1
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2025; 62:288-303. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Qin L, Xiao L, Zhu H, Du Y, Tang Y, Feng L. Translocator protein (18 kDa) positron emission tomography imaging as a biomarker of neuroinflammation in epilepsy. Neurol Sci 2024; 45:5201-5211. [PMID: 38879831 DOI: 10.1007/s10072-024-07648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 10/13/2024]
Abstract
Increasing evidence indicate that neuroinflammation triggered by glial cells plays a significant role in epileptogenesis. To this effect, the overexpression of translocator protein 18 kDa (TSPO) in activated microglia and astrocytes has been identified as an inflammatory biomarker in epilepsy. It is now possible to quantify neuroinflammation using non-invasive positron emission tomography (PET) imaging of TSPO. With the advancement of radiotracers, TSPO PET has become an innovative tool in elucidating the "neuroinflammatory machinery" of drug-resistant epilepsy. Furthermore, TSPO PET has demonstrated potential in detecting MRI-negative epileptogenic zones (EZ) and provided an innovative perspective in epileptic medical treatment. This manuscript presents a comprehensive exploration of the neuroinflammatory mechanisms of epilepsy, alongside a thorough review of TSPO PET studies conducted in clinical and preclinical settings. The primary objective is to deepen our understanding of epilepsy progression and to establish TSPO PET as an effective monitoring tool for treatment efficacy.
Collapse
Affiliation(s)
- Li Qin
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haoyue Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yangsa Du
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Li Feng
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
3
|
Decaix T, Magny R, Gouin‐Thibaut I, Delavenne X, Mismetti P, Salem J, Narjoz C, Blanchard A, Pépin M, Auzeil N, Loriot M, Laprévote O. Plasma lipidomic analysis to investigate putative biomarkers of P-glycoprotein activity in healthy volunteers. Clin Transl Sci 2023; 16:1935-1946. [PMID: 37529981 PMCID: PMC10582668 DOI: 10.1111/cts.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
P-glycoprotein (P-gp) is an efflux transporter involved in the bioavailability of many drugs currently on the market. P-gp is responsible for several drug-drug interactions encountered in clinical practice leading to iatrogenic hospital admissions, especially in polypharmacy situations. ABCB1 genotyping only reflects an indirect estimate of P-gp activity. Therefore, it would be useful to identify endogenous biomarkers to determine the P-gp phenotype to predict in vivo activity prior to the initiation of treatment and to assess the effects of drugs on P-gp activity. The objective of this study was to assess changes in plasma lipidome composition among healthy volunteers selected on the basis of their ABCB1 genotype and who received clarithromycin, a known inhibitor of P-gp. Untargeted lipidomic analysis based on liquid chromatography-tandem mass spectrometry was performed before and after clarithromycin administration. Our results revealed changes in plasma levels of some ceramides (Cers) {Cer(d18:1/22:0), Cer(d18:1/22:1), and Cer(d18:1/20:0) by ~38% (p < 0.0001), 13% (p < 0.0001), and 13% (p < 0.0001), respectively} and phosphatidylcholines (PCs) {PC(17:0/14:1), PC(16:0/18:3), and PC(14:0/18:3) by ~24% (p < 0.001), 10% (p < 0.001), and 23.6% (p < 0.001)} associated with both ABCB1 genotype and clarithromycin intake. Through the examination of plasma lipids, our results highlight the relevance of untargeted lipidomics for studying in vivo P-gp activity and, more generally, to safely phenotyping transporters.
Collapse
Affiliation(s)
| | | | | | - Xavier Delavenne
- Clinical Pharmacology DepartmentUniversity Hospital of Saint‐EtienneSaint EtienneFrance
- INSERM, U1059Vascular Dysfunction and HemostasisSaint‐EtienneFrance
| | - Patrick Mismetti
- INSERM, U1059Vascular Dysfunction and HemostasisSaint‐EtienneFrance
- Vascular and Therapeutic Medicine DepartmentSaint‐Etienne University Hospital CenterSaint‐EtienneFrance
| | - Joe‐Elie Salem
- Pharmacology Department, APHP, Pitié‐Salpétrière HospitalGHU Sorbonne UniversityParisFrance
- CIC‐1421 and Institut de Cardiométabolisme et Nutrition (ICAN) UMR ICAN_1166INSERMParisFrance
| | - Céline Narjoz
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
- INSERM U1138, Team 26Research Center of CordeliersParisFrance
| | - Anne Blanchard
- Sorbonne Paris CitéParis Descartes UniversityParisFrance
- Centre d'Investigation Clinique, APHP, INSERM CIC‐1418Européen Georges Pompidou HospitalParisFrance
| | - Marion Pépin
- Department of Geriatrics, APHPGHU Paris‐Saclay University, Ambroise Paré HospitalBoulogne‐BillancourtFrance
- Clinical Epidemiology, UVSQ, Inserm U1018, CESPParis‐Saclay UniversityVillejuifFrance
| | | | - Marie‐Anne Loriot
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
- INSERM U1138, Team 26Research Center of CordeliersParisFrance
- Sorbonne Paris CitéParis Descartes UniversityParisFrance
| | - Olivier Laprévote
- CNRS, CiTCoMParis‐Cité UniversityParisFrance
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
| |
Collapse
|
4
|
Magadmi R, Alyoubi R, Moshrif T, Bakhshwin D, Suliman BA, Kamel F, Jamal M, Burzangi AS, Basit S. Polymorphisms in the Drug Transporter Gene ABCB1 Are Associated with Drug Response in Saudi Epileptic Pediatric Patients. Biomedicines 2023; 11:2505. [PMID: 37760947 PMCID: PMC10526247 DOI: 10.3390/biomedicines11092505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is one of the most common chronic neurodisorders in the pediatric age group. Despite the availability of over 20 anti-seizure medications (ASMs) on the market, drug-resistant epilepsy still affects one-third of individuals. Consequently, this research aimed to investigate the association between single-nucleotide polymorphisms (SNPs) of the ATP-binding cassette subfamily B member 1 (ABCB1) gene in epileptic pediatric patients and their response to ASMs. This multicentric, cross-sectional study was conducted among Saudi children with epilepsy in Jeddah, Saudi Arabia. The polymorphism variants of ABCB1 rs1128503 at exon 12, rs2032582 at exon 21, and rs1045642 at exon 26 were genotyped using the Sanger sequencing technique. The study included 85 children with epilepsy: 43 patients demonstrated a good response to ASMs, while 42 patients exhibited a poor response. The results revealed that good responders were significantly more likely to have the TT genotypes at rs1045642 and rs2032582 SNPs compared to poor responders. Additionally, haplotype analysis showed that the T-G-C haplotype at rs1128503, rs2032582, and rs1045642 was only present in poor responders. In conclusion, this study represents the first pharmacogenetic investigation of the ABCB1 gene in Saudi epileptic pediatric patients and demonstrates a significant association between rs1045642 and rs2032582 variants and patient responsiveness. Despite the small sample size, the results underscore the importance of personalized treatment for epileptic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Reem Alyoubi
- Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tahani Moshrif
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
- Clinical Pharmacy Department, King Abdullah Medical Complex, Jeddah 23816 , Saudi Arabia
| | - Duaa Bakhshwin
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Bandar A. Suliman
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| | - Fatemah Kamel
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Maha Jamal
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Abdulhadi S. Burzangi
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.M.); (D.B.); (F.K.); (M.J.); (A.S.B.)
| | - Sulman Basit
- Biochemistry and Molecular Medicine Department, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
- Centre for Genetics and Inherited Diseases, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
5
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
7
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Sánchez-Hernández J, Jiménez A, Organista-Juárez D, Guzmán-Ruiz MA, Guevara-Guzmán R. Cellular and Molecular Mechanisms of Neuroinflammation in Drug-Resistant Epilepsy. PHARMACORESISTANCE IN EPILEPSY 2023:131-156. [DOI: 10.1007/978-3-031-36526-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
9
|
Chai AB, Callaghan R, Gelissen IC. Regulation of P-Glycoprotein in the Brain. Int J Mol Sci 2022; 23:ijms232314667. [PMID: 36498995 PMCID: PMC9740459 DOI: 10.3390/ijms232314667] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Maintenance of the tightly regulated homeostatic environment of the brain is facilitated by the blood-brain barrier (BBB). P-glycoprotein (P-gp), an ATP-binding cassette transporter, is expressed on the luminal surface of the endothelial cells in the BBB, and actively exports a wide variety of substrates to limit exposure of the vulnerable brain environment to waste buildup and neurotoxic compounds. Downregulation of P-gp expression and activity at the BBB have been reported with ageing and in neurodegenerative diseases. Upregulation of P-gp at the BBB contributes to poor therapeutic outcomes due to altered pharmacokinetics of CNS-acting drugs. The regulation of P-gp is highly complex, but unravelling the mechanisms involved may help the development of novel and nuanced strategies to modulate P-gp expression for therapeutic benefit. This review summarises the current understanding of P-gp regulation in the brain, encompassing the transcriptional, post-transcriptional and post-translational mechanisms that have been identified to affect P-gp expression and transport activity.
Collapse
Affiliation(s)
- Amanda B. Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Callaghan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ingrid C. Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-8627-0357
| |
Collapse
|
10
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
11
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
12
|
Kong FC, Lang LQ, Hu J, Zhang XL, Zhong MK, Ma CL. A novel epigenetic marker, Ten-eleven translocation family member 2 (TET2), is identified in the intractable epileptic brain and regulates ATP binding cassette subfamily B member 1 (ABCB1) in the blood-brain barrier. Bioengineered 2022; 13:6638-6649. [PMID: 35235761 PMCID: PMC8974043 DOI: 10.1080/21655979.2022.2045838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-resistant epilepsy (DRE) is a chronic condition derived from spontaneous changes and regulatory effects in the epileptic brain. As demethylation factors, ten-eleven translocation (TET) family members have become a focus in recent studies of neurological disorders. Here, we quantified and localized TET1, TET2 and 5-hydroxymethylcytosine (5-hmC) in the temporal lobe cortex of DRE patients (n = 27) and traumatic brain hemorrhage controls (n = 10) by immunochemical staining. TET2 and ATP binding cassette subfamily B member 1 (ABCB1) expression patterns were determined in the isolated brain capillaries of DRE patients. TET2 expression was significantly increased in the temporal cortical tissue of DRE patients with or without hippocampal sclerosis (HS) compared to control patients, while TET1 and 5-hmC showed no differences in expression. We also found that a particularly strong expression of TET2 in the vascular tissue of DRE patients. ABCB1 and TET2 have evidently higher expression in the vascular endothelium from the neocortex of DRE patients. In blood–brain barrier (BBB) model, TET2 depletion can cause attenuated expression and function of ABCB1. Data from a cohort study and experiments in a BBB model suggest that TET2 has a specific regulatory effect on ABCB1, which may serve as a potential mechanism and target in DRE.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qin Lang
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Xia-Ling Zhang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
15
|
Łukawski K, Czuczwar SJ. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin Drug Metab Toxicol 2021; 17:1075-1090. [PMID: 34310255 DOI: 10.1080/17425255.2021.1959912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The present evidence indicates that approximately 70% of patients with epilepsy can be successfully treated with antiepileptic drugs (AEDs). A significant proportion of patients are not under sufficient control, and pharmacoresistant epilepsy is clearly associated with poor quality of life and increased morbidity and mortality. There is a great need for newer therapeutic options able to reduce the percentage of drug-resistant patients. AREAS COVERED A number of hypotheses trying to explain the development of pharmacoresistance have been put forward. These include: target hypothesis (altered AED targets), transporter (overexpression of brain efflux transporters), pharmacokinetic (overexpression of peripheral efflux transporters in the intestine or kidneys), intrinsic severity (initial high seizure frequency), neural network (aberrant networks), and gene variant hypothesis (genetic polymorphisms). EXPERT OPINION A continuous search for newer AEDs or among non-AEDs (blockers of efflux transporters, interleukin antagonists, cyclooxygenase inhibitors, mTOR inhibitors, angiotensin II receptor antagonists) may provide efficacious drugs for the management of drug-resistant epilepsy. Also, combinations of AEDs exerting synergy in preclinical and clinical studies (for instance, lamotrigine + valproate, levetiracetam + valproate, topiramate + carbamazepine) might be of importance in this respect. Preclinically antagonistic combinations must be avoided (lamotrigine + carbamazepine, lamotrigine + oxcarbazepine).
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
16
|
Jain S, Potschka H, Chandra PP, Tripathi M, Vohora D. Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications. Epilepsy Res 2021; 174:106675. [PMID: 34044300 PMCID: PMC8132550 DOI: 10.1016/j.eplepsyres.2021.106675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
In regard to the global pandemic of COVID-19, it seems that persons with epilepsy (PWE) are not more vulnerable to get infected by SARS-CoV-2, nor are they more susceptible to a critical course of the disease. However, management of acute seizures in patients with COVID-19 as well as management of PWE and COVID-19 needs to consider potential drug-drug interactions between antiseizure drugs and candidate drugs currently assessed as therapeutic options for COVID-19. Repurposing of several licensed and investigational drugs is discussed for therapeutic management of COVID-19. While for none of these approaches, efficacy and tolerability has been confirmed yet in sufficiently powered and controlled clinical studies, testing is ongoing with multiple clinical trials worldwide. Here, we have summarized the possible mechanisms of action of drugs currently considered as potential therapeutic options for COVID-19 management along with possible and confirmed drug-drug interactions that should be considered for a combination of antiseizure drugs and COVID-19 candidate drugs. Our review suggests that potential drug-drug interactions should be taken into account with drugs such as chloroquine/hydroxychloroquine and lopinavir/ritonavir while remdesivir and tocilizumab may be less prone to clinically relevant interactions with ASMs.
Collapse
Affiliation(s)
- Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Königinstr. 16, D-80539, Munich, Germany
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
17
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
18
|
A novel approach of targeting refractory epilepsy: Need of an hour. Brain Res Bull 2020; 163:14-20. [PMID: 32679059 DOI: 10.1016/j.brainresbull.2020.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022]
Abstract
The refractory epilepsy adds to the global burden of epilepsy as about 25 % of all patients with epilepsy present drug-resistant epilepsy. The P-glycoprotein (P-gp) plays a vital role in the mechanism of resistance in epilepsy. The AED levels in the brain are regulated by the P-gp transport. The upregulation of P-gp results in low concentration of AEDs inside the brain parenchyma and thus leads to resistance. There are three main conditions which lead to decrease transport of AEDs in refractory epilepsy. First being AEDs as substrate of P-gp; secondly, the elevated expression of P-gp in patients with drug resistant epilepsy as compared to drug-responsive patients; thirdly, the low brain AED concentration in refractory epilepsy in comparison to drug-responsive epilepsy. Therefore, determination of P-gp substrate should be a criterion for the selection of new AED for management of refractory epilepsy. This review highlights various tools which help in identification of P-gp substrates and also illustrates a concept of using various novel non-P-gp substrates which can cross the blood brain barrier and leads to enhanced accumulation inside the brain. Hence, these non P-gp substrates can be used as an add on treatment for the management of resistant epilepsy.
Collapse
|
19
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
20
|
Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 2020; 10:2546. [PMID: 32054883 PMCID: PMC7018850 DOI: 10.1038/s41598-020-59259-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.
Collapse
|
21
|
Rawat C, Kushwaha S, Sharma S, Srivastava AK, Kukreti R. Altered plasma prostaglandin E 2 levels in epilepsy and in response to antiepileptic drug monotherapy. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102056. [PMID: 32007745 DOI: 10.1016/j.plefa.2020.102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Prostaglandin E2 (PGE2), a physiologically active lipid compound, is increased in several diseases characterized by chronic inflammation. To determine its significance in epilepsy-associated inflammation and response to antiepileptic drug (AED), we evaluated the plasma PGE2 (median, pg/ml) levels in drug-free patients with epilepsy (N = 34) and patients receiving AED monotherapy (N = 55) in addition to that in healthy controls (N = 34). When compared to controls, plasma PGE2 levels were significantly elevated in all drug-free patients independent of the type of epilepsy (137.2 versus 475.7 pg/ml, p < 0.0001). Among the patients receiving AED monotherapy, only valproate responders showed a significant decrease compared to both drug-free patients (232.1 versus 475.7 pg/ml, p < 0.01) as well as valproate non-responders (232.1 versus 611.9 pg/ml, p < 0.0001). Both responders and non-responders on phenytoin or carbamazepine monotherapy had elevated PGE2 levels similar to drug-free patients. In addition, no difference was observed in plasma profiles of PGE2 precursor, arachidonic acid among the groups. Our work presents the clinical evidence of the association between plasma PGE2 levels and valproate efficacy in patients with epilepsy.
Collapse
Affiliation(s)
- Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, Delhi 110029, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| |
Collapse
|
22
|
Löscher W, Friedman A. Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? Int J Mol Sci 2020; 21:E591. [PMID: 31963328 PMCID: PMC7014122 DOI: 10.3390/ijms21020591] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a 'second line defense' mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center of Systems Neuroscience, 30559 Hannover, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
23
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
24
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm 2019; 570:118635. [PMID: 31445062 DOI: 10.1016/j.ijpharm.2019.118635] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Nose-to-brain delivery has gained significant interest over the past several decades. This has resulted in numerous strategies described to improve the delivery of drugs to the brain directly through the olfactory epithelium of the nasal cavity. In some cases, intranasal administration may be more effective than other routes of administration in treating central nervous system and related disorders. Here, we briefly review the strategies that have been used to facilitate nose-to-brain delivery as well as approaches to block the delivery of drugs from the nose to the brain. Even though numerous strategies have already been used to increase nose-to-brain delivery, the research for strategies inhibitory of nose-to-brain delivery seems to be scarce.
Collapse
|
26
|
Zhang C, Kwan P. The Concept of Drug-Resistant Epileptogenic Zone. Front Neurol 2019; 10:558. [PMID: 31214106 PMCID: PMC6555267 DOI: 10.3389/fneur.2019.00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 12/01/2022] Open
Abstract
Resective surgery is the most effective way to treat drug-resistant epilepsy. Despite extensive pre-surgical evaluation, only 30–70% patients would become seizure-free after surgery. New approaches and strategies are needed to improve the outcome of epilepsy surgery. It is commonly observed in clinical practice that antiepileptic drugs (AEDs) could maintain seizure freedom in a large proportion of patients after surgery, who were uncontrolled before the operation. In some patients cessation of AEDs leads to seizure recurrence which, in most cases, can be controlled by resuming AEDs. These observations suggest that the surgery has converted the epilepsy from drug-resistant to drug-responsive, implying that the operation has removed the brain tissue accounting for pharmacoresistance, rather than the pathological substrate of epilepsy (at least not completely). Based on these observations, it is hypothesized that there is a drug-resistant epileptogenic zone (DREZ) which overlaps with the epileptogenic zone (EZ), and has both epileptogenic and drug-resistant properties. DREZ is necessary and sufficient to cause drug-resistant epilepsy, and its remove would render the epilepsy drug-responsive. Testing the hypothesis requires the development of new methods to define the DREZ, which may be used to guide surgical planning when the epileptogenic zone cannot be completely excised. This concept can also help understand the mechanisms of drug-resistant epilepsy, leading to new therapeutic strategies.
Collapse
Affiliation(s)
- Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Patrick Kwan
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, VIC, Australia.,Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Anticonvulsant Effects of Dingxian Pill in Pentylenetetrazol-Kindled Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4534167. [PMID: 31011358 PMCID: PMC6442303 DOI: 10.1155/2019/4534167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Dingxian pill has been used as an antiepilepsy agent in China from ancient to modern times, of which the concrete pharmacological characterization and the underlying molecular mechanism remain unclear. The present study was undertaken to investigate them by animal behavior, electroencephalogram (EEG), Morris water maze, immunohistochemistry, transcriptomics, and real-time PCR. In our results, the treatment of Dingxian pill dose-dependently inhibited PTZ-induced seizure-like behavior and reduced the seizure grades, LFP power spectral density, and brain wave of the epileptiform EEG component induced by PTZ. In Morris water maze tests, the learning and memory ability of kindled epileptic rats could be attenuated more efficiently by Dingxian pill. For the immediate early gene c-fos, the expression was reduced after Dingxian pill treatment, and the difference was significant between the treatment and the model group. Through the transcriptome analysis of the gene expression in hippocampus, Egr3, Nrg, Arc, and Ptgs2, closely related to epilepsy, had been proved to be downregulated by application of Dingxian pill. All of the results not only highlight the antiepileptic effects of Dingxian pill and its molecular mechanism, but also provide a modern validity theory for the clinical application of traditional Chinese medicine (TCM).
Collapse
|
28
|
Musumeci T, Bonaccorso A, Puglisi G. Epilepsy Disease and Nose-to-Brain Delivery of Polymeric Nanoparticles: An Overview. Pharmaceutics 2019; 11:E118. [PMID: 30871237 PMCID: PMC6471219 DOI: 10.3390/pharmaceutics11030118] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is the fourth most common global neurological problem, which can be considered a spectrum disorder because of its various causes, seizure types, its ability to vary in severity and the impact from person to person, as well as its range of co-existing conditions. The approaches to drug therapy of epilepsy are directed at the control of symptoms by chronic administration of antiepileptic drugs (AEDs). These AEDs are administered orally or intravenously but alternative routes of administration are needed to overcome some important limits. Intranasal (IN) administration represents an attractive route because it is possible to reach the brain bypassing the blood brain barrier while the drug avoids first-pass metabolism. It is possible to obtain an increase in patient compliance for the easy and non-invasive route of administration. This route, however, has some drawbacks such as mucociliary clearance and the small volume that can be administered, in fact, only drugs that are efficacious at low doses can be considered. The drug also needs excellent aqueous solubility or must be able to be formulated using solubilizing agents. The use of nanomedicine formulations able to encapsulate active molecules represents a good strategy to overcome several limitations of this route and of conventional drugs. The aim of this review is to discuss the innovative application of nanomedicine for epilepsy treatment using nose-to-brain delivery with particular attention focused on polymeric nanoparticles to load drugs.
Collapse
Affiliation(s)
- Teresa Musumeci
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy.
| | - Angela Bonaccorso
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy.
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy.
| |
Collapse
|
29
|
Rojas A, Chen D, Ganesh T, Varvel NH, Dingledine R. The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets 2018; 23:1-13. [PMID: 30484341 DOI: 10.1080/14728222.2019.1554056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction:A robust neuroinflammatory response is a prevalent feature of multiple neurological disorders, including epilepsy and acute status epilepticus. One component of this neuroinflammatory reaction is the induction of cyclooxygenase-2 (COX-2), synthesis of several prostaglandins and endocannabinoid metabolites, and subsequent activation of prostaglandin and related receptors. Neuroinflammation mediated by COX-2 and its downstream effectors has received considerable attention as a potential target class to ameliorate the deleterious consequences of neurological injury. Areas covered: Here we describe the roles of COX-2 as a major inflammatory mediator. In addition, we discuss the receptors for prostanoids PGE2, prostaglandin D2, and PGF2α as potential therapeutic targets for inflammation-driven diseases. The consequences of prostanoid receptor activation after seizure activity are discussed with an emphasis on the utilization of small molecules to modulate prostanoid receptor activity. Expert opinion: Limited clinical trial experience is supportive but not definitive for a role of the COX signaling cascade in epileptogenesis. The cardiotoxicity associated with chronic coxib use, and the expectation that COX-2 inhibition will influence the levels of endocannabinoids, leukotrienes, and lipoxins as well as the prostaglandins and their endocannabinoid metabolite analogs, is shifting attention toward downstream synthases and receptors that mediate inflammation in the brain.
Collapse
Affiliation(s)
- Asheebo Rojas
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Di Chen
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Thota Ganesh
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Nicholas H Varvel
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Raymond Dingledine
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
30
|
Abdullahi W, Brzica H, Hirsch NA, Reilly BG, Ronaldson PT. Functional Expression of Organic Anion Transporting Polypeptide 1a4 Is Regulated by Transforming Growth Factor- β/Activin Receptor-like Kinase 1 Signaling at the Blood-Brain Barrier. Mol Pharmacol 2018; 94:1321-1333. [PMID: 30262595 PMCID: PMC6207918 DOI: 10.1124/mol.118.112912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-β (TGF-β)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-β/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-β/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Nicholas A Hirsch
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
31
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
32
|
Ajmi M, Boujaafar S, Zouari N, Amor D, Nasr A, Rejeb NB, Amor SB, Omezzine A, Benammou S, Bouslama A. Association between ABCB1 polymorphisms and response to first-generation antiepileptic drugs in a Tunisian epileptic population. Int J Neurosci 2017; 128:705-714. [DOI: 10.1080/00207454.2017.1412964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marwa Ajmi
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Boujaafar
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nadia Zouari
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Dorra Amor
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Nasr
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Nabila Ben Rejeb
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sana Ben Amor
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sofien Benammou
- Neurology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
33
|
Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol 2017; 8:301. [PMID: 28729850 PMCID: PMC5498483 DOI: 10.3389/fneur.2017.00301] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects over 70 million people worldwide. Despite the recent introduction of new antiseizure drugs (ASDs), about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early identification of patients who will become refractory to ASDs could help direct such patients to appropriate non-pharmacological treatment, but the complexity in the temporal patterns of epilepsy could make such identification difficult. The target hypothesis and transporter hypothesis are the most cited theories trying to explain refractory epilepsy, but neither theory alone fully explains the neurobiological basis of pharmacoresistance. This review summarizes evidence for and against several major theories, including the pharmacokinetic hypothesis, neural network hypothesis, intrinsic severity hypothesis, gene variant hypothesis, target hypothesis, and transporter hypothesis. The discussion is mainly focused on the transporter hypothesis, where clinical and experimental data are discussed on multidrug transporter overexpression, substrate profiles of ASDs, mechanism of transporter upregulation, polymorphisms of transporters, and the use of transporter inhibitors. Finally, future perspectives are presented for the improvement of current hypotheses and the development of treatment strategies as guided by the current understanding of refractory epilepsy.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Epilepsy Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Abdullahi W, Brzica H, Ibbotson K, Davis TP, Ronaldson PT. Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. J Cereb Blood Flow Metab 2017; 37:2340-2345. [PMID: 28387157 PMCID: PMC5531361 DOI: 10.1177/0271678x17702916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targeting uptake transporters such as organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB) can facilitate central nervous system (CNS) drug delivery. Effective blood-to-brain drug transport via this strategy requires characterization of mechanisms that modulate BBB transporter expression and/or activity. Here, we show that activation of activin receptor-like kinase (ALK)-1 using bone morphogenetic protein (BMP)-9 increases Oatp1a4 protein expression in rat brain microvessels in vivo. These data indicate that targeting ALK1 signaling with BMP-9 modulates BBB Oatp1a4 expression, presenting a unique opportunity to optimize drug delivery and improve pharmacotherapy for CNS diseases.
Collapse
Affiliation(s)
- Wazir Abdullahi
- 1 Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hrvoje Brzica
- 1 Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kathryn Ibbotson
- 2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- 1 Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- 1 Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Abdullahi W, Davis TP, Ronaldson PT. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS JOURNAL 2017; 19:931-939. [PMID: 28447295 DOI: 10.1208/s12248-017-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA.
| |
Collapse
|
36
|
Chi X, Huang C, Li R, Wang W, Wu M, Li J, Zhou D. Inhibition of mTOR Pathway by Rapamycin Decreases P-glycoprotein Expression and Spontaneous Seizures in Pharmacoresistant Epilepsy. J Mol Neurosci 2017; 61:553-562. [PMID: 28229367 DOI: 10.1007/s12031-017-0897-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
The mammalian target of rapamycin (mTOR) has been demonstrated to mediate multidrug resistance in various tumors by inducing P-glycoprotein (P-gp) overexpression. Here, we investigated the correlation between the mTOR pathway and P-gp expression in pharmacoresistant epilepsy. Temporal cortex specimens were obtained from patients with refractory mesial temporal lobe epilepsy (mTLE) and age-matched controls who underwent surgeries at West China Hospital of Sichuan University between June 2014 and May 2015. We established a rat model of epilepsy kindled by coriaria lactone (CL) and screened pharmacoresistant rats (non-responders) using phenytoin. Non-responders were treated for 4 weeks with vehicle only or with the mTOR pathway inhibitor rapamycin at doses of 1, 3, and 6 mg/kg. Western blotting and immunohistochemistry were used to detect the expression of phospho-S6 (P-S6) and P-gp at different time points (1 h, 8 h, 1 day, 3 days, 1 weeks, 2 weeks, and 4 weeks) after the onset of treatment. Overexpression of P-S6 and P-gp was detected in both refractory mTLE patients and non-responder rats. Rapamycin showed an inhibitory effect on P-S6 and P-gp expression 1 week after treatment in rats. In addition, the expression levels of P-S6 and P-gp in the 6 mg/kg group were significantly lower than those in the 1 mg/kg or the 3 mg/kg group at the same time points (all P < 0.05). Moreover, rapamycin decreased the duration and number of CL-induced seizures, as well as the stage of non-responders (all P < 0.05). The current study indicates that the mTOR signaling pathway plays a critical role in P-gp expression in drug-resistant epilepsy. Inhibition of the mTOR pathway by rapamycin may be a potential therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Cheng Huang
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Rui Li
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Wang
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Mengqian Wu
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, 37th Guoxuexiang Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
37
|
Froklage FE, Postnov A, Yaqub MM, Bakker E, Boellaard R, Hendrikse NH, Comans EF, Schuit RC, Schober P, Velis DN, Zwemmer J, Heimans JJ, Lammertsma AA, Voskuyl RA, Reijneveld JC. Altered GABAA receptor density and unaltered blood-brain barrier [11C]flumazenil transport in drug-resistant epilepsy patients with mesial temporal sclerosis. J Cereb Blood Flow Metab 2017; 37:97-105. [PMID: 26661244 PMCID: PMC5167109 DOI: 10.1177/0271678x15618219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/06/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Studies in rodents suggest that flumazenil is a P-glycoprotein substrate at the blood-brain barrier. This study aimed to assess whether [11C]flumazenil is a P-glycoprotein substrate in humans and to what extent increased P-glycoprotein function in epilepsy may confound interpretation of clinical [11C]flumazenil studies used to assess gamma-aminobutyric acid A receptors. Nine drug-resistant patients with epilepsy and mesial temporal sclerosis were scanned twice using [11C]flumazenil before and after partial P-glycoprotein blockade with tariquidar. Volume of distribution, nondisplaceable binding potential, and the ratio of rate constants of [11C]flumazenil transport across the blood-brain barrier (K1/k2) were derived for whole brain and several regions. All parameters were compared between pre- and post-tariquidar scans. Regional results were compared between mesial temporal sclerosis and contralateral sides. Tariquidar significantly increased global K1/k2 (+23%) and volume of distribution (+10%), but not nondisplaceable binding potential. At the mesial temporal sclerosis side volume of distribution and nondisplaceable binding potential were lower in hippocampus (both ∼-19%) and amygdala (both ∼-16%), but K1/k2 did not differ, suggesting that only regional gamma-aminobutyric acid A receptor density is altered in epilepsy. In conclusion, although [11C]flumazenil appears to be a (weak) P-glycoprotein substrate in humans, this does not seem to affect its role as a tracer for assessing gamma-aminobutyric acid A receptor density.
Collapse
Affiliation(s)
- Femke E Froklage
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands .,Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Andrey Postnov
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Maqsood M Yaqub
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Esther Bakker
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - N Harry Hendrikse
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, the Netherlands
| | - Emile Fi Comans
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrick Schober
- Department of Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Demetrios N Velis
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.,Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Jack Zwemmer
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jan J Heimans
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Rob A Voskuyl
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Tome ME, Herndon JM, Schaefer CP, Jacobs LM, Zhang Y, Jarvis CK, Davis TP. P-glycoprotein traffics from the nucleus to the plasma membrane in rat brain endothelium during inflammatory pain. J Cereb Blood Flow Metab 2016; 36:1913-1928. [PMID: 27466374 PMCID: PMC5094312 DOI: 10.1177/0271678x16661728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
Abstract
P-glycoprotein (PgP), a drug efflux pump in blood-brain barrier endothelial cells, is a major clinical obstacle for effective central nervous system drug delivery. Identifying PgP regulatory pathways that can be exploited clinically is critical for improving central nervous system drug delivery. We previously found that PgP activity increases in rat brain microvessels concomitant with decreased central nervous system drug delivery in response to acute peripheral inflammatory pain. In the current study, we tested the hypothesis that PgP traffics to the luminal plasma membrane of the microvessel endothelial cells from intracellular stores during peripheral inflammatory pain. Using immunofluorescence microscopy, we detected PgP in endothelial cell nuclei and in the luminal plasma membrane in control animals. Following peripheral inflammatory pain, luminal PgP staining increased while staining in the nucleus decreased. Biochemical analysis of nuclear PgP content confirmed our visual observations. Peripheral inflammatory pain also increased endothelial cell luminal staining of polymerase 1 and transcript release factor/cavin1 and serum deprivation response protein/cavin2, two caveolar scaffold proteins, without changing caveolin1 or protein kinase C delta binding protein/cavin3 location. Our data (a) indicate that PgP traffics from stores in the nucleus to the endothelial cell luminal membrane in response to peripheral inflammatory pain; (b) provide an explanation for our previous observation that peripheral inflammatory pain inhibits central nervous system drug uptake; and (c) suggest a novel regulatory mechanism for PgP activity in rat brain.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | | | - Leigh M Jacobs
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Yifeng Zhang
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, USA
| |
Collapse
|
39
|
Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 2015; 1628:298-316. [PMID: 26187753 PMCID: PMC4681613 DOI: 10.1016/j.brainres.2015.07.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hisham Qosa
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| | - David S Miller
- Laboratory of Signal Transduction, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| |
Collapse
|
40
|
Rosillo-de la Torre A, Zurita-Olvera L, Orozco-Suárez S, Garcia Casillas PE, Salgado-Ceballos H, Luna-Bárcenas G, Rocha L. Phenytoin carried by silica core iron oxide nanoparticles reduces the expression of pharmacoresistant seizures in rats. Nanomedicine (Lond) 2015; 10:3563-77. [DOI: 10.2217/nnm.15.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: The present study was focused to evaluate the anticonvulsant effects of phenytoin (PHT) loaded in the silica core of iron oxide nanoparticles (NPs) in an animal model with pharmacoresistant seizures. Materials & methods: PHT-loaded NPs were synthesized and characterized. The anticonvulsant effects of PHT-loaded NPs were investigated in rats with pharmacoresistant seizures associated with brain P-glycoprotein (P-gp) overexpression. Results & conclusion: In P-gp-overexpressing rats, administration of PHT-loaded NPs resulted in reduced prevalence of clonus (40% p < 0.05) and tonic–clonic seizures (20%; p < 0.02). These effects were not evident when animals were treated with PHT not loaded in the NPs. The results obtained support the notion that NPs can be used as drugs carriers to the brain with pharmacoresistant seizures.
Collapse
Affiliation(s)
- Argelia Rosillo-de la Torre
- Department of Pharmacobiology, Center of Research & Advanced Studies, Calz. de los Tenorios No. 235. Col. Granjas Coapa, 14330, Tlalpan, DF Mexico
| | - Lizbeth Zurita-Olvera
- Polymer & Biopolymer Research Group, Center of Research & Advanced Studies, Querétaro Unit, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, 76230, Queretaro, Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center, Av. Cuauhtémoc 330. Col. Doctores, 06720, Cuauhtémoc, DF Mexico
| | - Perla E Garcia Casillas
- Institute of Engineer & Technology, Autonomus University of Juarez City, Av. del Charro no. 450 Nte. Col. Partido Romero, 32310, Juarez City, Chihuahua, Mexico
| | - Hermelinda Salgado-Ceballos
- Unit for Medical Research in Neurological Diseases, National Medical Center, Av. Cuauhtémoc 330. Col. Doctores, 06720, Cuauhtémoc, DF Mexico
| | - Gabriel Luna-Bárcenas
- Polymer & Biopolymer Research Group, Center of Research & Advanced Studies, Querétaro Unit, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, 76230, Queretaro, Mexico
| | - Luisa Rocha
- Department of Pharmacobiology, Center of Research & Advanced Studies, Calz. de los Tenorios No. 235. Col. Granjas Coapa, 14330, Tlalpan, DF Mexico
| |
Collapse
|
41
|
Chen Y, Huang XJ, Yu N, Xie Y, Zhang K, Wen F, Liu H, Di Q. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products. PLoS One 2015; 10:e0140918. [PMID: 26485677 PMCID: PMC4613137 DOI: 10.1371/journal.pone.0140918] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1) in the seizure-induced P-glycoprotein (P-gp) overexpression and the underlying mechanism. Kainic acid (KA)-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS) group, KA-induced epileptic seizure (EP) group, and EP group pretreated with HMGB1 (EP+HMGB1 group) or BoxA (HMGB1 antagonist, EP+BoxA group). Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) [toll-like receptor 4 (TLR4) antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE) inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-κB) inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-κB in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-κB p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene) in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-κB in brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian-Jing Huang
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nian Yu
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Xie
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kang Zhang
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Wen
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Liu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Qing Di
- Department of Neurology, Nanjing Brain Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
42
|
Research Progress on the Role of ABC Transporters in the Drug Resistance Mechanism of Intractable Epilepsy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:194541. [PMID: 26491660 PMCID: PMC4600483 DOI: 10.1155/2015/194541] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy.
Collapse
|
43
|
Rash and multiorgan dysfunction following lamotrigine: could genetic be involved? Int J Clin Pharm 2015; 37:682-6. [DOI: 10.1007/s11096-015-0158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/29/2015] [Indexed: 01/16/2023]
|
44
|
Abstract
Epilepsy is a serious neurological disorder that affects more than 60 million people worldwide. Intractable epilepsy (IE) refers to approximately 20%-30% of epileptic patients who fail to achieve seizure control with antiepileptic drug (AED) treatment. Although the mechanisms underlying IE are not well understood, it has been hypothesized that multidrug transporters such as P-glycoprotein (P-gp) play a major role in drug efflux at the blood-brain barrier, and may be the underlying factor in the variable responses of patients to AEDs. The main goal of the present review is to show evidence from different areas that support the idea that the overexpression of P-gp is associated with IE. We discuss here evidence from animal studies, pharmacology, clinical cases and genetic studies.
Collapse
Affiliation(s)
- Guang-Xin Wang
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Da-Wei Wang
- b Department of Biochemistry and Molecular Biology , School of Medicine, Shandong University , Jinan , P.R. China
| | - Yong Liu
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| | - Yan-Hui Ma
- a Medical Institute of Paediatrics , Qilu Children's Hospital of Shandong University , Jinan , P.R. China
| |
Collapse
|
45
|
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant Epilepsy: A Current Update on Non-Conventional Pharmacological and Non-Pharmacological Interventions. J Epilepsy Res 2015; 5:1-8. [PMID: 26157666 PMCID: PMC4494988 DOI: 10.14581/jer.15001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Uncontrolled seizure or epilepsy is intricately related with an increase risk of pharmacoresistant epilepsy. The failure to achieve seizure control with the first or second drug trial of an anticonvulsant medication given at the appropriate daily dosage is termed as pharmacoresistance, despite the fact that these drugs possess different modes of action. It is one of the devastating neurological disorders act as major culprit of mortality in developed as well as developing countries with towering prevalence. Indeed, the presence of several anti-epileptic drug including carbamazepine, phenytoin, valproate, gabapentin etc. But no promising therapeutic remedies available to manage pharmacoresistance in the present clinical scenario. Hence, utility of alternative strategies in management of resistance epilepsy is increased which further possible by continuing developing of promising therapeutic interventions to manage this insidious condition adequately. Strategies include add on therapy with adenosine, verapamil etc or ketogenic diet, vagus nerve stimulation, focal cooling or standard drugs in combinations have shown some promising results. In this review we will shed light on the current pharmacological and non pharmacological mediator with their potential pleiotropic action on pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Ekta Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Abdul Waheed
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| | - Satyendra K Rajput
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh-201313, India
| |
Collapse
|
46
|
Salvamoser JD, Avemary J, Luna-Munguia H, Pascher B, Getzinger T, Pieper T, Kudernatsch M, Kluger G, Potschka H. Glutamate-Mediated Down-Regulation of the Multidrug-Resistance Protein BCRP/ABCG2 in Porcine and Human Brain Capillaries. Mol Pharm 2015; 12:2049-60. [PMID: 25898179 DOI: 10.1021/mp500841w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer resistance protein (BCRP) functions as a major molecular gatekeeper at the blood-brain barrier. Considering its impact on access to the brain by therapeutic drugs and harmful xenobiotics, it is of particular interest to elucidate the mechanisms of its regulation. Excessive glutamate concentrations have been reported during epileptic seizures or as a consequence of different brain insults including brain ischemia. Previously, we have demonstrated that glutamate can trigger an induction of the transporter P-glycoprotein. These findings raised the question whether other efflux transporters are affected in a comparable manner. Glutamate exposure proved to down-regulate BCRP transport function and expression in isolated porcine capillaries. The reduction was efficaciously prevented by coincubation with N-methyl-d-aspartate (NMDA) receptor antagonist MK-801. The involvement of the NMDA receptor in the down-regulation of BCRP was further confirmed by experiments showing an effect of NMDA exposure on brain capillary BCRP transport function and expression. Pharmacological targeting of cyclooxygenase-1 and -2 (COX-1 and -2) using the nonselective inhibitor indomethacin, COX-1 inhibitor SC-560, and COX-2 inhibitor celecoxib revealed a contribution of COX-2 activity to the NMDA receptor's downstream signaling events affecting BCRP. Translational studies were performed using human capillaries isolated from surgical specimens of epilepsy patients. The findings confirmed a glutamate-induced down-regulation of BCRP transport activity in human capillaries, which argued against major species differences. In conclusion, our data reveal a novel mechanism of BCRP down-regulation in porcine and human brain capillaries. Moreover, together with previous data sets for P-glycoprotein, the findings point to a contrasting impact of the signaling pathway on the regulation of BCRP and P-glycoprotein. The effect of glutamate and arachidonic acid signaling on BCRP function might have implications for brain drug delivery and for radiotracer brain access in epilepsy patients and patients with other brain insults.
Collapse
Affiliation(s)
- Josephine D Salvamoser
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Janine Avemary
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Hiram Luna-Munguia
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | | | | | | | | | | | - Heidrun Potschka
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| |
Collapse
|
47
|
Tome ME, Schaefer CP, Jacobs LM, Zhang Y, Herndon JM, Matty FO, Davis TP. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem 2015; 134:200-10. [PMID: 25832806 DOI: 10.1111/jnc.13106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022]
Abstract
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P-glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood-brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP-containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post-translationally regulated at the BBB. The goal of the current study was to identify proteins that co-localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co-localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co-fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post-translational regulation of PgP activity at the BBB.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Charles P Schaefer
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Leigh M Jacobs
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Yifeng Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Joseph M Herndon
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Fabian O Matty
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Thomas P Davis
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
48
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
49
|
Luna-Munguia H, Salvamoser JD, Pascher B, Pieper T, Getzinger T, Kudernatsch M, Kluger G, Potschka H. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 2015; 352:368-78. [PMID: 25503388 DOI: 10.1124/jpet.114.218180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Bettina Pascher
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Tom Pieper
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Thekla Getzinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Manfred Kudernatsch
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Gerhard Kluger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| |
Collapse
|
50
|
Emich-Widera E, Likus W, Kazek B, Sieroń AL, Urbanek K. Polymorphism of ABCB1/MDR1 C3435T in children and adolescents with partial epilepsy is due to different criteria for drug resistance - preliminary results. Med Sci Monit 2014; 20:1654-61. [PMID: 25223475 PMCID: PMC4173802 DOI: 10.12659/msm.890633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The diagnosis of “drug resistance” in epilepsy can be defined and interpreted in various ways. This may be due to discrepant definitions of drug resistance to pharmacotherapy. The aim of our study was to investigate the relationship between C3435T polymorphism of the MDR1 gene and drug resistance in epilepsy with the consideration of 4 different criteria for qualification to groups sensitive and resistant to applied pharmacotherapy. Material/Methods Evaluation of C3435T polymorphism of MDR1/ABCB1 gene was conducted on a group of 82 white children and young adolescents up to 18 years old. While qualifying the patients to the group of sensitive or drug resistant, the following 4 definitions of drug resistance were applied: the ILAE’s, Appleton’s, Siddiqui’s, and Berg’s. Results A detailed analysis of genotypes of the MDR1 gene did not show any significant discrepancies between the groups of patients resistant and sensitive to antiepileptic drugs (AEDs) in 4 consecutive comparisons taking into consideration various criteria of sensitivity and resistance to pharmacotherapy. Conclusions The obtained results clearly confirm the lack of a connection between the occurrence of drug-resistant epilepsy and C435T polymorphism of the MDR1 gene irrespective of the definition of drug resistance applied to the patient.
Collapse
Affiliation(s)
- Ewa Emich-Widera
- Department of Neuropediatrics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Human Anatomy, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Beata Kazek
- Department of Neuropediatrics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Aleksander L Sieroń
- Department of General and Molecular Biology and Genetics, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ksymena Urbanek
- Department of General and Molecular Biology and Genetics, School of Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|