, we present a systematic exploration of the effect of single-pulse duration and energy (and consequently different dose rates) on site-specific radiation damage under typical SFX room-temperature experimental conditions. For the first time in SFX we directly measured the photon pulse duration, varying from less than 10 fs to more than 50 fs, and used three pulse energies to probe in-pulse damage in two radiation-sensitive proteins: the iron-heme peroxidase DtpAa and the disulfide-rich thaumatin. While difference-map features arising from radiation damage are observed, they do not lead to significant change in refined atomic coordinates or key bond lengths. Our work thus provides experimental verification that average atomic coordinates are not significantly perturbed by radiation damage in typical SFX experiments.
Collapse
Affiliation(s)
- Lewis J. Williams
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEUnited Kingdom
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUnited Kingdom
| | - Amy J. Thompson
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEUnited Kingdom
| | | | - Martin Appleby
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Greta Assmann
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | | | - Nicole Hiller
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | | | - Tom Mason
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Samuel Perrett
- Department of Life SciencesImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Eduard Prat
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Didier Voulot
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Bill Pedrini
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - John H. Beale
- SwissFELPaul Scherrer Institute5232Villigen PSISwitzerland
| | - Michael A. Hough
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEUnited Kingdom
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUnited Kingdom
- Research Complex at HarwellHarwell Science and Innovation CampusDidcotOX11 ODEUnited Kingdom
| | | | - Robin L. Owen
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEUnited Kingdom
| |
Collapse
|
3
|
Malla TN, Muniyappan S, Menendez D, Ogukwe F, Dale AN, Clayton JD, Weatherall DD, Karki P, Dangi S, Mandella V, Pacheco AA, Stojković EA, Rose SL, Orlans J, Basu S, de Sanctis D, Schmidt M. Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization. IUCRJ 2025; 12:36-48. [PMID: 39575537 PMCID: PMC11707700 DOI: 10.1107/s2052252524010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF-EBS. Here, we report experiments emerging from the initial phase of user operation at ID29. We first used microcrystals of photoactive yellow protein as a model system to exploit the potential of microsecond pulses for SSX. Subsequently, we investigated microcrystals of cytochrome c nitrite reductase (ccNiR) with microsecond X-ray pulses. CcNiR is a decaheme protein that is ideal for the investigation of radiation damage at the various heme-iron sites. Finally, we performed a proof-of-concept subsecond time-resolved SSX experiment by photoactivating microcrystals of a myxobacterial phytochrome.
Collapse
Affiliation(s)
| | | | - David Menendez
- Department of BiologyNortheastern Illinois UniversityChicagoUSA
| | - Favour Ogukwe
- Department of BiologyNortheastern Illinois UniversityChicagoUSA
| | | | | | | | - Prabin Karki
- Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
| | - Shishir Dangi
- Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
| | - Victoria Mandella
- Department of ChemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
| | - A. Andrew Pacheco
- Department of ChemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
| | | | - Samuel L. Rose
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Shibom Basu
- European Molecular Biology Laboratory (EMBL)GrenobleFrance
| | | | - Marius Schmidt
- Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
| |
Collapse
|
4
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
5
|
Shelley KL, Garman EF. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr D Struct Biol 2024; 80:314-327. [PMID: 38700059 PMCID: PMC11066884 DOI: 10.1107/s2059798324003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.
Collapse
Affiliation(s)
- Kathryn L. Shelley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
6
|
Caramello N, Royant A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr D Struct Biol 2024; 80:60-79. [PMID: 38265875 PMCID: PMC10836399 DOI: 10.1107/s2059798323011002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.
Collapse
Affiliation(s)
- Nicolas Caramello
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
7
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
8
|
Shoeman RL, Hartmann E, Schlichting I. Growing and making nano- and microcrystals. Nat Protoc 2023; 18:854-882. [PMID: 36451055 DOI: 10.1038/s41596-022-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Abstract
Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter's enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3-5 d, including the time required to grow the microcrystals.
Collapse
|
9
|
Gope K, Bittner DM, Strasser D. Sequential mechanism in H 3+ formation dynamics on the ethanol dication. Phys Chem Chem Phys 2023; 25:6979-6986. [PMID: 36804659 DOI: 10.1039/d2cp03632k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Two- and three-body Coulomb explosion dynamics of isolated ethanol dications are studied via single-photon double-ionization with ultrafast extreme-ultraviolet pulses. The measured 3-body momentum correlations obtained via 3D coincidence imaging of the ionic products provide evidence for several concerted and sequential mechanisms: (1) a concerted 3-body breakup mechanism, with dominating channels such as CH3+ + COH+ + H2; (2) sequential dissociation in which the ejection of a low-kinetic-energy neutral OH precedes the Coulomb explosion of C2H52+ → CH3+ + CH2+; and (3) a sequential 3-body breakup mechanism that dominates H3+ formation from the ethanol dication via a mechanism that is different from the well-studied H3+ formation in the 2-body Coulomb explosion of the methanol dication. Furthermore, we report surprising branching ratios of the competing C-O bond dissociation channels, resulting in H3O+, H2O+ and OH+ formation.
Collapse
Affiliation(s)
- Krishnendu Gope
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Dror M Bittner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Daniel Strasser
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
10
|
Reiser M, Girelli A, Ragulskaya A, Das S, Berkowicz S, Bin M, Ladd-Parada M, Filianina M, Poggemann HF, Begam N, Akhundzadeh MS, Timmermann S, Randolph L, Chushkin Y, Seydel T, Boesenberg U, Hallmann J, Möller J, Rodriguez-Fernandez A, Rosca R, Schaffer R, Scholz M, Shayduk R, Zozulya A, Madsen A, Schreiber F, Zhang F, Perakis F, Gutt C. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat Commun 2022; 13:5528. [PMID: 36130930 PMCID: PMC9490738 DOI: 10.1038/s41467-022-33154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy μs-1 in a time window up to 10 μs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.
Collapse
Affiliation(s)
- Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Hanna-Friederike Poggemann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.,Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Lisa Randolph
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Yuriy Chushkin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
| | - Ulrike Boesenberg
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Robert Rosca
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robert Schaffer
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Scholz
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Roman Shayduk
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexey Zozulya
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany.
| |
Collapse
|
11
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
12
|
Inoue I, Tkachenko V, Kapcia KJ, Lipp V, Ziaja B, Inubushi Y, Hara T, Yabashi M, Nishibori E. Delayed Onset and Directionality of X-Ray-Induced Atomic Displacements Observed on Subatomic Length Scales. PHYSICAL REVIEW LETTERS 2022; 128:223203. [PMID: 35714226 DOI: 10.1103/physrevlett.128.223203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Transient structural changes of Al_{2}O_{3} on subatomic length scales following irradiation with an intense x-ray laser pulse (photon energy: 8.70 keV; pulse duration: 6 fs; fluence: 8×10^{2} J/cm^{2}) have been investigated by using an x-ray pump x-ray probe technique. The measurement reveals that aluminum and oxygen atoms remain in their original positions by ∼20 fs after the intensity maximum of the pump pulse, followed by directional atomic displacements at the fixed unit cell parameters. By comparing the experimental results and theoretical simulations, we interpret that electron excitation and relaxation triggered by the pump pulse modify the potential energy surface and drives the directional atomic displacements. Our results indicate that high-resolution x-ray structural analysis with the accuracy of 0.01 Å is feasible even with intense x-ray pulses by making the pulse duration shorter than the timescale needed to complete electron excitation and relaxation processes, which usually take up to a few tens of femtoseconds.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Victor Tkachenko
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Konrad J Kapcia
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, PL-61614 Poznań, Poland
| | - Vladimir Lipp
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Eiji Nishibori
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
13
|
Grünbein ML, Kovacs GN, Kloos M, Gorel A, Doak RB, Shoeman RL, Barends TRM, Schlichting I. Crystallographic Studies of Rhodopsins: Structure and Dynamics. Methods Mol Biol 2022; 2501:147-168. [PMID: 35857227 DOI: 10.1007/978-1-0716-2329-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.
Collapse
Affiliation(s)
| | | | - Marco Kloos
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
14
|
Eliah Dawod I, Tîmneanu N, Mancuso AP, Caleman C, Grånäs O. Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides. Phys Chem Chem Phys 2021; 24:1532-1543. [PMID: 34939631 DOI: 10.1039/d1cp03419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.
Collapse
Affiliation(s)
- Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Nicusor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| |
Collapse
|
15
|
Wang J, Gisriel CJ, Reiss K, Huang HL, Armstrong WH, Brudvig GW, Batista VS. Heterogeneous Composition of Oxygen-Evolving Complexes in Crystal Structures of Dark-Adapted Photosystem II. Biochemistry 2021; 60:3374-3384. [PMID: 34714055 DOI: 10.1021/acs.biochem.1c00611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II (PSII) is a homodimeric protein complex that catalyzes water oxidation at the oxygen-evolving complex (OEC), a heterocubanoid calcium-tetramanganese cluster. Here, we analyze the omit electron density peaks of the OEC's metal ions in five X-ray free-electron laser PSII structures at resolutions between 2.15 and 1.95 Å. The omit peaks can be described by the total number of electrons and approximated by the variance of electron density distribution when the distributions are spherically symmetric. We show that the number of electrons of metal centers is different in the two OECs of PSII dimers, implying that the oxidation states and/or occupancies of individual metal ions are different in the two monomers. In either case, we find that the two OECs of dark-adapted PSII dimers in crystals are not fully synchronized in the S1 state. Differences in redox states of the OEC in PSII only partially account for the observation that the electron densities integrate to a smaller number of electrons than expected. Differences between the determined and expected relative electron numbers are much larger than the estimated errors, indicating heterogeneity in the OEC composition.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Christopher J Gisriel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Hao-Li Huang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William H Armstrong
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
16
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Fransson T, Alonso-Mori R, Chatterjee R, Cheah MH, Ibrahim M, Hussein R, Zhang M, Fuller F, Gul S, Kim IS, Simon PS, Bogacz I, Makita H, de Lichtenberg C, Song S, Batyuk A, Sokaras D, Massad R, Doyle M, Britz A, Weninger C, Zouni A, Messinger J, Yachandra VK, Yano J, Kern J, Bergmann U. Effects of x-ray free-electron laser pulse intensity on the Mn K β 1,3 x-ray emission spectrum in photosystem II-A case study for metalloprotein crystals and solutions. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:064302. [PMID: 34849380 PMCID: PMC8610604 DOI: 10.1063/4.0000130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/24/2021] [Indexed: 05/21/2023]
Abstract
In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kβ x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kβ XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kβ1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry – Ångström Laboratory, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Mohamed Ibrahim
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Miao Zhang
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Franklin Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ramzi Massad
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | - Athina Zouni
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | | | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
19
|
Patra KK, Eliah Dawod I, Martin AV, Greaves TL, Persson D, Caleman C, Timneanu N. Ultrafast dynamics and scattering of protic ionic liquids induced by XFEL pulses. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1296-1308. [PMID: 34475279 PMCID: PMC8415341 DOI: 10.1107/s1600577521007657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/26/2021] [Indexed: 05/30/2023]
Abstract
X-rays are routinely used for structural studies through scattering, and femtosecond X-ray lasers can probe ultrafast dynamics. We aim to capture the femtosecond dynamics of liquid samples using simulations and deconstruct the interplay of ionization and atomic motion within the X-ray laser pulse. This deconstruction is resolution dependent, as ionization influences the low momentum transfers through changes in scattering form factors, while atomic motion has a greater effect at high momentum transfers through loss of coherence. Our methodology uses a combination of classical molecular dynamics and plasma simulation on a protic ionic liquid to quantify the contributions to the scattering signal and how these evolve with time during the X-ray laser pulse. Our method is relevant for studies of organic liquids, biomolecules in solution or any low-Z materials at liquid densities that quickly turn into a plasma while probed with X-rays.
Collapse
Affiliation(s)
- Kajwal Kumar Patra
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Andrew V. Martin
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L. Greaves
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Daniel Persson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, DE-22607 Hamburg, Germany
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
20
|
Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71:232-238. [PMID: 34455163 PMCID: PMC8667872 DOI: 10.1016/j.sbi.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.
Collapse
Affiliation(s)
- Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
21
|
Li X, Inhester L, Robatjazi SJ, Erk B, Boll R, Hanasaki K, Toyota K, Hao Y, Bomme C, Rudek B, Foucar L, Southworth SH, Lehmann CS, Kraessig B, Marchenko T, Simon M, Ueda K, Ferguson KR, Bucher M, Gorkhover T, Carron S, Alonso-Mori R, Koglin JE, Correa J, Williams GJ, Boutet S, Young L, Bostedt C, Son SK, Santra R, Rolles D, Rudenko A. Pulse Energy and Pulse Duration Effects in the Ionization and Fragmentation of Iodomethane by Ultraintense Hard X Rays. PHYSICAL REVIEW LETTERS 2021; 127:093202. [PMID: 34506178 DOI: 10.1103/physrevlett.127.093202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19} W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.
Collapse
Affiliation(s)
- X Li
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - L Inhester
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - S J Robatjazi
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - B Erk
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - R Boll
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
- European XFEL, Schenefeld, Germany
| | - K Hanasaki
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - K Toyota
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Y Hao
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Institute of Theoretical Physics and Department of Physics, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - C Bomme
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - L Foucar
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - C S Lehmann
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - B Kraessig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - T Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Paris, France
| | - M Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Paris, France
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - K R Ferguson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - T Gorkhover
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| | - S Carron
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - R Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - J E Koglin
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - J Correa
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G J Williams
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- NSLS-II, Brookhaven National Laboratory, Upton New York, USA
| | - S Boutet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - C Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Paul Scherrer Institut, Villigen-PSI, Villigen, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - S-K Son
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - R Santra
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - D Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - A Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
22
|
Mandal M, Saito K, Ishikita H. Two Distinct Oxygen-Radical Conformations in the X-ray Free Electron Laser Structures of Photosystem II. J Phys Chem Lett 2021; 12:4032-4037. [PMID: 33881870 DOI: 10.1021/acs.jpclett.1c00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the existence of two distinct oxygen-radical-containing Mn4CaO5/6 conformations with short O···O bonds in the crystal structures of the oxygen-evolving enzyme photosystem II (PSII), obtained using an X-ray free electron laser (XFEL). A short O···O distance of <2.3 Å between the O4 site of the Mn4CaO5 complex and the adjacent water molecule (W539) in the proton-conducting O4-water chain was observed in the second flash-induced (2F) XFEL structure (2F-XFEL), which may correspond to S3. By use of a quantum mechanical/molecular mechanical approach, the OH• formation at W539 and the short O4···OW539 distance (<2.3 Å) were reproduced in S2 and S3 with reduced Mn1(III), which lacks the additional sixth water molecule O6. As the O•- formation at O6 and the short O5···O6 distance (1.9 Å) have been reported in another 2F-XFEL structure with reduced Mn4(III), two distinct oxygen-radical conformations exist in the 2F-XFEL crystals.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
23
|
Nagler B, Galtier EC, Brown SB, Heimann P, Dyer G, Lee HJ. Ronchi shearing interferometry for wavefronts with circular symmetry. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1461-1469. [PMID: 33147170 DOI: 10.1107/s1600577520010735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Ronchi testing of a focused electromagnetic wave has in the last few years been used extensively at X-ray free-electron laser (FEL) facilities to qualitatively evaluate the wavefront of the beam. It is a quick and straightforward test, is easy to interpret on the fly, and can be used to align phase plates that correct the focus of aberrated beams. In general, a single Ronchigram is not sufficient to gain complete quantitative knowledge of the wavefront. However the compound refractive lenses that are commonly used at X-ray FELs exhibit a strong circular symmetry in their aberration, and this can be exploited. Here, a simple algorithm that uses a single recorded Ronchigram to recover the full wavefront of a nano-focused beam, assuming circular symmetry, is presented, and applied to experimental measurements at the Matter in Extreme Conditions instrument at the Linac Coherent Light Source.
Collapse
Affiliation(s)
- Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Eric C Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Shaughnessy B Brown
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gilliss Dyer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
24
|
Orville AM. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 2020; 65:193-208. [PMID: 33049498 DOI: 10.1016/j.sbi.2020.08.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
Time-resolved serial femtosecond crystallography (tr-SFX) methods exploit slurries of crystalline samples that range in size from hundreds of nanometers to a few tens of micrometers, at near-physiological temperature and pressure, to generate atomic resolution models and probe authentic function with the same experiment. 'Dynamic structural biology' is often used to encompass the research philosophy and techniques. Reaction cycles for tr-SFX studies are initiated by photons or ligand addition/mixing strategies, wherein the latter are potentially generalizable across enzymology. Thus, dynamic structural biology often creates stop-motion molecular movies of macromolecular function. In metal-dependent systems, complementary spectroscopic information can also be collected from the same samples and X-ray pulses, which provides even more detailed mechanistic insights. These types of experimental data also complement quantum mechanical and classical dynamics numerical calculations. Correlated structural-functional results will yield more detailed mechanistic insights and will likely translate into better drugs and treatments impacting human health, and better catalysis for clean energy and agriculture.
Collapse
Affiliation(s)
- Allen M Orville
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
25
|
Alonso-Mori R, Sokaras D, Cammarata M, Ding Y, Feng Y, Fritz D, Gaffney KJ, Hastings J, Kao CC, Lemke HT, Maxwell T, Robert A, Schropp A, Seiboth F, Sikorski M, Song S, Weng TC, Zhang W, Glenzer S, Bergmann U, Zhu D. Femtosecond electronic structure response to high intensity XFEL pulses probed by iron X-ray emission spectroscopy. Sci Rep 2020; 10:16837. [PMID: 33033373 PMCID: PMC7545180 DOI: 10.1038/s41598-020-74003-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
We report the time-resolved femtosecond evolution of the K-shell X-ray emission spectra of iron during high intensity illumination of X-rays in a micron-sized focused hard X-ray free electron laser (XFEL) beam. Detailed pulse length dependent measurements revealed that rapid spectral energy shift and broadening started within the first 10 fs of the X-ray illumination at intensity levels between 1017 and 1018 W cm-2. We attribute these spectral changes to the rapid evolution of high-density photoelectron mediated secondary collisional ionization processes upon the absorption of the incident XFEL radiation. These fast electronic processes, occurring at timescales well within the typical XFEL pulse durations (i.e., tens of fs), set the boundary conditions of the pulse intensity and sample parameters where the widely-accepted ‘probe-before-destroy’ measurement strategy can be adopted for electronic-structure related XFEL experiments.
Collapse
Affiliation(s)
| | | | - Marco Cammarata
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, 35000, Rennes, France
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Yiping Feng
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - David Fritz
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Kelly J Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Jerome Hastings
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Chi-Chang Kao
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Henrik T Lemke
- SwissFEL, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Timothy Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Aymeric Robert
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Frank Seiboth
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | | | - Sanghoon Song
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | | | - Uwe Bergmann
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Diling Zhu
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
26
|
A Perspective on Molecular Structure and Bond-Breaking in Radiation Damage in Serial Femtosecond Crystallography. CRYSTALS 2020. [DOI: 10.3390/cryst10070585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray free-electron lasers (XFELs) have a unique capability for time-resolved studies of protein dynamics and conformational changes on femto- and pico-second time scales. The extreme intensity of X-ray pulses can potentially cause significant modifications to the sample structure during exposure. Successful time-resolved XFEL crystallography depends on the unambiguous interpretation of the protein dynamics of interest from the effects of radiation damage. Proteins containing relatively heavy elements, such as sulfur or metals, have a higher risk for radiation damage. In metaloenzymes, for example, the dynamics of interest usually occur at the metal centers, which are also hotspots for damage due to the higher atomic number of the elements they contain. An ongoing challenge with such local damage is to understand the residual bonding in these locally ionized systems and bond-breaking dynamics. Here, we present a perspective on radiation damage in XFEL experiments with a particular focus on the impacts for time-resolved protein crystallography. We discuss recent experimental and modelling results of bond-breaking and ion motion at disulfide bonding sites in protein crystals.
Collapse
|
27
|
Hybrid Plasma/Molecular-Dynamics Approach for Efficient XFEL Radiation Damage Simulations. CRYSTALS 2020. [DOI: 10.3390/cryst10060478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
X-ray free-electron laser pulses initiate a complex series of changes to the electronic and nuclear structure of matter on femtosecond timescales. These damage processes include widespread ionization, the formation of a quasi-plasma state and the ultimate explosion of the sample due to Coulomb forces. The accurate simulation of these dynamical effects is critical in designing feasible XFEL experiments and interpreting the results. Current molecular dynamics simulations are, however, computationally intensive, particularly when they treat unbound electrons as classical point particles. On the other hand, plasma simulations are computationally efficient but do not model atomic motion. Here we present a hybrid approach to XFEL damage simulation that combines molecular dynamics for the nuclear motion and plasma models to describe the evolution of the low-energy electron continuum. The plasma properties of the unbound electron gas are used to define modified inter-ionic potentials for the molecular dynamics, including Debye screening and drag forces. The hybrid approach is significantly faster than damage simulations that treat unbound electrons as classical particles, enabling simulations to be performed on large sample volumes.
Collapse
|
28
|
Rupp D, Flückiger L, Adolph M, Colombo A, Gorkhover T, Harmand M, Krikunova M, Müller JP, Oelze T, Ovcharenko Y, Richter M, Sauppe M, Schorb S, Treusch R, Wolter D, Bostedt C, Möller T. Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:034303. [PMID: 32596413 PMCID: PMC7304997 DOI: 10.1063/4.0000006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.
Collapse
Affiliation(s)
- Daniela Rupp
- Authors to whom correspondence should be addressed: and
| | | | - Marcus Adolph
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Tais Gorkhover
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94305, USA
| | | | | | | | - Tim Oelze
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Maria Richter
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | | | | | | | - Thomas Möller
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
29
|
Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat Commun 2020; 11:1814. [PMID: 32286284 PMCID: PMC7156470 DOI: 10.1038/s41467-020-15610-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter’s correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. The local X-ray-induced dynamics that occur in protein crystals during serial femtosecond crystallography (SFX) measurements at XFELs are not well understood. Here the authors performed a time-resolved X-ray pump X-ray probe SFX experiment, and they observe distinct structural changes in the disulfide bridges and peptide backbone of proteins; complementing theoretical approaches allow them to further characterize the details of the X-ray induced ionization and local structural dynamics.
Collapse
Affiliation(s)
- Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Malik M Abdullah
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew V Martin
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jason E Koglin
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355, Hamburg, Germany
| | - Harry M Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Beata Ziaja
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Nakasako M, Kobayashi A, Takayama Y, Asakura K, Oide M, Okajima K, Oroguchi T, Yamamoto M. Methods and application of coherent X-ray diffraction imaging of noncrystalline particles. Biophys Rev 2020; 12:541-567. [PMID: 32180121 DOI: 10.1007/s12551-020-00690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
Microscopic imaging techniques have been developed to visualize events occurring in biological cells. Coherent X-ray diffraction imaging is one of the techniques applicable to structural analyses of cells and organelles, which have never been crystallized. In the experiment, a single noncrystalline particle is illuminated by an X-ray beam with almost complete spatial coherence. The structure of the particle projected along the direction of the beam is, in principle, retrieved from a finely recorded diffraction pattern alone by using iterative phase-retrieval algorithms. Here, we describe fundamental theory and experimental methods of coherent X-ray diffraction imaging and the recent application in structural studies of noncrystalline specimens by using X-rays available at Super Photon Ring of 8-Gev and SPring-8 Angstrom Compact Free Electron Laser in Japan.
Collapse
Affiliation(s)
- Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Kenta Asakura
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Koji Okajima
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kohto, Sayo, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
31
|
Dickerson JL, McCubbin PTN, Garman EF. RADDOSE-XFEL: femtosecond time-resolved dose estimates for macromolecular X-ray free-electron laser experiments. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720000643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For macromolecular structure determination at synchrotron sources, radiation damage remains a major limiting factor. Estimation of the absorbed dose (J kg−1) during data collection at these sources by programs such as RADDOSE-3D has allowed direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has enabled prediction of roughly when radiation damage will manifest so it can potentially be avoided. X-ray free-electron lasers (XFELs), which produce intense X-ray pulses only a few femtoseconds in duration, can be used to generate diffraction patterns before most of the radiation damage processes have occurred and hence hypothetically they enable the determination of damage-free atomic resolution structures. In spite of this, several experimental and theoretical studies have suggested that structures from XFELs are not always free of radiation damage. There are currently no freely available programs designed to calculate the dose absorbed during XFEL data collection. This article presents an extension to RADDOSE-3D called RADDOSE-XFEL, which calculates the time-resolved dose during XFEL experiments. It is anticipated that RADDOSE-XFEL could be used to facilitate the study of radiation damage at XFELs and ultimately be used prior to data collection so that experimenters can plan their experiments to avoid radiation damage manifesting in their structures.
Collapse
|
32
|
Sauter NK, Kern J, Yano J, Holton JM. Towards the spatial resolution of metalloprotein charge states by detailed modeling of XFEL crystallographic diffraction. Acta Crystallogr D Struct Biol 2020; 76:176-192. [PMID: 32038048 PMCID: PMC7008510 DOI: 10.1107/s2059798320000418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Oxidation states of individual metal atoms within a metalloprotein can be assigned by examining X-ray absorption edges, which shift to higher energy for progressively more positive valence numbers. Indeed, X-ray crystallography is well suited for such a measurement, owing to its ability to spatially resolve the scattering contributions of individual metal atoms that have distinct electronic environments contributing to protein function. However, as the magnitude of the shift is quite small, about +2 eV per valence state for iron, it has only been possible to measure the effect when performed with monochromated X-ray sources at synchrotron facilities with energy resolutions in the range 2-3 × 10-4 (ΔE/E). This paper tests whether X-ray free-electron laser (XFEL) pulses, which have a broader bandpass (ΔE/E = 3 × 10-3) when used without a monochromator, might also be useful for such studies. The program nanoBragg is used to simulate serial femtosecond crystallography (SFX) diffraction images with sufficient granularity to model the XFEL spectrum, the crystal mosaicity and the wavelength-dependent anomalous scattering factors contributed by two differently charged iron centers in the 110-amino-acid protein, ferredoxin. Bayesian methods are then used to deduce, from the simulated data, the most likely X-ray absorption curves for each metal atom in the protein, which agree well with the curves chosen for the simulation. The data analysis relies critically on the ability to measure the incident spectrum for each pulse, and also on the nanoBragg simulator to predict the size, shape and intensity profile of Bragg spots based on an underlying physical model that includes the absorption curves, which are then modified to produce the best agreement with the simulated data. This inference methodology potentially enables the use of SFX diffraction for the study of metalloenzyme mechanisms and, in general, offers a more detailed approach to Bragg spot data reduction.
Collapse
Affiliation(s)
- Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Nass K, Redecke L, Perbandt M, Yefanov O, Klinge M, Koopmann R, Stellato F, Gabdulkhakov A, Schönherr R, Rehders D, Lahey-Rudolph JM, Aquila A, Barty A, Basu S, Doak RB, Duden R, Frank M, Fromme R, Kassemeyer S, Katona G, Kirian R, Liu H, Majoul I, Martin-Garcia JM, Messerschmidt M, Shoeman RL, Weierstall U, Westenhoff S, White TA, Williams GJ, Yoon CH, Zatsepin N, Fromme P, Duszenko M, Chapman HN, Betzel C. In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of genuine co-factors. Nat Commun 2020; 11:620. [PMID: 32001697 PMCID: PMC6992785 DOI: 10.1038/s41467-020-14484-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5’-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds. Trypanosoma brucei inosine-5′-monophosphate dehydrogenase (IMPDH) is an enzyme in the guanine nucleotide biosynthesis pathway and of interest as a drug target. Here the authors present the 2.8 Å room temperature structure of TbIMPDH determined by utilizing X-ray free-electron laser radiation and crystals that were grown in insect cells and find that ATP and GMP are bound at the canonical sites of the Bateman domains.
Collapse
Affiliation(s)
- Karol Nass
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Paul Scherrer Institute (PSI), Forschungstrasse 111, 5232, Villigen, PSI, Switzerland
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,German Centre for Infection Research, University of Lübeck, 23562, Lübeck, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - M Perbandt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany
| | - O Yefanov
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - M Klinge
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BioAgilytix Europe GmbH, Lademannbogen 10, 22339, Hamburg, Germany
| | - R Koopmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str.4, 72076, Tübingen, Germany
| | - F Stellato
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Dipartimento di Fisica, Università di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - A Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - R Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - D Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BODE Chemie GmbH, Melanchthonstraße 27, 22525, Hamburg, Germany
| | - J M Lahey-Rudolph
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - A Aquila
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A Barty
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - S Basu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA.,European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble, France
| | - R B Doak
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - R Duden
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - M Frank
- Biology and Biotechnology Division, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - R Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - S Kassemeyer
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - R Kirian
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - H Liu
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Complex Systems Division, Beijing Computational Science Research Center, 100193, Beijing, China
| | - I Majoul
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - J M Martin-Garcia
- Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - M Messerschmidt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - R L Shoeman
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - U Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA
| | - S Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - T A White
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G J Williams
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Brookhaven National Laboratory (BNL), PO Box 5000, Upton, NY, 11973-5000, USA
| | - C H Yoon
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - N Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - P Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - M Duszenko
- Institute of Neurophysiology, University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - H N Chapman
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
34
|
Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Cruz Villarreal J, Yefanov O, Mariani V, White TA, Kupitz C, Hunter M, Abdellatif MH, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua FHM, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Sztuk-Dambietz J, Tolstikova A, Chapman HN, Ros A, Barty A, Fromme P, Mancuso AP, Schmidt M. Time-resolved serial femtosecond crystallography at the European XFEL. Nat Methods 2020; 17:73-78. [PMID: 31740816 PMCID: PMC9113060 DOI: 10.1038/s41592-019-0628-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/03/2019] [Indexed: 11/08/2022]
Abstract
The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.
Collapse
Affiliation(s)
- Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jorvani Cruz Villarreal
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Christopher Kupitz
- Linac Coherent Light Source, Stanford Linear Accelerator Center, National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mark Hunter
- Linac Coherent Light Source, Stanford Linear Accelerator Center, National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mohamed H Abdellatif
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Saša Bajt
- Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | - Austin Echelmeier
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Diandra Doppler
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- Institute of Vision Systems, Hamburg University of Technology, Hamburg, Germany
| | | | - Man Jiang
- European XFEL GmbH, Schenefeld, Germany
| | - Daihyun Kim
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Faisal H M Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | - Stella Lisova
- Physics Department, Arizona State University, Tempe, AZ, USA
| | - Luis Maia
- European XFEL GmbH, Schenefeld, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Domingo Meza
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL, Schenefeld, Germany
| | | | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Robin Schubert
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL, Schenefeld, Germany
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
- Centre for Ultrafast Imaging, Hamburg, Germany
| | - Alexandra Ros
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Petra Fromme
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Adrian P Mancuso
- European XFEL GmbH, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
35
|
Yachmenev A, Thesing LV, Küpper J. Laser-induced dynamics of molecules with strong nuclear quadrupole coupling. J Chem Phys 2019; 151:244118. [PMID: 31893871 DOI: 10.1063/1.5133837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a general variational approach for computing the laser-induced rovibrational dynamics of molecules, taking into account the hyperfine effects of the nuclear quadrupole coupling. The method combines the general variational approach TROVE (Theoretical Ro-Vibrational Energies), which provides accurate rovibrational hyperfine energies and wavefunctions for arbitrary molecules, with the variational method RichMol, designed for generalized simulations of the rovibrational dynamics in the presence of external electric fields. We investigate the effect of the nuclear quadrupole coupling on the short-pulse laser alignment of a prototypical molecule CFClBrI, which contains nuclei with large quadrupole constants. The influence of the nuclear quadrupole interactions on the postpulse molecular dynamics is negligible at early times, for the first several revivals; however, at longer time scales, the effect is entirely detrimental and strongly depends on the laser intensity. This effect can be explained by dephasing in the laser-excited rotational wavepacket due to irregular spacings between the hyperfine-split nuclear spin states across different rotational hyperfine bands.
Collapse
Affiliation(s)
- Andrey Yachmenev
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Linda V Thesing
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
36
|
Moreno-Chicano T, Ebrahim A, Axford D, Appleby MV, Beale JH, Chaplin AK, Duyvesteyn HME, Ghiladi RA, Owada S, Sherrell DA, Strange RW, Sugimoto H, Tono K, Worrall JAR, Owen RL, Hough MA. High-throughput structures of protein-ligand complexes at room temperature using serial femtosecond crystallography. IUCRJ 2019; 6:1074-1085. [PMID: 31709063 PMCID: PMC6830213 DOI: 10.1107/s2052252519011655] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 05/09/2023]
Abstract
High-throughput X-ray crystal structures of protein-ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein-ligand complexes using SFX.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Amanda K. Chaplin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Helen M. E. Duyvesteyn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, England
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | | | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
37
|
Andersson R, Safari C, Båth P, Bosman R, Shilova A, Dahl P, Ghosh S, Dunge A, Kjeldsen-Jensen R, Nan J, Shoeman RL, Kloos M, Doak RB, Mueller U, Neutze R, Brändén G. Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments. Acta Crystallogr D Struct Biol 2019; 75:937-946. [PMID: 31588925 PMCID: PMC6779076 DOI: 10.1107/s2059798319012695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | | | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Andreas Dunge
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-431 50 Gothenburg, Sweden
| | - Rasmus Kjeldsen-Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Jie Nan
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Robert L. Shoeman
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Marco Kloos
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Uwe Mueller
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
38
|
Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044103. [PMID: 31463335 PMCID: PMC6701976 DOI: 10.1063/1.5098309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.
Collapse
Affiliation(s)
- C Östlin
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - N Timneanu
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - C Caleman
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - A V Martin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
39
|
Ebrahim A, Moreno-Chicano T, Appleby MV, Chaplin AK, Beale JH, Sherrell DA, Duyvesteyn HME, Owada S, Tono K, Sugimoto H, Strange RW, Worrall JAR, Axford D, Owen RL, Hough MA. Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCRJ 2019; 6:543-551. [PMID: 31316799 PMCID: PMC6608622 DOI: 10.1107/s2052252519003956] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 05/18/2023]
Abstract
An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner.
Collapse
Affiliation(s)
- Ali Ebrahim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Amanda K. Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Helen M. E. Duyvesteyn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
- Division of Structural Biology (STRUBI), The Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Sugimoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A. R. Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Michael A. Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
40
|
Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annu Rev Biochem 2019; 88:59-83. [DOI: 10.1146/annurev-biochem-013118-111327] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- trans retinal chromophore being photoisomerized to a 13- cis conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Przemyslaw Nogly
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
41
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
42
|
Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH 2I 2. Nat Commun 2019; 10:2186. [PMID: 31097703 PMCID: PMC6522627 DOI: 10.1038/s41467-019-10060-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/16/2019] [Indexed: 11/08/2022] Open
Abstract
The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation. Understanding strong X-ray induced phenomena is important for applications of X-ray free-electron laser imaging. Here, the authors show time-resolved measurements of X-ray free-electron laser induced electronic decay of CH2I2 molecule probed with NIR pulses and identify mechanisms behind different transient states lifetimes.
Collapse
|
43
|
Radiation damage to organic and inorganic specimens in the TEM. Micron 2019; 119:72-87. [DOI: 10.1016/j.micron.2019.01.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
44
|
Schmidt M. Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources. Int J Mol Sci 2019; 20:ijms20061401. [PMID: 30897736 PMCID: PMC6470897 DOI: 10.3390/ijms20061401] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/30/2022] Open
Abstract
The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
45
|
Nass K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr D Struct Biol 2019; 75:211-218. [PMID: 30821709 PMCID: PMC6400258 DOI: 10.1107/s2059798319000317] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/07/2019] [Indexed: 01/17/2023] Open
Abstract
Radiation damage is still the most limiting factor in obtaining high-resolution structures of macromolecules in crystallographic experiments at synchrotrons. With the advent of X-ray free-electron lasers (XFELs) that produce ultrashort and highly intense X-ray pulses, it became possible to outrun most of the radiation-damage processes occurring in the sample during exposure to XFEL radiation. Although this is generally the case, several experimental and theoretical studies have indicated that structures from XFELs may not always be radiation-damage free. This is especially true when higher intensity pulses are used and protein molecules that contain heavy elements in their structures are studied. Here, the radiation-damage mechanisms that occur in samples exposed to XFEL pulses are summarized, results that show indications of radiation damage are reviewed and methods that can partially overcome it are discussed.
Collapse
Affiliation(s)
- Karol Nass
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
46
|
Casadei CM, Nass K, Barty A, Hunter MS, Padeste C, Tsai CJ, Boutet S, Messerschmidt M, Sala L, Williams GJ, Ozerov D, Coleman M, Li XD, Frank M, Pedrini B. Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCRJ 2019; 6:34-45. [PMID: 30713701 PMCID: PMC6327180 DOI: 10.1107/s2052252518014641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Serial femtosecond crystallography of two-dimensional membrane-protein crystals at X-ray free-electron lasers has the potential to address the dynamics of functionally relevant large-scale motions, which can be sterically hindered in three-dimensional crystals and suppressed in cryocooled samples. In previous work, diffraction data limited to a two-dimensional reciprocal-space slice were evaluated and it was demonstrated that the low intensity of the diffraction signal can be overcome by collecting highly redundant data, thus enhancing the achievable resolution. Here, the application of a newly developed method to analyze diffraction data covering three reciprocal-space dimensions, extracting the reciprocal-space map of the structure-factor amplitudes, is presented. Despite the low resolution and completeness of the data set, it is shown by molecular replacement that the reconstructed amplitudes carry meaningful structural information. Therefore, it appears that these intrinsic limitations in resolution and completeness from two-dimensional crystal diffraction may be overcome by collecting highly redundant data along the three reciprocal-space axes, thus allowing the measurement of large-scale dynamics in pump-probe experiments.
Collapse
Affiliation(s)
| | - Karol Nass
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mark S. Hunter
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | | | - Ching-Ju Tsai
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sébastien Boutet
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Leonardo Sala
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Garth J. Williams
- Linac Coherent Light Source, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- NSLS-II, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA
| | - Dmitry Ozerov
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Matthew Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Xiao-Dan Li
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Bill Pedrini
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
47
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Wherland S, Pecht I. Radiation chemists look at damage in redox proteins induced by X-rays. Proteins 2018; 86:817-826. [DOI: 10.1002/prot.25521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Scot Wherland
- Department of Chemistry; Washington State University; Pullman Washington
| | - Israel Pecht
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
49
|
Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 2018; 115:5652-5657. [PMID: 29760050 DOI: 10.1073/pnas.1711220115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
Collapse
|
50
|
Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Where is crystallography going? Acta Crystallogr D Struct Biol 2018; 74:152-166. [PMID: 29533241 PMCID: PMC5947779 DOI: 10.1107/s2059798317016709] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022] Open
Abstract
Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide.
Collapse
Affiliation(s)
- Jonathan M. Grimes
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David R. Hall
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Alun W. Ashton
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Gwyndaf Evans
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Robin L. Owen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Katherine E. McAuley
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Frank von Delft
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Allen M. Orville
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Thomas Sorensen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Martin A. Walsh
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Helen M. Ginn
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David I. Stuart
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|