1
|
Chen TY, Xu J, Tai CH, Wen TK, Hsu SH. Biodegradable, electroconductive self-healing hydrogel based on polydopamine-coated polyurethane nano-crosslinker for Parkinson's disease therapy. Biomaterials 2025; 320:123268. [PMID: 40121830 DOI: 10.1016/j.biomaterials.2025.123268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons, causing motor and neurological impairments. Current treatments offer only temporary symptom relief without halting progression. Herein, a fully biodegradable, electroconductive self-healing hydrogel (CPUD gel) is developed, incorporating electroconductive polydopamine-coated polyurethane nanoparticles (PUD) as crosslinker. The core-shell PUD nanoparticles have a highly uniform size of ∼36 nm with a polydopamine shell of ∼4.8 nm thick on polyurethane core, revealed by small angle X-ray scattering, and own a conductivity of ∼0.82 mS/cm. As nano-crosslinker, the PUD can react with chitosan to form the dynamic CPUD hydrogel with shear modulus (∼280 Pa) and conductivity (∼4.34 mS/cm), mimicking brain tissue properties. In vitro, CPUD gel supports neural stem cell (NSC) proliferation (∼565 %) and differentiation, with elevated neuronal marker expression at 14 days, while exhibiting strong antioxidative and anti-inflammatory effects, rescuing ∼88 % inflamed NSCs. A therapeutic strategy combining injectable CPUD gel with acupuncture in a PD rat model, aiming to activate the innate regenerative mechanisms of body through mobilized endogenous stem cells, is further established. Using this approach, this hydrogel significantly elevates serum TGF-β1/SDF-1 levels, promotes dopaminergic neuron regeneration (>80 %), modulates neuroinflammation through M1-to M2-microglia transition (∼12.6-fold M2/M1 ratio), and improves motor function (from 8 % to 37 % forelimb contacts) in 14 days. Particularly, the electrophysiological spike rate is recovered from 66 to 19 spikes/s, close to the healthy rate 15 spikes/s. The synergistic immunomodulation and neuroprotection highlight the potential of CPUD gel as an advanced therapeutic tool for PD.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Tsung-Kai Wen
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Hein ZM, Che Mohd Nassir CMN, Che Ramli MD, El-Serafi I, Chetsawang B. Neuron-Glial2 (NG2) cells: A promising target for neuroinflammation-related neurodegeneration. TRANSLATIONAL RESEARCH IN ANATOMY 2025; 39:100395. [DOI: 10.1016/j.tria.2025.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
|
3
|
Mimmi S, Parrotta EI, Tolomeo AM, Maisano D, Crapella V, Pingitore E, Fatima K, Zimbo AM, Talarico M, Cristiani CM, Scaramuzzino L, Valente D, Zannino C, Cuda G, Quattrone A, Iaccino E, Quattrone A. Neuronally-Derived Extracellular Vesicles Transforming Growth Factor Beta-1 Levels in Progressive Supranuclear Palsy. Mov Disord 2025. [PMID: 40317792 DOI: 10.1002/mds.30222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Differentiating progressive supranuclear palsy (PSP) from other parkinsonian disorders may be challenging. OBJECTIVES To investigate the role of transforming growth factor beta-1 (TGFβ1) in PSP. METHODS A total of 33 PSP, 39 Parkinson's disease (PD), 8 multiple system atrophy (MSA) patients, and 50 healthy controls (HC) were enrolled. TGFβ1 levels, including both active and inactive forms (latency-associated peptide [LAP]-TGFβ1), were measured in serum, total extracellular vesicles (EVs), and neuronally-derived EVs (NDEVs) using microfluidic assays and ELISA. RESULTS PSP patients exhibited a marked increase in TGFβ1 and LAP-TGFβ1 levels in NDEVs, while no differences were observed across groups in serum or total EVs. Receiver operating characteristic (ROC) analysis demonstrated outstanding performance in differentiating PSP from non-PSP patients (TGFβ1, area under the curve [AUC]: 0.97; LAP-TGFβ1, AUC: 1.00), HC, AUC: 1.00). CONCLUSIONS This study highlights TGFβ1 and LAP-TGFβ1 in NDEVs as promising blood-based non-invasive biomarkers for PSP diagnosis, paving the way for further research on these proteins in PSP. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Selena Mimmi
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Padua, Italy
- Institute of Pediatric Research 'Città della Speranza', Padua, Italy
| | | | - Valentina Crapella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elisabetta Pingitore
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Khushboo Fatima
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gianni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Zehr S, Wolf S, Oellerich T, Leisegang MS, Brandes RP, Schulz MH, Warwick T. GeneCOCOA: Detecting context-specific functions of individual genes using co-expression data. PLoS Comput Biol 2025; 21:e1012278. [PMID: 40163580 PMCID: PMC11964461 DOI: 10.1371/journal.pcbi.1012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/02/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Extraction of meaningful biological insight from gene expression profiling often focuses on the identification of statistically enriched terms or pathways. These methods typically use gene sets as input data, and subsequently return overrepresented terms along with associated statistics describing their enrichment. This approach does not cater to analyses focused on a single gene-of-interest, particularly when the gene lacks prior functional characterization. To address this, we formulated GeneCOCOA, a method which utilizes context-specific gene co-expression and curated functional gene sets, but focuses on a user-supplied gene-of-interest (GOI). The co-expression between the GOI and subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear regression, and resulting root-mean-square error values are compared against background values obtained from randomly selected genes. The resulting p values provide a statistical ranking of functional gene sets from any collection, along with their associated terms, based on their co-expression with the gene of interest in a manner specific to the context and experiment. GeneCOCOA thereby provides biological insight into both gene function, and putative regulatory mechanisms by which the expression of the GOI is controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in the accurate recall of known gene-disease associations. We furthermore include a differential GeneCOCOA mode, thus presenting the first implementation of a gene-focused approach to experiment-specific gene set enrichment analysis. GeneCOCOA is formulated as an R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.
Collapse
Affiliation(s)
- Simonida Zehr
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt am Main, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Kara S, Polat S, Akillioglu K, Saker D, Evli Ce AT, Sencar L, Aydın UF, Polat S. Effects of TGF-β1 on Aβ-40 and α- β- γ secretase expression in hippocampus and prefrontal cortex in experimental Alzheimer's disease. Behav Brain Res 2025; 482:115432. [PMID: 39828086 DOI: 10.1016/j.bbr.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease is a chronic complex neurodegenerative disease characterized with amyloid plaques and loss of neurons. TGF-β1 is important growth factor, plays critical roles in cell metabolism, tissue homeostasis, neuronal development, and synaptic plasticity. In this study, we aimed to examine the effect of TGF-β1 on the regulation of α, β, and γ-secretase enzymes, Aβ-40 accumulation, apoptosis, and neuronal damage in an experimental Scopolamine-induced AD-like model. The subjects were divided into 5 groups such as control, sham, TGF-β1 control, Scopolamin group, TGF-β1 treatment groups.Then all groups were divided into 2 subgroups according to 28th-56th days. Except for Morris water maze (MWM) test, hippocampus and prefrontal cortex tissues were taken for light-electron microscopic, immunohistochemical, and biochemical examinations. It was observed that learning and memory abilities, which decreased in the MWM test of the Scopolamine group, increased in the treatment groups. In addition, α-secretase expression decreased in the Scopolamin group, while it increased in the TGF-β1 treatment group. It was determined that Aβ-40 and caspase-3 immunoreactivity, β and γ-secretase enzyme levels increased in the Scopolamin group and decreased in TGF-β1 treatment group. Cellular degenerations were relatively decreased in TGF-β1 treatment group. It was thought that TGF-β1 might have a therapeutic effect on Alzheimer's disease by increasing memory performance and preventing Aβ-40 accumulation in the AD-like model induced by Scopolamine and also, may be effective preventing neuronal damage by down-regulating caspase-3 expression. When all the findings evaluated together, it was concluded that TGF-β1 could be evaluated as a therapeutic agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey.
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ahmet Turan Evli Ce
- Department of Neurology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ummuhan Fulden Aydın
- Department of Biochemistry, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| |
Collapse
|
6
|
Fedorova EV, Chernomorets IY, Fedorov DA, Arkhipov VI. Delayed treatment with TGF-β1 associated neuroprotection in trimethyltin-induced hippocampal neurodegeneration. Neurosci Lett 2025; 852:138182. [PMID: 40049360 DOI: 10.1016/j.neulet.2025.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
In experiments conducted on Wistar rats, the effects of the multifunctional cytokine TGF-β1 were investigated using a neurodegeneration model induced by a single injection of the neurotoxicant trimethyltin chloride (TMT). Animals in the experimental group received intranasal administration of TGF-β1 on days 7 and 9 following TMT injection. Behavioral tests were performed to assess cognitive function, and three weeks after TMT administration, hippocampal morphology was analyzed using Nissl staining. Additionally, the state of microglia was evaluated through immunohistochemical labeling of IBA1. The results revealed that exogenous TGF-β1 significantly modulated the progression of hippocampal neurodegeneration. In the passive avoidance test, TGF-β1 ameliorated TMT-induced long-term memory impairment and promoted neuronal preservation in the CA1 region of the hippocampus, although no such effect was observed in the CA3 and CA4 regions. Furthermore, TGF-β1 treatment reduced microglial activation levels in the hippocampal CA1 region compared to animals treated with TMT alone. These findings suggest that the multifunctional cytokine TGF-β1 exerts a neuroprotective effect in the context of ongoing neurodegeneration when delivered intranasally to the brain. The cytokine's ability to regulate microglial activity appears to contribute, at least in part, to its protective properties.
Collapse
Affiliation(s)
| | | | - Dmitry A Fedorov
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | | |
Collapse
|
7
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Chen Q, Li X, Yang Y, Ni J, Chen J. Combined Analysis of Human and Experimental Rat Samples Identified Biomarkers for Ischemic Stroke. Mol Neurobiol 2025; 62:3794-3812. [PMID: 39325100 PMCID: PMC11790756 DOI: 10.1007/s12035-024-04512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The genetic transcription profile and underlying molecular mechanisms of ischemic stroke (IS) remain elusive. To address this issue, four mRNA and one miRNA expression profile of rats with middle cerebral artery occlusion (MCAO) were acquired from the Gene Expression Omnibus (GEO) database. A total of 780 differentially expressed genes (DEGs) and 56 miRNAs (DEMs) were screened. Gene set and functional enrichment analysis revealed that a substantial number of immune-inflammation-related pathways were abnormally activated in IS. Through weighted gene co-expression network analysis, the turquoise module was identified as meaningful. By taking the intersection of the turquoise module genes, DEM-target genes, and all DEGs, 354 genes were subsequently obtained as key IS-related genes. Among them, six characteristic genes were identified using the least absolute shrinkage and selection operator. After validation with three external datasets, transforming growth factor beta 1 (Tgfb1) was selected as the hub gene. This finding was further confirmed by gene expression pattern analysis in both the MCAO model rats and clinical IS patients. Moreover, the expression of the hub genes exhibited a negative correlation with the modified Rankin scale score (P < 0.05). Collectively, these results expand our knowledge of the genetic profile and molecular mechanisms involved in IS and suggest that the Tgfb1 gene is a potential biomarker of this disease.
Collapse
Affiliation(s)
- Qingfa Chen
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ye Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
9
|
Zhang HX, Hamit D, Li Q, Hu X, Li SF, Xu F, Wang MY, Bao GQ, Li HY. Integrative bioinformatic approach reveals novel melatonin-related biomarkers for Alzheimer's disease. Sci Rep 2025; 15:4193. [PMID: 39905093 PMCID: PMC11794634 DOI: 10.1038/s41598-024-80755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/21/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Melatonin (MLT) can improve mitophagy, thereby ameliorating cognitive deficits in Alzheimer's disease (AD) patients. Hence, our research focused on the potential value of MLT-related genes (MRGs) in AD through bioinformatic analysis. METHODS First, the key cells in the single-cell dataset GSE138852 were screened out based on the proportion of annotated cells and Fisher's test between the AD and control groups. The differentially expressed genes (DEGs) in the key cell and GSE5281 datasets were identified, and the MRGs in GSE5281 were selected via weighted gene coexpression network analysis. After intersecting two sets of DEGs and MRGs, we performed Mendelian randomization analysis to identify the MRGs causally related to AD. Biomarkers were further ascertained through receiver operating characteristic curve (ROC) and expression analysis in GSE5281 and GSE48350. Furthermore, gene set enrichment analysis, immune infiltration analysis and correlation analysis with metabolic pathways were conducted, as well as construction of a regulator network and molecular docking. RESULTS According to the Fisher test, oligodendrocytes were regarded as key cells due to their excellent abundance in the GSE138852 dataset, in which there were 281 DEGs between the AD and control groups. After overlapping with 3,490 DEGs and 550 MRGs in GSE5281, four genes were found to be causally related to AD, namely, G protein-coupled receptor, family C, group 5, member B (GPRC5B), Methyltransferase-like protein 7 A (METTL7A), NF-κB inhibitor alpha (NFKBIA) and RAS association domain family 4(RASSF4). Moreover, GPRC5B, NFKBIA and RASSF4 were deemed biomarkers, except for METTL7A, because of their indistinctive expression between the AD and control groups. Biomarkers might be involved in oxidative phosphorylation, adipogenesis and heme metabolism. Moreover, T helper type 17 cells, natural killer cells and CD56dim natural killer cells were significantly correlated with biomarkers. Transcription factors (GATA2, POU2F2, NFKB1, etc.) can regulate the expression of biomarkers. Finally, we discovered that all biomarkers could bind to MLT with a strong binding energy. CONCLUSION Our study identified three novel biomarkers related to MLT for AD, namely, GPRC5B, NFKBIA and RASSF4, providing a novel approach for the investigation and treatment of AD patients.
Collapse
Affiliation(s)
- Hua-Xiong Zhang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Dilmurat Hamit
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Qing Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiao Hu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - San-Feng Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fu Xu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Ming-Yuan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guo-Qing Bao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Hong-Yan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
10
|
Wan T, Wang C. SMOC2 promotes microglia activity and neuroinflammation in Alzheimer's disease. J Alzheimers Dis 2025; 103:941-950. [PMID: 39791204 DOI: 10.1177/13872877241307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target. OBJECTIVE Alzheimer's disease (AD) leads to neurodegeneration, affecting cognition, language, and personality, underscoring the urgency for effective treatments. Our study investigates the role of secreted modular calcium-binding protein 2 (SMOC2) in microglial cells and its impact on AD pathology. METHODS We introduced SMOC2 overexpression and interference vectors into microglial cells treated with Aβ. Activity and phagocytosis were assessed using CCK8 and flow cytometry. SMOC2 mRNA levels were quantified by qPCR, and protein levels of SMOC2, TGF-β1, p-NF-κB/NF-κB were analyzed by western blot. Aβ content was determined by ELISA, and immunofluorescence detected TNF-α, IL-1β, CD163, and CD206. RESULTS Aβ treatment inhibited microglial activity and phagocytosis, but SMOC2 disruption enhanced these functions (p < 0.05). SMOC2 overexpression increased its expression and Aβ levels, while interference reduced them (p < 0.001). SMOC2 overexpression also decreased TGF-β1, CD163, and CD206, and increased p-NF-κB/NF-κB, TNF-α, and IL-1β (p < 0.05). CONCLUSIONS SMOC2 plays a crucial role in microglial cell activity, phagocytosis, and polarization, potentially through the TGF-β1/NF-κB pathway, offering insights into AD pathogenesis.
Collapse
Affiliation(s)
- Tianchi Wan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunkai Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Tiong SQ, Mohgan RN, Quek JY, Liew JYS, Wong GYS, Thang ZQ, Chan ZL, Gan SY, Chan EWL. Inhibition of the Transforming Growth Factor-β Signaling Pathway Confers Neuroprotective Effects on Beta-Amyloid-Induced Direct Neurotoxicity and Microglia-Mediated Neuroinflammation. Neurol Res Int 2025; 2025:8948290. [PMID: 39949498 PMCID: PMC11824711 DOI: 10.1155/nri/8948290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025] Open
Abstract
Background: Abnormal elevation of transforming growth factor-beta (TGF-β) has been observed among Alzheimer's disease (AD) patients. This may be due to microglia-mediated release of proinflammatory cytokines, which promote neuroinflammation and neuronal apoptosis. Silencing of TGFBR1, a gene encoding TGF-β receptor type I (TGF-βR1), has resulted in neuronal survival from amyloid-beta (Aβ)-induced neurotoxicity. Therefore, the present study investigated the neuroprotective effect of TGF-βR1 inhibitors (RepSox, Galunisertib, and Vactosertib) against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation. Methods: The neuroprotective effect of TGF-βR1 inhibitors against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation were investigated using the RealTime-Glo™ MT Cell Viability Assay. The inhibitory effect of TGF-βR1 inhibitors on Aβ-induced microglia-mediated production of proinflammatory cytokines (TNF-α and IL-1β) was determined using enzyme-linked immunosorbent assay (ELISA). Results: TGF-βR1 inhibitors (RepSox, Galunisertib, and Vactosertib) at the tested concentrations (6.25-150 nM) showed no significant cytotoxicity effects on SH-SY5Y and BV-2 cells. Moreover, treatments with these inhibitors exhibited neuroprotection on SH-SY5Y cells against Aβ-induced direct neurotoxicity. The trend of cell viability after 24 h treatment also supports the microscopic images of the cells' morphology. Furthermore, pretreatment with these inhibitors conferred indirect neuroprotective effect against Aβ-induced microglia-mediated neuroinflammation by attenuating the production of proinflammatory cytokines (TNF-α and IL-1β). Conclusion: The inhibition of the TGF-β signaling pathway in neuronal and microglia cells by TGF-βR1 inhibitors resulted in neuroprotection against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation. Hence, targeting the TGF-β signaling pathway in both neuronal and microglia cells could provide a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Shao Qin Tiong
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Jia Yee Quek
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | | | - Zi Qing Thang
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Zhi Ling Chan
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sook Yee Gan
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
14
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
15
|
Abou Assi L, Alkhansa S, Njeim R, Ismail J, Madi M, Ghadieh HE, Al Moussawi S, Azar TS, Ayoub M, Azar WS, Hamade S, Nawfal R, Haddad NR, Harb F, Faour W, Khalil MI, Eid AA. Uncovering the Therapeutic Potential of Lithium Chloride in Type 2 Diabetic Cardiomyopathy: Targeting Tau Hyperphosphorylation and TGF-β Signaling via GSK-3β Inhibition. Pharmaceutics 2024; 16:955. [PMID: 39065652 PMCID: PMC11279906 DOI: 10.3390/pharmaceutics16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM) that leads to significant morbidity and mortality. The alteration in the signaling mechanism in diabetes leading to cardiomyopathy remains unclear. The purpose of this study is to investigate the role of tauopathy in myocardial dysfunction observed in T2DM. In that regard, diabetic Sprague Dawley rats were treated with intraperitoneal injections of lithium chloride (LiCl), inhibiting tau phosphorylation. Cardiac function was evaluated, and molecular markers of myocardial fibrosis and the TGF-β signaling were analyzed. T2DM rats exhibited a decline in ejection fraction and fractional shortening that revealed cardiac function abnormalities and increased myocardial fibrosis. These changes were associated with tau hyperphosphorylation. Treating diabetic rats with LiCl attenuated cardiac fibrosis and improved myocardial function. Inhibition of GSK-3β leads to the suppression of tau phosphorylation, which is associated with a decrease in TGF-β expression and regulation of the pro-inflammatory markers, suggesting that tau hyperphosphorylation is parallelly associated with fibrosis and inflammation in the diabetic heart. Our findings provide evidence of a possible role of tau hyperphosphorylation in the pathogenesis of DCM through the activation of TGF-β and by inducing inflammation. Targeting the inhibition of tau phosphorylation may offer novel therapeutic approaches to reduce DCM burden in T2DM patients.
Collapse
Affiliation(s)
- Layal Abou Assi
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 1107-2020, Lebanon; (L.A.A.)
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Rachel Njeim
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Jaafar Ismail
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Mikel Madi
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Hilda E. Ghadieh
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
- Department of Biomedical Sciences, Faculty of Medicine, and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Sarah Al Moussawi
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Tanya S. Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Maurice Ayoub
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - William S. Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Sarah Hamade
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Rashad Nawfal
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| | - Nina-Rossa Haddad
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
- Faculty of Medicine, Lebanese University, Beirut 1107-2020, Lebanon
| | - Frederic Harb
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
- Department of Biomedical Sciences, Faculty of Medicine, and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Wissam Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1107-2020, Lebanon;
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 1107-2020, Lebanon; (L.A.A.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.); (R.N.); (J.I.); (M.M.); (H.E.G.); (S.A.M.); (T.S.A.); (M.A.); (W.S.A.); (S.H.); (R.N.)
- AUB Diabetes, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.-R.H.); (F.H.)
| |
Collapse
|
16
|
Zuo CY, Hu Z, Hao XY, Li MJ, Shi JJ, Guo MN, Ma DR, Li SJ, Liang YY, Zhang C, Mao CY, Xu Y, Shi CH. The potential protective role of peripheral immunophenotypes in Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1403077. [PMID: 38903900 PMCID: PMC11188398 DOI: 10.3389/fnagi.2024.1403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.
Collapse
Affiliation(s)
- Chun-yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-jing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dong-rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuang-jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng-yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Lee CY, Riffle D, Xiong Y, Momtaz N, Lei Y, Pariser JM, Sikdar D, Hwang A, Duan Z, Zhang J. Characterizing dysregulations via cell-cell communications in Alzheimer's brains using single-cell transcriptomes. BMC Neurosci 2024; 25:24. [PMID: 38741048 PMCID: PMC11089696 DOI: 10.1186/s12868-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting 44 million people worldwide, leading to cognitive decline, memory loss, and significant impairment in daily functioning. The recent single-cell sequencing technology has revolutionized genetic and genomic resolution by enabling scientists to explore the diversity of gene expression patterns at the finest resolution. Most existing studies have solely focused on molecular perturbations within each cell, but cells live in microenvironments rather than in isolated entities. Here, we leveraged the large-scale and publicly available single-nucleus RNA sequencing in the human prefrontal cortex to investigate cell-to-cell communication in healthy brains and their perturbations in AD. We uniformly processed the snRNA-seq with strict QCs and labeled canonical cell types consistent with the definitions from the BRAIN Initiative Cell Census Network. From ligand and receptor gene expression, we built a high-confidence cell-to-cell communication network to investigate signaling differences between AD and healthy brains. RESULTS Specifically, we first performed broad communication pattern analyses to highlight that biologically related cell types in normal brains rely on largely overlapping signaling networks and that the AD brain exhibits the irregular inter-mixing of cell types and signaling pathways. Secondly, we performed a more focused cell-type-centric analysis and found that excitatory neurons in AD have significantly increased their communications to inhibitory neurons, while inhibitory neurons and other non-neuronal cells globally decreased theirs to all cells. Then, we delved deeper with a signaling-centric view, showing that canonical signaling pathways CSF, TGFβ, and CX3C are significantly dysregulated in their signaling to the cell type microglia/PVM and from endothelial to neuronal cells for the WNT pathway. Finally, after extracting 23 known AD risk genes, our intracellular communication analysis revealed a strong connection of extracellular ligand genes APP, APOE, and PSEN1 to intracellular AD risk genes TREM2, ABCA1, and APP in the communication from astrocytes and microglia to neurons. CONCLUSIONS In summary, with the novel advances in single-cell sequencing technologies, we show that cellular signaling is regulated in a cell-type-specific manner and that improper regulation of extracellular signaling genes is linked to intracellular risk genes, giving the mechanistic intra- and inter-cellular picture of AD.
Collapse
Affiliation(s)
- Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Dylan Riffle
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Yifeng Xiong
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Nadia Momtaz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yutong Lei
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Joseph M Pariser
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Diptanshu Sikdar
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, Rounds JS, Rodriguez A, Beardwood JH, Augustynski AS, Al-Shammari A, Alaghband Y, Alizo Vera V, Berchtold NC, Shanur S, Baldi P, Cotman CW, Wood MA. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nat Commun 2024; 15:3836. [PMID: 38714691 PMCID: PMC11076285 DOI: 10.1038/s41467-024-47996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher W Butler
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Alyssa Rodriguez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Joy H Beardwood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Agatha S Augustynski
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Ameer Al-Shammari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Sharmin Shanur
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
20
|
Asadie M, Miri A, Badri T, Hosseini Nejad J, Gharechahi J. Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis. J Mol Neurosci 2024; 74:37. [PMID: 38568322 DOI: 10.1007/s12031-024-02212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
Collapse
Affiliation(s)
- Mohamadreza Asadie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
von Bernhardi R, Eugenín J. Aging Microglia and Their Impact in the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 37:379-395. [PMID: 39207703 DOI: 10.1007/978-3-031-55529-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastian, Santiago, Chile.
| | - Jaime Eugenín
- Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Lin D, Sun Y, Wang Y, Yang D, Shui M, Wang Y, Xue Z, Huang X, Zhang Y, Wu A, Wei C. Transforming Growth Factor β1 Ameliorates Microglial Activation in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:3512-3524. [PMID: 37470907 DOI: 10.1007/s11064-023-03994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgery and anesthesia, especially among older patients. Microglial activation plays a crucial role in the occurrence and development of PND and transforming growth factor beta 1 (TGF-β1) can regulate microglial homeostasis. In the present study, abdominal surgery was performed on 12-14 months-old C57BL/6 mice to establish a PND model. The expression of TGF-β1, TGF-β receptor 1, TGF-β receptor 2, and phosphor-smad2/smad3 (psmad2/smad3) was assessed after anesthesia and surgery. Additionally, we examined changes in microglial activation, morphology, and polarization, as well as neuroinflammation and dendritic spine density in the hippocampus. Behavioral tests, including the Morris water maze and open field tests, were used to examine cognitive function, exploratory locomotion, and emotions. We observed decreased TGF-β1 expression after surgery and anesthesia. Intranasally administered exogenous TGF-β1 increased psmad2/smad3 colocalization with microglia positive for ionized calcium-binding adaptor molecule 1. TGF-β1 treatment attenuated microglial activation, reduced microglial phagocytosis, and reduced surgery- and anesthesia-induced changes in microglial morphology. Compared with the surgery group, TGF-β1 treatment decreased M1 microglial polarization and increased M2 microglial polarization. Additionally, surgery- and anesthesia-induced increase in interleukin 1 beta and tumor necrosis factor-alpha levels was ameliorated by TGF-β1 treatment at postoperative day 3. TGF-β1 also ameliorated cognitive function after surgery and anesthesia as well as rescue dendritic spine loss. In conclusion, surgery and anesthesia induced decrease in TGF-β1 levels in older mice, which may contribute to PND development; however, TGF-β1 ameliorated microglial activation and cognitive dysfunction in PND mice.
Collapse
Affiliation(s)
- Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yuzhu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Di Yang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Min Shui
- Department of Anesthesiology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiming Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziyi Xue
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China.
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
23
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
24
|
Godos J, Castellano S, Ferri R, Caraci F, Lanza G, Scazzina F, Alanazi AM, Marx W, Galvano F, Grosso G. Mediterranean diet and chronotype: Data from Italian adults and systematic review of observational studies. Exp Gerontol 2023; 181:112284. [PMID: 37673382 DOI: 10.1016/j.exger.2023.112284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/06/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Scientific evidence suggests a relation between dietary factors and sleep. Several studies show that higher adherence to the Mediterranean diet is associated with better sleep quality, but the relation with chronotype has been only recently explored. The aim of this study was to better understand the relation between chronotype and Mediterranean diet adherence. For this purpose, an analysis of 1936 adults (age 18-90 y) living in Italy was performed to investigate the association between chronotype (assessed with a short form of the morningness-eveningness questionnaire) and adherence to the Mediterranean diet (assessed through a 110-item food frequency questionnaire and the Medi-Lite literature-based Mediterranean adherence score). A multivariate logistic regression analysis was conducted to calculate odds ratios (OR) and 95 % confidence intervals (CIs) describing the association between chronotypes and high adherence to the Mediterranean diet (>14 points). Moreover, a systematic review of other observational studies published so far was performed. Individuals reporting having intermediate (n = 614) and evening (n = 173) chronotypes were less likely to have high adherence to the Mediterranean diet compared to morning chronotype (OR = 0.28, 95 % CI: 0.18, 0.42 and OR = 0.08, 95 % CI: 0.03, 0.27, respectively). When the analysis was conducted in subgroups of age, the results were similar in mid-age (>50 y) participants (for intermediate and evening chronotypes, OR = 0.21, 95 % CI: 0.10, 0.43 and OR = 0.92, 95 % CI: 0.01, 0.69, respectively) while the association with high adherence to the Mediterranean diet of evening compared to morning chronotype lost significance in older (>60 y) participants (for intermediate and evening chronotypes, OR = 0.27, 95 % CI: 0.09, 0.82 and OR = 0.22, 95 % CI: 0.02, 1.92, respectively). Out of 10 studies (date range of publication 2020-2022) included in the systematic review, there was a general consistence of findings showing higher adherence to the Mediterranean diet among morning chronotypes, although few studies reported null results. In conclusion, current evidence suggests that an intermediate and evening chronotype could be associated with lower adherence to a Mediterranean diet, but the association could be modified by other factors when considering older individuals.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy; Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy; Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | | - Amer M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wolfgang Marx
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
25
|
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104220. [PMID: 37454825 DOI: 10.1016/j.etap.2023.104220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of β-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-β1/SMAD2 and GSK3β/β-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aβ (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of β-catenin, TGF-β1 and downregulating the expression of GSK3β, TLR4 and p-SMAD2.
Collapse
Affiliation(s)
| | - Yasser M Mostafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Egypt
| | - Amal A M Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
26
|
Anwar MJ, Alenezi SK, Alhowail AH. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother 2023; 162:114718. [PMID: 37084561 DOI: 10.1016/j.biopha.2023.114718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia.
| | - Ahmad Hamad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| |
Collapse
|
27
|
Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective. J Neuroinflammation 2023; 20:72. [PMID: 36915196 PMCID: PMC10012507 DOI: 10.1186/s12974-023-02751-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Microtubule-associated protein, Tau has been implicated in Alzheimer's disease for its detachment from microtubules and formation of insoluble intracellular aggregates within the neurons. Recent findings have suggested the expulsion of Tau seeds in the extracellular domain and their prion-like propagation between neurons. Transforming Growth Factor-β1 (TGF-β1) is a ubiquitously occurring cytokine reported to carry out immunomodulation and neuroprotection in the brain. TGF-β-mediated regulation occurs at the level of neuronal survival and differentiation, glial activation (astrocyte and microglia), amyloid production-distribution-clearance and neurofibrillary tangle formation, all of which contributes to Alzheimer's pathophysiology. Its role in the reorganization of cytoskeletal architecture and remodelling of extracellular matrix to facilitate cellular migration has been well-documented. Microglia are the resident immune sentinels of the brain responsible for surveying the local microenvironment, migrating towards the beacon of pertinent damage and phagocytosing the cellular debris or patho-protein deposits at the site of insult. Channelizing microglia to target extracellular Tau could be a good strategy to combat the prion-like transmission and seeding problem in Alzheimer's disease. The current review focuses on reaffirming the role of TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization and considers utilizing the approach of TGF-β-triggered microglia-mediated targeting of extracellular patho-protein, Tau, as a possible potential strategy to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Mahima Kapoor
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
28
|
Jung M, Lee S, Park S, Hong J, Kim C, Cho I, Sohn HS, Kim K, Park IW, Yoon S, Kwon S, Shin J, Lee D, Kang M, Go S, Moon S, Chung Y, Kim Y, Kim BS. A Therapeutic Nanovaccine that Generates Anti-Amyloid Antibodies and Amyloid-specific Regulatory T Cells for Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207719. [PMID: 36329674 DOI: 10.1002/adma.202207719] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex condition characterized by multiple pathophysiological mechanisms including amyloid-β (Aβ) plaque accumulation and neuroinflammation in the brain. The current immunotherapy approaches, such as anti-Aβ monoclonal antibody (mAb) therapy, Aβ vaccines, and adoptive regulatory T (Treg) cell transfer, target a single pathophysiological mechanism, which may lead to unsatisfactory therapeutic efficacy. Furthermore, Aβ vaccines often induce T helper 1 (Th1) cell-mediated inflammatory responses. Here, a nanovaccine composed of lipid nanoparticles loaded with Aβ peptides and rapamycin is developed, which targets multiple pathophysiological mechanisms, exhibits the combined effects of anti-Aβ antibody therapy and adoptive Aβ-specific Treg cell transfer, and can overcome the limitations of current immunotherapy approaches for AD. The Nanovaccine effectively delivers rapamycin and Aβ peptides to dendritic cells, produces both anti-Aβ antibodies and Aβ-specific Treg cells, removes Aβ plaques in the brain, alleviates neuroinflammation, prevents Th1 cell-mediated excessive immune responses, and inhibits cognitive impairment in mice. The nanovaccine shows higher efficacy in cognitive recovery than an Aβ vaccine. Unlike anti-Aβ mAb therapy and adoptive Treg cell transfer, both of which require complicated and costly manufacturing processes, the nanovaccine is easy-to-prepare and cost-effective. The nanovaccines can represent a novel treatment option for AD.
Collapse
Affiliation(s)
- Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Songmin Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sohui Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyunghwan Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sungpil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Donghee Lee
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyung Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Ma Y, Li W, Fan C, Wang Y, Jiang H, Yang W. Comprehensive Analysis of Long Non-Coding RNAs N4-Acetylcytidine in Alzheimer's Disease Mice Model Using High-Throughput Sequencing. J Alzheimers Dis 2022; 90:1659-1675. [PMID: 36314201 DOI: 10.3233/jad-220564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), an important posttranscriptional modification, is involved in various disease processes. Long noncoding RNAs (lncRNAs) regulate gene expression mainly through epigenetic modification, transcription, and posttranscriptional modification. Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloidosis of the brain. However, the role of lncRNA ac4C modification in AD remains unclear. OBJECTIVE In this study, we investigated the association between ac4C modification and AD, and the underlying mechanisms of ac4C modification in AD. METHODS The male 9-month-old APP/PS1 double transgenic mice, age- and sex-matched wild type (WT) mice were used in this study. Then, ac4C-RIP-seq and RNA-seq were used to comprehensively analyze lncRNA ac4C modification in AD mice. The lncRNA-miRNA-mRNA regulatory networks using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the regulatory relationships among these three lncRNAs and AD. RESULTS The results showed that there were 120 significantly different ac4C peaks located on 102 lncRNAs in AD, of which 55 were hyperacetylated and 47 were hypoacetylated. Simultaneously, 231 differentially expressed lncRNAs were identified, including 138 upregulated lncRNAs and 93 downregulated lncRNAs. Moreover, 3 lncRNAs, lncRNA Gm26508, lncRNA A430046D13Rik, and lncRNA 9530059O14Rik, showed significant changes in both the ac4C and RNA levels using conjoint analysis. CONCLUSION The abundance of lncRNA ac4C modification is significantly different in AD and indicates that lncRNA ac4C is associated with the occurrence and development of AD, which could provide a basis for further exploration of the related regulatory mechanisms.
Collapse
Affiliation(s)
- Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
30
|
Sampogna G, Janiri D, Albert U, Caraci F, Martinotti G, Serafini G, Tortorella A, Zuddas A, Sani G, Fiorillo A. Why lithium should be used in patients with bipolar disorder? A scoping review and an expert opinion paper. Expert Rev Neurother 2022; 22:923-934. [PMID: 36562412 DOI: 10.1080/14737175.2022.2161895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lithium treatment is considered the gold standard for the long-term management of bipolar disorder and recurrent unipolar depression. It is also extremely effective in other psychiatric conditions characterized by impulsivity and aggression, and for the prevention of suicidal behaviours. AREAS COVERED This paper provides a scoping review and an expert commentary regarding the use of lithium in adult patients. Available information about efficacy, tolerability, dosing, and switching is analyzed, and the strategies that may be most useful in real-world clinical settings are highlighted. EXPERT OPINION Lithium is effective on different domains of bipolar disorder, including the long-term prevention of recurrences of affective episodes, management of acute mania as well as in the prophylaxis of all affective episodes. Lithium has been defined a 'forgotten drug,' since its use in routine clinical practice has been declined over the last 20 or 30 years. Reasons for this trend include lack of adequate training on the management of lithium side effects. Considering its efficacy, use of lithium in ordinary clinical practice should be promoted. Several strategies, such as using slow-release formulations, can be easily implemented in order to minimize lithium side effects and improve its tolerability profile.
Collapse
Affiliation(s)
- Gaia Sampogna
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy. Azienda Sanitaria Integrata Giuliano-Isontina - ASUGI, UCO Clinica Psichiatrica, Trieste, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Alessandro Zuddas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Andrea Fiorillo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
31
|
Doncheva N, Mihaylova A, Zlatanova H, Ivanovska M, Delev D, Murdjeva M, Kostadinov I. Vitamin D 3 exerts immunomodulatory and memory improving properties in rats with lipopolysaccharide-induced inflammation. Folia Med (Plovdiv) 2022; 64:770-781. [PMID: 36876547 DOI: 10.3897/folmed.64.e67739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Vitamin D is a fat-soluble secosteroid, its primary function being regulation of calcium-phosphate homeostasis and maintenance of bone integrity and mineralization. Recently, pleotropic effects of this vitamin have been recognized, including an immunomodulatory role and involvement in normal brain development and functioning.
Collapse
Affiliation(s)
| | | | | | | | - Delian Delev
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | | |
Collapse
|
32
|
Li Y, Chen W, Deng H, Li T, Liu Z, Liu X, Zhang Z, Chen X, Sheng J, Li K. TGF-β1 Protects Trauma-injured Murine Cortical Neurons by Upregulating L-type Calcium Channel Ca v1.2 via the p38 Pathway. Neuroscience 2022; 492:47-57. [PMID: 35460836 DOI: 10.1016/j.neuroscience.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death in adolescents, and there is a lack of effective methods of treatment. The neuroprotective effects exerted by TGF-β1 can ameliorate a range of neuronal lesions in multiple central nervous system diseases. In this study, we used an in-vitro TBI model of mechanical injury on murine primary cortical neurons and the neuro-2a cell line to investigate the neuroprotective role played by TGF-β1 in cortical neurons in TBI. Our results showed that TGF-β1 significantly increased neuronal viability and inhibited apoptosis for 24 h after trauma. The expression of Cav1.2, an L-type calcium channel (LTCC) isoform, decreased significantly after trauma injury, and this change was reversed by TGF-β1. Nimodipine, a classic LTCC blocker, abolished the protective effect of TGF-β1 on trauma-induced neuronal apoptosis. The knockdown of Cav1.2 in differentiated neuro-2a cells significantly inhibited the anti-apoptosis effect of TGF-β1 exerted on injured neuro-2a cells. Moreover, TGF-β1 rescued and enhanced the trauma-suppressed neuro-2a intracellular Ca2+ concentration, while the effect of TGF-β1 was partially inhibited by nimodipine. TGF-β1 significantly upregulated the expression of Cav1.2 by activating the p38 MAPK pathway and by inhibiting trauma-induced neuronal apoptosis. In conclusion, TGF-β1 increased trauma-injured murine cortical neuronal activity and inhibited apoptosis by upregulating Cav1.2 channels via activating the p38 MAPK pathway. Therefore, the TGF-β1/p38 MAPK/Cav 1.2 pathway has the potential to be used as a novel therapeutic target for TBI.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Tian Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhenning Liu
- Department of Laboratory, Guangzhou Chest Hospital, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
The Effect of TGF-β1 Reduced Functionality on the Expression of Selected Synaptic Proteins and Electrophysiological Parameters: Implications of Changes Observed in Acute Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23031081. [PMID: 35163004 PMCID: PMC8835518 DOI: 10.3390/ijms23031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.
Collapse
|
34
|
Hossain MU, Ahammad I, Bhattacharjee A, Chowdhury ZM, Rahman A, Rahman TA, Omar TM, Hasan MK, Islam MN, Hossain Emon MT, Chandra Das K, Keya CA, Salimullah M. Protein-protein interactions network model underlines a link between hormonal and neurological disorders. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
The effect of 4-Week rehabilitation by aerobic exercise on hippocampus BDNF and TGF-β1 gene expressions inAβ 1-42-induced rat model of Alzheimer's disease. J Clin Neurosci 2021; 95:106-111. [PMID: 34929632 DOI: 10.1016/j.jocn.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a type of brain dysfunction featuring a gradual loss in memory. This study aimed to determine the effect of 4 weeks of aerobic rehabilitation exercise (RhExe) on the genes expression of BDNF and TGF-β1 in the hippocampus tissue of rats with the AD induced by injection of amyloid-beta (Aβ1-42). Twenty-one male Wistar rats were randomly divided into 3 groups: Aβ injection (n = 7), Aβ + exercise (n = 7) and control (n = 7). AD was induced by a single dose of Aβ injection into the hippocampus of rats. Three days after surgery, the Aβ + exercise group experienced four weeks of the RhExe (5 days/week). Forty-eight hours after the last training session, the animals underwent the Morris water maze test. The animals were sacrificed 24 h after the test, and hippocampal tissue was split. The mRNA expression of BDNF, TGF-β1, and TGF-β1 II receptors was measured. The TGF-β1 and TGF-β1 II receptor genes expression of Aβ + exercise group were significantly higher than the Aβ injection group (P ≤ 0.001). BDNF gene expression in the hippocampus of the Aβ + exercise group was significantly higher than the Aβ injection group (P ≤ 0.001). Spatial memory was significantly higher in the Aβ + exercise group than in the Aβ injection group (p ≤ 0.01). It seems that aerobic exercise can counteract the harmful effects of Aβ through the BDNF and TGF-β1molecular signaling pathways.
Collapse
|
36
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Effects of Lamotrigine and Topiramate on Glial Properties in an Astrocyte-Microglia Co-Culture Model of Inflammation. Int J Neuropsychopharmacol 2021; 25:185-196. [PMID: 34791253 PMCID: PMC8929754 DOI: 10.1093/ijnp/pyab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Astrocytes and microglia are involved in the pathophysiology of epilepsy and bipolar disorder with a link to inflammation. We aimed to investigate the effects of the antiepileptic and mood-stabilizing drugs lamotrigine (LTG) and topiramate (TPM) on glial viability, microglial activation, cytokine release, and expression of gap-junctional protein connexin 43 (Cx43) in different set-ups of an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological, inflammatory" conditions) of microglia were treated with different concentrations of LTG and TPM for 24 hours. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to measure the glial cell viability. The microglial activation state was analyzed by immunocytochemistry. The pro-inflammatory tumor necrosis factor-α (TNF-α) and anti-inflammatory transforming growth factor-ß1 (TGF-ß1) cytokine levels were measured by enzyme-linked immunosorbent assay. The astroglial Cx43 expression was quantified by western blot. RESULTS A significant reduction of the glial cell viability after incubation with LTG or TPM was observed in a concentration-dependent manner under all conditions. LTG caused no significant alterations of the microglial phenotypes. Under pathological conditions, TPM led to a significant concentration-dependent reduction of microglial activation. This correlated with increased astroglial Cx43 expression. TNF-α levels were not affected by LTG and TPM. Treatment with higher concentrations of LTG, but not with TPM, led to a significant increase in TGF-ß1 levels in M5 and M30 co-cultures. CONCLUSIONS Despite the possible glial toxicity of LTG and TPM, both drugs reduced inflammatory activity, suggesting potential positive effects on the neuroinflammatory components of the pathogenesis of epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany,Correspondence: Fatme Seval Ismail, MD, Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, In der Schornau 23–25, 44892 Bochum (; )
| |
Collapse
|
37
|
|
38
|
Dick K, Pattang A, Hooker J, Nissan N, Sadowski M, Barnes B, Tan LH, Burnside D, Phanse S, Aoki H, Babu M, Dehne F, Golshani A, Cober ER, Green JR, Samanfar B. Human-Soybean Allergies: Elucidation of the Seed Proteome and Comprehensive Protein-Protein Interaction Prediction. J Proteome Res 2021; 20:4925-4947. [PMID: 34582199 DOI: 10.1021/acs.jproteome.1c00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soybean crop, Glycine max (L.) Merr., is consumed by humans, Homo sapiens, worldwide. While the respective bodies of literature and -omics data for each of these organisms are extensive, comparatively few studies investigate the molecular biological processes occurring between the two. We are interested in elucidating the network of protein-protein interactions (PPIs) involved in human-soybean allergies. To this end, we leverage state-of-the-art sequence-based PPI predictors amenable to predicting the enormous comprehensive interactome between human and soybean. A network-based analytical approach is proposed, leveraging similar interaction profiles to identify candidate allergens and proteins involved in the allergy response. Interestingly, the predicted interactome can be explored from two complementary perspectives: which soybean proteins are predicted to interact with specific human proteins and which human proteins are predicted to interact with specific soybean proteins. A total of eight proteins (six specific to the human proteome and two to the soy proteome) have been identified and supported by the literature to be involved in human health, specifically related to immunological and neurological pathways. This study, beyond generating the most comprehensive human-soybean interactome to date, elucidated a soybean seed interactome and identified several proteins putatively consequential to human health.
Collapse
Affiliation(s)
- Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Arezo Pattang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael Sadowski
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bradley Barnes
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Le Hoa Tan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Daniel Burnside
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ashkan Golshani
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Elroy R Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada K1A 0C6
- Department of Biology and Institute of Biochemistry, and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
39
|
Hall-Roberts H, Agarwal D, Obst J, Smith TB, Monzón-Sandoval J, Di Daniel E, Webber C, James WS, Mead E, Davis JB, Cowley SA. TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimers Res Ther 2020; 12:151. [PMID: 33198789 PMCID: PMC7667762 DOI: 10.1186/s13195-020-00709-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND TREM2 is a microglial cell surface receptor, with risk mutations linked to Alzheimer's disease (AD), including R47H. TREM2 signalling via SYK aids phagocytosis, chemotaxis, survival, and changes to microglial activation state. In AD mouse models, knockout (KO) of TREM2 impairs microglial clustering around amyloid and prevents microglial activation. The R47H mutation is proposed to reduce TREM2 ligand binding. We investigated cell phenotypes of the R47H mutant and TREM2 KO in a model of human microglia, and compared their transcriptional signatures, to determine the mechanism by which R47H TREM2 disrupts function. METHODS We generated human microglia-like iPSC-macrophages (pMac) from isogenic induced pluripotent stem cell (iPSC) lines, with homozygous R47H mutation or TREM2 knockout (KO). We firstly validated the effect of the R47H mutant on TREM2 surface and subcellular localization in pMac. To assess microglial phenotypic function, we measured phagocytosis of dead neurons, cell morphology, directed migration, survival, and LPS-induced inflammation. We performed bulk RNA-seq, comparing significant differentially expressed genes (DEGs; p < 0.05) between the R47H and KO versus WT, and bioinformatically predicted potential upstream regulators of TREM2-mediated gene expression. RESULTS R47H modified surface expression and shedding of TREM2, but did not impair TREM2-mediated signalling, or gross phenotypes that were dysregulated in the TREM2 KO (phagocytosis, motility, survival). However, altered gene expression in the R47H TREM2 pMac overlapped by 90% with the TREM2 KO and was characterised by dysregulation of genes involved with immunity, proliferation, activation, chemotaxis, and adhesion. Downregulated mediators of ECM adhesion included the vitronectin receptor αVβ3, and consequently, R47H TREM2 pMac adhered weakly to vitronectin compared with WT pMac. To counteract these transcriptional defects, we investigated TGFβ1, as a candidate upstream regulator. TGFβ1 failed to rescue vitronectin adhesion of pMac, although it improved αVβ3 expression. CONCLUSIONS The R47H mutation is not sufficient to cause gross phenotypic defects of human pMac under standard culture conditions. However, overlapping transcriptional defects with TREM2 KO supports the hypothesised partial loss-of-function effects of the R47H mutation. Furthermore, transcriptomics can guide us to more subtle phenotypic defects in the R47H cells, such as reduced cell adhesion, and can be used to predict targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hazel Hall-Roberts
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Devika Agarwal
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS UK
| | - Juliane Obst
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Thomas B. Smith
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | | | - Elena Di Daniel
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ UK
| | - William S. James
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Emma Mead
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - John B. Davis
- Nuffield Department of Medicine Research Building, Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Sally A. Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| |
Collapse
|
40
|
Zu HB, Liu XY, Yao K. DHCR24 overexpression modulates microglia polarization and inflammatory response via Akt/GSK3β signaling in Aβ 25-35 treated BV-2 cells. Life Sci 2020; 260:118470. [PMID: 32950573 DOI: 10.1016/j.lfs.2020.118470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
Microglial phenotypic polarization, divided into pro-inflammatory "M1" phenotype and anti-inflammatory "M2" phenotype, played a crucial role in the pathogenesis of Alzheimer's disease (AD). Facilitating microglial polarization from M1 to M2 phenotype was shown to alleviate AD-associate pathologic damage, and modulator of the microglial phenotype has become a promising therapeutic approach for the treatment of AD. Previous little evidence showed that DHCR24 (3-β-hydroxysteroid-Δ-24-reductase), also known as seladin-1 (selective Alzheimer's disease indicator-1), exerted potential anti-inflammatory property, however, the link between DHCR24 and microglial polarization has never been reported. Thus, the role of DHCR24 in microglial polarization in amyloid-beta 25-35 (Aβ25-35) treated BV-2 cells was evaluated in this study. Our results demonstrated that Aβ25-35 aggravated inflammatory response and facilitated the transition of microglia phenotype from M2 to M1 in BV-2 cells, by upregulating M1 marker (i-NOS, IL-1β and TNF-α) and downregulating M2 marker (arginase-1, IL-4 and TGF-β). DHCR24 overexpression by lentivirus transfection could significantly reverse these effects, meanwhile, activated Akt/GSK3β signaling pathway via increasing the protein expression of P-Akt and P-GSK3β. Furthermore, when co-treated with Akt inhibitor MK2206, the effect of DHCR24 was obviously reversed. The study exhibited the neuroprotective function of DHCR24 in AD-related inflammatory injury and provided a novel therapeutic target for AD in the future.
Collapse
Affiliation(s)
- Heng-Bing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Xin-Ying Liu
- Department of Endoscopy, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
41
|
Huang X, Ren L, Hou L, Fan H, Wang C, Wang C, Li Y. Paeoniflorin ameliorates antipsychotic-induced hyperprolactinemia in rats by attenuating impairment of the dopamine D2 receptor and TGF-β1 signaling pathways in the hypothalamus and pituitary. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112862. [PMID: 32294507 DOI: 10.1016/j.jep.2020.112862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a prominent component in some Chinese formulas for hyperprolactinemia-associated disorders, has been found to inhibit prolactin secretion in prolactinoma cells. AIM To examine the efficacy of paeoniflorin on hyperprolactinemia and the underlying mechanisms of action. MATERIALS AND METHODS Hyperprolactinemia in female rats was generated by administration of olanzapine (5 mg/kg, by a gavage method, once daily, × 13 weeks). The rats were co-treated with paeoniflorin (10 and 50 mg/kg). Prolactin and TGF-β1 concentrations were detected by ELISA. Protein expression was determined by Western blot. The effect in MMQ cells was also examined. RESULTS Paeoniflorin inhibited olanzapine-induced increases in plasma prolactin concentration and prolactin protein overexpression in the pituitary and hypothalamus of rats. Further, paeoniflorin restored olanzapine-induced downregulation of pituitary and hypothalamic dopamine D2 receptor (D2R) protein expression. More importantly, paeoniflorin attenuated olanzapine-suppressed protein expression of transforming growth factor (TGF)-β1 and its downstream genes, type II TGF-β receptor, type I TGF-β receptor and phosphorylated SMAD3 in the tissues. However, paeoniflorin did not affect plasma TGF-β1 concentration and hepatic TGF-β1 protein expression. In accord, olanzapine-induced increase in prolactin concentration, upregulation of prolactin protein expression, and downregulation of protein expression of the D2R and TGF-β1 signals in MMQ cells were attenuated. CONCLUSIONS This study demonstrates that paeoniflorin ameliorates olanzapine-induced hyperprolactinemia in rats by attenuating impairment of the D2R and TGF-β1 signaling pathways in the hypothalamus and pituitary. Our findings may provide evidence to support the use of paeoniflorin-contained Chinese herbs and formulas for hyperprolactinemia and its associated disorders.
Collapse
Affiliation(s)
- Xiaoqian Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liying Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Fan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chengliang Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, NSW, 2000 Australia.
| |
Collapse
|
42
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
43
|
Nahálková J. Exploring the Sirtuin Functionality in Ageing Through Human Protein Interaction Networks. SN COMPUTER SCIENCE 2020; 1:183. [DOI: 10.1007/s42979-020-00192-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/09/2020] [Indexed: 01/03/2025]
|
44
|
Abstract
Complex diseases involve dynamic perturbations of pathophysiological processes during disease progression. Transcriptional programs underlying such perturbations are unknown in many diseases. Here, we present core transcriptional regulatory circuits underlying early and late perturbations in prion disease. We first identified cellular processes perturbed early and late using time-course gene expression data from three prion-infected mouse strains. We then built a transcriptional regulatory network (TRN) describing regulation of early and late processes. We found over-represented feed-forward loops (FFLs) comprising transcription factor (TF) pairs and target genes in the TRN. Using gene expression data of brain cell types, we further selected active FFLs where TF pairs and target genes were expressed in the same cell type and showed correlated temporal expression changes in the brain. We finally determined core transcriptional regulatory circuits by combining these active FFLs. These circuits provide insights into transcriptional programs for early and late pathophysiological processes in prion disease.
Collapse
|
45
|
Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:899-905. [PMID: 31890854 PMCID: PMC6926356 DOI: 10.1016/j.trci.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the midninth decade of age, the incidence rates of Alzheimer's disease (AD) and the presence of active TGF-β1 show comparable increases. The hypothesis is proposed that the reason why advanced age is a major risk factor for AD is a progressive decrease with advancing age in the numbers of TGFR2 receptors in the brain, with the consequence of a decline in the neurotrophic efficacy of TGF-β1 and 2 despite their already increased levels in older persons. Alternative, possible reasons are discussed but rejected because either those reasons may also affect young persons or because they cannot be validated in a clinical trial. The proposed hypothesis may be validated in persons with aMCI after raising their brain levels of TGF-β1 and 2 by using a combination of three drugs, lithium, memantine, plus either glatiramer or venlafaxine, and then assessing their progression to AD.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Emeritus, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
47
|
Ryan MM, Guévremont D, Mockett BG, Abraham WC, Williams JM. Circulating Plasma microRNAs are Altered with Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2019; 66:835-852. [PMID: 30347618 DOI: 10.3233/jad-180385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological changes underlying Alzheimer's disease (AD) begin decades before the classical symptoms of memory loss become evident. As microRNAs are released from neurons and enter the bloodstream, circulating microRNAs may be reflective of AD progression and are ideal candidates as biomarkers for early-stage disease detection. Here, we provide a novel, in-depth analysis of how plasma microRNAs alter with aging, the most prominent risk factor for AD, and with development of amyloid-β (Aβ) plaque deposition. We assessed the circulating microRNAs in APPswe/PSEN1dE9 transgenic mice and wild-type controls at 4, 8 and 15 m (n = 8-10) using custom designed Taqman arrays representing 185 neuropathology-related microRNAs. We performed a linear mixed-effects model to investigate the effects of age and genotype on plasma microRNAs expression. Following this analysis, we found 8 microRNAs were significantly affected by age alone in wild-type animals and 12 microRNAs altered in APPswe/PSEN1dE9 mice, either prior to Aβ plaque deposition (4 m) or during the development of AD-like pathogenesis (8 m or 15 m). Importantly, we found that differing sets of microRNAs were identified at each time point. Functional analysis of these data revealed that while common biological pathways, such as Inflammatory Response, were enriched throughout the disease process, Free Radical Scavenging, Immunological Disease, and Apoptosis Signaling were specifically enriched later in the disease process. Overall, this study reinforces that distinct biological processes underpin the early versus late stages of AD-like pathogenesis and highlights potential pre-symptomatic microRNAs biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Microglial Phenotyping in Neurodegenerative Disease Brains: Identification of Reactive Microglia with an Antibody to Variant of CD105/Endoglin. Cells 2019; 8:cells8070766. [PMID: 31340569 PMCID: PMC6678308 DOI: 10.3390/cells8070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by producing harmful pro-inflammatory cytokines or free radicals. Distinguishing between damaging and homeostatic microglia in human diseased brain tissues is a challenge. This report describes findings using a monoclonal antibody to CD105/Endoglin (R&D Systems MAB1097) that identifies subtypes of activated microglia. CD105/Endoglin is a co-receptor for transforming growth factor beta (TGFβ) receptor that antagonizes TGFβ signaling. CD105/Endoglin is a marker for vascular endothelial cells, but was originally identified as a marker for activated macrophages. This antibody did not identify endothelial cells in brain sections, only microglia-like cells. In this study, we examined with this antibody tissue section from middle temporal gyrus derived from human brains from normal control subjects with low-plaque pathology, high-plaque pathology, and AD cases, and also substantia nigra samples from control and PD cases, in conjunction with antibodies to markers of pathology and microglia. In low-plaque pathology cases, CD105-positive microglia were mostly absent, but noticeably increased with increasing pathology. CD105-positive cells strongly colocalized with amyloid-beta plaques, but not phosphorylated tau positive tangles. In substantia nigra, strong microglial CD105 staining was observed in microglia associated with degenerating dopaminergic neurons and neuromelanin. In PD cases with few surviving dopaminergic neurons, this staining had decreased. By Western blot, this antibody identified polypeptide bands of 70 kDa in brain samples, and samples from microglia, macrophages, and brain endothelial cells. In comparison with other tested CD105 antibodies, this antibody did not recognize the glycosylated forms of CD105 on Western blots. Overall, the data indicate that this antibody and this marker could have utility for subtyping of microglia in pathologically-involved tissue.
Collapse
|
49
|
Torrisi SA, Geraci F, Tropea MR, Grasso M, Caruso G, Fidilio A, Musso N, Sanfilippo G, Tascedda F, Palmeri A, Salomone S, Drago F, Puzzo D, Leggio GM, Caraci F. Fluoxetine and Vortioxetine Reverse Depressive-Like Phenotype and Memory Deficits Induced by Aβ 1-42 Oligomers in Mice: A Key Role of Transforming Growth Factor-β1. Front Pharmacol 2019; 10:693. [PMID: 31293421 PMCID: PMC6598642 DOI: 10.3389/fphar.2019.00693] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Depression is a risk factor for the development of Alzheimer’s disease (AD), and the presence of depressive symptoms significantly increases the conversion of mild cognitive impairment (MCI) into AD. A long-term treatment with antidepressants reduces the risk to develop AD, and different second-generation antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are currently being studied for their neuroprotective properties in AD. In the present work, the SSRI fluoxetine and the new multimodal antidepressant vortioxetine were tested for their ability to prevent memory deficits and depressive-like phenotype induced by intracerebroventricular injection of amyloid-β (1-42) (Aβ1-42) oligomers in 2-month-old C57BL/6 mice. Starting from 7 days before Aβ injection, fluoxetine (10 mg/kg) and vortioxetine (5 and 10 mg/kg) were intraperitoneally injected daily for 24 days. Chronic treatment with fluoxetine and vortioxetine (both at the dose of 10 mg/kg) was able to rescue the loss of memory assessed 14 days after Aβ injection by the passive avoidance task and the object recognition test. Both antidepressants reversed the increase in immobility time detected 19 days after Aβ injection by forced swim test. Vortioxetine exerted significant antidepressant effects also at the dose of 5 mg/kg. A significant deficit of transforming growth factor-β1 (TGF-β1), paralleling memory deficits and depressive-like phenotype, was found in the hippocampus of Aβ-injected mice in combination with a significant reduction of the synaptic proteins synaptophysin and PSD-95. Fluoxetine and vortioxetine completely rescued hippocampal TGF-β1 levels in Aβ-injected mice as well as synaptophysin and PSD-95 levels. This is the first evidence that a chronic treatment with fluoxetine or vortioxetine can prevent both cognitive deficits and depressive-like phenotype in a non-transgenic animal model of AD with a key contribution of TGF-β1.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Giulia Sanfilippo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
50
|
Rahman MR, Islam T, Shahjaman M, Zaman T, Faruquee HM, Jamal MAHM, Huq F, Quinn JMW, Moni MA. Discovering Biomarkers and Pathways Shared by Alzheimer's Disease and Ischemic Stroke to Identify Novel Therapeutic Targets. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E191. [PMID: 31121943 PMCID: PMC6572146 DOI: 10.3390/medicina55050191] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
Background and objectives: Alzheimer's disease (AD) is a progressive neurodegenerative disease that results in severe dementia. Having ischemic strokes (IS) is one of the risk factors of the AD, but the molecular mechanisms that underlie IS and AD are not well understood. We thus aimed to identify common molecular biomarkers and pathways in IS and AD that can help predict the progression of these diseases and provide clues to important pathological mechanisms. Materials and Methods: We have analyzed the microarray gene expression datasets of IS and AD. To obtain robust results, combinatorial statistical methods were used to analyze the datasets and 26 transcripts (22 unique genes) were identified that were abnormally expressed in both IS and AD. Results: Gene Ontology (GO) and KEGG pathway analyses indicated that these 26 common dysregulated genes identified several altered molecular pathways: Alcoholism, MAPK signaling, glycine metabolism, serine metabolism, and threonine metabolism. Further protein-protein interactions (PPI) analysis revealed pathway hub proteins PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA. Transcriptional and post-transcriptional components were then identified, and significant transcription factors (SPIB, SMAD3, and SOX2) found. Conclusions: Protein-drug interaction analysis revealed PDE9A has interaction with drugs caffeine, γ-glutamyl glycine, and 3-isobutyl-1-methyl-7H-xanthine. Thus, we identified novel putative links between pathological processes in IS and AD at transcripts levels, and identified possible mechanistic and gene expression links between IS and AD.
Collapse
Affiliation(s)
- Md Rezanur Rahman
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj 6751, Bangladesh.
| | - Tania Islam
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Md Shahjaman
- Department of Statistics, Begum Rokeya University, Rangpur 5400, Bangladesh, .
| | - Toyfiquz Zaman
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj 6751, Bangladesh.
| | - Hossain Md Faruquee
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | | | - Fazlul Huq
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | - Mohammad Ali Moni
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|