1
|
Paul A, Nguyen C, Hasan T, Mallidi S. Reduction of photobleaching effects in photoacoustic imaging using noise agnostic, platform-flexible deep-learning methods. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S34102. [PMID: 40443946 PMCID: PMC12118878 DOI: 10.1117/1.jbo.30.s3.s34102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 06/02/2025]
Abstract
Significance Molecular photoacoustic (PA) imaging with exogenous dyes faces a significant challenge due to the photobleaching of the dye that can compromise tissue visualization, particularly in 3D imaging. Addressing this limitation can revolutionize the field by enabling safer, more reliable imaging and improve real-time visualization, quantitative analysis, and clinical decision-making in various molecular PA imaging applications such as image-guided surgeries. Aim We tackle photobleaching in molecular PA imaging by introducing a platform-flexible deep learning framework that enhances SNR from single-laser pulse data, preserving contrast and signal integrity without requiring averaging of signals from multiple laser pulses. Approach The generative deep learning network was trained with an LED-illuminated PA image dataset and tested on acoustic resolution PA microscopy images obtained with single-laser pulse illumination. In vitro and ex vivo samples were first tested for demonstrating SNR improvement, and then, a 3D-scanning experiment with an ICG-filled tube was conducted to depict the usability of the technique in reducing the impact of photobleaching during PA imaging. Results Our generative deep learning model outperformed traditional nonlearning, filter-based algorithms and the U-Net deep learning network when tested with in vitro and ex vivo single pulse-illuminated images, showing superior performance in terms of signal-to-noise ratio ( 93.54 ± 6.07 , and 92.77 ± 10.74 compared with 86.35 ± 3.97 , and 84.52 ± 11.82 with U-Net for kidney, and tumor, respectively) and contrast-to-noise ratio ( 11.82 ± 4.42 , and 9.9 ± 4.41 compared with 7.59 ± 0.82 , and 6.82 ± 2.12 with U-Net for kidney, and tumor respectively). The use of cGAN with single-pulse rapid imaging has the potential to prevent photobleaching ( 9.51 ± 3.69 % with cGAN, and 35.14 ± 5.38 % with long-time laser exposure by averaging 30 pulses), enabling accurate, quantitative imaging suitable for real-time implementation, and improved clinical decision support. Conclusions We demonstrate the potential of a platform-flexible generative deep learning-based approach to mitigate the effects of photobleaching in PA imaging by enhancing signal-to-noise ratio from single pulse-illuminated data, thereby improving image quality and preserving contrast in real time.
Collapse
Affiliation(s)
- Avijit Paul
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Christopher Nguyen
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Tayyaba Hasan
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Srivalleesha Mallidi
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| |
Collapse
|
2
|
Hagness DE, Yang Y, Ma Y, Ishtiaq S, Fan S, Tilley RD, Gooding JJ. An investigative study of electrochemical induced fluorescence for fluorophores. Chem Sci 2025; 16:8959-8969. [PMID: 40271026 PMCID: PMC12013507 DOI: 10.1039/d5sc01265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Understanding and controlling the fluorescence of dye molecules is essential for many applications especially in biological imaging. Electrochemical-induced modulation of fluorescence provides the capability to non-destructively control the fluorescent emission of fluorophores, allowing new avenues to exploit for fluorescence imaging. This paper reports on the investigation of electrochemical-induced fluorescence modulation, focusing on the effect of the fluorophore chemical structure and the buffer composition. Of the twelve fluorophores investigated, it was observed that any variations in the chemical structure results in differences in how the fluorescence is modulated with potential. Our results showed that different core fluorescent structures exhibited distinctive modulation behaviours, the oxazine fluorophore (ATTO 655) was stable in the non-fluorescent configuration causing a prolonged low signal and the coumarin fluorophore (ATTO 390) possessed low response. Certain trends observed are related to the impact of the chemical structure on the fluorescence modulation with potential. For example, the low fluorescence modulation with potential for ATTO 390 suggests that the presence of the electron withdrawing -N+R3 group facilitates significant modulation, while a lack of the -N+R3 group results in low modulation. The unique response of ATTO 655 suggested the element at the radical site can affect the stability of the radical- and leuco-states and influence the fluorescence modulation that occurs. Additionally, the results show that buffer additives, such as oxygen scavengers and triplet quenchers, affect the fluorescence modulation either by stabilising the non-fluorescent radical or leuco-fluorophore structure, or improving photon emission. The quantitative characterisation of electrochemical fluorescence modulation behaviours for various fluorophores provides a guideline for future application of the fluorophores for sensing or imaging based on their performances.
Collapse
Affiliation(s)
- Daniel E Hagness
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Yuanqing Ma
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Sumaya Ishtiaq
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Sanjun Fan
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney New South Wales 2052 Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
3
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Litschel T, Vavylonis D, Weitz DA. 3D printing cytoskeletal networks: ROS-induced filament severing leads to surge in actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644260. [PMID: 40166186 PMCID: PMC11957145 DOI: 10.1101/2025.03.19.644260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends - which severing increases. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.
Collapse
Affiliation(s)
- Thomas Litschel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
5
|
Samaan GN, Jimenez Salinas A, Bailie AE, Grim J, Cizmic JM, Jones AC, Lee Y, Purse BW. Single-molecule detection of oligonucleotides using the fluorescent nucleobase analogue ABN. Chem Sci 2025; 16:4866-4875. [PMID: 39935500 PMCID: PMC11808398 DOI: 10.1039/d4sc07334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
Fluorescent nucleobase analogues (FBAs) have emerged as powerful tools for understanding nucleic acid systems at the molecular level. However, their application at the single-molecule level has been limited by low brightness and an incomplete understanding of how local chemical environments affect their properties. In this study, we investigate the bright fluorescent pyrimidine analogue ABN in duplex DNA oligonucleotides and study its single-molecule applications. Time-resolved fluorescence spectroscopy reveals its unique tautomeric behavior, including photo-induced double proton transfer, influenced by base-pairing partners. This tautomerization directly impacts ABN's quantum yield and spectral characteristics. By favoring a high quantum yield thymine-like tautomer through base pairing, surface-immobilized ABN-containing DNA duplexes are readily observed as bright spots using single-molecule fluorescence microscopy, exhibiting well-defined single-exponential bleaching kinetics. The brightness and photostability are enhanced by oxygen depletion. These results demonstrate that ABN is unique among FBAs in enabling single-molecule fluorescence studies of oligonucleotides using a standard microscopy setup.
Collapse
Affiliation(s)
- George N Samaan
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | | | | | - Julian Grim
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | - Julian M Cizmic
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | - Anita C Jones
- School of Chemistry, The University of Edinburgh Edinburgh UK
| | - Youngkwang Lee
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
- The Smart Health Institute, San Diego State University San Diego CA USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| |
Collapse
|
6
|
Riendeau JM, Gillette AA, Guzman EC, Cruz MC, Kralovec A, Udgata S, Schmitz A, Deming DA, Cimini BA, Skala MC. Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images. Sci Rep 2025; 15:5548. [PMID: 39952935 PMCID: PMC11828867 DOI: 10.1038/s41598-024-82639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/06/2024] [Indexed: 02/17/2025] Open
Abstract
Autofluorescence microscopy uses intrinsic sources of molecular contrast to provide cellular-level information without extrinsic labels. However, traditional cell segmentation tools are often optimized for high signal-to-noise ratio (SNR) images, such as fluorescently labeled cells, and unsurprisingly perform poorly on low SNR autofluorescence images. Therefore, new cell segmentation tools are needed for autofluorescence microscopy. Cellpose is a deep learning network that is generalizable across diverse cell microscopy images and automatically segments single cells to improve throughput and reduce inter-human biases. This study aims to validate Cellpose for autofluorescence imaging, specifically using multiphoton intensity images of NAD(P)H. Manually segmented nuclear masks of NAD(P)H images were used to train a new autofluorescence-trained model (ATM) in Cellpose for nuclear segmentation of NAD(P)H intensity images. These models were applied to PANC-1 cells treated with metabolic inhibitors and patient-derived cancer organoids (9 patients) treated with chemotherapies. These datasets include co-registered fluorescence lifetime imaging microscopy (FLIM) of NAD(P)H and FAD, so fluorescence decay parameters and the optical redox ratio (ORR) were compared between masks generated by the new ATM and manual segmentation. The Dice score between repeated manually segmented masks was significantly lower than that of repeated ATM masks (p < 0.0001) indicating greater reproducibility between ATM masks. There was also a high correlation (R2 > 0.9) between ATM and manually segmented masks for the ORR, mean NAD(P)H lifetime, and mean FAD lifetime across 2D and 3D cell culture treatment conditions. Masks generated from ATM and manual segmentation also maintain similar means, variances, and effect sizes between treatments for the ORR and FLIM parameters. Overall, the Cellpose ATM provides a fast, reliable, reproducible, and accurate method to segment single cells in autofluorescence microscopy images such that functional changes in cells are accurately captured in both 2D and 3D culture.
Collapse
Affiliation(s)
- Jeremiah M Riendeau
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Mario Costa Cruz
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | | | - Shirsa Udgata
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alexa Schmitz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Beth A Cimini
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
7
|
Huo Q, Meng T, Lu X, Li D. Multiphoton Excited Fluorescence Imaging over Metal-Organic Frameworks. Chembiochem 2025; 26:e202400782. [PMID: 39676052 DOI: 10.1002/cbic.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024]
Abstract
Multiphoton excited fluorescence (MPEF) imaging has emerged as a powerful tool for visualizing biological processes with high spatial and temporal resolution. Metal-organic frameworks (MOFs), a class of porous materials composed of metal ions or clusters coordinated with organic ligands, have recently gained attention for their unique optical properties and potential applications in MPEF imaging. This review provides a comprehensive overview of the design, synthesis, and applications of multiphoton excited fluorescence imaging using MOFs. We discuss the principles behind the fluorescence behavior of MOFs, explore strategies to enhance their photophysical properties, and showcase their applications in bioimaging. Additionally, we address the current challenges and future prospects in this rapidly evolving field, highlighting the potential of multiphoton excited fluorescence imaging by MOFs for advancing our understanding of complex biological processes.
Collapse
Affiliation(s)
- Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Tong Meng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
8
|
Kutyła M, Pięt M, Stankevič M, Junka A, Brożyna M, Dudek B, Paduch R, Trytek M. Oxidation of myrtenol to myrtenal epoxide in a porphyrin-based photocatalytic system - A novel terpene alcohol derivative with antimicrobial and anticancer properties. Bioorg Chem 2025; 154:108047. [PMID: 39708555 DOI: 10.1016/j.bioorg.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Biomimetic catalysis using porphyrins enables gentle oxidation of terpenes with molecular oxygen and light. This study explores the photooxidation of (-)-myrtenol under visible light to synthesize new terpenoid products with promising biological activity. Among the porphyrins tested, tetraphenylporphyrin (H2TPP) exhibited the highest catalytic efficiency and stability in chloroform, producing myrtenal epoxide (ME) as the main product (with a molar conversion of myrtenol of 66.2 %), confirmed by NMR and MS analyses. Other substrates, i.e. perillyl alcohol and trans-pinocarveol, did not yield redox products. The antimicrobial activity of ME was assessed against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans using Disk Diffusion, Minimal Inhibitory Concentration, and Minimal Biofilm Eradication Concentration assays (using liquid ME) and the Quantitative Assay for Measuring the Antibiofilm Activity of Volatile Compounds (using volatile ME). Overall, ME displayed higher antimicrobial activity than myrtenol in the majority of the tests applied. The strongest effects were observed against C. albicans, followed by S. aureus, while the weakest activity was exhibited against Gram-negative bacteria. ME also showed cytotoxic effects on human colorectal cancer cells (HT-29) with significantly higher biological activity than that of (-)-myrtenol. Notably, ME at lower concentrations (5-50 µg/ml) promoted proliferation of normal cells while inhibiting the viability and proliferation of cancer cells. Porphyrin-based photooxidation is a sustainable method for converting biorenewable terpene feedstocks into new compounds that can be used in cancer treatment and antimicrobial therapy.
Collapse
Affiliation(s)
- Mateusz Kutyła
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Marek Stankevič
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Institute of Chemistry Sciences, Maria Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
9
|
Tang L, Nozdriukhin D, Kalva SK, Zhou Q, Özsoy Ç, Lyu S, Reiss M, Vidal A, Torres A, Deán‐Ben XL, Razansky D. Scalable Copper Sulfide Formulations for Super-Resolution Optoacoustic Brain Imaging in the Second Near-Infrared Window. SMALL METHODS 2025; 9:e2400927. [PMID: 39449221 PMCID: PMC11740951 DOI: 10.1002/smtd.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Indexed: 10/26/2024]
Abstract
Optoacoustic imaging offers label-free multi-parametric characterization of cerebrovascular morphology and hemodynamics at depths and spatiotemporal resolution unattainable with optical microscopy. Effective imaging depth can greatly be enhanced by employing photons in the second near-infrared (NIR-II) window. However, diminished absorption by hemoglobin along with a lack of suitable contrast agents hinder an efficient application of the technique in this spectral range. Herein, copper sulfide (CuS) micro- and nano-formulations for multi-scale optoacoustic imaging in the NIR-II window are introduced. Dynamic contrast enhancement induced by intravenously administered CuS nanoparticles facilitated visualization of blood perfusion in murine cerebrovascular networks. The individual calcium carbonate microparticles carrying CuS are further shown to generate sufficient responses to enable super-resolution microvascular imaging and blood flow velocity mapping with localization optoacoustic tomography.
Collapse
Affiliation(s)
- Lin Tang
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbai400076India
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Çağla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Shuxin Lyu
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
- Department of Medical ImagingShanxi Medical UniversityTaiyuan030001China
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS) and Health Research Institute of Santiago de Compostela (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Ana Torres
- Experimental Biomedicine Centre (CEBEGA)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
- Zurich Neuroscience Center (ZNZ)Zurich8057Switzerland
| |
Collapse
|
10
|
Kozyreva ZV, Demina PA, Gusliakova OI, Sukhorukov GB, Sindeeva OA. Exchange of free and capsule conjugated cyanine dyes between cells. J Mater Chem B 2024; 12:12672-12683. [PMID: 39508506 DOI: 10.1039/d4tb01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results. At the same time, the lack of a worthy alternative explains the reasons for hushing up this serious problem. Here, we propose low-cytotoxicity encapsulated forms of cyanine 3.5 and cyanine 5.5, enabling intracellular uptake and facilitating single-cell labeling and tracking as an efficient alternative to existing staining. Only 16.9% of myoblasts (C2C12) exchanged encapsulated dyes compared with 99.7% of cells that exchanged the free form of the same dyes. Simultaneous application of several encapsulated cyanine dyes, combined with the possibility of photoconversion, provides multi-color coding of individual cells. Encapsulation of cyanine dyes allows reliable labeling and reduces the transfer of the dyes between cells.
Collapse
Affiliation(s)
- Zhanna V Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
| | - Polina A Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Olga I Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
- Life Improvement by Future Technology (LIFT) Center, Moscow 121205, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Bolshoy Boulevard 30., Moscow 121205, Russia.
| |
Collapse
|
11
|
Byrnes NK, Dey E, Foss FW, Jones BJP, Madigan R, McDonald AD, Miller RL, Norman LR, Navarro KE, Nygren DR. Fluorescence imaging of individual ions and molecules in pressurized noble gases for barium tagging in 136Xe. Nat Commun 2024; 15:10595. [PMID: 39632873 PMCID: PMC11618685 DOI: 10.1038/s41467-024-54872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The imaging of individual Ba2+ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ ion imaging inside a high-pressure xenon gas environment. Ba2+ ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2 located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in 136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors.
Collapse
Affiliation(s)
- N K Byrnes
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - E Dey
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - F W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - B J P Jones
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA.
| | - R Madigan
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - A D McDonald
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - R L Miller
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - L R Norman
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - K E Navarro
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - D R Nygren
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
12
|
Park D, Won SM, Lee H. Enhanced Deoxygenation of Solvents via an Improved Inert Gas Bubbling Method with a Ventilation Pathway. ACS OMEGA 2024; 9:42915-42922. [PMID: 39464442 PMCID: PMC11500370 DOI: 10.1021/acsomega.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
We introduce an improved inert gas bubbling method for solvent deoxygenation, featuring a ventilation path alongside the inert gas inlet to enhance the efficiency and reproducibility. While essential for life, oxygen's reactivity can disrupt scientific and industrial processes by forming unwanted intermediates and deactivating catalysts, necessitating efficient deoxygenation methods. Traditional methods like freeze-pump-thaw (FPT) are effective but time-consuming, require stringent safety measures, and have potential limitations for use with aqueous and biological samples. Our enhanced inert gas bubbling method retains the simplicity and safety of conventional bubbling while achieving FPT-like deoxygenation efficiency, demonstrated by photoluminescence intensity and lifetime measurements in acetonitrile (ACN) and toluene (TOL). Simulations using a simplified kinetic model and the Stern-Volmer equation reveal that the added ventilation pathway reduces oxygen contamination in Ar gas bubbles, improving the deoxygenation efficiency. This method is widely applicable in academic and industrial fields, requiring consistent and efficient solvent deoxygenation.
Collapse
Affiliation(s)
- Dongcheol Park
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Seong Min Won
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Hohjai Lee
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| |
Collapse
|
13
|
Liu Y, Ning L, Luo Y, Huang Y, He Z, Ma H, Zhao Y, Zhang J, Liu D, Fu L, Langford SJ, Gale PA, Luo Y, Bao G. Stabilizing Dye-Sensitized Upconversion Hybrids by Cyclooctatetraene. NANO LETTERS 2024; 24:12486-12492. [PMID: 39292766 DOI: 10.1021/acs.nanolett.4c03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) can convert low-energy near-infrared (NIR) light into high-energy visible light, making them valuable for broad applications. UCNPs often suffer from poor light-harvesting capabilities, which can be significantly improved by incorporating organic dye antennas. However, the dye-sensitized upconversion systems are prone to severe photobleaching in an ambient atmosphere. Here, we present a synergistic approach to mitigate photobleaching by introducing triplet state quencher cyclooctatetraene (COT). COT effectively suppresses the generation of singlet oxygen by quenching the triplet states of the dye and consumes the existing singlet oxygen through oxidant reactions. The inclusion of COT extends the half-life of IR806 by 4.7-times by preventing the oxidation of its poly(methylene) chains. Without significantly affecting emission intensity and dynamics, COT effectively stabilized dye-UCNPs, demonstrating a notable 3.9-fold increase in half-life under continuous laser irradiation. Our findings suggest a new strategy to enhance the photostability of near-infrared dyes and dye-sensitized upconversion nanohybrids.
Collapse
Affiliation(s)
- Yuxi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yijun Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yin Huang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Hao Ma
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Deming Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences, Changchun 130033, P.R. China
| | - Libing Fu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Steven J Langford
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuxia Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Guochen Bao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
14
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
15
|
Martinez KN, Gerstner NC, Yang SJ, Miller EW. Extended voltage imaging in cardiomyocytes with a triplet state quencher-stabilized silicon rhodamine. Bioorg Med Chem Lett 2024; 109:129842. [PMID: 38844174 PMCID: PMC11648968 DOI: 10.1016/j.bmcl.2024.129842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity. We have been exploring self-healing fluorophores that use triplet state quenchers (TSQs) as a means to reduce the already low phototoxicity of VoltageFluor dyes developed in our lab. We previously showed that conjugation of the TSQ cyclooctatetraene (COT) to a fluorescein based VoltageFluor dye substantially reduced phototoxicity. Here, we show that this approach can be applied to far-red Silicon rhodamine dyes. COT-conjugated Si-rhodamines show improved photostability and reduced phototoxicity in hiPSC-CMs compared to the unmodified dye. This enables imaging of hiPSC-CMs for up to 30 min with continuous illumination. We show that this effect is mediated by a combination of reduced singlet oxygen production and lower loading in the cellular membrane. We discuss future applications and avenues of improvement for TSQ-stabilized VoltageFluor dyes.
Collapse
Affiliation(s)
- Kayli N Martinez
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Nels C Gerstner
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Samantha J Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
| |
Collapse
|
16
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
17
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
18
|
Riendeau JM, Gillette AA, Guzman EC, Cruz MC, Kralovec A, Udgata S, Schmitz A, Deming DA, Cimini BA, Skala MC. Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597994. [PMID: 38915614 PMCID: PMC11195115 DOI: 10.1101/2024.06.07.597994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Autofluorescence microscopy uses intrinsic sources of molecular contrast to provide cellular-level information without extrinsic labels. However, traditional cell segmentation tools are often optimized for high signal-to-noise ratio (SNR) images, such as fluorescently labeled cells, and unsurprisingly perform poorly on low SNR autofluorescence images. Therefore, new cell segmentation tools are needed for autofluorescence microscopy. Cellpose is a deep learning network that is generalizable across diverse cell microscopy images and automatically segments single cells to improve throughput and reduce inter-human biases. This study aims to validate Cellpose for autofluorescence imaging, specifically from multiphoton intensity images of NAD(P)H. Manually segmented nuclear masks of NAD(P)H images were used to train new Cellpose models. These models were applied to PANC-1 cells treated with metabolic inhibitors and patient-derived cancer organoids (across 9 patients) treated with chemotherapies. These datasets include co-registered fluorescence lifetime imaging microscopy (FLIM) of NAD(P)H and FAD, so fluorescence decay parameters and the optical redox ratio (ORR) were compared between masks generated by the new Cellpose model and manual segmentation. The Dice score between repeated manually segmented masks was significantly lower than that of repeated Cellpose masks (p<0.0001) indicating greater reproducibility between Cellpose masks. There was also a high correlation (R2>0.9) between Cellpose and manually segmented masks for the ORR, mean NAD(P)H lifetime, and mean FAD lifetime across 2D and 3D cell culture treatment conditions. Masks generated from Cellpose and manual segmentation also maintain similar means, variances, and effect sizes between treatments for the ORR and FLIM parameters. Overall, Cellpose provides a fast, reliable, reproducible, and accurate method to segment single cells in autofluorescence microscopy images such that functional changes in cells are accurately captured in both 2D and 3D culture.
Collapse
Affiliation(s)
- Jeremiah M Riendeau
- University of Wisconsin, Madison, Department of Biomedical Imaging, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | | | | - Mario Costa Cruz
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, Massachusetts
| | | | - Shirsa Udgata
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Alexa Schmitz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Dustin A Deming
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI
- University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Beth A Cimini
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, Massachusetts
| | - Melissa C Skala
- University of Wisconsin, Madison, Department of Biomedical Imaging, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| |
Collapse
|
19
|
Bharadwaj A, Kumar A, Mitra R, Jaganathan BG, Boruah BR. Enhanced fluorescence blinking of AF647 fluorophores in Mowiol via violet and UV light induced recovery for superior localization microscopy. Methods Appl Fluoresc 2024; 12:035007. [PMID: 38740072 DOI: 10.1088/2050-6120/ad4ae6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Blinking of fluorophores is essential in the context of single molecule localization-based optical super-resolution microscopy methods. To make the fluorescence molecule undergo blinking specific complex chemical mounting buffer systems, combined with suitable oxygen scavengers, and reducing agents are required. For instance to realise blinking in widely used fluorescence tags, like Alexa Fluor 647 (AF647), they are to be mounted on anti-fading buffer such as Mowiol and reducing agent such as Beta (β) - ME. However, the quality of the super-resolved images is decided by the total number of blinking events or in other words net duration for which the fluorescence blinking persists. In this paper we investigate how a violet and UV light induced fluorescence recovery mechanism can enhance the duration of fluorescence blinking. Our study uses AF647 dye conjugated with Phalloidin antibody in U87MG cell line mounted on Mowiol andβ- ME. On the basis of the investigation we optimize the intensity, at the sample plane, of fluorescence excitation laser at 638 nm and fluorescence recovery beam at 405 nm or in the UV giving the maximum possible fluorescence blinking duration. We observe that the longer blinking duration, using the optimized illumination scheme, has brought down the resolution in the super-resolved image, as given by Fourier Ring Correlation method, from 168 nm to 112 nm, while the separation between two nearby resolvable filaments has been brought down to ≤ 60 nm.
Collapse
Affiliation(s)
- Anupam Bharadwaj
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Amalesh Kumar
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rumela Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bithiah Grace Jaganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bosanta R Boruah
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
20
|
Zhang Y, Ling J, Liu T, Chen Z. Lumos maxima - How robust fluorophores resist photobleaching? Curr Opin Chem Biol 2024; 79:102439. [PMID: 38432145 DOI: 10.1016/j.cbpa.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jing Ling
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China.
| |
Collapse
|
21
|
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R, Ciftci HD, Falzone ME, Huysmans G, Robertson JL, Boudker O, Accardi A. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 2024; 31:644-656. [PMID: 38279055 PMCID: PMC11262703 DOI: 10.1038/s41594-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiorgos Argyros
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hatice Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, New York, NY, USA
| | - Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Gerard Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Erasmus University, Jette, Belgium
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
22
|
Ren X, Wang C, Wu X, Rong M, Huang R, Liang Q, Shen T, Sun H, Zhang R, Zhang Z, Liu X, Song X, Foley JW. Auxochrome Dimethyl-Dihydroacridine Improves Fluorophores for Prolonged Live-Cell Super-Resolution Imaging. J Am Chem Soc 2024; 146:6566-6579. [PMID: 38422385 DOI: 10.1021/jacs.3c11823] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chao Wang
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Xia Wu
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Mengtao Rong
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Rong Huang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qin Liang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Tianruo Shen
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - James W Foley
- Rowland Institute at Harvard, Harvard University, Boston, Massachusetts 02142, United States
| |
Collapse
|
23
|
Rickert JD, Held MO, Engelhardt J, Hell SW. 4Pi MINFLUX arrangement maximizes spatio-temporal localization precision of fluorescence emitter. Proc Natl Acad Sci U S A 2024; 121:e2318870121. [PMID: 38442172 PMCID: PMC10945813 DOI: 10.1073/pnas.2318870121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
We introduce MINFLUX localization with interferometric illumination through opposing objective lenses for maximizing the attainable precision in 3D-localization of single inelastic scatterers, such as fluorophores. Our 4Pi optical configuration employs three sequentially tilted counter-propagating beam pairs for illumination, each providing a narrow interference minimum of illumination intensity at the focal point. The localization precision is additionally improved by adding the inelastically scattered or fluorescence photons collected through both objective lenses. Our 4Pi configuration yields the currently highest precision per detected photon among all localization schemes. Tracking gold nanoparticles as non-blinking inelastic scatterers rendered a position uncertainty <0.4 nm3 in volume at a localization frequency of 2.9 kHz. We harnessed the record spatio-temporal precision of our 4Pi MINFLUX approach to examine the diffusion of single fluorophores and fluorescent nanobeads in solutions of sucrose in water, revealing local heterogeneities at the nanoscale. Our results show the applicability of 4Pi MINFLUX to study molecular nano-environments of diffusion and its potential for quantifying rapid movements of molecules in cells and other material composites.
Collapse
Affiliation(s)
- Julian D. Rickert
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Max Planck School Matter to Life, Heidelberg69120, Germany
| | - Marcus O. Held
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
24
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
25
|
Zhong-Johnson EZL, Dong Z, Canova CT, Destro F, Cañellas M, Hoffman MC, Maréchal J, Johnson TM, Zheng M, Schlau-Cohen GS, Lucas MF, Braatz RD, Sprenger KG, Voigt CA, Sinskey AJ. Analysis of Poly(ethylene terephthalate) degradation kinetics of evolved IsPETase variants using a surface crowding model. J Biol Chem 2024; 300:105783. [PMID: 38395309 PMCID: PMC10963241 DOI: 10.1016/j.jbc.2024.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.
Collapse
Affiliation(s)
| | - Ziyue Dong
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Mikaila C Hoffman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jeanne Maréchal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; AgroParisTech, Palaiseau, France
| | - Timothy M Johnson
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maya Zheng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kayla G Sprenger
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
26
|
Qi F, Feng HJ, Peng Y, Jiang LH, Zeng L, Huang L. New Type Annihilator of π-Expanded Diketopyrrolopyrrole for Robust Photostable NIR-Excitable Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7512-7521. [PMID: 38318769 DOI: 10.1021/acsami.3c17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching. In conjunction with the NIR photosensitizer PdTNP, the upconversion efficiency of π-DPP is as high as 8.9%, which is eight times of the previously reported PdPc/Furan-DPP. Importantly, after polystyrene film encapsulation, less than 10% photobleaching was observed for this PdTNP/π-DPP-based NIR TTA-UC material after four hours of intensive NIR light exposure. These findings provide a type of annihilator with extraordinary photostability, facilitating the development of NIR TTA-UC materials for practical photonics.
Collapse
Affiliation(s)
- Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Peng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Naderer C, Krobath H, Sivun D, Gvindzhiliia G, Klar TA, Jacak J. New buffer systems for photopainting of single biomolecules. RSC APPLIED INTERFACES 2024; 1:110-121. [PMID: 39166527 PMCID: PMC10805099 DOI: 10.1039/d3lf00125c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/03/2023] [Indexed: 08/23/2024]
Abstract
We present newly developed buffer systems that significantly improve the efficiency of a photochemically induced surface modification at the single molecule level. Buffers with paramagnetic cations and radical oxygen promoting species facilitate laser-assisted protein adsorption by photobleaching (LAPAP) of single fluorescently labelled oligonucleotides or biotin onto multi-photon-lithography-structured 2D and 3D acrylate scaffolds. Single molecule fluorescence microscopy has been used to quantify photopainting efficiency. We identify specific cation interaction sites for members of the cyanine, coumarin and rhodamine classes of fluorophores using quantum mechanical calculations. We show that our buffer systems provide an up to three-fold LAPAP-efficiency increase for the cyanine fluorophore, while keeping excitation parameters constant.
Collapse
Affiliation(s)
- Christoph Naderer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Dmitry Sivun
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Georgii Gvindzhiliia
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Thomas A Klar
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| |
Collapse
|
28
|
Liu J, Zhao B, Zhang X, Guan D, Sun K, Zhang Y, Liu Q. Thiolation for Enhancing Photostability of Fluorophores at the Single-Molecule Level. Angew Chem Int Ed Engl 2024; 63:e202316192. [PMID: 37975636 DOI: 10.1002/anie.202316192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Fluorescent probes are essential for single-molecule imaging. However, their application in biological systems is often limited by the short photobleaching lifetime. To overcome this, we developed a novel thiolation strategy for squaraine dyes. By introducing thiolation of the central cyclobutene of squaraine (thio-squaraine), we observed a ≈5-fold increase in photobleaching lifetime. Our single-molecule data analysis attributes this improvement to improved photostability resulting from thiolation. Interestingly, bulk measurements show rapid oxidation of thio-squaraine to its oxo-analogue under irradiation, giving the perception of inferior photostability. This discrepancy between bulk and single-molecule environments can be ascribed to the factors in the latter, including larger intermolecular distances and restricted mobility, which reduce the interactions between a fluorophore and reactive oxygen species produced by other fluorophores, ultimately impacting photobleaching and photoconversion rate. We demonstrate the remarkable performance of thio-squaraine probes in various imaging buffers, such as glucose oxidase with catalase (GLOX) and GLOX+trolox. We successfully employed these photostable probes for single-molecule tracking of CD56 membrane protein and monitoring mitochondria movements in live neurons. CD56 tracking revealed distinct motion states and the corresponding protein fractions. This investigation is expected to propel the development of single-molecule imaging probes, particularly in scenarios where bulk measurements show suboptimal performance.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kuangshi Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
29
|
Wang WX, Douglas TR, Zhang H, Bhattacharya A, Rothenbroker M, Tang W, Sun Y, Jia Z, Muffat J, Li Y, Chou LYT. Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamiFISH. NATURE NANOTECHNOLOGY 2024; 19:58-69. [PMID: 37500778 DOI: 10.1038/s41565-023-01449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Structural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts. Here we present origamiFISH, a label-free and universal method for the single-molecule fluorescence detection of DNA origami nanostructures in cells and tissues. origamiFISH targets pan-DN scaffold sequences with hybridization chain reaction probes to achieve 1,000-fold signal amplification. We identify cell-type- and DN shape-specific spatiotemporal distribution patterns within a minute of uptake and at picomolar DN concentrations, 10,000× lower than field standards. We additionally optimize compatibility with immunofluorescence and tissue clearing to visualize DN distribution within tissue cryo-/vibratome sections, slice cultures and whole-mount organoids. Together, origamiFISH enables the accurate mapping of DN distribution across subcellular and tissue barriers for guiding the development of DN-based therapeutics.
Collapse
Affiliation(s)
- Wendy Xueyi Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Travis R Douglas
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Haiwang Zhang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Setzler C, Arrington CA, Lewis D, Petty JT. Breaching the Fortress: Photochemistry of DNA-Caged Ag 106. J Phys Chem B 2023; 127:10851-10860. [PMID: 38054435 PMCID: PMC10749453 DOI: 10.1021/acs.jpcb.3c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
A DNA strand can encapsulate a silver molecule to create a nanoscale, aqueous stable chromophore. A protected cluster that strongly fluoresces can also be weakly photolabile, and we describe the laser-driven photochemistry of the green fluorophore C4AC4TC3GT4/Ag106+. The embedded cluster is selectively photoexcited at 490 nm and then bleached, and we describe how the efficiency, products, and route of this photochemical reaction are controlled by the DNA cage. With irradiation at 496.5 nm, the cluster absorption progressively drops to give a photodestruction quantum yield of 1.5 (±0.2) × 10-4, ∼103× less efficient than fluorescence. A new λabs = 335 nm chromophore develops because the precursor with 4 Ag0 is converted into a group of clusters with 2 Ag0 - Ag64+, Ag75+, Ag86+, and Ag97+. The 4-7 Ag+ in this series are chemically distinct from the 2 Ag0 because they are selectively etched by iodide. This halide precipitates silver to favor only the smallest Ag64+ cluster, but the larger clusters re-develop when the precipitated Ag+ ions are replenished. DNA-bound Ag106+ decomposes because it is electronically excited and then reacts with oxygen. This two-step process may be state-specific because O2 quenches the red luminescence from Ag106+. However, the rate constant of 2.3 (±0.2) × 106 M-1 s-1 is relatively small, which suggests that the surrounding DNA matrix hinders O2 diffusion. On the basis of analogous photoproducts with methylene blue, we propose that a reactive oxygen species is produced and then oxidizes Ag106+ to leave behind a loose Ag+-DNA skeleton. These findings underscore the ability of DNA scaffolds to not only tune the spectra but also guide the reactions of their molecular silver adducts.
Collapse
Affiliation(s)
- Caleb
J. Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
31
|
Wang H, Han G, Tang H, Zhang R, Liu Z, Sun Y, Liu B, Geng J, Zhang Z. Synchronous Photoactivation-Imaging Fluorophores Break Limitations of Photobleaching and Phototoxicity in Live-cell Microscopy. Anal Chem 2023; 95:16243-16250. [PMID: 37890170 DOI: 10.1021/acs.analchem.3c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Fluorescence microscopy is one of the most important tools in the studies of cell biology and many other fields, but two fundamental issues, photobleaching and phototoxicity, associated with the fluorophores have still limited its use for long-term and strong-illumination imaging of live cells. Here, we report a new concept of fluorophore engineering chemistry, synchronous photoactivation-imaging (SPI) fluorophores, activating and exciting fluorophores by a single light source to thus avoid the repeated switches between activation and excitation lights. The chemically reconstructed, nonemissive fluorophores can be photolyzed to allow continuous replenishing of "bright-state" probes detectable by standard fluorescent microscopes in the imaging process so as to bypass the photobleaching barrier to greatly extend the imaging period. Equally importantly, SPI fluorophores substantially reduce photocytotoxicity due to the scavenging of reactive oxygen species (ROS) by a photoactivable group and the slow release of "bright-state" probes to minimize ROS generation. Using SPI fluorophores, the time-lapsed confocal (>16 h) and super-resolution (>3 h) imaging of subcellular organelles under intensive illumination (50 MW/cm2) were achieved in live cells.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Guangmei Han
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Hesen Tang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Ruilong Zhang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Zhengjie Liu
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Yingqiang Sun
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Bianhua Liu
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Junlong Geng
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, Anhui, China
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
32
|
Fazel M, Grussmayer KS, Ferdman B, Radenovic A, Shechtman Y, Enderlein J, Pressé S. Fluorescence Microscopy: a statistics-optics perspective. ARXIV 2023:arXiv:2304.01456v3. [PMID: 37064525 PMCID: PMC10104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Modeling these features is ever more important in quantitatively interpreting microscopy images collected at scales on par or smaller than light's wavelength. Here we review the optics responsible for generating fluorescent images, fluorophore properties, microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Kristin S Grussmayer
- Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Boris Ferdman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
33
|
Zhou W, Ryan A, Janosko CP, Shoger KE, Haugh JM, Gottschalk RA, Deiters A. Isoform-specific optical activation of kinase function reveals p38-ERK signaling crosstalk. RSC Chem Biol 2023; 4:765-773. [PMID: 37799579 PMCID: PMC10549237 DOI: 10.1039/d2cb00157h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Evolution has diversified the mammalian proteome by the generation of protein isoforms that originate from identical genes, e.g., through alternative gene splicing or post-translational modifications, or very similar genes found in gene families. Protein isoforms can have either overlapping or unique functions and traditional chemical, biochemical, and genetic techniques are often limited in their ability to differentiate between isoforms due to their high similarity. This is particularly true in the context of highly dynamic cell signaling cascades, which often require acute spatiotemporal perturbation to assess mechanistic details. To that end, we describe a method for the selective perturbation of the individual protein isoforms of the mitogen-activated protein kinase (MAPK) p38. The genetic installation of a photocaging group at a conserved active site lysine enables the precise light-controlled initiation of kinase signaling, followed by investigation of downstream events. Through optical control, we have identified a novel point of crosstalk between two major signaling cascades: the p38/MAPK pathway and the extracellular signal-regulated kinase (ERK)/MAPK pathway. Specifically, using the photoactivated p38 isoforms, we have found the p38γ and p38δ variants to be positive regulators of the ERK signaling cascade, while confirming the p38α and p38β variants as negative regulators.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh NC 27606 USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
- Center for Systems Immunology, University of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
34
|
Anderson DM, Logan MG, Patty SS, Kendall AJ, Borland CZ, Pfeifer CS, Kreth J, Merritt JL. Microbiome imaging goes à la carte: Incorporating click chemistry into the fluorescence-activating and absorption-shifting tag (FAST) imaging platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560575. [PMID: 37873282 PMCID: PMC10592883 DOI: 10.1101/2023.10.02.560575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The human microbiome is predominantly composed of facultative and obligate anaerobic bacteria that live in hypoxic/anoxic polymicrobial biofilm communities. Given the oxidative sensitivity of large fractions of the human microbiota, green fluorescent protein (GFP) and related genetically-encoded fluorophores only offer limited utility for live cell imaging due the oxygen requirement for chromophore maturation. Consequently, new fluorescent imaging modalities are needed to study polymicrobial interactions and microbiome-host interactions within anaerobic environments. The fluorescence-activating and absorption shifting tag (FAST) is a rapidly developing genetically-encoded fluorescent imaging technology that exhibits tremendous potential to address this need. In the FAST system, fluorescence only occurs when the FAST protein is complexed with one of a suite of cognate small molecule fluorogens. To expand the utility of FAST imaging, we sought to develop a modular platform (Click-FAST) to democratize fluorogen engineering for personalized use cases. Using Click-FAST, investigators can quickly and affordably sample a vast chemical space of compounds, potentially imparting a broad range of desired functionalities to the parental fluorogen. In this work, we demonstrate the utility of the Click-FAST platform using a novel fluorogen, PLBlaze-alkyne, which incorporates the widely available small molecule ethylvanillin as the hydroxybenzylidine head group. Different azido reagents were clicked onto PLBlaze-alkyne and shown to impart useful characteristics to the fluorogen, such as selective bacterial labeling in mixed populations as well as fluorescent signal enhancement. Conjugation of an 80 Å PEG molecule to PLBlaze-alkyne illustrates the broad size range of functional fluorogen chimeras that can be employed. This PEGylated fluorogen also functions as an exquisitely selective membrane permeability marker capable of outperforming propidium iodide as a fluorescent marker of cell viability.
Collapse
Affiliation(s)
- David M Anderson
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Matthew G Logan
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sara S Patty
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Alexander J Kendall
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Christina Z Borland
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Justin L Merritt
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
35
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
36
|
Liu X, Domingues NP, Oveisi E, Coll-Satue C, Jansman MMT, Smit B, Hosta-Rigau L. Metal-organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater Sci 2023; 11:2551-2565. [PMID: 36786283 DOI: 10.1039/d2bm01405j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Blood transfusions are a life-saving procedure since they can preserve the body's oxygen levels in patients suffering from acute trauma, undergoing surgery, receiving chemotherapy or affected by severe blood disorders. Due to the central role of hemoglobin (Hb) in oxygen transport, so-called Hb-based oxygen carriers (HBOCs) are currently being developed for situations where donor blood is not available. In this context, an important challenge that needs to be addressed is the oxidation of Hb into methemoglobin (metHb), which is unable to bind and release oxygen. While several research groups have considered the incorporation of antioxidant enzymes to create HBOCs with minimal metHb conversion, the use of biological enzymes has important limitations related to their high cost, potential immunogenicity or low stability in vivo. Thus, nanomaterials with enzyme-like properties (i.e., nanozymes (NZs)) have emerged as a promising alternative. Amongst the different NZs, gold (Au)-based metallic nanoparticles are widely used for biomedical applications due to their biocompatibility and multi-enzyme mimicking abilities. Thus, in this work, we incorporate Au-based NZs into a type of HBOC previously reported by our group (i.e., Hb-loaded metal-organic framework (MOF)-based nanocarriers (NCs)) and investigate their antioxidant properties. Specifically, we prepare MOF-NCs loaded with Au-based NZs and demonstrate their ability to catalytically deplete over multiple rounds of two prominent reactive oxygen species (ROS) that exacerbate Hb's autoxidation (i.e., hydrogen peroxide and the superoxide radical). Importantly, following loading with Hb, we show how these ROS-scavenging properties translate into a decrease in metHb content. All in all, these results highlight the potential of NZs to create novel HBOCs with antioxidant protection which may find applications as a blood substitute in the future.
Collapse
Affiliation(s)
- Xiaoli Liu
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Nency Patricio Domingues
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clara Coll-Satue
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Michelle Maria Theresia Jansman
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
37
|
Gulka SMD, Gowen B, Litke AM, Delaney KR, Chow RL. Laser-induced microinjury of the corneal basal epithelium and imaging of resident macrophage responses in a live, whole-eye preparation. Front Immunol 2023; 14:1050594. [PMID: 36814930 PMCID: PMC9939765 DOI: 10.3389/fimmu.2023.1050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 μm x 30 μm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 μm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm.
Collapse
Affiliation(s)
- Sebastian M. D. Gulka
- Department of Biology, University of Victoria, Victoria, BC, Canada
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Kerry R. Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
38
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
39
|
Kompa J, Bruins J, Glogger M, Wilhelm J, Frei MS, Tarnawski M, D’Este E, Heilemann M, Hiblot J, Johnsson K. Exchangeable HaloTag Ligands for Super-Resolution Fluorescence Microscopy. J Am Chem Soc 2023; 145:3075-3083. [PMID: 36716211 PMCID: PMC9912333 DOI: 10.1021/jacs.2c11969] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific and covalent labeling of the protein HaloTag with fluorescent probes in living cells makes it a powerful tool for bioimaging. However, the irreversible attachment of the probe to HaloTag precludes imaging applications that require transient binding of the probe and comes with the risk of irreversible photobleaching. Here, we introduce exchangeable ligands for fluorescence labeling of HaloTag (xHTLs) that reversibly bind to HaloTag and that can be coupled to rhodamines of different colors. In stimulated emission depletion (STED) microscopy, probe exchange of xHTLs allows imaging with reduced photobleaching as compared to covalent HaloTag labeling. Transient binding of fluorogenic xHTLs to HaloTag fusion proteins enables points accumulation for imaging in nanoscale topography (PAINT) and MINFLUX microscopy. We furthermore introduce pairs of xHTLs and HaloTag mutants for dual-color PAINT and STED microscopy. xHTLs thus open up new possibilities in imaging across microscopy platforms for a widely used labeling approach.
Collapse
Affiliation(s)
- Julian Kompa
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Jorick Bruins
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Marius Glogger
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Jonas Wilhelm
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Michelle S. Frei
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Miroslaw Tarnawski
- Protein
Expression and Characterization Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Elisa D’Este
- Optical
Microscopy Facility, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland,
| |
Collapse
|
40
|
Martin MI, Pati AK, Abeywickrama CS, Bar S, Kilic Z, Altman RB, Blanchard SC. Leveraging Baird aromaticity for advancement of bioimaging applications. J PHYS ORG CHEM 2023; 36:e4449. [PMID: 36590885 PMCID: PMC9799245 DOI: 10.1002/poc.4449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023]
Abstract
In this perspective, we highlight the recent progress in utilizing Baird aromatic species to improve fluorophore performance in microscopy and imaging applications. We specifically focus on the origins of the use of Baird aromaticity in fluorescence applications, the development of “self‐healing” fluorophores leveraging cyclooctatetraene’ Baird aromaticity, and where developments need to occur to optimize this technology.
Collapse
Affiliation(s)
- Maxwell I. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Avik K. Pati
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Chathura S. Abeywickrama
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Sukanta Bar
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Zeliha Kilic
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Roger B. Altman
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Scott C. Blanchard
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
- Department of Chemical Biology & TherapeuticsSt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
41
|
Liu T, Stephan T, Chen P, Keller-Findeisen J, Chen J, Riedel D, Yang Z, Jakobs S, Chen Z. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc Natl Acad Sci U S A 2022; 119:e2215799119. [PMID: 36534799 PMCID: PMC9907107 DOI: 10.1073/pnas.2215799119] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.
Collapse
Affiliation(s)
- Tianyan Liu
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Peng Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
| | - Jingting Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Zhongtian Yang
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37099, Germany
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| |
Collapse
|
42
|
Analysis of the Results of Severe Intraepithelial Squamous Cell Lesions and Preinvasive Cervical Cancer Phototheranostics in Women of Reproductive Age. Biomedicines 2022; 10:biomedicines10102521. [PMID: 36289783 PMCID: PMC9599442 DOI: 10.3390/biomedicines10102521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Purpose: To investigate the efficacy and safety of using PDT in the treatment of severe intraepithelial squamous lesions of the cervix and preinvasive cervical cancer associated with HPV in women of reproductive age. (2) Methods: The examination and treatment of 45 patients aged 22-49 years with morphologically confirmed HPV-associated cervical intraepithelial neoplasia of a severe degree (17 patients) and preinvasive cervical cancer (28 patients) were performed. All patients underwent PDT of the cervix using a chlorin e6 photosensitizer; after which, the affected areas of the cervix were evaluated using video and spectral fluorescence diagnostics. PDT effectiveness was assessed on the basis of colposcopy data, a cytological examination of exo- and endocervix and PAP test scrapings or the liquid cytology method, and polymerase chain reaction for HPV carriage 4 weeks after PDT, as well as on the basis of histological and immunohistochemical studies of biopsy materials 5 weeks after PDT. The expression levels of the Ki-67 and p16 markers in the affected areas of the cervix were also assessed. (3) Results. All patients included in the study tolerated the intravenous administration of the photosensitizer well, with no side effects or allergic reactions observed. In 88.2% of patients with CIN III/HSIL and in 85.7% of women with preinvasive cervical cancer, the effect of the treatment was noted after the first PDT procedure, while complete regression of the dysplasia foci was observed in 15 women (88.2%) with CIN III/HSIL and in 25 patients (89.3%) with preinvasive cervical cancer. Partial regression to the form of LSIL/CIN I was noted in two cases (11.8%) in the CIN III/HSIL group and in three cases (10.7%) in the group of patients with preinvasive cervical cancer. After PDT, a statistically significant decrease in the expression of the Ki-67 and p16 levels relative to the initial values was noted. (4) Conclusions. The results obtained indicate the high efficiency of PDT with intravenous administration of the chlorin photosensitizer for the treatment of intraepithelial lesions of the cervix with a selective effect on pathologically altered tissue. The use of this approach makes it possible to preserve the normal anatomical and functional characteristics of the cervix, which is especially important for maintaining the fertility of patients.
Collapse
|
43
|
Vandyshev DY, Shikhaliev KS, Prezent MA, Kozaderov OA, Ovchinnikov OV, Smirnov MS, Ilyinova TN, Mangusheva DA, Iminova RR, Chetti P. ANALYSIS OF THE SPECTRAL-LUMINESCENT PROPERTIES OF IMIDAZO[1,2-b]PYRIDO[4,3-e][1,2,4]TRIAZIN-6(7Н)-ONES. LUMINESCENCE 2022; 37:1689-1700. [PMID: 35863912 DOI: 10.1002/bio.4344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
The article presents a method for the construction of a new tricyclic system of imidazo[1,2-b]pyrido[4,3-e][1,2,4]triazin-6(7Н)-ones based on subsequent reactions of the obtained 1,2-diamino-4-phenylimidazole ethyl ether of 3-methyl-6-phenylimidazo[1,2-b][1,2,4]triazin-2-carboxylic acid with dimethylformamide dimethylacetal and primary amines. The structures of the obtained compounds were confirmed using the data obtained by 1 Н and 13 С NMR, HRMS, and XRD. We analysed the dependence of the absorption and photoluminescence spectra on the structure of the compounds obtained using methods of quantum chemistry. The theoretical results were compared to the data of a real experiment. The article suggests a range of practical applications for imidazo[1,2-b]pyrido[4,3-e][1,2,4]triazin-6(7Н)-ones.
Collapse
Affiliation(s)
- Dmitriy Yu Vandyshev
- Department of Organic Chemistry. Chemical Faculty. Voronezh State University, Voronezh, Russia
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry. Chemical Faculty. Voronezh State University, Voronezh, Russia
| | - Mikhail A Prezent
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg A Kozaderov
- Department of Organic Chemistry. Chemical Faculty. Voronezh State University, Voronezh, Russia
| | - Oleg V Ovchinnikov
- Department of Optics and Spectroscopy. Faculty of Physics. Voronezh State University, Voronezh, Russia
| | - Mikhail S Smirnov
- Department of Optics and Spectroscopy. Faculty of Physics. Voronezh State University, Voronezh, Russia
| | - Tatiana N Ilyinova
- Department of Clinical Laboratory Diagnostics, Voronezh Medical State University, Voronezh, Russia
| | - Daria A Mangusheva
- Department of Organic Chemistry. Chemical Faculty. Voronezh State University, Voronezh, Russia
| | - Renata R Iminova
- Department of Organic Chemistry. Chemical Faculty. Voronezh State University, Voronezh, Russia
| | - Prabhakar Chetti
- National Institute of Technology Kurukshetra, Kurukshetra, India
| |
Collapse
|
44
|
Gallaga-González U, Morales-Avila E, Torres-García E, Estrada JA, Díaz-Sánchez LE, Izquierdo G, Aranda-Lara L, Isaac-Olivé K. Photoactivation of Chemotherapeutic Agents with Cerenkov Radiation for Chemo-Photodynamic Therapy. ACS OMEGA 2022; 7:23591-23604. [PMID: 35847323 PMCID: PMC9280781 DOI: 10.1021/acsomega.2c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cerenkov radiation (CR) can be used as an internal light source in photodynamic therapy (PDT). Methotrexate (MTX) and paclitaxel (PTX), chemotherapeutic agents with wide clinical use, have characteristics of photosensitizers (PS). This work evaluates the possibility of photoexciting MTX and PTX with CR from 18F-FDG to produce reactive oxygen species (ROS) capable of inducing cytotoxicity. PTX did not produce ROS when excited by CR from 18F-FDG, so it is not useful for PDT. In contrast, MTX produces 1O2 (detected by ABMA) in amounts sufficient to significantly decrease the viability of the T47D cells. MTX solutions of 100 nM combined with 18F-FDG activities of 50 (1.85 MBq) and 100 μCi (3.7 MBq) produced a significant decrease in cell viability to (50.09 ± 4.95) and (47.96 ± 11.19)%, respectively, compared to MTX (66.29 ± 5.92)% and 18F-FDG (91.35 ± 7.00% for 50 μCi and 99.43 ± 11.03% for 100 μCi) alone. Using the CellRox Green reagent, the intracellular production of ROS was confirmed as the main mechanism of cytotoxicity. The results confirm the therapeutic potential of photoactivation with CR and the synergy of the combined treatment with chemotherapy + photodynamic therapy (CMT + PDT). The combination of chemotherapeutic agents with PS properties and β-emitting radiopharmaceuticals, previously approved for clinical use, will make it possible to shorten the evaluation stages of new CMT + PDT systems.
Collapse
Affiliation(s)
- Uriel Gallaga-González
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Enrique Morales-Avila
- Laboratorio
de Toxicología y Farmacia,
Facultad de Química, Universidad
Autónoma del Estado de México, Toluca, 50120 Estado de México, México
| | - Eugenio Torres-García
- Laboratorio
de Dosimetría y Simulación Monte Carlo, Facultad de
Medicina, Universidad Autónoma del
Estado de México, Toluca, 50180 Estado de México, México
| | - José A. Estrada
- Laboratorio
de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Luis Enrique Díaz-Sánchez
- Facultad
de Ciencias, Universidad Autónoma
del Estado de México, Toluca, 50120 Estado de México, México
| | - German Izquierdo
- Facultad
de Ciencias, Universidad Autónoma
del Estado de México, Toluca, 50120 Estado de México, México
| | - Liliana Aranda-Lara
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Keila Isaac-Olivé
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| |
Collapse
|
45
|
Nguyen B, Tufenkji N. Single-Particle Resolution Fluorescence Microscopy of Nanoplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6426-6435. [PMID: 35472273 PMCID: PMC9118545 DOI: 10.1021/acs.est.1c08480] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 05/15/2023]
Abstract
Understanding of nanoplastic prevalence and toxicology is limited by imaging challenges resulting from their small size. Fluorescence microscopy is widely applied to track and identify microplastics in laboratory studies and environmental samples. However, conventional fluorescence microscopy, due to diffraction, lacks the resolution to precisely localize nanoplastics in tissues, distinguish them from free dye, or quantify them in environmental samples. To address these limitations, we developed techniques to label nanoplastics for imaging with stimulated emission depletion (STED) microscopy to achieve resolution at an order of magnitude superior to conventional fluorescence microscopy. These techniques include (1) passive sorption; (2) swell incorporation; and (3) covalent coupling of STED-compatible fluorescence dyes to nanoplastics. We demonstrate that our labeling techniques, combined with STED microscopy, can be used to resolve nanoplastics of different shapes and compositions as small as 50 nm. The longevity of dye labeling is demonstrated in different media and conditions of biological and environmental relevance. We also test STED imaging of nanoplastics in exposure experiments with the model worm Caenorhabditis elegans. Our work shows the value of the method for detection and localization of nanoplastics as small as 50 nm in a whole animal without disruption of the tissue. These techniques will allow more precise localization and quantification of nanoplastics in complex matrices such as biological tissues in exposure studies.
Collapse
Affiliation(s)
- Brian Nguyen
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
46
|
Terra JC, Desgranges A, Amara Z, Moores A. Photocatalysis on magnetic supports for singlet oxygen generation: Role of immobilization and photobleaching. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Gao Z, Sharma KK, Andres AE, Walls B, Boumelhem F, Woydziak ZR, Peterson BR. Synthesis of a fluorinated pyronin that enables blue light to rapidly depolarize mitochondria. RSC Med Chem 2022; 13:456-462. [PMID: 35647549 PMCID: PMC9020612 DOI: 10.1039/d1md00395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorinated analogues of the fluorophore pyronin B were synthesized as a new class of amine-reactive drug-like small molecules. In water, 2,7-difluoropyronin B was found to reversibly react with primary amines to form covalent adducts. When this fluorinated analogue is added to proteins, these adducts undergo additional oxidation to yield fluorescent 9-aminopyronins. Irradiation with visible blue light enhances this oxidation step, providing a photochemical method to modify the biological properties of reactive amines. In living HeLa cells, 2,7-difluoropyronin B becomes localized in mitochondria, where it is partially transformed into fluorescent aminopyronins, as detected by spectral profiling confocal microscopy. Further excitation of these cells with the blue laser of a confocal microscope can depolarize mitochondria within seconds. This biological activity was only observed with 2,7-difluoropyronin B and was not detected with analogues such as pyronin B or 9-methyl-2,7-difluoropyronin B. This irradiation with blue light enhances the cellular production of reactive oxygen species (ROS), suggesting that increased ROS in mitochondria promotes the formation of aminopyronins that inactivate biomolecules critical for maintenance of mitochondrial membrane potential. The unique reactivity of 2,7-difluoropyronin B offers a novel tool for photochemical control of mitochondrial biology.
Collapse
Affiliation(s)
- Zhe Gao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Angelo E Andres
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| | - Brandon Walls
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Fadel Boumelhem
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Zachary R Woydziak
- Department of Physical and Life Sciences, Nevada State College Henderson NV 89002 USA
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
48
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
49
|
Improving Photostability of Photosystem I-Based Nanodevice by Plasmonic Interactions with Planar Silver Nanostructures. Int J Mol Sci 2022; 23:ijms23062976. [PMID: 35328397 PMCID: PMC8950156 DOI: 10.3390/ijms23062976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
One of the crucial challenges for science is the development of alternative pollution-free and renewable energy sources. One of the most promising inexhaustible sources of energy is solar energy, and in this field, solar fuel cells employing naturally evolved solar energy converting biocomplexes—photosynthetic reaction centers, such as photosystem I—are of growing interest due to their highly efficient photo-powered operation, resulting in the production of chemical potential, enabling synthesis of simple fuels. However, application of the biomolecules in such a context is strongly limited by the progressing photobleaching thereof during illumination. In the current work, we investigated the excitation wavelength dependence of the photosystem I photodamage dynamics. Moreover, we aimed to correlate the PSI–LHCI photostability dependence on the excitation wavelength with significant (ca. 50-fold) plasmonic enhancement of fluorescence due to the utilization of planar metallic nanostructure as a substrate. Finally, we present a rational approach for the significant improvement in the photostability of PSI in anoxic conditions. We find that photobleaching rates for 5 min long blue excitation are reduced from nearly 100% to 20% and 70% for substrates of bare glass and plasmonically active substrate, respectively. Our results pave promising ways for optimization of the biomimetic solar fuel cells due to synergy of the plasmon-induced absorption enhancement together with improved photostability of the molecular machinery of the solar-to-fuel conversion.
Collapse
|
50
|
Comparison of the Capabilities of Spectroscopic and Quantitative Video Analysis of Fluorescence for the Diagnosis and Photodynamic Therapy Control of Cholangiocellular Cancer. PHOTONICS 2022. [DOI: 10.3390/photonics9020065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholangiocellular cancer (CCC) is a malignant neoplasm of the hepatobiliary system that is difficult to diagnose and treat. Currently, the most effective treatment of CCC is demonstrated under the control by fluorescent diagnosis. Photodynamic therapy (PDT) has also shown good results in the treatment of this disease, and fluorescence analysis of the photosensitizer is a good approach to control PDT. This article presents the results of a comparison of spectroscopic and quantitative video-fluorescent analysis of chlorin e6 photosensitizer fluorescence in vivo during cholangiocellular cancer surgery. Spectroscopic analysis provides accurate information about the concentration of the photosensitizer in the tumor, while the video-fluorescence method is convenient for visualizing tumor margins. A direct correlation is shown between these two methods when comparing the fluorescence signals before and after PDT. The applied paired Student’s t-test shows a significant difference between fluorescence signal before and after PDT in both diagnostic methods. In this regard, video-fluorescence navigation is not inferior in accuracy, sensitivity, or efficiency to spectroscopic methods.
Collapse
|