1
|
Lifjeld JT, Cramer ERA, Leder EH, Voje KL. Sperm as a speciation phenotype in promiscuous songbirds. Evolution 2024; 79:134-143. [PMID: 39485024 DOI: 10.1093/evolut/qpae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Sperm morphology varies considerably among species. Sperm traits may contribute to speciation if they diverge fast in allopatry and cause conspecific sperm precedence upon secondary contact. However, their role in driving prezygotic isolation has been poorly investigated. Here we test the hypothesis that, early in the speciation process, female promiscuity promotes a reduction in overlap in sperm length distributions among songbird populations. We assembled a data set of 20 pairs of populations with known sperm length distributions, a published estimate of divergence time, and an index of female promiscuity derived from extrapair paternity rates or relative testis size. We found that sperm length distributions diverged more rapidly in more promiscuous species. Faster divergence between sperm length distributions was caused by the lower variance in the trait in more promiscuous species, and not by faster divergence of the mean sperm lengths. The reduced variance is presumably due to stronger stabilizing selection on sperm length mediated by sperm competition. If divergent sperm length optima in allopatry causes conspecific sperm precedence in sympatry, which remains to be shown empirically, female promiscuity may promote prezygotic isolation, and rapid speciation in songbirds.
Collapse
Affiliation(s)
- Jan T Lifjeld
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Emily R A Cramer
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Erica H Leder
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - Kjetil Lysne Voje
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Koçillari L, Cattelan S, Rasotto MB, Seno F, Maritan A, Pilastro A. Tetrapod sperm length evolution in relation to body mass is shaped by multiple trade-offs. Nat Commun 2024; 15:6160. [PMID: 39039080 PMCID: PMC11263692 DOI: 10.1038/s41467-024-50391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
Sperm length is highly variable across species and many questions about its variation remain open. Although variation in body mass may affect sperm length evolution through its influence on multiple factors, the extent to which sperm length variation is linked to body mass remains elusive. Here, we use the Pareto multi-task evolution framework to investigate the relationship between sperm length and body mass across tetrapods. We find that tetrapods occupy a triangular Pareto front, indicating that trade-offs shape the evolution of sperm length in relation to body mass. By exploring the factors predicted to influence sperm length evolution, we find that sperm length evolution is mainly driven by sperm competition and clutch size, rather than by genome size. Moreover, the triangular Pareto front is maintained within endotherms, internal fertilizers, mammals and birds, suggesting similar evolutionary trade-offs within tetrapods. Finally, we demonstrate that the Pareto front is robust to phylogenetic dependencies and finite sampling bias. Our findings provide insights into the evolutionary mechanisms driving interspecific sperm length variation and highlight the importance of considering multiple trade-offs in optimizing reproductive traits.
Collapse
Affiliation(s)
- Loren Koçillari
- Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
- Department of Physics and Astronomy, Section INFN, University of Padova, 35131, Padova, Italy
- Institute for Neural Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), D-20251, Hamburg, Germany
| | - Silvia Cattelan
- Department of Biology, University of Padova, 35121, Padova, Italy.
- Fritz Lipmann Institute-Leibniz Institute on Aging, 07745, Jena, Germany.
| | | | - Flavio Seno
- Department of Physics and Astronomy, Section INFN, University of Padova, 35131, Padova, Italy
| | - Amos Maritan
- Department of Physics and Astronomy, Section INFN, University of Padova, 35131, Padova, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, 35121, Padova, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
3
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
4
|
Míčková K, Tomášek O, Jelínek V, Šulc M, Pazdera L, Albrechtová J, Albrecht T. Age-related changes in sperm traits and evidence for aging costs of sperm production in a sexually promiscuous passerine. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In many animal species, organismal performance declines with age in a process known as aging or senescence. Senescence typically leads to a deterioration of physiological functionality and can impact the development of primary sexual phenotypes. Sperm production is a complex and costly process that is sensitive to changes in individual physiological state, yet remarkably little is known about age-related changes in sperm performance and aging costs of sperm production. Here we use a non-linear generalized additive mixed models (GAMM) modelling to evaluate age-related changes in postcopulatory sexual traits in the European barn swallow (Hirundo rustica rustica), a relatively short lived sexually promiscuous passerine species, where male extra-pair fertilization success has been shown to increase with age. We confirmed a positive relationship between sperm midpiece length and sperm velocity in this species. Within-male changes in sperm morphology and sperm velocity were in general absent, with only sperm length decreasing linearly with increasing age, although this change was negligible compared to the overall variation in sperm size among males. In contrast, the cloacal protuberance (CP) size changed nonlinearly with age, with an initial increase between the first and third year of life followed by a plateau. The results further indicate the existence of a trade-off between investments in sperm production and survival as males with large CP tended to have a reduced lifespan. This seems consistent with the idea of expensive sperm production and survival aging costs associated with investments in post-copulatory traits in this sexually promiscuous species.
Collapse
|
5
|
Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci Rep 2022; 12:22275. [PMID: 36566302 PMCID: PMC9789955 DOI: 10.1038/s41598-022-26101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.
Collapse
|
6
|
Cramer ERA, Grønstøl G, Lifjeld JT. Flagellum tapering and midpiece volume in songbird spermatozoa. J Morphol 2022; 283:1577-1589. [PMID: 36260518 PMCID: PMC9828668 DOI: 10.1002/jmor.21524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023]
Abstract
In contrast to numerous studies on spermatozoa length, relatively little work focuses on the width of spermatozoa, and particularly the width of the midpiece and flagellum. In flagellated spermatozoa, the flagellum provides forward thrust while energy may be provided via mitochondria in the midpiece and/or through glycolysis along the flagellum itself. Longer flagella may be able to provide greater thrust but may also require stronger structural features and more or larger mitochondria to supply sufficient energy. Here, we use scanning electron microscopy to investigate the ultrastructure of spermatozoa from 55 passerine species in 26 taxonomic families in the Passerides infraorder. Our data confirm the qualitative observation that the flagellum tapers along its length, and we show that longer flagella are wider at the neck. This pattern is similar to mammals, and likely reflects the need for longer cells to be stronger against shearing forces. We further estimate the volume of the mitochondrial helix and show that it correlates well with midpiece length, supporting the use of midpiece length as a proxy for mitochondrial volume, at least in between-species studies where midpiece length is highly variable. These results provide important context for understanding the evolutionary correlations among different sperm cell components and dimensions.
Collapse
|
7
|
Ito T, Morita M, Okuno S, Inaba K, Shiba K, Munehara H, Koya Y, Homma M, Awata S. Fertilization modes and the evolution of sperm characteristics in marine fishes: Paired comparisons of externally and internally fertilizing species. Ecol Evol 2022; 12:e9562. [PMID: 36479029 PMCID: PMC9720005 DOI: 10.1002/ece3.9562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Fertilization mode may affect sperm characteristics, such as morphology, velocity, and motility. However, there is little information on how fertilization mode affects sperm evolution because several factors (e.g., sperm competition) are intricately intertwined when phylogenetically distant species are compared. Here, we investigated sperm characteristics by comparing seven externally and four internally fertilizing marine fishes from three different groups containing close relatives, considering sperm competition levels. The sperm head was significantly slenderer in internal fertilizers than in external fertilizers, suggesting that a slender head is advantageous for swimming in viscous ovarian fluid or in narrow spaces of the ovary. In addition, sperm motility differed between external and internal fertilizers; sperm of external fertilizers were only motile in seawater, whereas sperm of internal fertilizers were only motile in an isotonic solution. These results suggest that sperm motility was adapted according to fertilization mode. By contrast, total sperm length and sperm velocity were not associated with fertilization mode, perhaps because of the different levels of sperm competition. Relative testis mass (an index of sperm competition level) was positively correlated with sperm velocity and negatively correlated with the ratio of sperm head length to total sperm length. These findings suggest that species with higher levels of sperm competition have faster sperm with longer flagella relative to the head length. These results contradict the previous assumption that the evolution of internal fertilization increases the total sperm length. In addition, copulatory behavior with internal insemination may involve a large genital morphology, but this is not essential in fish, suggesting the existence of various sperm transfer methods. Although the power of our analyses is not strong because of the limited number of species, we propose a new scenario of sperm evolution in which internal fertilization would increase sperm head length, but not total sperm length, and change sperm motility.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biology, Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- Department of Biology and Geosciences, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research CenterUniversity of the RyukyusMotobuJapan
| | - Seiya Okuno
- Department of Biology, Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- Department of Biology and Geosciences, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Kazuo Inaba
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - Kogiku Shiba
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - Hiroyuki Munehara
- Usujiri Fisheries Station, Field Science Center for Northern BiosphereHokkaido UniversityHakodateJapan
| | - Yasunori Koya
- Department of Biology, Faculty of EducationGifu UniversityGifuJapan
| | | | - Satoshi Awata
- Department of Biology, Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- Department of Biology and Geosciences, Graduate School of ScienceOsaka City UniversityOsakaJapan
| |
Collapse
|
8
|
Soulsbury CD, Humphries S. Biophysical Determinants and Constraints on Sperm Swimming Velocity. Cells 2022; 11:3360. [PMID: 36359756 PMCID: PMC9656961 DOI: 10.3390/cells11213360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/02/2024] Open
Abstract
Over the last 50 years, sperm competition has become increasingly recognised as a potent evolutionary force shaping male ejaculate traits. One such trait is sperm swimming speed, with faster sperm associated with increased fertilisation success in some species. Consequently, sperm are often thought to have evolved to be longer in order to facilitate faster movement. However, despite the intrinsic appeal of this argument, sperm operate in a different biophysical environment than we are used to, and instead increasing length may not necessarily be associated with higher velocity. Here, we test four predictive models (ConstantPower Density, Constant Speed, Constant Power Transfer, Constant Force) of the relationship between sperm length and speed. We collated published data on sperm morphology and velocity from 141 animal species, tested for structural clustering of sperm morphology and then compared the model predictions across all morphologically similar sperm clusters. Within four of five morphological clusters of sperm, we did not find a significant positive relationship between total sperm length and velocity. Instead, in four morphological sperm clusters we found evidence for the Constant Speed model, which predicts that power output is determined by the flagellum and so is proportional to flagellum length. Our results show the relationship between sperm morphology (size, width) and swimming speed is complex and that traditional models do not capture the biophysical interactions involved. Future work therefore needs to incorporate not only a better understanding of how sperm operate in the microfluid environment, but also the importance of fertilising environment, i.e., internal and external fertilisers. The microenvironment in which sperm operate is of critical importance in shaping the relationship between sperm length and form and sperm swimming speed.
Collapse
Affiliation(s)
- Carl D. Soulsbury
- School of Life and Environmental Sciences, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln LN6 7TS, UK
| | | |
Collapse
|
9
|
Sperm Numbers as a Paternity Guard in a Wild Bird. Cells 2022; 11:cells11020231. [PMID: 35053349 PMCID: PMC8773506 DOI: 10.3390/cells11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.
Collapse
|
10
|
Yang W, Wang S, Yang Y, Shen Y, Zhang Y. Improvement of sperm traits related to the high level of extra-pair fertilization in tree sparrow population under long-term environmental heavy metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148109. [PMID: 34102439 DOI: 10.1016/j.scitotenv.2021.148109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Environmental stress can affect sperm traits whose changes have been reported to be associated with extra-pair fertilization (EPF) level in natural animal populations. However, little is known regarding how exposure to environmental heavy metals influences sperm traits and EPF level in free-living bird populations. In a previous study, we found that a tree sparrow (Passer montanus) population that has been exposed to heavy metal pollution over 60 years (Baiyin, BY) exhibits increased sperm quality compared with a population from a relatively unpolluted area (Liujiaxia, LJX). The high sperm quality could be related to extra-pair mating rates. Therefore, the present study investigated EPF level (the ratio of extra-pair offspring) in tree sparrow populations from BY and LJX, and analyzed the relationship between sperm traits (morphology, velocity and quantity) and EPF success. EPF success of tree sparrows was significantly correlated with their sperm velocity (p = 0.048) and total sperm length (p = 0.045), indicating that these sperm traits were important for EPF success. Tree sparrows from the BY population produced longer sperm with lower head/flagellum ratio and faster swimming sperm and showed a significantly higher EPF level than conspecifics from LJX. Thus, adaptive variation of sperm characteristics was related to the high EPF level in tree sparrows under long-term environmental heavy metal pollution. The findings are of scientific significance for exploring the evolution of mating tactics in wild bird populations under environmental stress.
Collapse
Affiliation(s)
- Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Selection on Sperm Count, but Not on Sperm Morphology or Velocity, in a Wild Population of Anolis Lizards. Cells 2021; 10:cells10092369. [PMID: 34572018 PMCID: PMC8464841 DOI: 10.3390/cells10092369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Sperm competition is a widespread phenomenon that shapes male reproductive success. Ejaculates present many potential targets for postcopulatory selection (e.g., sperm morphology, count, and velocity), which are often highly correlated and potentially subject to complex multivariate selection. Although multivariate selection on ejaculate traits has been observed in laboratory experiments, it is unclear whether selection is similarly complex in wild populations, where individuals mate frequently over longer periods of time. We measured univariate and multivariate selection on sperm morphology, sperm count, and sperm velocity in a wild population of brown anole lizards (Anolis sagrei). We conducted a mark-recapture study with genetic parentage assignment to estimate individual reproductive success. We found significant negative directional selection and negative quadratic selection on sperm count, but we did not detect directional or quadratic selection on any other sperm traits, nor did we detect correlational selection on any trait combinations. Our results may reflect pressure on males to produce many small ejaculates and mate frequently over a six-month reproductive season. This study is the first to measure multivariate selection on sperm traits in a wild population and provides an interesting contrast to experimental studies of external fertilizers, which have found complex multivariate selection on sperm phenotypes.
Collapse
|
12
|
Lamar SK, Nelson NJ, Moore JA, Taylor HR, Keall SN, Ormsby DK. Initial collection, characterization, and storage of tuatara (Sphenodon punctatus) sperm offers insight into their unique reproductive system. PLoS One 2021; 16:e0253628. [PMID: 34237077 PMCID: PMC8266091 DOI: 10.1371/journal.pone.0253628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Successful reproduction is critical to the persistence of at-risk species; however, reproductive characteristics are understudied in many wild species. New Zealand’s endemic tuatara (Sphenodon punctatus), the sole surviving member of the reptile order Rhynchocephalia, is restricted to 10% of its historic range. To complement ongoing conservation efforts, we collected and characterized mature sperm from male tuatara for the first time. Semen collected both during mating and from urine after courting contained motile sperm and had the potential for a very high percentage of viable sperm cells (98%). Scanning electron microscopy revealed a filiform sperm cell with distinct divisions: head, midpiece, tail, and reduced end piece. Finally, our initial curvilinear velocity estimates for tuatara sperm are 2–4 times faster than any previously studied reptile. Further work is needed to examine these trends at a larger scale; however, this research provides valuable information regarding reproduction in this basal reptile.
Collapse
Affiliation(s)
- Sarah K. Lamar
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - Nicola J. Nelson
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jennifer A. Moore
- Biology Department, Grand Valley State University, Allendale, Michigan, United States of America
| | - Helen R. Taylor
- Royal Zoological Society of Scotland, Edinburgh, United Kingdom
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Susan N. Keall
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Diane K. Ormsby
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
13
|
Cramer ERA, Grønstøl G, Maxwell L, Kovach AI, Lifjeld JT. Sperm length divergence as a potential prezygotic barrier in a passerine hybrid zone. Ecol Evol 2021; 11:9489-9497. [PMID: 34306637 PMCID: PMC8293778 DOI: 10.1002/ece3.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The saltmarsh sparrow Ammospiza caudacuta and Nelson's sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male-female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among-male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co-evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.
Collapse
Affiliation(s)
| | | | - Logan Maxwell
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
14
|
Cramer ERA, Garcia-del-Rey E, Johannessen LE, Laskemoen T, Marthinsen G, Johnsen A, Lifjeld JT. Longer Sperm Swim More Slowly in the Canary Islands Chiffchaff. Cells 2021; 10:cells10061358. [PMID: 34073133 PMCID: PMC8228216 DOI: 10.3390/cells10061358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022] Open
Abstract
Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology-swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.
Collapse
Affiliation(s)
- Emily R. A. Cramer
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
- Correspondence:
| | - Eduardo Garcia-del-Rey
- Macaronesian Institute of Field Ornithology, 38001 Santa Cruz de Tenerife, Canary Islands, Spain;
| | - Lars Erik Johannessen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Terje Laskemoen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Gunnhild Marthinsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Arild Johnsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Jan T. Lifjeld
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| |
Collapse
|
15
|
van der Horst G. Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates. Animals (Basel) 2021; 11:1491. [PMID: 34064087 PMCID: PMC8224341 DOI: 10.3390/ani11061491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: in order to propagate wildlife species (covering the whole spectrum from species suitable for aquaculture to endangered species), it is important to have a good understanding of the quality of their sperm, oocytes and embryos. While sperm quality analyses have mainly used manual assessment in the past, such manual estimations are subjective and largely unreliable. Accordingly, quantitative and cutting-edge approaches are required to assess the various aspects of sperm quality. The purpose of this investigation was to illustrate the latest technology used in quantitative evaluation of sperm quality and the required cut-off points to distinguish the differential grades of fertility potential in a wide range of vertebrate species. (2) Methods: computer-aided sperm analysis (CASA) with an emphasis on sperm motility, 3D tracking and flagellar and sperm tracking analysis (FAST), as well as quantitative assessment of sperm morphology, vitality, acrosome status, fragmentation and many other complimentary technologies. (3) Results: Assessing sperm quality revealed a great deal of species specificity. For example, in freshwater fish like trout, sperm swam in a typical tight helical pattern, but in seawater species sperm motility was more progressive. In amphibian species, sperm velocity was slow, in contrast with some bird species (e.g., ostrich). Meanwhile, in African elephant and some antelope species, fast progressive sperm was evident. In most species, there was a high percentage of morphologically normal sperm, but generally, low percentages were observed for motility, vitality and normal morphology evident in monogamous species. (4) Conclusions: Sperm quality assessment using quantitative methodologies such as CASA motility, FAST analysis, morphology and vitality, as well as more progressive methodologies, assisted in better defining sperm quality-specifically, sperm functionality of high-quality sperm. This approach will assist in the propagation of wildlife species.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
16
|
Mccarthy E, Mcdiarmid CS, Hurley LL, Rowe M, Griffith SC. Highly variable sperm morphology in the masked finch ( Poephila personata) and other estrildid finches. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Spermatozoa exhibit remarkable levels of morphological diversification among and within species. Among the passerine birds, the zebra finch (Taeniopygia guttata) has become a model system for studies of sperm biology, yet studies of closely related Estrildidae finches remain scarce. Here, we examine sperm morphology in the masked finch (Poephila personata) and place the data into the broader context of passerine sperm morphology using data for an additional 189 species. The masked finch exhibited high levels of within- and among-male variation in total sperm length and in specific sperm components. Furthermore, among-male variance in sperm length was significantly greater in estrildid (N = 12) compared with non-estrildid species (N = 178). We suggest that the high variation in sperm morphology in the masked finch and other estrildid species is likely to be linked to low levels of sperm competition, hence relaxed or weak selection on sperm length, in the clade. Our findings highlight that the highly variable sperm of the masked finch and widely studied zebra finch are ‘typical’ for estrildid species and stress the relevance of studying groups of closely related species. Finally, we suggest that further studies of Estrildidae will enhance our understanding of sperm diversity and avian diversity more generally.
Collapse
Affiliation(s)
- Elise Mccarthy
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Callum S Mcdiarmid
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laura L Hurley
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AB, Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Measuring Pre- and Post-Copulatory Sexual Selection and Their Interaction in Socially Monogamous Species with Extra-Pair Paternity. Cells 2021; 10:cells10030620. [PMID: 33799610 PMCID: PMC7999480 DOI: 10.3390/cells10030620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
When females copulate with multiple males, pre- and post-copulatory sexual selection may interact synergistically or in opposition. Studying this interaction in wild populations is complex and potentially biased, because copulation and fertilization success are often inferred from offspring parentage rather than being directly measured. Here, I simulated 15 species of socially monogamous birds with varying levels of extra-pair paternity, where I could independently cause a male secondary sexual trait to improve copulation success, and a sperm trait to improve fertilization success. By varying the degree of correlation between the male and sperm traits, I show that several common statistical approaches, including univariate selection gradients and paired t-tests comparing extra-pair males to the within-pair males they cuckolded, can give highly biased results for sperm traits. These tests should therefore be avoided for sperm traits in socially monogamous species with extra-pair paternity, unless the sperm trait is known to be uncorrelated with male trait(s) impacting copulation success. In contrast, multivariate selection analysis and a regression of the proportion of extra-pair brood(s) sired on the sperm trait of the extra-pair male (including only broods where the male sired ≥1 extra-pair offspring) were unbiased, and appear likely to be unbiased under a broad range of conditions for this mating system. In addition, I investigated whether the occurrence of pre-copulatory selection impacted the strength of post-copulatory selection, and vice versa. I found no evidence of an interaction under the conditions simulated, where the male trait impacted only copulation success and the sperm trait impacted only fertilization success. Instead, direct selection on each trait was independent of whether the other trait was under selection. Although pre- and post-copulatory selection strength was independent, selection on the two traits was positively correlated across species because selection on both traits increased with the frequency of extra-pair copulations in these socially monogamous species.
Collapse
|
18
|
Ito T, Kinoshita I, Tahara D, Goto A, Tojima S, Sideleva VG, Kupchinsky AB, Awata S. Fertilization modes drive the evolution of sperm traits in Baikal sculpins. J Zool (1987) 2021. [DOI: 10.1111/jzo.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. Ito
- Department of Biology and Geosciences Graduate School of Science Osaka City University Osaka Japan
| | - I. Kinoshita
- Usa Marine Biological InstituteKochi University Kochi Japan
| | - D. Tahara
- Research Center for Marine Bioresources Fukui Prefectural University Fukui Japan
| | - A. Goto
- Department of Science of Environmental Education Hokkaido University of Education Hokkaido Japan
| | - S. Tojima
- Usa Marine Biological InstituteKochi University Kochi Japan
| | - V. G. Sideleva
- Zoological InstituteThe Russian Academy of Sciences Saint Petersburg Russia
| | - A. B. Kupchinsky
- Siberian Branch Baikal MuseumIrkutsk Scientific CenterRussian Academy of Sciences Listvyanka Russia
| | - S. Awata
- Department of Biology and Geosciences Graduate School of Science Osaka City University Osaka Japan
| |
Collapse
|
19
|
Rowe M, Whittington E, Borziak K, Ravinet M, Eroukhmanoff F, Sætre GP, Dorus S. Molecular Diversification of the Seminal Fluid Proteome in a Recently Diverged Passerine Species Pair. Mol Biol Evol 2020; 37:488-506. [PMID: 31665510 PMCID: PMC6993853 DOI: 10.1093/molbev/msz235] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) mediate an array of postmating reproductive processes that influence fertilization and fertility. As such, it is widely held that SFPs may contribute to postmating, prezygotic reproductive barriers between closely related taxa. We investigated seminal fluid (SF) diversification in a recently diverged passerine species pair (Passer domesticus and Passer hispaniolensis) using a combination of proteomic and comparative evolutionary genomic approaches. First, we characterized and compared the SF proteome of the two species, revealing consistencies with known aspects of SFP biology and function in other taxa, including the presence and diversification of proteins involved in immunity and sperm maturation. Second, using whole-genome resequencing data, we assessed patterns of genomic differentiation between house and Spanish sparrows. These analyses detected divergent selection on immunity-related SF genes and positive selective sweeps in regions containing a number of SF genes that also exhibited protein abundance diversification between species. Finally, we analyzed the molecular evolution of SFPs across 11 passerine species and found a significantly higher rate of positive selection in SFPs compared with the rest of the genome, as well as significant enrichments for functional pathways related to immunity in the set of positively selected SF genes. Our results suggest that selection on immunity pathways is an important determinant of passerine SF composition and evolution. Assessing the role of immunity genes in speciation in other recently diverged taxa should be prioritized given the potential role for immunity-related proteins in reproductive incompatibilities in Passer sparrows.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
20
|
Cargnelutti F, Calbacho-Rosa L, Uñates D, Costa-Schmidt LE, Córdoba-Aguilar A, Peretti AV. Copulatory behaviour increases sperm viability in female spiders. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
One remarkable reproductive feature in animals with internal fertilization is a reduction in sperm viability over time in females. Whether this reduction is driven by male–male competition and/or cryptic female choice is unclear. From the perspective of cryptic female choice, we postulated that sperm viability is affected by a particular male copulatory behaviour. In this study, we investigated the following aspects: (1) sperm viability in mated females vs. males; (2) whether sperm viability varies temporally after mating; and (3) whether male copulatory behaviour covaries positively with sperm viability within females. We used the spider Holocnemus pluchei, whose males use several copulatory behaviours to court females. We found that females that stored sperm for 4 or 15 days showed no difference in sperm viability but had lower sperm viability compared with males, and males that performed a longer post-insemination behaviour had higher sperm viability inside the female. It is unclear how sperm viability is reduced and how male post-insemination behaviour affects this. It is possible that extending copulation allows males to induce females to keep sperm alive for longer. This result is predicted by theory whereby males induce females to facilitate sperm to reach and fertilize eggs based on male postcopulatory behaviour.
Collapse
Affiliation(s)
- Franco Cargnelutti
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Lucia Calbacho-Rosa
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Diego Uñates
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Luiz Ernesto Costa-Schmidt
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, Rio Grande do Sul, Brasil
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Rio Grande do Sul, Brasil
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Alfredo Vicente Peretti
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| |
Collapse
|
21
|
Carballo L, Delhey K, Valcu M, Kempenaers B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J Evol Biol 2020; 33:1543-1557. [PMID: 32797649 DOI: 10.1111/jeb.13690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023]
Abstract
Psittaciformes (parrots, cockatoos and lorikeets) comprise one of the most colourful clades of birds. Their unique pigments and safe cavity nesting habits are two potential explanations for their colourful character. However, plumage colour varies substantially between parrot species and sometimes also between males and females of the same species. Here, we use comparative analyses to evaluate what factors correlate with colour elaboration, colour diversity and sexual dichromatism. Specifically, we test the association between different aspects of parrot colouration and (a) the intensity of sexual selection and social interactions, (b) variation along the slow-fast life-history continuum and (c) climatic variation. We show that larger species and species that live in warm environments display more elaborated colours, yet smaller species have higher levels of sexual dichromatism. Larger parrots tend to have darker and more blue and red colours. Parrots that live in wetter environments are darker and redder, whereas species inhabiting warm regions have more blue plumage colours. In general, each of the variables we considered explain small to moderate amounts of variation in parrot colouration (up to 15%). Our data suggest that sexual selection may be acting more strongly on males in small, short-lived parrots leading to sexual dichromatism. More elaborate colouration in both males and females of the larger, long-lived species with slow tropical life histories suggests that mutual mate choice, social selection and reduced selection for crypsis may be important in these species, as has been shown for passerines.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Kaspar Delhey
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
22
|
Lara CE, Taylor HR, Holtmann B, Johnson SL, Santos ESA, Gemmell NJ, Nakagawa S. Dunnock social status correlates with sperm speed, but fast sperm does not always equal high fitness. J Evol Biol 2020; 33:1139-1148. [PMID: 32472954 DOI: 10.1111/jeb.13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Sperm competition theory predicts that males should modulate sperm investment according to their social status. Sperm speed, one proxy of sperm quality, also influences the outcome of sperm competition because fast sperm cells may fertilize eggs before slow sperm cells. We evaluated whether the social status of males predicted their sperm speed in a wild population of dunnocks (Prunella modularis). In addition to the traditional analysis of the average speed of sperm cells per sample, we also analysed subsamples of the fastest sperm cells per sample. In other words, we systematically evaluated the effects of including different numbers of the fastest sperm in our analyses, ranging from the 5-fastest sperm cells to the 100-fastest sperm cells in a sample. We further evaluated whether fitness, defined here as the number of chicks sired per male per breeding season, relates to the sperm speed in the same population. We found that males in monogamous pairings (i.e. low levels of sperm competition), produced the slowest sperm cells, whereas subordinate males in polyandrous male-male coalitions (i.e. high levels of sperm competition) produced the fastest sperm cells. This result was consistent regardless of the number of fastest sperm included in our analyses, but statistical support was conditional on the number of sperm cells included in the analysis. Interestingly, we found no significant relationship between fitness and sperm speed, which suggests that it is possible that the differential mating opportunities across social status levelled out any possible difference. Our study also suggests that it is important to identify biologically meaningful subsets of fastest sperm and cut-offs for inclusions for assessing sperm competition via sperm speed.
Collapse
Affiliation(s)
- Carlos E Lara
- Department of Zoology, University of Otago, Dunedin, New Zealand
- GEBIOME, Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Helen R Taylor
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Royal Zoological Society of Scotland, Edinburgh, UK
| | - Benedikt Holtmann
- Behavioural Ecology, Department of Biology II, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Eduardo S A Santos
- BECO Lab, Department of Zoology, University of São Paulo, São Paulo, SP, Brazil
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Cardozo G, Devigili A, Antonelli P, Pilastro A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J Evol Biol 2020; 33:1294-1305. [PMID: 32614995 DOI: 10.1111/jeb.13673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade-offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live-bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready-to-use sperm (an anticipatory response called 'sperm priming'). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm-primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female-stored sperm, weeks after insemination. By suggesting a plastic trade-off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.
Collapse
Affiliation(s)
- Gabriela Cardozo
- Laboratorio de Biología del Comportamiento, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Devigili
- Department of Biology, University of Padova, Padua, Italy.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc Biol Sci 2020; 287:20201031. [PMID: 32673555 DOI: 10.1098/rspb.2020.1031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In species with internal fertilization, the female genital tract appears challenging to sperm, possibly resulting from selection on for example ovarian fluid to control sperm behaviour and, ultimately, fertilization. Few studies, however, have examined the effects of swimming media viscosities on sperm performance. We quantified effects of media viscosities on sperm velocity in promiscuous willow warblers Phylloscopus trochilus. We used both a reaction norm and a character-state approach to model phenotypic plasticity of sperm behaviour across three experimental media of different viscosities. Compared with a standard medium (Dulbecco's Modified Eagle Medium, DMEM), media enriched with 1% or 2% w/v methyl cellulose decreased sperm velocity by up to about 50%. Spermatozoa from experimental ejaculates of different males responded similarly to different viscosities, and a lack of covariance between elevations and slopes of individual velocity-by-viscosity reaction norms indicated that spermatozoa from high- and low-velocity ejaculates were slowed down by a similar degree when confronted with high-viscosity environments. Positive cross-environment (1% versus 2% cellulose) covariances of sperm velocity under the character-state approach suggested that sperm performance represents a transitive trait, with rank order of individual ejaculates maintained when expressed against different environmental backgrounds. Importantly, however, a lack of significant covariances in sperm velocity involving a cellulose concentration of 0% indicated that pure DMEM represented a qualitatively different environment, questioning the validity of this widely used standard medium for assaying sperm performance. Enriching sperm environments along ecologically relevant gradients prior to assessing sperm performance will strengthen explanatory power of in vitro studies of sperm behaviour.
Collapse
Affiliation(s)
- Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany
| | - Geir Rudolfsen
- The Arctic University Museum of Norway, The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Holger Schielzeth
- Evolutionary Biology, Bielefeld University, Konsequenz 45, D-33615 Bielefeld, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
25
|
Sperm Morphology and Male Age in Black-Throated Blue Warblers, an Ecological Model System. Animals (Basel) 2020; 10:ani10071175. [PMID: 32664407 PMCID: PMC7401543 DOI: 10.3390/ani10071175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Extra-pair paternity may drive selection on spermatozoa and ejaculate characteristics through sperm competition and cryptic female choice. Here, we examine sperm morphology in the black-throated blue warbler (Setophaga caerulescens), an ecological model species where extra-pair paternity is frequent and is linked with male age. We test whether sperm morphology relates to several aspects of male phenotype known or suspected to affect extra-pair paternity success. Sperm morphology did not correlate with the size of the white wing spot, a social status signal, nor with the volume of the cloacal protuberance. However, older males tended to have longer sperm cells. Although the sample size was limited, this pattern is intriguing, as longer cells may be advantageous in post-copulatory sexual selection and older males have larger testes and higher extra-pair paternity success in this species. Changes in sperm morphology with age are not observed in other birds, though they have been observed in insects and fishes. More research on sperm morphology is needed to clarify its role in extra-pair fertilizations in this well-studied species.
Collapse
|
26
|
Durrant KL, Reader T, Symonds MRE. Pre- and post-copulatory traits working in concert: sexual dichromatism in passerines is associated with sperm morphology. Biol Lett 2020; 16:20190568. [PMID: 31937213 DOI: 10.1098/rsbl.2019.0568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Passerine birds produce costly traits under intense sexual selection, including elaborate sexually dichromatic plumage and sperm morphologies, to compete for fertilizations. Plumage and sperm traits vary markedly among species, but it is unknown if this reflects a trade-off between pre- and post-copulatory investment under strong sexual selection producing negative trait covariance, or variation in the strength of sexual selection among species producing positive covariance. Using phylogenetic regression, we analysed datasets describing plumage and sperm morphological traits for 278 passerine species. We found a significant positive relationship between sperm midpiece length and male plumage elaboration and sexual dichromatism. We did not find a relationship between plumage elaboration and testes mass. Our results do not support a trade-off between plumage and sperm traits, but may be indicative of variance among species in the strength of sexual selection to produce both brightly coloured plumage and costly sperm traits.
Collapse
Affiliation(s)
- Kate L Durrant
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tom Reader
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
27
|
Liao WB, Zhong MJ, Lüpold S. Sperm quality and quantity evolve through different selective processes in the Phasianidae. Sci Rep 2019; 9:19278. [PMID: 31848414 PMCID: PMC6917726 DOI: 10.1038/s41598-019-55822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Sperm competition is often considered the primary selective force underlying the rapid and diversifying evolution of ejaculate traits. Yet, several recent studies have drawn attention to other forms of selection with the potential of exceeding the effects of sperm competition. Since ejaculates are complex, multivariate traits, it seems plausible that different ejaculate components vary in their responses to different selective pressures. Such information, however, is generally lacking as individual ejaculate traits tend to be studied in isolation. Here, we studied the macroevolutionary patterns of ejaculate volume, sperm number, sperm length and the proportion of viable normal sperm in response to varying levels of sperm competition, body size and the duration of female sperm storage in pheasants and allies (Phasianidae). Ejaculate volume, sperm number and sperm viability were all relatively higher in polygamous than in monogamous mating systems. However, whereas ejaculate volume additionally covaried with body size, sperm number instead increased with the female sperm-storage duration, in conjunction with a decrease in sperm length. Overall, our results revealed important details on how different forms of selection can jointly shape ejaculates as complex, composite traits.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China. .,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China. .,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China.
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, 8057, Zurich, Switzerland
| |
Collapse
|
28
|
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, Kempster RM, Collin SP, Giacomello E, Follesa MC, Porcu C, Evans JP, Hazin F, Garcia-Gonzalez F, Daly-Engel T, Mazzoldi C, Fitzpatrick JL. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol 2019; 32:1027-1035. [PMID: 31250483 DOI: 10.1111/jeb.13501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 01/18/2023]
Abstract
Post-copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post-copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter- and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.
Collapse
Affiliation(s)
- Amy Rowley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lisa Locatello
- Department of Biology, University of Padova, Padua, Italy
| | - Ariel Kahrl
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mariana Rego
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Eduardo Garza-Gisholt
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ryan M Kempster
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P Collin
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia.,School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Eva Giacomello
- MARE - Marine and Environmental Sciences Centre, IMAR- Institute of the Sea, OKEANOS Centre- University of the Azores, Horta, Portugal
| | - Maria C Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Porcu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Fabio Hazin
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| | - Toby Daly-Engel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | | | |
Collapse
|
29
|
Lifjeld JT, Gohli J, Albrecht T, Garcia-Del-Rey E, Johannessen LE, Kleven O, Marki PZ, Omotoriogun TC, Rowe M, Johnsen A. Evolution of female promiscuity in Passerides songbirds. BMC Evol Biol 2019; 19:169. [PMID: 31412767 PMCID: PMC6694576 DOI: 10.1186/s12862-019-1493-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background Female promiscuity is highly variable among birds, and particularly among songbirds. Comparative work has identified several patterns of covariation with social, sexual, ecological and life history traits. However, it is unclear whether these patterns reflect causes or consequences of female promiscuity, or if they are byproducts of some unknown evolutionary drivers. Moreover, factors that explain promiscuity at the deep nodes in the phylogenetic tree may be different from those important at the tips, i.e. among closely related species. Here we examine the relationships between female promiscuity and a broad set of predictor variables in a comprehensive data set (N = 202 species) of Passerides songbirds, which is a highly diversified infraorder of the Passeriformes exhibiting significant variation in female promiscuity. Results Female promiscuity was highly variable in all major clades of the Passerides phylogeny and also among closely related species. We found several significant associations with female promiscuity, albeit with fairly small effect sizes (all R2 ≤ 0.08). More promiscuous species had: 1) less male parental care, particularly during the early stages of the nesting cycle (nest building and incubation), 2) more short-term pair bonds, 3) greater degree of sexual dichromatism, primarily because females were drabber, 4) more migratory behaviour, and 5) stronger pre-mating sexual selection. In a multivariate model, however, the effect of sexual selection disappeared, while the other four variables showed additive effects and together explained about 16% of the total variance in female promiscuity. Female promiscuity showed no relationship with body size, life history variation, latitude or cooperative breeding. Conclusions We found that multiple traits were associated with female promiscuity, but these associations were generally weak. Some traits, such as reduced parental care in males and more cryptic plumage in females, might even be responses to, rather than causes of, variation in female promiscuity. Hence, the high variation in female promiscuity among Passerides species remains enigmatic. Female promiscuity seems to be a rapidly evolving trait that often diverges between species with similar ecologies and breeding systems. A future challenge is therefore to understand what drives within-lineage variation in female promiscuity over microevolutionary time scales. Electronic supplementary material The online version of this article (10.1186/s12862-019-1493-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan T Lifjeld
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway.
| | - Jostein Gohli
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, CZ-67502, Brno, Czech Republic.,Department of Zoology, Charles University in Prague, Viničná 7, CZ-12844, Prague, Czech Republic
| | - Eduardo Garcia-Del-Rey
- Macaronesian Institute of Field Ornithology, C/ Elias Ramos Gonzalez 5, 3-H, 38001, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Lars Erik Johannessen
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway
| | - Oddmund Kleven
- Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, NO-7485, Trondheim, Norway
| | - Petter Z Marki
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Taiwo C Omotoriogun
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway.,A.P. Leventis Ornithological Research Institute, University of Jos, Jos, Nigeria.,Biotechnology Unit, Department of Biological Sciences, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State, Nigeria
| | - Melissah Rowe
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Arild Johnsen
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318, Oslo, Norway
| |
Collapse
|
30
|
Carballo L, Battistotti A, Teltscher K, Lierz M, Bublat A, Valcu M, Kempenaers B. Sperm morphology and evidence for sperm competition among parrots. J Evol Biol 2019; 32:856-867. [PMID: 31245887 PMCID: PMC6852422 DOI: 10.1111/jeb.13487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alessandra Battistotti
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Biology, University of Padua, Padova, Italy
| | - Kim Teltscher
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Andreas Bublat
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
31
|
Vega‐Trejo R, Fox RJ, Iglesias‐Carrasco M, Head ML, Jennions MD. The effects of male age, sperm age and mating history on ejaculate senescence. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
- Department of Zoology Stockholm University Stockholm Sweden
| | - Rebecca J. Fox
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Maider Iglesias‐Carrasco
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Megan L. Head
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
32
|
Dzyuba V, Sampels S, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M, Cosson J, Boryshpolets S, Selinger M, Sterba J, Dzyuba B. Sperm motility and lipid composition in internally fertilizing ocellate river stingray Potamotrygon motoro. Theriogenology 2019; 130:26-35. [PMID: 30856412 DOI: 10.1016/j.theriogenology.2019.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/24/2019] [Indexed: 01/13/2023]
Abstract
All extant groups of Elasmobranches have internal fertilization and the structure of the male reproductive organs is very specific: sperm passes from the internal organs via the cloaca, but the male copulating organ (clasper) is distant from the cloaca. This suggests that sperm can contact the surrounding medium before fertilization. Because of this involvement with the environment, external signaling in sperm motility activation could occur in these species even though their fertilization mode is internal. In this case, spermatozoa of Elasmobranches should hypothetically possess a specific structure and membrane lipid composition which supports physiological functions of the sperm associated with environmental tonicity changes occurring at fertilization. Additionally, sperm motility properties in these taxa are poorly understood. The current study examined sperm lipid composition and motility under different environmental conditions for the ocellate river stingray, Potamotrygon motoro, an endemic South America freshwater species. Sperm samples were collected from six mature males during the natural spawning period. Sperm motility was examined in seminal fluid and fresh water by light video microscopy. Helical flagellar motion was observed in seminal fluid and resulted in spermatozoon progression; however, when diluted in fresh water, spermatozoa were immotile and had compromised structure. Lipid class and fatty acid (FA) composition of spermatozoa was analyzed by thin layer and gas chromatography. Spermatozoa FAs consisted of 33 ± 1% saturated FAs, 28 ± 1% monounsaturated FAs (MUFAs), and 41 ± 1% polyunsaturated FAs (PUFAs), and a high content of n-6 FAs (32 ± 2%) was measured. These results allowed us to conclude that sperm transfer from P. motoro male into female should occur without coming into contact with the hypotonic environment so as to preserve potent motility. In addition, this unusual reproductive strategy is associated with specific spermatozoa structure and lipid composition. Low level of docosahexaenoic acid and relatively low PUFA/MUFA ratio probably account for the relatively low fluidity of freshwater stingray membrane and can be the main reason for its low tolerance to hypotonicity.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sabine Sampels
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, PO Box 7015, 75007, Uppsala, Sweden
| | - Alexandre Ninhaus-Silveira
- São Paulo State University, Ilha Solteira, Faculty of Engineering, Department of Biology and Zootechny, Neotropical Ichthyology Laboratory - LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil
| | - Martin Kahanec
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Rosicleire Veríssimo-Silveira
- São Paulo State University, Ilha Solteira, Faculty of Engineering, Department of Biology and Zootechny, Neotropical Ichthyology Laboratory - LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil
| | - Marek Rodina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Selinger
- University of South Bohemia in České Budějovice, Faculty of Science, Institute of Chemistry, Branišovská 1760, 370 05, České Budějovice, Czech Republic; Biology Centre of Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jan Sterba
- University of South Bohemia in České Budějovice, Faculty of Science, Institute of Chemistry, Branišovská 1760, 370 05, České Budějovice, Czech Republic; Biology Centre of Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Borys Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
33
|
Manier MK, Welch G, Van Nispen C, Bakst MR, Long J. Low-mobility sperm phenotype in the domestic turkey: Impact on sperm morphometry and early embryonic death. Reprod Domest Anim 2019; 54:613-621. [PMID: 30650207 DOI: 10.1111/rda.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Abstract
The sperm mobility assay measures the ability of sperm to swim through a dense layer of Accudenz® , and the sperm mobility phenotype has been shown to predict fertility and other sperm performance traits in roosters and turkeys. In this study, we examined turkey sperm morphometry and rates of early embryonic death associated with high- and low-mobility semen. We also assessed whether the hypo-osmotic stress test, which evaluates the structural integrity of the sperm plasma membrane, may be used as a faster and simpler assay for sperm mobility and viability. We confirmed previous work that found that high-mobility sperm are faster and swim more linearly than low-mobility sperm, and that mobility traits were repeatable within males. In contrast to previous studies, we did not find higher rates of fertility, but low-mobility sperm was associated with higher rates of early embryonic death, though this trend was not significant. High-mobility sperm had longer sperm heads, explained by longer nuclei, despite shorter acrosomes. Although these sperm were faster, midpiece length and flagellum length did not differ between high- and low-mobility sperm. Finally, mobility was not found to be associated with sperm performance in the hypo-osmotic stress test.
Collapse
Affiliation(s)
- Mollie K Manier
- Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Glenn Welch
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
| | - Christiaan Van Nispen
- Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Murray R Bakst
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
| | - Julie Long
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
| |
Collapse
|
34
|
Albrecht T, Opletalová K, Reif J, Janoušek V, Piálek L, Cramer ERA, Johnsen A, Reifová R. Sperm divergence in a passerine contact zone: Indication of reinforcement at the gametic level. Evolution 2019; 73:202-213. [DOI: 10.1111/evo.13677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Tomáš Albrecht
- Faculty of Science, Department of ZoologyCharles University in Prague Praha 2 , CZ‐12844 Czech Republic
- Institute of Vertebrate Biology, v.v.i.The Czech Academy of Sciences Brno CZ‐60365 Czech Republic
| | - Kamila Opletalová
- Faculty of Science, Department of ZoologyCharles University in Prague Praha 2 , CZ‐12844 Czech Republic
| | - Jiří Reif
- Faculty of Science, Institute for Environmental StudiesCharles University in Prague Praha 2 CZ‐12100 Czech Republic
| | - Václav Janoušek
- Faculty of Science, Department of ZoologyCharles University in Prague Praha 2 , CZ‐12844 Czech Republic
| | - Lubomír Piálek
- Faculty of Science, Department of ZoologyUniversity of South Bohemia České Budějovice CZ‐370 05 Czech Republic
| | | | - Arild Johnsen
- Natural History MuseumUniversity of Oslo 0318 Oslo Norway
| | - Radka Reifová
- Faculty of Science, Department of ZoologyCharles University in Prague Praha 2 , CZ‐12844 Czech Republic
| |
Collapse
|
35
|
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, Reifová R. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity (Edinb) 2018; 122:622-635. [PMID: 30374041 DOI: 10.1038/s41437-018-0161-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jitka Fischerová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Libor Mořkovský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 128 01, Czech Republic
| | - Marcin Antczak
- Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.,Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
36
|
Hooper DM, Griffith SC, Price TD. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol Ecol 2018; 28:1246-1262. [PMID: 30230092 DOI: 10.1111/mec.14874] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long-tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced-representation genomic sequencing for 293 individuals over a 1,530-km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.
Collapse
Affiliation(s)
- Daniel M Hooper
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York.,Committe on Evolutionary Biology, University of Chicago, Chicago, Illinois
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Trevor D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Dzyuba V, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M, Holt WV, Dzyuba B. Sperm motility in ocellate river stingrays: evidence for post-testicular sperm maturation and capacitation in Chondrichthyes. J Zool (1987) 2018. [DOI: 10.1111/jzo.12610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- V. Dzyuba
- Faculty of Fisheries and Protection of Waters; Research Institute of Fish Culture and Hydrobiology; University of South Bohemia in Ceske Budejovice; Vodnany Czech Republic
| | - A. Ninhaus-Silveira
- Neotropical Ichthyology Laboratory - LINEO; Department of Biology and Zootechnics; Ilha Solteira School of Engineering; São Paulo State University; Ilha Solteira SP Brazil
| | - M. Kahanec
- Faculty of Fisheries and Protection of Waters; Research Institute of Fish Culture and Hydrobiology; University of South Bohemia in Ceske Budejovice; Vodnany Czech Republic
| | - R. Veríssimo-Silveira
- Neotropical Ichthyology Laboratory - LINEO; Department of Biology and Zootechnics; Ilha Solteira School of Engineering; São Paulo State University; Ilha Solteira SP Brazil
| | - M. Rodina
- Faculty of Fisheries and Protection of Waters; Research Institute of Fish Culture and Hydrobiology; University of South Bohemia in Ceske Budejovice; Vodnany Czech Republic
| | - W. V. Holt
- Department of Human Metabolism; Academic Unit of Reproductive and Developmental Medicine; The University of Sheffield; Sheffield UK
| | - B. Dzyuba
- Faculty of Fisheries and Protection of Waters; Research Institute of Fish Culture and Hydrobiology; University of South Bohemia in Ceske Budejovice; Vodnany Czech Republic
| |
Collapse
|
38
|
Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: A comparative study of songbirds using electron microscopy. Evolution 2018; 72:1918-1932. [DOI: 10.1111/evo.13555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum University of Oslo 0318 Oslo Norway
| | | | - Melissah Rowe
- Natural History Museum University of Oslo 0318 Oslo Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo 0316 Oslo Norway
| |
Collapse
|
39
|
Mendonca T, Birkhead TR, Cadby AJ, Forstmeier W, Hemmings N. A trade-off between thickness and length in the zebra finch sperm mid-piece. Proc Biol Sci 2018; 285:rspb.2018.0865. [PMID: 30051869 PMCID: PMC6083248 DOI: 10.1098/rspb.2018.0865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/29/2018] [Indexed: 01/22/2023] Open
Abstract
The sperm mid-piece has traditionally been considered to be the engine that powers sperm. Larger mid-pieces have therefore been assumed to provide greater energetic capacity. However, in the zebra finch Taeniopygia guttata, a recent study showed a surprising negative relationship between mid-piece length and sperm energy content. Using a multi-dimensional approach to study mid-piece structure, we tested whether this unexpected relationship can be explained by a trade-off between mid-piece length and mid-piece thickness and/or cristae density inside the mitochondrial helix. We used selective plane illumination microscopy to study mid-piece structure from three-dimensional images of zebra finch sperm and used high-resolution transmission electron microscopy to quantify mitochondrial density. Contrary to the assumption that longer mid-pieces are larger and therefore produce or contain a greater amount of energy, our results indicate that the amount of mitochondrial material is consistent across mid-pieces of varying lengths, and longer mid-pieces are simply proportionately ‘thinner’.
Collapse
Affiliation(s)
- Tania Mendonca
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK .,Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim R Birkhead
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ashley J Cadby
- Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
40
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
41
|
Liberti J, Baer B, Boomsma JJ. Rival seminal fluid induces enhanced sperm motility in a polyandrous ant. BMC Evol Biol 2018; 18:28. [PMID: 29566664 PMCID: PMC5865361 DOI: 10.1186/s12862-018-1144-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Promiscuous mating and sperm competition often induce arms races between the sexes with detrimental outcomes for females. However, ants with multiply-inseminated queens have only a single time-window for sperm competition and queens are predicted to gain control over the outcome of sperm storage quickly. The seminal fluid of Acromyrmex leaf-cutting ants reduces the viability of rival sperm, but how confrontations between unrelated ejaculates affect sperm storage remains unknown. Results We investigated the effects of ejaculate admixture on sperm motility in A. echinatior and found that the proportion of motile spermatozoa, sperm swimming speed, and linearity of sperm movement increased when rival ejaculates were mixed in vitro. Major effects induced by the seminal fluid of rival males were of similar magnitude to those generated by queen reproductive tract secretions, whereas own seminal fluid induced lower sperm activation levels. Conclusions Our results suggest that ant sperm respond via a self–non-self recognition mechanism to similar or shared molecules expressed in the reproductive secretions of both sexes. Lower sperm motility in the presence of own seminal fluid indicates that enhanced motility is costly and may trade-off with sperm viability during sperm storage, consistent with studies in vertebrates. Our results imply that ant spermatozoa have evolved to adjust their energetic expenditure during insemination depending on the perceived level of sperm competition. Electronic supplementary material The online version of this article (10.1186/s12862-018-1144-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanito Liberti
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
42
|
Sætre CLC, Johnsen A, Stensrud E, Cramer ERA. Sperm morphology, sperm motility and paternity success in the bluethroat (Luscinia svecica). PLoS One 2018; 13:e0192644. [PMID: 29509773 PMCID: PMC5839561 DOI: 10.1371/journal.pone.0192644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Abstract
Postcopulatory sexual selection may select for male primary sexual characteristics like sperm morphology and sperm motility, through sperm competition or cryptic female choice. However, how such characteristics influence male fertilization success remains poorly understood. In this study, we investigate possible correlations between sperm characteristics and paternity success in the socially monogamous bluethroat (Luscinia svecica svecica), predicting that sperm length and sperm swimming speed is positively correlated with paternity success. In total, 25% (15/61) of broods contained extra-pair offspring and 10% (33/315) of the offspring were sired by extra-pair males. Paternity success did not correlate significantly with sperm morphology or any aspects of sperm motility. Furthermore, sperm morphology and sperm motility did not correlate significantly with male morphological characters that previously have been shown to be associated with paternity success. Thus, the sperm characteristics investigated here do not appear to be strong predictors of paternity success in bluethroats.
Collapse
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Even Stensrud
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
43
|
Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV. Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution 2018; 72:453-472. [PMID: 29359333 DOI: 10.1111/evo.13429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
Abstract
Animal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self- and cross-pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions. We tested for differences in pollen performance in greenhouse-raised populations of two Clarkia sister species: the predominantly outcrossing C. unguiculata and the facultatively self-pollinating C. exilis. Within populations of each taxon, groups of individuals were reciprocally pollinated (n = 1153 pollinations) and their styles examined four hours later. We tested for the effects of species, population, pollen type (self vs. outcross), the number of competing pollen grains, and temperature on pollen performance. Clarkia unguiculata exhibited higher mean PTGR than C. exilis; pollen type had no effect on performance in either taxon. The difference between these species in PTGR is consistent with predictions of sexual selection theory.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Brandon T Hendrickson
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Joseph P Chellew
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lynn J Kim
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasen W Liu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasper Shu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Manju V Sharma
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
44
|
Delbarco-Trillo J, Tourmente M, Varea-Sánchez M, Roldan ERS. Is male reproductive senescence minimized in Mus species with high levels of sperm competition? Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Needham KB, Kucera AC, Heidinger BJ, Greives TJ. Repeated immune challenges affect testosterone but not sperm quality. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:398-406. [DOI: 10.1002/jez.2110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Katie B. Needham
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Aurelia C. Kucera
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Britt J. Heidinger
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Timothy J. Greives
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| |
Collapse
|
46
|
Santiago-Moreno J, Esteso MC, Villaverde-Morcillo S, Toledano-Déaz A, Castaño C, Velázquez R, López-Sebastián A, Goya AL, Martínez JG. Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J Androl 2017; 18:882-888. [PMID: 27678467 PMCID: PMC5109880 DOI: 10.4103/1008-682x.188660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Postcopulatory sexual selection through sperm competition may be an important evolutionary force affecting many reproductive traits, including sperm morphometrics. Environmental factors such as pollutants, pesticides, and climate change may affect different sperm traits, and thus reproduction, in sensitive bird species. Many sperm-handling processes used in assisted reproductive techniques may also affect the size of sperm cells. The accurately measured dimensions of sperm cell structures (especially the head) can thus be used as indicators of environmental influences, in improving our understanding of reproductive and evolutionary strategies, and for optimizing assisted reproductive techniques (e.g., sperm cryopreservation) for use with birds. Computer-assisted sperm morphometry analysis (CASA-Morph) provides an accurate and reliable method for assessing sperm morphometry, reducing the problem of subjectivity associated with human visual assessment. Computerized systems have been standardized for use with semen from different mammalian species. Avian spermatozoa, however, are filiform, limiting their analysis with such systems, which were developed to examine the approximately spherical heads of mammalian sperm cells. To help overcome this, the standardization of staining techniques to be used in computer-assessed light microscopical methods is a priority. The present review discusses these points and describes the sperm morphometric characteristics of several wild and domestic bird species.
Collapse
|
47
|
Blengini C, Naretto S, Cardozo G, Giojalas L, Chiaraviglio M. Comparative sperm ultrastructure of two tegu lizards (genus Salvator) and its relation to sperm competition. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
delBarco-Trillo J, García-Álvarez O, Soler AJ, Tourmente M, Garde JJ, Roldan ERS. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc Biol Sci 2016; 283:20152708. [PMID: 26936246 DOI: 10.1098/rspb.2015.2708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.
Collapse
Affiliation(s)
- Javier delBarco-Trillo
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | | | - Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain
| | | | - Eduardo R S Roldan
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain
| |
Collapse
|
49
|
Sasson DA, Brockmann HJ. Geographic variation in sperm and ejaculate quantity and quality of horseshoe crabs. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, Garcia-del-Rey E. Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC ZOOL 2016. [DOI: 10.1186/s40850-016-0008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|