1
|
Liu Y, He Q, Su H, Xi X, Xu X, Qin Y, Cai H. Advances in Small RNA Regulation of Female Gametophyte Development in Flowering Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1286. [PMID: 40364315 PMCID: PMC12073561 DOI: 10.3390/plants14091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Female gametophyte development in flowering plants is a highly intricate process involving a series of tightly regulated biological events, including the establishment and differentiation of a macrospore mother cell (MMC), the formation of a functional macrospore (FM), and the subsequent development of the embryo sac. The seamless progression of these events is crucial for the completion of sexual reproduction and the alternation of generations in plants. Small RNAs are ubiquitously present in eukaryotic organisms. Based on their biogenesis, function, and involvement in biological pathways, plant small RNAs are primarily categorized into four classes: miRNAs (microRNAs), ta-siRNAs (trans-acting-siRNAs), hc-siRNAs (heterochromatic-siRNAs), and nat-siRNAs (natural antisense transcript-derived siRNAs). Current studies show that small RNAs play an important role in plant reproductive development, such as female gametophyte development and ovule development. In this review, we systematically elucidate the biogenesis and molecular mechanism of small RNAs and summarize the latest research advances on their roles in regulating megasporogenesis and megagametogenesis in plants. The aim of this review is to provide insights into the mechanisms underlying plant reproductive development through the lens of small RNAs, offering a theoretical foundation for improving crop quality, yield, genetic improvement, and breeding.
Collapse
Affiliation(s)
- Yanfen Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing He
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Han Su
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyuan Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyang Cai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (H.S.); (X.X.); (X.X.)
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Nguyen VH, Mittelsten Scheid O, Gutzat R. Heat stress response and transposon control in plant shoot stem cells. PLANT PHYSIOLOGY 2025; 197:kiaf110. [PMID: 40155207 PMCID: PMC11997658 DOI: 10.1093/plphys/kiaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.
Collapse
Affiliation(s)
- Vu Hoang Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
3
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. The Use of Arabidopsis thaliana to Characterize the Production and Action Stages of the Plant MicroRNA Pathway. Methods Mol Biol 2025; 2900:1-42. [PMID: 40380051 DOI: 10.1007/978-1-0716-4398-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Plant microRNAs are an endogenous class of small regulatory RNA central to the posttranscriptional control of gene expression as part of normal development to adapt to environmental stress and respond to pathogen challenges. The plant microRNA pathway is separated into two distinct stages: (1) production stage, which is localized to the nucleus of the cell and, in this cell compartment, the microRNA silencing signal is processed from its double-stranded RNA precursor transcript, and (2) action stage, which is localized to the cytoplasm of the cell. It is in this cellular compartment where the now mature microRNA functions as a regulatory RNA molecule to control target gene expression via its loading into the protein effector complex termed microRNA-induced silencing complex. Historical research indicated that the plant microRNA pathway was a highly structured, almost linear pathway that only required the functional activity of a small set of core, highly conserved pieces of protein machinery. However, contemporary research continues to illustrate that the plant microRNA pathway is highly dynamic, with such flexibility provided by an extremely large and functionally diverse set of auxiliary protein machinery that perform highly specific roles as part of either the production or action stage of the pathway. For example, recent research has elegantly demonstrated that plant microRNAs can regulate target gene expression via a translational repression mechanism of RNA silencing in addition to the standard messenger RNA cleavage-based mechanism: a mode of RNA silencing originally assigned to all plant microRNAs. Using Arabidopsis thaliana as our model system, we report on both the core and auxiliary sets of protein machinery now demonstrated functionally essential for the plant microRNA pathway.
Collapse
Affiliation(s)
- Joseph L Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Jackson M J Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia
| | - Andrew L Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| |
Collapse
|
4
|
Tossolini I, Manavella PA, Arce AL. Scalable Approach to Evaluate Plant microRNA Trimming and Tailing from Small RNA-Seq Data. Methods Mol Biol 2025; 2900:91-106. [PMID: 40380055 DOI: 10.1007/978-1-0716-4398-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
MicroRNAs are small regulatory RNAs of 20-24 nt, which guide the RNA-induced silencing complex to silence several genes post-transcriptionally. Plant miRNA biogenesis involves many steps, including their 2'-O-methylation at their 3' end, which protects them from degradation. In addition, there are two other types of modifications involved in miRNA turnover: trimming and tailing. This method describes a bioinformatics analysis procedure to evaluate miRNA trimming and tailing from sRNA-Seq data. The pipeline includes the steps required to download the raw data from public repositories and important considerations to analyze a large number of samples. It starts from the raw sequencing reads and involves 3' adaptor removal, quality filtering, alignment to a masked reference genome to discard unwanted reads, and the assessment of the degree of trimming and tailing for each miRNA. Finally, an index for these modifications is calculated, and the results are evaluated graphically and statistically. In conclusion, this scalable pipeline allows researchers to begin with raw data from various sRNA-seq studies and progress to meaningful results and visual representations.
Collapse
Affiliation(s)
- Ileana Tossolini
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), 3000 Santa Fe, Argentina
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET). Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3100 Oro Verde, Argentina
| | - Pablo Andrés Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), 3000 Santa Fe, Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM UMA-CSIC), 29010 Málaga, Spain
| | - Agustín Lucas Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), 3000 Santa Fe, Argentina.
- Cátedra de Bioinformática, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
5
|
Ramprosand S, Govinden-Soulange J, Ranghoo-Sanmukhiya VM, Sanan-Mishra N. miRNA, phytometabolites and disease: Connecting the dots. Phytother Res 2024; 38:4570-4591. [PMID: 39072874 DOI: 10.1002/ptr.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
miRNAs are tiny noncoding ribonucleotides that function as critical regulators of gene-expression in eukaryotes. A single miRNA may be involved in the regulation of several target mRNAs forming complex cellular networks to regulate diverse aspects of development in an organism. The deregulation of miRNAs has been associated with several human diseases. Therefore, miRNA-based therapeutics is gaining interest in the pharmaceutical industry as the next-generation drugs for the cure of many diseases. Medicinal plants have also been used for the treatment of several human diseases and their curative potential is attributed to their reserve in bioactive metabolites. A role for miRNAs as regulators of the phytometabolic pathways in plants has emerged in the recent past. Experimental studies have also indicated the potential of plant encoded secondary phytometabolites to act as cross-regulators of mammalian miRNAs and transcripts to regulate human diseases (like cancer). The evidence for this cross-kingdom gene regulation through miRNA has gathered considerable enthusiasm in the scientific field, even though there are on-going debates regarding the reproducibility and the effectiveness of these findings. In this review, we provide information to connect the medicinal and gene regulatory properties of secondary phytometabolites, their regulation by miRNAs in plants and their effects on human miRNAs for regulating downstream metabolic or pathological processes. While further extensive research initiatives and good clinical evidence are required to prove or disapprove these findings, understanding of these regulations will have important implications in the potential use of synthetic or artificial miRNAs as effective alternatives for providing health benefits.
Collapse
Affiliation(s)
- Srutee Ramprosand
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Li Q, Song M, Wang Y, Lu P, Ge W, Zhang K. Unraveling the Molecular Mechanisms by Which the miR171b- SCL6 Module Regulates Maturation in Lilium. Int J Mol Sci 2024; 25:9156. [PMID: 39273108 PMCID: PMC11394818 DOI: 10.3390/ijms25179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Lilium is one of the most widely cultivated ornamental bulbous plants in the world. Although research has shown that variable temperature treatments can accelerate the development process from vegetative to reproductive growth in Lilium, the molecular regulation mechanisms of this development are not clear. In this study, Lbr-miR171b and its target gene, LbrSCL6, were selected and validated using transgenic functional verification, subcellular localization, and transcriptional activation. This study also investigated the differential expression of Lbr-miR171b and LbrSCL6 in two temperature treatment groups (25 °C and 15 °C). Lbr-miR171b expression significantly increased after the temperature change, whereas that of LbrSCL6 exhibited the opposite trend. Through in situ hybridization experiments facilitated by the design of hybridization probes targeting LbrSCL6, a reduction in LbrSCL6 expression was detected following variable temperature treatment at 15 °C. The transgenic overexpression of Lbr-miR171b in plants promoted the phase transition, while LbrSCL6 overexpression induced a delay in the phase transition. In addition, LbrWOX4 interacted with LbrSCL6 in yeast two-hybrid and bimolecular fluorescence complementation assays. In conclusion, these results explain the molecular regulatory mechanisms governing the phase transition in Lilium.
Collapse
Affiliation(s)
- Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Yachen Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Ping Lu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
7
|
Chen S, Cai Y, Yang H, Zhang B, Li N, Ren G. PBOX-sRNA-seq uncovers novel features of miRNA modification and identifies selected 5'-tRNA fragments bearing 2'-O-modification. Nucleic Acids Res 2024; 52:e65. [PMID: 38908023 PMCID: PMC11317152 DOI: 10.1093/nar/gkae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
The concomitant cloning of RNA degradation products is a major concern in standard small RNA-sequencing practices. This not only complicates the characterization of bona fide sRNAs but also hampers cross-batch experimental replicability and sometimes even results in library construction failure. Given that all types of plant canonical small RNAs possess the 3' end 2'-O-methylation modification, a new small RNA sequencing (sRNA-seq) method, designated as PBOX-sRNA-seq, has been developed specifically to capture this modification. PBOX-sRNA-seq, as its name implies, relies on the sequential treatment of RNA samples with phenylboronic acid-polyacrylamide gel electrophoresis (PBA-PAGE) and sodium periodate (NaIO4) oxidation, before sRNA library construction and sequencing. PBOX-sRNA-seq outperformed separate treatments (i.e. PBA-PAGE only or NaIO4 only) in terms of the depletion of unmethylated RNA species and capture 2'-O-modified sRNAs with extra-high purity. Using PBOX-sRNA-seq, we discovered that nascent miRNA-5p/-3p duplexes may undergo mono-cytidylation/uridylation before 2'-O-methylation. We also identified two highly conserved types of 5'-tRNA fragments (tRF) bearing HEN1-independent 2'-O modification (mainly the 13-nt tRF-5aAla and the 26-nt tRF-5bGly). We believe that PBOX-sRNA-seq is powerful for both qualitative and quantitative analyses of sRNAs in plants and piRNAs in animals.
Collapse
Affiliation(s)
- Susu Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200438, China
| | - Yuchen Cai
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huiru Yang
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bin Zhang
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Mirlohi S, Schott G, Imboden A, Voinnet O. An AGO10:miR165/6 module regulates meristem activity and xylem development in the Arabidopsis root. EMBO J 2024; 43:1843-1869. [PMID: 38565948 PMCID: PMC11066010 DOI: 10.1038/s44318-024-00071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.
Collapse
Affiliation(s)
- Shirin Mirlohi
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Gregory Schott
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - André Imboden
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland.
| |
Collapse
|
9
|
Tsardakas Renhuldt N, Bentzer J, Ahrén D, Marmon S, Sirijovski N. Phenotypic characterization and candidate gene analysis of a short kernel and brassinosteroid insensitive mutant from hexaploid oat ( Avena sativa). FRONTIERS IN PLANT SCIENCE 2024; 15:1358490. [PMID: 38736447 PMCID: PMC11082396 DOI: 10.3389/fpls.2024.1358490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
In an ethyl methanesulfonate oat (Avena sativa) mutant population we have found a mutant with striking differences to the wild-type (WT) cv. Belinda. We phenotyped the mutant and compared it to the WT. The mutant was crossed to the WT and mapping-by-sequencing was performed on a pool of F2 individuals sharing the mutant phenotype, and variants were called. The impacts of the variants on genes present in the reference genome annotation were estimated. The mutant allele frequency distribution was combined with expression data to identify which among the affected genes was likely to cause the observed phenotype. A brassinosteroid sensitivity assay was performed to validate one of the identified candidates. A literature search was performed to identify homologs of genes known to be involved in seed shape from other species. The mutant had short kernels, compact spikelets, altered plant architecture, and was found to be insensitive to brassinosteroids when compared to the WT. The segregation of WT and mutant phenotypes in the F2 population was indicative of a recessive mutation of a single locus. The causal mutation was found to be one of 123 single-nucleotide polymorphisms (SNPs) spanning the entire chromosome 3A, with further filtering narrowing this down to six candidate genes. In-depth analysis of these candidate genes and the brassinosteroid sensitivity assay suggest that a Pro303Leu substitution in AVESA.00010b.r2.3AG0419820.1 could be the causal mutation of the short kernel mutant phenotype. We identified 298 oat proteins belonging to orthogroups of previously published seed shape genes, with AVESA.00010b.r2.3AG0419820.1 being the only of these affected by a SNP in the mutant. The AVESA.00010b.r2.3AG0419820.1 candidate is functionally annotated as a GSK3/SHAGGY-like kinase with homologs in Arabidopsis, wheat, barley, rice, and maize, with several of these proteins having known mutants giving rise to brassinosteroid insensitivity and shorter seeds. The substitution in AVESA.00010b.r2.3AG0419820.1 affects a residue with a known gain-of function substitution in Arabidopsis BRASSINOSTEROID-INSENSITIVE2. We propose a gain-of-function mutation in AVESA.00010b.r2.3AG0419820.1 as the most likely cause of the observed phenotype, and name the gene AsGSK2.1. The findings presented here provide potential targets for oat breeders, and a step on the way towards understanding brassinosteroid signaling, seed shape and nutrition in oats.
Collapse
Affiliation(s)
- Nikos Tsardakas Renhuldt
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Johan Bentzer
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Dag Ahrén
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Biology, Lund University, Lund, Sweden
| | - Sofia Marmon
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Nick Sirijovski
- ScanOats Industrial Research Centre, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
- CropTailor AB, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
11
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
12
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 339] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
14
|
de Oliveira KKP, de Oliveira RR, Chalfun-Junior A. Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3531. [PMID: 37895993 PMCID: PMC10610182 DOI: 10.3390/plants12203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023]
Abstract
Over the centuries, human society has evolved based on the ability to select and use more adapted species for food supply, which means making plant species tastier and more productive in particular environmental conditions. However, nowadays, this scenario is highly threatened by climate change, especially by the changes in temperature and greenhouse gasses that directly affect photosynthesis, which highlights the need for strategic studies aiming at crop breeding and guaranteeing food security. This is especially worrying for crops with complex phenology, genomes with low variability, and the ones that support a large production chain, such as Coffea sp. L. In this context, recent advances shed some light on the genome function and transcriptional control, revealing small RNAs (sRNAs) that are responsible for environmental cues and could provide variability through gene expression regulation. Basically, sRNAs are responsive to environmental changes and act on the transcriptional and post-transcriptional gene silencing pathways that regulate gene expression and, consequently, biological processes. Here, we first discuss the predicted impact of climate changes on coffee plants and coffee chain production and then the role of sRNAs in response to environmental changes, especially temperature, in different species, together with their potential as tools for genetic improvement. Very few studies in coffee explored the relationship between sRNAs and environmental cues; thus, this review contributes to understanding coffee development in the face of climate change and towards new strategies of crop breeding.
Collapse
Affiliation(s)
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras 3037, Brazil; (K.K.P.d.O.); (R.R.d.O.)
| |
Collapse
|
15
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Wang X, Li Q, Zhu H, Song M, Zhang K, Ge W. Molecular mechanisms of miR172a and its target gene LbrTOE3 regulating maturation in Lilium. PLANTA 2023; 258:53. [PMID: 37515607 DOI: 10.1007/s00425-023-04208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
MAIN CONCLUSION Lbr-miR172a could promote the growth phase transition and shorten maturation in Lilium, while LbrTOE3 inhibited this process and prolonged the growth period. Lilium is an ornamental flower with high economic value for both food and medicinal purposes. However, under natural conditions, Lilium bulbs take a long time and cost more to grow to commercial size. This research was conducted to shorten the maturation time by subjecting Lilium bulbs to alternating temperature treatment. To explore the molecular mechanism of the vegetative phase change (VPC) in Lilium after variable temperature treatment, the key module miR172a-TOE3 was selected based on a combined omics analysis. Gene cloning and transgene functional validation showed that overexpression of Lbr-mir172a promoted a phase change, while overexpression of LbrTOE3 inhibited this process. Subcellular localization and transcriptional activation assays indicated that LbrTOE3 was predominantly localized in the nucleus and showed transcriptional activity. In situ hybridization showed that LbrTOE3 expression was significantly downregulated after alternating temperature treatment. This study elucidates the molecular mechanisms of the phase transition of Lilium and provides a scientific basis for the phase transition in other plants.
Collapse
Affiliation(s)
- Xiaoshan Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Haoran Zhu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| |
Collapse
|
17
|
Hajieghrari B, Niazi A. Phylogenetic and Evolutionary Analysis of Plant Small RNA 2'-O-Methyltransferase (HEN1) Protein Family. J Mol Evol 2023:10.1007/s00239-023-10109-0. [PMID: 37191719 DOI: 10.1007/s00239-023-10109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
HUA ENHANCER 1 (HEN1) is a pivotal mediator in protecting sRNAs from 3'-end uridylation and 3' to 5' exonuclease-mediated degradation in plants. Here, we investigated the pattern of the HEN1 protein family evolutionary history and possible relationships in the plant lineages using protein sequence analyses and conserved motifs composition, functional domain identification, architecture, and phylogenetic tree reconstruction and evolutionary history inference. According to our results, HEN1 protein sequences bear several highly conserved motifs in plant species retained during the evolution from their ancestor. However, several motifs are present only in Gymnosperms and Angiosperms. A similar trend showed for their domain architecture. At the same time, phylogenetic analysis revealed the grouping of the HEN1 proteins in the three main super clads. In addition, the Neighbor-net network analysis result provides some nodes have multiple parents indicating a few conflicting signals in the data, which is not the consequence of sampling error, the effect of the selected model, or the estimation method. By reconciling the protein and species tree, we considered the gene duplications in several given species and found 170 duplication events in the evolution of HEN1 in the plant lineages. According to our analysis, the main HEN1 superclass mostly showed orthologous sequences that illustrate the vertically transmitting of HEN1 to the main lines. However, in both orthologous and paralogs, we predicted insignificant structural deviations. Our analysis implies that small local structural changes that occur continuously during the folds can moderate the changes created in the sequence. According to our results, we proposed a hypothetical model and evolutionary trajectory for the HEN1 protein family in the plant kingdom.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, P.O. Box 74135-111, Jahrom, Islamic Republic of Iran.
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran
| |
Collapse
|
18
|
Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023; 45:e2200187. [PMID: 36470594 DOI: 10.1002/bies.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
20
|
Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020342. [PMID: 36679055 PMCID: PMC9864873 DOI: 10.3390/plants12020342] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.
Collapse
|
21
|
Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci 2023; 48:26-39. [PMID: 35811249 PMCID: PMC9789169 DOI: 10.1016/j.tibs.2022.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress gene expression by guiding Argonaute (AGO) proteins to target mRNAs. While much is known about the regulation of miRNA biogenesis, miRNA degradation pathways are comparatively poorly understood. Although miRNAs generally exhibit slow turnover, they can be rapidly degraded through regulated mechanisms that act in a context- or sequence-specific manner. Recent work has revealed a particularly important role for specialized target interactions in controlling rates of miRNA degradation. Engagement of these targets is associated with the addition and removal of nucleotides from the 3' ends of miRNAs, a process known as tailing and trimming. Here we review these mechanisms of miRNA modification and turnover, highlighting the contexts in which they impact miRNA stability and discussing important questions that remain unanswered.
Collapse
Affiliation(s)
- Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
22
|
Xuan C, Yang E, Zhao S, Xu J, Li P, Zhang Y, Jiang Z, Ding X. Regulation of LncRNAs and microRNAs in neuronal development and disease. PeerJ 2023; 11:e15197. [PMID: 37038472 PMCID: PMC10082570 DOI: 10.7717/peerj.15197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but play important roles in regulating cellular processes. Multiple studies over the past decade have demonstrated the role of microRNAs (miRNAs) in cancer, in which some miRNAs can act as biomarkers or provide therapy target. Accumulating evidence also points to the importance of long non-coding RNAs (lncRNAs) in regulating miRNA-mRNA networks. An increasing number of ncRNAs have been shown to be involved in the regulation of cellular processes, and dysregulation of ncRNAs often heralds disease. As the population ages, the incidence of neurodegenerative diseases is increasing, placing enormous pressure on global health systems. Given the excellent performance of ncRNAs in early cancer screening and treatment, here we attempted to aggregate and analyze the regulatory functions of ncRNAs in neuronal development and disease. In this review, we summarize current knowledge on ncRNA taxonomy, biogenesis, and function, and discuss current research progress on ncRNAs in relation to neuronal development, differentiation, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Juan Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Peihang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Yaping Zhang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Quévillon Huberdeau M, Shah VN, Nahar S, Neumeier J, Houle F, Bruckmann A, Gypas F, Nakanishi K, Großhans H, Meister G, Simard MJ. A specific type of Argonaute phosphorylation regulates binding to microRNAs during C. elegans development. Cell Rep 2022; 41:111822. [PMID: 36516777 PMCID: PMC10436268 DOI: 10.1016/j.celrep.2022.111822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Argonaute proteins are at the core of the microRNA-mediated gene silencing pathway essential for animals. In C. elegans, the microRNA-specific Argonautes ALG-1 and ALG-2 regulate multiple processes required for proper animal developmental timing and viability. Here we identified a phosphorylation site on ALG-1 that modulates microRNA association. Mutating ALG-1 serine 642 into a phospho-mimicking residue impairs microRNA binding and causes embryonic lethality and post-embryonic phenotypes that are consistent with alteration of microRNA functions. Monitoring microRNA levels in alg-1 phosphorylation mutant animals shows that microRNA passenger strands increase in abundance but are not preferentially loaded into ALG-1, indicating that the miRNA binding defects could lead to microRNA duplex accumulation. Our genetic and biochemical experiments support protein kinase A (PKA) KIN-1 as the putative kinase that phosphorylates ALG-1 serine 642. Our data indicate that PKA triggers ALG-1 phosphorylation to regulate its microRNA association during C. elegans development.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Vivek Nilesh Shah
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Smita Nahar
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, Columbus, OH 43210, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec City, QC G1R 3S3, Canada; Université Laval Cancer Research Centre, Québec City, QC G1R 3S3, Canada.
| |
Collapse
|
24
|
Shin SY, Choi Y, Kim SG, Park SJ, Park JS, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. Submergence promotes auxin-induced callus formation through ethylene-mediated post-transcriptional control of auxin receptors. MOLECULAR PLANT 2022; 15:1947-1961. [PMID: 36333910 DOI: 10.1016/j.molp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions. We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants. The constitutive triple response 1-1 (ctr1-1) mutation induced callus formation in explants without submergence, suggesting that ethylene facilitates cell dedifferentiation. We show that ETHYLENE-INSENSITIVE 2 (EIN2) post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation. Submergence-induced calli in non-wounded regions were suitable for shoot regeneration, similar to those near the wound site. We also observed submergence-promoted callus formation in Chinese cabbage (Brassica rapa), indicating that this may be a conserved mechanism in other species. Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
25
|
You L, Zhang R, Fu ZQ. Achieving a more robust antiviral RNAi via subverting a viral virulence protein. MOLECULAR PLANT 2022; 15:1514-1516. [PMID: 36168292 DOI: 10.1016/j.molp.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Liyuan You
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai 201602, China
| | - Ruize Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
26
|
Jin H, Han X, Wang Z, Xie Y, Zhang K, Zhao X, Wang L, Yang J, Liu H, Ji X, Dong L, Zheng H, Hu W, Liu Y, Wang X, Zhou X, Zhang Y, Qian W, Zheng W, Shen Q, Gou M, Wang D. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection. EMBO J 2022; 41:e110521. [PMID: 35929182 PMCID: PMC9475517 DOI: 10.15252/embj.2021110521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1‐SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus‐derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA‐degrading nuclease 1 (HvSDN1) and impedes HvSDN1‐catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1‐HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1‐carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1‐catalyzed vsiRNA degradation and suggest new ways for engineering BYDV‐resistant crops.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Jin Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Huiyun Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Weijuan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenming Zheng
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
27
|
Yu X, Hou Y, Cao L, Zhou T, Wang S, Hu K, Chen J, Qu S. MicroRNA candidate miRcand137 in apple is induced by Botryosphaeria dothidea for impairing host defense. PLANT PHYSIOLOGY 2022; 189:1814-1832. [PMID: 35512059 PMCID: PMC9237668 DOI: 10.1093/plphys/kiac171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a master gene regulatory pathway in plant-pathogen interactions. The differential accumulation of miRNAs among plant varieties alters the expression of target genes, affecting plant defense responses and causing resistance differences among varieties. Botryosphaeria dothidea is an important phytopathogenic fungus of apple (Malus domestica). Malus hupehensis (Pamp.) Rehder, a wild apple species, is highly resistant, whereas the apple cultivar "Fuji" is highly susceptible. Here, we identified a 22-nt miRNA candidate named miRcand137 that compromises host resistance to B. dothidea infection and whose processing was affected by precursor sequence variation between M. hupehensis and "Fuji." miRcand137 guides the direct cleavage of and produced target-derived secondary siRNA against Ethylene response factor 14 (ERF14), a transcriptional activator of pathogenesis-related homologs that confers disease resistance to apple. We showed that miRcand137 acts as an inhibitor of apple immunity by compromising ERF14-mediated anti-fungal defense and revealed a negative association between miRcand137 expression and B. dothidea sensitivity in both resistant and susceptible apples. Furthermore, MIRCAND137 was transcriptionally activated by the invading fungi but not by the fungal elicitor, implying B. dothidea induced host miRcand137 as an infection strategy. We propose that the inefficient miRcand137 processing in M. hupehensis decreased pathogen-initiated miRcand137 accumulation, leading to higher resistance against B. dothidea.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jingrui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | |
Collapse
|
28
|
Balaratnam S, Hoque ME, West N, Basu S. Decay of Piwi-Interacting RNAs in Human Cells Is Primarily Mediated by 5' to 3' Exoribonucleases. ACS Chem Biol 2022; 17:1723-1732. [PMID: 35687865 DOI: 10.1021/acschembio.2c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a group of small noncoding RNA molecules that regulate the activity of transposons and control gene expression. The cellular concentration of RNAs is generally maintained by their rates of biogenesis and degradation. Although the biogenesis pathways of piRNAs have been well defined, their degradation mechanism is still unknown. Here, we show that degradation of human piRNAs is mostly dependent on the 5'-3' exoribonuclease pathway. The presence of 3'-end 2'-O-methylation in piRNAs significantly reduced their degradation through the exosome-mediated decay pathway. The accumulation of piRNAs in XRN1 and XRN2 exoribonuclease-depleted cells further supports the 5'-3' exoribonuclease-mediated decay of piRNAs. Moreover, formation of stable secondary structures in piRNAs slows the rate of XRN1-mediated degradation. Our findings establish a framework for the piRNA degradation mechanism in cells and thus provide crucial information about how the basal level concentration of piRNAs is maintained in cells.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
29
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
30
|
Salas-Huenuleo E, Hernández A, Lobos-González L, Polakovičová I, Morales-Zavala F, Araya E, Celis F, Romero C, Kogan MJ. Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells. Pharmaceutics 2022; 14:958. [PMID: 35631544 PMCID: PMC9144804 DOI: 10.3390/pharmaceutics14050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
One of the recent attractive therapeutic approaches for cancer treatment is restoring downregulated microRNAs. They play an essential muti-regulatory role in cellular processes such as proliferation, differentiation, survival, apoptosis, cell cycle, angiogenesis, and metastasis, among others. In this study, a gold nanoplatform (GNPF) carrying miR-145, a downregulated microRNA in many cancer types, including epithelial ovarian cancer, was designed and synthesized. For targeting purposes, the GNPF was functionalized with the FSH33 peptide, which provided selectivity for ovarian cancer, and loaded with the miR-145 to obtain the nanosystem GNPF-miR-145. The GNPF-mir-145 was selectively incorporated in A2780 and SKOV3 cells and significantly inhibited cell viability and migration and exhibited proliferative and anchor-independent growth capacities. Moreover, it diminished VEGF release and reduced the spheroid size of ovarian cancer through the damage of cell membranes, thus decreasing cell viability and possibly activating apoptosis. These results provide important advances in developing miR-based therapies using nanoparticles as selective vectors and provide approaches for in vivo evaluation.
Collapse
Affiliation(s)
- Edison Salas-Huenuleo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago 9380000, Chile
| | - Andrea Hernández
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad Del Desarrollo, Santiago 7610658, Chile
| | - Iva Polakovičová
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco Morales-Zavala
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Temuco 4801043, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile;
| | - Carmen Romero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
- Laboratory of Endocrinology and Reproduction Biology, Clinical Hospital, Universidad de Chile, Santiago 7820436, Chile;
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (E.S.-H.); (F.M.-Z.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (L.L.-G.); (I.P.)
| |
Collapse
|
31
|
Schvartzman C, Fresia P, Murchio S, Mujica MV, Dalla-Rizza M. RNAi in Piezodorus guildinii (Hemiptera: Pentatomidae): Transcriptome Assembly for the Development of Pest Control Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:804839. [PMID: 35432425 PMCID: PMC9011191 DOI: 10.3389/fpls.2022.804839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Red-banded stink bug Piezodorus guildinii (P. guildinii) has been described as the most damaging stink bug regarding soybean crops, leading to seed injury, low germination percentages, and foliar retention, at low population densities. In recent years, RNA interference (RNAi), a conserved eukaryote silencing mechanism has been explored to develop species-selective pesticides. In this work, we evaluated RNAi in P. guildinii to develop new pest-control strategies. For this, we assembled and annotated a P. guildinii transcriptome from a pool of all developmental stages. Analysis of this transcriptome led to the identification of 56 genes related to the silencing process encompassing siRNA, miRNA, and piRNA pathways. To evaluate the functionality of RNAi machinery, P. guildinii adults were injected with 28 ng/mg of body weight of double stranded RNA (dsRNA) targeting vATPase A. A mortality of 35 and 51.6% was observed after 7 and 14 days, respectively, and a downregulation of vATPase A gene of 84% 72 h post-injection. In addition, Dicer-2 and Argonaute-2 genes, core RNAi proteins, were upregulated 1.8-fold 48 h after injection. These findings showed for the first time that RNAi is functional in P. guildinii and the silencing of essential genes has a significant effect in adult viability. Taken together, the work reported here shows that RNAi could be an interesting approach for the development of red-banded stink bug control strategies.
Collapse
Affiliation(s)
- Claudia Schvartzman
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sara Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - María Valentina Mujica
- Unidad de Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Marco Dalla-Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| |
Collapse
|
32
|
Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-Penetration and Neuron-Targeting DNA Nanoflowers Co-Delivering miR-124 and Rutin for Synergistic Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107534. [PMID: 35182016 DOI: 10.1002/smll.202107534] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer disease (AD) is the leading cause of dementia that affects millions of old people. Despite significant advances in the understanding of AD pathobiology, no disease modifying treatment is available. MicroRNA-124 (miR-124) is the most abundant miRNA in the normal brain with great potency to ameliorate AD-like pathology, while it is deficient in AD brain. Herein, the authors develop a DNA nanoflowers (DFs)-based delivery system to realize exogenous supplementation of miR-124 for AD therapy. The DFs with well-controlled size and morphology are prepared, and a miR-124 chimera is attached via hybridization. The DFs are further modified with RVG29 peptide to simultaneously realize brain-blood barrier (BBB) penetration and neuron targeting. Meanwhile, Rutin, a small molecular ancillary drug, is co-loaded into the DFs structure via its intercalation into the double stranded DNA region. Interestingly, Rutin could synergize miR-124 to suppress the expression of both BACE1 and APP, thus achieving a robust inhibition of amyloid β generation. The nanosystem could pro-long miR-124 circulation in vivo, promote its BBB penetration and neuron targeting, resulting in a significant increase of miR-124 in the hippocampus of APP/PS1 mice and robust therapeutic efficacy in vivo. Such a bio-derived therapeutic system shows promise as a biocompatible nanomedicine for AD therapy.
Collapse
Affiliation(s)
- Qin Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Kai Liu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Postdoctoral Research Station of Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yuan Le
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wen Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
33
|
Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, Gao S. Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:844149. [PMID: 35350301 PMCID: PMC8957957 DOI: 10.3389/fpls.2022.844149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, non-coding RNAs, which is 20-24 nucleotide long, regulate the expression of its target genes post-transcriptionally and play critical roles in plant normal growth, development, and biotic and abiotic stresses. In cells, miRNA biogenesis and stability control are important in regulating intracellular miRNA abundance. In addition, research on these two aspects has achieved fruitful results. In this review, we focus on the recent research progress in our understanding of miRNA biogenesis and their stability control in plants.
Collapse
Affiliation(s)
- Lu Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Xiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shengbo Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Min Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xianda Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhuoli He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
34
|
Weng C, Dong H, Bai R, Sheng J, Chen G, Ding K, Lin W, Chen J, Xu Z. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:1010-1022. [PMID: 35228896 PMCID: PMC8844805 DOI: 10.1016/j.omtn.2022.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
Mature microRNA (miRNA) decay is a key step in miRNA turnover and gene expression regulation. Angiogenin (ANG), the first human tumor-derived angiogenic protein and also a member of the RNase A superfamily, can promote tumor growth and metastasis by regulating rRNA biogenesis and tiRNA production. However, its effect on miRNA has not been explored. In this study, we find that ANG exclusively downregulates mature miR-141 in human umbilical endothelial cells (HUVECs) via its ribonuclease activity and preferably cleaves single-stranded miR-141 at the A5/C6, U7/G8, and U14/A15 sites via endonucleolytic digestion. By downregulating miR-141, ANG promotes HUVECs proliferation, migration, tube formation, and angiogenesis both in vitro and in vivo. Conversely, downregulated ANG inhibits ANG-mediated miR-141 decay, thus decreasing the angiogenesis process of HUVECs. We also find an inverse correlation between ANG and miR-141 expression in colorectal cancer (CRC) tissues. Our study indicates that ANG regulates CRC progression by disrupting miR-141 and its regulation on angiogenesis-related target genes, not only revealing a new mechanism of ANG action but also newly identifying miR-141 as a substrate of ANG. This study suggests that targeting ANG nuclease activity might be valuable in treating angiogenesis-related diseases through coordinately regulating the metabolism of rRNA, tiRNA, and miRNA.
Collapse
|
35
|
Small RNAs Participate in Plant-Virus Interaction and Their Application in Plant Viral Defense. Int J Mol Sci 2022; 23:ijms23020696. [PMID: 35054880 PMCID: PMC8775341 DOI: 10.3390/ijms23020696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.
Collapse
|
36
|
Abstract
MicroRNAs are RNAs of about 18-24 nucleotides in lengths, which are found in the small noncoding RNA class and have a crucial role in the posttranscriptional regulation of gene expression, cellular metabolic pathways, and developmental events. These small but essential molecules are first processed by Drosha and DGCR8 in the nucleus and then released into the cytoplasm, where they cleaved by Dicer to form the miRNA duplex. These duplexes are bound by the Argonaute (AGO) protein to form the RNA-induced silencing complex (RISC) in a process called RISC loading. Transcription of miRNAs, processing with Drosha and DGCR8 in the nucleus, cleavage by Dicer, binding to AGO proteins and forming RISC are the most critical steps in miRNA biogenesis. Additional molecules involved in biogenesis at these stages can enhance or inhibit these processes, which can radically change the fate of the cell. Biogenesis is regulated by many checkpoints at every step, primarily at the transcriptional level, in the nucleus, cytoplasm, with RNA regulation, RISC loading, miRNA strand selection, RNA methylation/uridylation, and turnover rate. Moreover, in recent years, different regulation mechanisms have been discovered in noncanonical Drosha or Dicer-independent pathways. This chapter seeks answers to how miRNA biogenesis and function are regulated through both canonical and non-canonical pathways.
Collapse
|
37
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
38
|
Tomé-Carneiro J, de Las Hazas MCL, Boughanem H, Böttcher Y, Cayir A, Macias González M, Dávalos A. Up-to-date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation? RNA Biol 2021; 18:586-599. [PMID: 34843412 DOI: 10.1080/15476286.2021.2002003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The field of epitranscriptomics is rapidly developing. Several modifications (e.g. methylations) have been identified for different RNA types. Current evidence shows that chemical RNA modifications can influence the whole molecule's secondary structure, translatability, functionality, stability, and degradation, and some are dynamically and reversibly modulated. miRNAs, in particular, are not only post-transcriptional modulators of gene expression but are themselves submitted to regulatory mechanisms. Understanding how these modifications are regulated and the resulting pathological consequences when dysregulation occurs is essential for the development of new therapeutic targets. In humans and other mammals, dietary components have been shown to affect miRNA expression and may also induce chemical modifications in miRNAs. The identification of chemical modifications in miRNAs (endogenous and exogenous) that can impact host gene expression opens up an alternative way to select new specific therapeutic targets.Hence, the aim of this review is to briefly address how RNA epitranscriptomic modifications can affect miRNA biogenesis and to summarize the existing evidence showing the connection between the (de)regulation of these processes and disease settings. In addition, we hypothesize on the potential effect certain chemical modifications could have on the potential cross-kingdom journey of dietary plant miRNAs.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-food, CEI UAM + CSIM, Spain
| | | | - Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (Ibima), Unidad de Gestión Clínica de Endocrinología Y Nutrición Del Hospital Virgen de La Victoria, Málaga, Spain.,Instituto de Salud Carlos Iii (Isciii), Consorcio Ciber, M.p. Fisiopatología de La Obesidad Y Nutrición (Ciberobn), Madrid, Spain.,Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Yvonne Böttcher
- Institute of Clinical Medicine, Department of Clinical Molecular Biology (EpiGen), University of Oslo, Oslo, Norway.,Department of Medical Services and Techniques (EpiGen), Akershus Universitetssykehus, Lørenskog, Norway
| | - Akin Cayir
- Institute of Clinical Medicine, Department of Clinical Molecular Biology (EpiGen), University of Oslo, Oslo, Norway.,Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Manuel Macias González
- Instituto de Investigación Biomédica de Málaga (Ibima), Unidad de Gestión Clínica de Endocrinología Y Nutrición Del Hospital Virgen de La Victoria, Málaga, Spain.,Instituto de Salud Carlos Iii (Isciii), Consorcio Ciber, M.p. Fisiopatología de La Obesidad Y Nutrición (Ciberobn), Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-food, CEI UAM + CSIC, Spain
| |
Collapse
|
39
|
Zuo ZF, He W, Li J, Mo B, Liu L. Small RNAs: The Essential Regulators in Plant Thermotolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:726762. [PMID: 34603356 PMCID: PMC8484535 DOI: 10.3389/fpls.2021.726762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 06/01/2023]
Abstract
Small RNAs (sRNAs) are a class of non-coding RNAs that consist of 21-24 nucleotides. They have been extensively investigated as critical regulators in a variety of biological processes in plants. sRNAs include two major classes: microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis and functional pathways. Due to global warming, high-temperature stress has become one of the primary causes for crop loss worldwide. Recent studies have shown that sRNAs are involved in heat stress responses in plants and play essential roles in high-temperature acclimation. Genome-wide studies for heat-responsive sRNAs have been conducted in many plant species using high-throughput sequencing. The roles for these sRNAs in heat stress response were also unraveled subsequently in model plants and crops. Exploring how sRNAs regulate gene expression and their regulatory mechanisms will broaden our understanding of sRNAs in thermal stress responses of plant. Here, we highlight the roles of currently known miRNAs and siRNAs in heat stress responses and acclimation of plants. We also discuss the regulatory mechanisms of sRNAs and their targets that are responsive to heat stress, which will provide powerful molecular biological resources for engineering crops with improved thermotolerance.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wenbo He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses 2021; 13:v13091837. [PMID: 34578418 PMCID: PMC8473176 DOI: 10.3390/v13091837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1’s methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors.
Collapse
|
41
|
Wang Y, Gong Q, Wu Y, Huang F, Ismayil A, Zhang D, Li H, Gu H, Ludman M, Fátyol K, Qi Y, Yoshioka K, Hanley-Bowdoin L, Hong Y, Liu Y. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 2021; 29:1393-1406.e7. [PMID: 34352216 DOI: 10.1016/j.chom.2021.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
RNA interference (RNAi) is an across-kingdom gene regulatory and defense mechanism. However, little is known about how organisms sense initial cues to mobilize RNAi. Here, we show that wounding to Nicotiana benthamiana cells during virus intrusion activates RNAi-related gene expression through calcium signaling. A rapid wound-induced elevation in calcium fluxes triggers calmodulin-dependent activation of calmodulin-binding transcription activator-3 (CAMTA3), which activates RNA-dependent RNA polymerase-6 and Bifunctional nuclease-2 (BN2) transcription. BN2 stabilizes mRNAs encoding key components of RNAi machinery, notably AGONAUTE1/2 and DICER-LIKE1, by degrading their cognate microRNAs. Consequently, multiple RNAi genes are primed for combating virus invasion. Calmodulin-, CAMTA3-, or BN2-knockdown/knockout plants show increased susceptibility to geminivirus, cucumovirus, and potyvirus. Notably, Geminivirus V2 protein can disrupt the calmodulin-CAMTA3 interaction to counteract RNAi defense. These findings link Ca2+ signaling to RNAi and reveal versatility of host antiviral defense and viral counter-defense.
Collapse
Affiliation(s)
- Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yuyao Wu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Fan Huang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danfeng Zhang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Huangai Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hanqing Gu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Márta Ludman
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4, Gödöllő 2100, Hungary
| | - Károly Fátyol
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4, Gödöllő 2100, Hungary
| | - Yijun Qi
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
42
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
43
|
Zhang J, Zhang Y, Gao J, Wang M, Li X, Cui Z, Fu G. Long Noncoding RNA Tug1 Promotes Angiotensin II-Induced Renal Fibrosis by Binding to Mineralocorticoid Receptor and Negatively Regulating MicroR-29b-3p. Hypertension 2021; 78:693-705. [PMID: 34333990 DOI: 10.1161/hypertensionaha.120.16395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Yuqing Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China (Y.Z.)
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Xiaoting Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Z.C.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| |
Collapse
|
44
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Efficient roles of miR-146a in cellular and molecular mechanisms of neuroinflammatory disorders: An effectual review in neuroimmunology. Immunol Lett 2021; 238:1-20. [PMID: 34293378 DOI: 10.1016/j.imlet.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Known as one of the most sophisticated systems of the human body, the nervous system consists of neural cells and controls all parts of the body. It is closely related to the immune system. The effects of inflammation and immune reactions have been observed in the pathogenesis of some neurological disorders. Defined as the gene expression regulators, miRNAs participate in cellular processes. miR-146a is a mediator in the neuroimmune system, leaving substantial effects on the homeostasis of immune and brain cells, neuronal identities acquisition, and immune responses regulation in the nervous system. Its positive efficiency has been proven in modulating inflammatory reactions, hemorrhagic complications, and pain. Moreover, the miR-146a targets play a key role in the pathogenesis of these illnesses. Based on the performance of its targets, miR-146a can have various effects on the disease progress. The abnormal expression/function of miR-146a has been reported in neuroinflammatory disorders. There is research evidence that this molecule qualifies as a desirable biomarker for some disorders and can even be a therapeutic target. This study aims to provide a meticulous review regarding the roles of miR-146a in the pathogenesis and progression of several neuroinflammatory disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, temporal lobe epilepsy, ischemic stroke, etc. The study also considers its eligibility for use as an ideal biomarker and therapeutic target in these diseases. The awareness of these mechanisms can facilitate the disease management/treatment, lead to patients' amelioration, improve the quality of life, and mitigate the risk of death.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Jodder J. Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. PLANT CELL REPORTS 2021; 40:783-798. [PMID: 33454802 DOI: 10.1007/s00299-020-02660-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
miRNAs in plant plays crucial role in controlling proper growth, development and fitness by modulating the expression of their target genes. Therefore to modulate the expression of any stress/development related gene specifically, it is better to modulate expression of the miRNA that can target that gene. To modulate the expression level of miRNA, it is prerequisite to uncover the underlying molecular mechanism of its biogenesis. The biogenesis pathway consists of two major steps, transcription of MIR gene to pri-MIRNA and processing of pri-MIRNA into mature miRNA via sequential cleavage steps. Both of these pathways are tightly controlled by several different factors involving structural and functional molecules. This review is mainly focused on different aspects of pri-MIRNA processing mechanism to emphasize on the fact that to modulate the level of a miRNA in the cell only over-expression or knock-down of that MIR gene is not always sufficient rather it is also crucial to take processing regulation into consideration. The data collected from the recent and relevant literatures depicts that processing regulation is controlled by several aspects like structure and size of the pri-MIRNA, presence of introns in MIR gene and their location, interaction of processing factors with the core components of processing machinery etc. These detailed information can be utilized to figure out the particular point which can be utilized to modulate the expression of the miRNA which would ultimately be beneficial for the scientist and researcher working in this field to generate protocol for engineering plant with improved yield and stress tolerance.
Collapse
Affiliation(s)
- Jayanti Jodder
- School of Biotechnology, Presidency University (Rajarhat Campus), Canal Bank 7 Road, DG Block, Action Area 1D, Newtown, Kolkata, West Bengal, 700156, India.
| |
Collapse
|
46
|
Barley Seeds miRNome Stability during Long-Term Storage and Aging. Int J Mol Sci 2021; 22:ijms22094315. [PMID: 33919202 PMCID: PMC8122619 DOI: 10.3390/ijms22094315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022] Open
Abstract
Seed aging is a complex biological process that has been attracting scientists’ attention for many years. High-throughput small RNA sequencing was applied to examine microRNAs contribution in barley seeds senescence. Unique samples of seeds that, despite having the same genetic makeup, differed in viability after over 45 years of storage in a dry state were investigated. In total, 61 known and 81 novel miRNA were identified in dry seeds. The highest level of expression was found in four conserved miRNA families, i.e., miR159, miR156, miR166, and miR168. However, the most astonishing result was the lack of significant differences in the level of almost all miRNAs in seed samples with significantly different viability. This result reveals that miRNAs in dry seeds are extremely stable. This is also the first identified RNA fraction that is not deteriorating along with the loss of seed viability. Moreover, the novel miRNA hvu-new41, with higher expression in seeds with the lowest viability as detected by RT-qPCR, has the potential to become an indicator of the decreasing viability of seeds during storage in a dry state.
Collapse
|
47
|
Park SJ, Choi SW, Kim GM, Møller C, Pai HS, Yang SW. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1. MOLECULAR PLANT 2021; 14:647-663. [PMID: 33524550 DOI: 10.1016/j.molp.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/21/2023]
Abstract
The precise regulation of microRNA (miRNA) biogenesis is crucial for plant development, which requires core microprocessors and many fine tuners to coordinate their miRNA processing activity/specificity in fluctuating cellular environments. During de-etiolation, light triggers a dramatic accumulation of core microprocessors and primary miRNAs (pri-miRNAs) but decreases pri-miRNA processing activity, resulting in relatively constant miRNA levels. The mechanisms underlying these seemingly contradictory regulatory changes remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a light-stabilized suppressor of miRNA biogenesis. We found that FHA2 deficiency increased the level of mature miRNAs, accompanied by a reduction in pri-miRNAs and target mRNAs. Biochemical assays showed that FHA2 associates with the core microprocessors DCL1, HYL1, and SE, forming a complex to suppress their pri-miRNA processing activity. Further analyses revealed that FHA2 promotes HYL1 binding but inhibits the binding of DCL1-PAZ-RNase-RNA-binding domains (DCL1-PRR) to miRNAs, whereas FHA2 does not directly bind to these RNAs. Interestingly, we found that FHA2 protein is unstable in the dark but stabilized by light during de-etiolation. Consistently, disruption of FHA led to defects in light-triggered changes in miRNA expression and reduced the survival rate of de-etiolated seedlings after prolonged light deprivation. Collectively, these data suggest that FHA2 is a novel light-stabilized suppressor of miRNA biogenesis and plays a role in fine-tuning miRNA processing during de-etiolation.
Collapse
Affiliation(s)
- Seung Jun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Suk Won Choi
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Gu Min Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Christian Møller
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Copenhagen, Denmark; Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
48
|
|
49
|
Giudicatti AJ, Tomassi AH, Manavella PA, Arce AL. Extensive Analysis of miRNA Trimming and Tailing Indicates that AGO1 Has a Complex Role in miRNA Turnover. PLANTS 2021; 10:plants10020267. [PMID: 33573197 PMCID: PMC7911489 DOI: 10.3390/plants10020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.
Collapse
|
50
|
Gao Y, Liu H, Zhang C, Su S, Chen Y, Chen X, Li Y, Shao Z, Zhang Y, Shao Q, Li J, Huang Z, Ma J, Gan J. Structural basis for guide RNA trimming by RNase D ribonuclease in Trypanosoma brucei. Nucleic Acids Res 2021; 49:568-583. [PMID: 33332555 PMCID: PMC7797062 DOI: 10.1093/nar/gkaa1197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Infection with kinetoplastid parasites, including Trypanosoma brucei (T. brucei), Trypanosoma cruzi (T. cruzi) and Leishmania can cause serious disease in humans. Like other kinetoplastid species, mRNAs of these disease-causing parasites must undergo posttranscriptional editing in order to be functional. mRNA editing is directed by gRNAs, a large group of small RNAs. Similar to mRNAs, gRNAs are also precisely regulated. In T. brucei, overexpression of RNase D ribonuclease (TbRND) leads to substantial reduction in the total gRNA population and subsequent inhibition of mRNA editing. However, the mechanisms regulating gRNA binding and cleavage by TbRND are not well defined. Here, we report a thorough structural study of TbRND. Besides Apo- and NMP-bound structures, we also solved one TbRND structure in complexed with single-stranded RNA. In combination with mutagenesis and in vitro cleavage assays, our structures indicated that TbRND follows the conserved two-cation-assisted mechanism in catalysis. TbRND is a unique RND member, as it contains a ZFD domain at its C-terminus. In addition to T. brucei, our studies also advanced our understanding on the potential gRNA degradation pathway in T. cruzi, Leishmania, as well for as other disease-associated parasites expressing ZFD-containing RNDs.
Collapse
Affiliation(s)
- Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chong Zhang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xi Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Huang
- College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|