1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Li CY, Bowers JM, Alexander TA, Behrens KA, Jackson P, Amini CJ, Juntti SA. A pheromone receptor in cichlid fish mediates attraction to females but inhibits male parental care. Curr Biol 2024; 34:3866-3880.e7. [PMID: 39094572 PMCID: PMC11387146 DOI: 10.1016/j.cub.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Reproductive behaviors differ across species, but the mechanisms that control variation in mating and parental care systems remain unclear. In many animal species, pheromones guide mating and parental care. However, it is not well understood how vertebrate pheromone signaling evolution can lead to new reproductive behavior strategies. In fishes, prostaglandin F2α (PGF2α) drives mating and reproductive pheromone signaling in fertile females, but this pheromonal activity appears restricted to specific lineages, and it remains unknown how a female fertility pheromone is sensed for most fish species. Here, we utilize single-cell transcriptomics and CRISPR gene editing in a cichlid fish model to identify and test the roles of key genes involved in olfactory sensing of reproductive cues. We find that a pheromone receptor, Or113a, detects fertile cichlid females and thereby promotes male attraction and mating behavior, sensing a ligand other than PGF2α. Furthermore, while cichlid fishes exhibit extensive parental care, for most species, care is provided solely by females. We find that males initiate mouthbrooding parental care if they have disrupted signaling in ciliated sensory neurons due to cnga2b mutation or if or113a is inactivated. Together, these results show that distinct mechanisms of pheromonal signaling drive reproductive behaviors across taxa. Additionally, these findings indicate that a single pheromone receptor has gained a novel role in behavior regulation, driving avoidance of paternal care among haplochromine cichlid fishes. Lastly, a sexually dimorphic, evolutionarily derived parental behavior is controlled by central circuits present in both sexes, while olfactory signals gate this behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jessica M Bowers
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Peter Jackson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Cyrus J Amini
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Dye CN, Franceschelli D, Leuner B, Lenz KM. Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats. Neuropsychopharmacology 2023; 48:1869-1877. [PMID: 37330580 PMCID: PMC10584962 DOI: 10.1038/s41386-023-01624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
The peripartum period is accompanied by peripheral immune alterations to promote a successful pregnancy. We and others have also demonstrated significant neuroimmune changes that emerge during late pregnancy and persist postpartum, most prominently decreased microglia numbers within limbic brain regions. Here we hypothesized that microglial downregulation is important for the onset and display of maternal behavior. To test this, we recapitulated the peripartum neuroimmune profile by depleting microglia in non-mother (i.e., nulliparous) female rats who are typically not maternal but can be induced to behave maternally towards foster pups after repeated exposure, a process called maternal sensitization. BLZ945, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, was administered systemically to nulliparous rats, which led to ~75% decrease in microglia number. BLZ- and vehicle-treated females then underwent maternal sensitization and tissue was stained for ∆fosB to examine activation across maternally relevant brain regions. We found BLZ-treated females with microglial depletion met criteria for displaying maternal behavior significantly sooner than vehicle-treated females and displayed increased pup-directed behaviors. Microglia depletion also reduced threat appraisal behavior in an open field test. Notably, nulliparous females with microglial depletion had decreased numbers of ∆fosB+ cells in the medial amygdala and periaqueductal gray, and increased numbers in the prefrontal cortex and somatosensory cortex, compared to vehicle. Our results demonstrate that microglia regulate maternal behavior in adult females, possibly by shifting patterns of activity in the maternal brain network.
Collapse
Affiliation(s)
- Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute of Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
5
|
Allonursing in Wild and Farm Animals: Biological and Physiological Foundations and Explanatory Hypotheses. Animals (Basel) 2021; 11:ani11113092. [PMID: 34827824 PMCID: PMC8614478 DOI: 10.3390/ani11113092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
The dams of gregarious animals must develop a close bond with their newborns to provide them with maternal care, including protection against predators, immunological transference, and nutrition. Even though lactation demands high energy expenditures, behaviors known as allonursing (the nursing of non-descendant infants) and allosuckling (suckling from any female other than the mother) have been reported in various species of wild or domestic, and terrestrial or aquatic animals. These behaviors seem to be elements of a multifactorial strategy, since reports suggest that they depend on the following: species, living conditions, social stability, and kinship relations, among other group factors. Despite their potential benefits, allonursing and allosuckling can place the health and welfare of both non-filial dams and alien offspring at risk, as it augments the probability of pathogen transmission. This review aims to analyze the biological and physiological foundations and bioenergetic costs of these behaviors, analyzing the individual and collective advantages and disadvantages for the dams' own offspring(s) and alien neonate(s). We also include information on the animal species in which these behaviors occur and their implications on animal welfare.
Collapse
|
6
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Trouillet AC, Moussu C, Poissenot K, Keller M, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. Sensory Detection by the Vomeronasal Organ Modulates Experience-Dependent Social Behaviors in Female Mice. Front Cell Neurosci 2021; 15:638800. [PMID: 33679330 PMCID: PMC7925392 DOI: 10.3389/fncel.2021.638800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mice, social behaviors are largely controlled by the olfactory system. Pheromone detection induces naïve virgin females to retrieve isolated pups to the nest and to be sexually receptive to males, but social experience increases the performance of both types of innate behaviors. Whether animals are intrinsically sensitive to the smell of conspecifics, or the detection of olfactory cues modulates experience for the display of social responses is currently unclear. Here, we employed mice with an olfactory-specific deletion of the G protein Gαi2, which partially eliminates sensory function in the vomeronasal organ (VNO), to show that social behavior in female mice results from interactions between intrinsic mechanisms in the vomeronasal system and experience-dependent plasticity. In pup- and sexually-naïve females, Gαi2 deletion elicited a reduction in pup retrieval behavior, but not in sexual receptivity. By contrast, experienced animals showed normal maternal behavior, but the experience-dependent increase in sexual receptivity was incomplete. Further, lower receptivity was accompanied by reduced neuronal activity in the anterior accessory olfactory bulb and the rostral periventricular area of the third ventricle. Therefore, neural mechanisms utilize intrinsic sensitivity in the mouse vomeronasal system and enable plasticity to display consistent social behavior.
Collapse
Affiliation(s)
- Anne-Charlotte Trouillet
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Chantal Moussu
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Kevin Poissenot
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States.,School of Medical Sciences, Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| |
Collapse
|
8
|
Ye Y, Lu Z, Zhou W. Pheromone effects on the human hypothalamus in relation to sexual orientation and gender. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:293-306. [PMID: 34266600 DOI: 10.1016/b978-0-12-819973-2.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pheromones are chemicals that serve communicational purposes within a species. In most terrestrial mammals, pheromones are detected by either the olfactory epithelium or the vomeronasal organ and processed by various downstream structures including the medial amygdala and the hypothalamus to regulate motivated behaviors and endocrine responses. The search for human pheromones began in the 1970s. Whereas bioactive ligands are yet to be identified, there has been accumulating evidence that human body odors exert a range of pheromone-like effects on the recipients, including triggering innate behavioral responses, modulating endocrine levels, signaling social information, and affecting mood and cognition. In parallel, results from recent brain imaging studies suggest that body odors evoke distinct neural responses from those observed with common nonsocial odors. Two endogenous steroids androsta-4,16,- dien-3-one and estra-1,3,5(10),16-tetraen-3-ol are considered by some as candidates for human sex pheromones. The two substances produce sexually dimorphic effects on human perception, mood, and physiological arousal. Moreover, they reportedly elicit different hypothalamic response patterns in manners contingent on the recipients' sex and sexual orientation. Neuroendocrine mechanisms underlying the effects of human chemosignals are not yet clear and await future detailed analyses.
Collapse
Affiliation(s)
- Yuting Ye
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Lu
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Abstract
Killing of unrelated young by sexually naïve male mammals is taxonomically widespread, but in many species, males subsequently show paternal care or at least do not harm their own young. This dramatic and important change is due to a shift in paternal state rather than to recognition of young, the mother or the location in which mating occurred. This transition from infanticidal to paternal behaviour is timed so that the inhibition of infanticide is synchronized with the birth of their own young. Ejaculation followed by cohabitation with the pregnant female causes this transition, but the precise stimuli from the female remain elusive. However, changes in social status also cause changes in infanticide. The switch from infanticide is accompanied by physiological change in the male that can be detected by both females and pups. Hormonal changes have been implicated in the switch but establishing causal links has been difficult. Recent neuroanatomical studies show that pup odours activate the vomeronasal organ and its efferent projections to induce infanticide. The emergence of paternal care depends on the inability of the vomeronasal organ to detect pup odours. In the absence of vomeronasal input, pup odours activate a conserved parental circuit and induce caregiving behaviour. An emerging picture is of complex, antagonistic circuits competing for behavioural expression, which allow for males to commit infanticide when they may benefit from such activity but ensure that they do not damage their fitness by killing their own young. However, we stress the need for more work on the neural mechanisms that mediate this process.
Collapse
Affiliation(s)
- Robert W. Elwood
- Queen’s University Belfast, School of Biological Sciences, Belfast, U.K
| | | |
Collapse
|
10
|
Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neurosci Biobehav Rev 2020; 116:164-181. [PMID: 32569707 DOI: 10.1016/j.neubiorev.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
The maternal behavior decline is important for the normal development of the young and the wellbeing of the mother. This paper reviews limited research on the factors and mechanisms involved in the rat maternal behavior decline and proposes a multi-level model. Framed in the parent-offspring conflict theory (an ultimate cause) and the approach-withdrawal model (a proximate cause), the maternal behavior decline is viewed as an active and effortful process, reflecting the dynamic interplay between the mother and her offspring. It is instigated by the waning of maternal motivation, coupled with the increased maternal aversion by the mother in responding to the changing sensory and motoric patterns of pup stimuli. In the decline phase, the neural circuit that mediates the inhibitory ("withdrawal") responses starts to increase activity and gain control of behavioral outputs, while the excitatory ("approach") maternal neural circuit is being inhibited or reorganized. Various hormones and certain monoamines may play a critical role in tipping the balance between the excitatory and inhibitory neural circuits to synchronize the mother-infant interaction.
Collapse
|
11
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
12
|
Smiley KO, Ladyman SR, Gustafson P, Grattan DR, Brown RSE. Neuroendocrinology and Adaptive Physiology of Maternal Care. Curr Top Behav Neurosci 2019; 43:161-210. [PMID: 31808002 DOI: 10.1007/7854_2019_122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parental care is critical for offspring survival in many species. In mammals, parental care is primarily provided through maternal care, due to obligate pregnancy and lactation constraints, although some species also show paternal and alloparental care. These behaviors are driven by specialized neural circuits that receive sensory, cortical, and hormonal input to generate a coordinated and timely change in behavior, and sustain that behavior through activation of reward pathways. Importantly, the hormonal changes associated with pregnancy and lactation also act to coordinate a broad range of physiological changes to support the mother and enable her to adapt to the demands of these states. This chapter will review the neural pathways that regulate maternal behavior, the hormonal changes that occur during pregnancy and lactation, and how these two facets merge together to promote both young-directed maternal responses (including nursing and grooming) and young-related responses (including maternal aggression and other physiological adaptions to support the development of and caring for young). We conclude by examining how experimental animal work has translated into knowledge of human parenting, particularly in regards to maternal mental health issues.
Collapse
Affiliation(s)
- Kristina O Smiley
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Papillon Gustafson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Romero-Morales L, Cárdenas M, Martínez-Torres M, García-Saucedo B, Carmona A, Luis J. Neuronal activation associated with paternal and aversive interactions toward pups in the Mongolian gerbils (Meriones unguiculatus). Horm Behav 2018; 105:47-57. [PMID: 30056092 DOI: 10.1016/j.yhbeh.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Approach/avoid model is used to analyze the neural regulation of maternal behavior in the laboratory rat. This model proposes that the medial preoptic area (mPOA) and bed nucleus of stria terminalis (BNST) are brain regions involved in facilitating mechanisms. By contrast, anterior hypothalamic nucleus (AHN), ventromedial hypothalamic nucleus (VMH), and periaqueductal gray participate in the inhibiting mechanisms of neural regulation of maternal behavior. We hypothesized that there are also facilitating and inhibiting mechanisms in the neural regulation of paternal behavior. Here, we determined which neural areas are activated during paternal and aversive interactions with pups in the Mongolian gerbils (Meriones unguiculatus). By testing paternal behavior, we selected 40 males aggressive toward pups and 20 paternal males. These males were organized into six groups of 10 animals in each group: aggressive males that interacted with pups (AGG-pups) or candy (AGG-candy), paternal males that interacted with pups (PAT-pups) or candy (PAT-candy), and males with testosterone (T)-induced paternal behavior that interacted with pups (IPAT-pups) or candy (IPAT-candy). After interacting with pups or candy, the brains were extracted and analyzed for immunoreactivity (ir) with c-fos. Males that interacted with pups had significantly higher c-fos-ir in the mPOA/BNST than males that interacted with candy. Males that displayed aggression had significantly higher c-fos-ir in the AHN, VMH, and periaqueductal gray than aggressive males that interacted with candy. These results suggest that in the neural regulation of paternal behavior in the Mongolian gerbil underlie positive and negative mechanisms as occurs in maternal behavior.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico; Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Mario Cárdenas
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Agustín Carmona
- Laboratorio de Biología Experimental, Depto. De Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
14
|
Wang B, Wang L, Wang K, Tai F. The effects of fathering experience on paternal behaviors and levels of central expression of oxytocin and dopamine-2 type receptors in mandarin voles. Physiol Behav 2018; 193:35-42. [DOI: 10.1016/j.physbeh.2018.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
|
15
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Abstract
Social signals are identified through processing in sensory systems to trigger appropriate behavioral responses. Social signals are received primarily in most mammals through the olfactory system. Individuals are recognized based on their unique blend of odorants. Such individual recognition is critical to distinguish familiar conspecifics from intruders and to recognize offspring. Social signals can also trigger stereotyped responses like mating behaviors. Specific sensory pathways for individual recognition and eliciting stereotyped responses have been identified both in the early olfactory system and its connected cortices. Oxytocin is emerging as a major state modulator of sensory processing with distinct functions in early and higher olfactory brain regions. The brain state induced through Oxytocin influences social perception. Oxytocin acting on different brain regions can promote either exploration and recognition towards same- or other-sex conspecifics, or association learning. Region-specific deletion of Oxytocin receptors suffices to disrupt these behaviors. Together, these recent insights highlight that Oxytocin's function in social behaviors cannot be understood without considering its actions on sensory processing.
Collapse
|
17
|
Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W. Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing. Neuron 2016; 90:609-21. [PMID: 27112498 DOI: 10.1016/j.neuron.2016.03.033] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
- Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Miriam Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Max F Scheller
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Peggy Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Miriam da Silva Gouveia
- Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Roman Shusterman
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
18
|
Tsuneoka Y, Tokita K, Yoshihara C, Amano T, Esposito G, Huang AJ, Yu LMY, Odaka Y, Shinozuka K, McHugh TJ, Kuroda KO. Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. EMBO J 2015; 34:2652-70. [PMID: 26423604 PMCID: PMC4641531 DOI: 10.15252/embj.201591942] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c-Fos expression pattern in the four nuclei of the preoptic-bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter-male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic-BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Anatomy, School of Medicine Toho University, Tokyo, Japan
| | - Kenichi Tokita
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Taiju Amano
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Pharmacology, Graduate School of Pharmaceutical Sciences Hokkaido University, Hokkaido, Japan
| | - Gianluca Esposito
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy Division of Psychology, School of Humanities and Social Sciences Nanyang Technological University, Singapore, Singapore
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Lily M Y Yu
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Yuri Odaka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
19
|
Munetomo A, Ishii H, Miyamoto T, Sakuma Y, Kondo Y. Puerperal and parental experiences alter rat preferences for pup odors via changes in the oxytocin system. J Reprod Dev 2015; 62:17-27. [PMID: 26460689 PMCID: PMC4768775 DOI: 10.1262/jrd.2015-046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the rat, induction of maternal behavior depends on the parity of the female. For example, nulliparous
(NP) females need longer exposure to pups than multiparous (MP) or lactating (L) females to exhibit similar
maternal behavior. In this study, we investigated the role of brain oxytocin in the approaching behavior of
these female rats. Olfactory preferences for pup odors were examined for 8 consecutive days. Each preference
test was followed by direct overnight exposure to pups. On the 8th day, MP and L, but not NP females showed
robust pup-odor preferences. After the behavioral test, half of the females were exposed to pups for 2 h,
whereas the other half were not. The females were then sacrificed to analyze brain oxytocin (OXT) and
vasopressin (AVP) activities by cFos immunohistochemistry and to quantify their receptor mRNA expression using
real-time PCR. In the paraventricular nucleus (PVN), the percentage of cFos-positive OXT neurons was
significantly larger in MP and L females than in NP females after pup exposure. No significant differences
were found in cFos expression in OXT neurons of the supraoptic nucleus (SON) or in AVP neurons of either the
PVN or SON. Expression of OXT receptor mRNA in the medial preoptic area and amygdala of the control groups was
also higher in MP females than in NP females. Finally, we demonstrated that infusion of OXT into the lateral
ventricle of NP females promoted preferences for pup odors. These results indicate that puerperal and parental
experiences enhance the responsiveness of OXT neurons in the PVN to pup stimuli and establish olfactory
preferences for these odors in a parity-dependent manner.
Collapse
Affiliation(s)
- Arisa Munetomo
- Laboratory of Behavior Neuroscience, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | | | | | | | | |
Collapse
|
20
|
Del Cerro MCR, Ortega E, Gómez F, Segovia S, Pérez-Laso C. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats. Horm Behav 2015; 73:142-7. [PMID: 26163152 DOI: 10.1016/j.yhbeh.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 12/25/2022]
Abstract
Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature.
Collapse
Affiliation(s)
- M C R Del Cerro
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - E Ortega
- Departamento de Bioquímica y Biología Molecular, Avda. de Madrid s/n°, Granada, Spain
| | - F Gómez
- Centro de Salud Joaquín Rodrigo, Servicio Madrileño de Salud, Área 11 AP, Madrid, Spain
| | - S Segovia
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - C Pérez-Laso
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia C/ Juan del Rosal 10, 28040 Madrid, Spain
| |
Collapse
|
21
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
22
|
Corona R, Lévy F. Chemical olfactory signals and parenthood in mammals. Horm Behav 2015; 68:77-90. [PMID: 25038290 DOI: 10.1016/j.yhbeh.2014.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". In mammalian species, odor cues emitted by the newborn are essential to establish maternal behavior at parturition and coordinate early mother-infant interactions. Offspring odors become potent attractive stimuli at parturition promoting the contact with the young to ensure that normal maternal care develops. In some species odors provide a basis for individual recognition of the offspring and highly specialized neural mechanisms for learning the infant signals have evolved. Both the main and the accessory olfactory systems are involved in the onset of maternal care, but only the former contributes to individual odor discrimination of the young. Electrophysiological and neurochemical changes occur in the main olfactory bulb leading to a coding of the olfactory signature of the familiar young. Olfactory neurogenesis could also contribute to motherhood and associated learning. Parturition and interactions with the young influence neurogenesis and some evidence indicates a functional link between olfactory neurogenesis and maternal behavior. Although a simple compound has been found which regulates anogenital licking in the rat, studies identifying the chemical nature of these odors are lacking. Neonatal body odors seem to be particularly salient to human mothers who are able to identify their infant's odors. Recent studies have revealed some neural processing of these cues confirming the importance of mother-young chemical communication in our own species.
Collapse
Affiliation(s)
- Rebeca Corona
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France.
| |
Collapse
|
23
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
24
|
Melo AI. Role of sensory, social, and hormonal signals from the mother on the development of offspring. ADVANCES IN NEUROBIOLOGY 2014; 10:219-48. [PMID: 25287543 DOI: 10.1007/978-1-4939-1372-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
For mammals, sensory, social, and hormonal experience early in life is essential for the continuity of the infant's development. These experiences come from the mother through maternal care, and have enduring effects on the physiology and behavior of the adult organism. Disturbing the mother-offspring interaction by maternal deprivation (neglect) or exposure to adverse events as chronic stress, maltreatment, or sexual abuse has negative effects on the mental, psychological, physiological, and behavioral health. Indeed, these kinds of negative experiences can be the source of some neuropsychiatric diseases as depression, anxiety, impulsive aggression, and antisocial behavior. The purpose of this chapter is to review the most relevant evidence that supports the participation of cues from the mother and/or littermates during the postnatal preweaning period for the development of nervous system of the offspring. These findings come from the most frequently utilized experimental paradigms used in animal models, such as natural variations in maternal behavior, handling, partial maternal deprivation, and total maternal deprivation and artificial rearing. Through the use of these experimental procedures, it is possible to positively (handling paradigm), or negatively (maternal deprivation paradigms), affect the offspring's development. Finally, this chapter reviews the importance of the hormones that pups ingest through the maternal milk during early lactation on the development of several physiological systems, including the immune, endocrine systems, as well as on the adult behavior of the offspring.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico,
| |
Collapse
|
25
|
Kuroda KO, Numan M. The medial preoptic area and the regulation of parental behavior. Neurosci Bull 2014; 30:863-5. [PMID: 25096498 DOI: 10.1007/s12264-014-1462-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kumi O Kuroda
- Research Unit for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, 351-0198, Japan,
| | | |
Collapse
|
26
|
Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 2014; 509:325-30. [PMID: 24828191 PMCID: PMC4105201 DOI: 10.1038/nature13307] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 04/02/2014] [Indexed: 11/11/2022]
Abstract
Mice display robust, stereotyped behaviors toward pups: virgin males typically attack pups, while virgin females and sexually experienced males and females display parental care. We show here that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Further, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation activated during mating. Genetic ablation of MPOA galanin neurons results in dramatic impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behavior and other social responses. These results provide an entry point to a circuit-level dissection of parental behavior and its modulation by social experience.
Collapse
Affiliation(s)
- Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anita E Autry
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joseph F Bergan
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine G Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
27
|
Mann PE. Gene Expression Profiling during Pregnancy in Rat Brain Tissue. Brain Sci 2014; 4:125-35. [PMID: 24961703 PMCID: PMC4066241 DOI: 10.3390/brainsci4010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/08/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022] Open
Abstract
The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.
Collapse
Affiliation(s)
- Phyllis E Mann
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., N. Grafton, MA 01536, USA.
| |
Collapse
|
28
|
Scent marks as social signals inGalago crassicaudatus I. Sex and reproductive status as factors in signals and responses. J Chem Ecol 2014; 8:1133-51. [PMID: 24413908 DOI: 10.1007/bf00986984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1981] [Revised: 12/28/1981] [Indexed: 10/25/2022]
Abstract
In simultaneous presentations of the scent marks of male and female conspecifics, thick-tailed galagos (Galago crassicaudatus) of both sexes responded most strongly to the female scent. Males differentiated between the scents most clearly in their sniffing, females in their scent marking in response. The scent of estrus females elicited increased licking of the scent by both sexes. This greater response to female scent and the contrasts in response patterns between the sexes are discussed and related to galago social and spatial relationships in the wild.
Collapse
|
29
|
Nishitani S, Kuwamoto S, Takahira A, Miyamura T, Shinohara K. Maternal Prefrontal Cortex Activation by Newborn Infant Odors. Chem Senses 2014; 39:195-202. [DOI: 10.1093/chemse/bjt068] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Banerjee SB, Liu RC. Storing maternal memories: hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Front Neuroendocrinol 2013; 34:300-14. [PMID: 23916405 PMCID: PMC3788048 DOI: 10.1016/j.yfrne.2013.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Much of the literature on maternal behavior has focused on the role of infant experience and hormones in a canonical subcortical circuit for maternal motivation and maternal memory. Although early studies demonstrated that the cerebral cortex also plays a significant role in maternal behaviors, little has been done to explore what that role may be. Recent work though has provided evidence that the cortex, particularly sensory cortices, contains correlates of sensory memories of infant cues, consistent with classical studies of experience-dependent sensory cortical plasticity in non-maternal paradigms. By reviewing the literature from both the maternal behavior and sensory cortical plasticity fields, focusing on the auditory modality, we hypothesize that maternal hormones (predominantly estrogen) may act to prime auditory cortical neurons for a longer-lasting neural trace of infant vocal cues, thereby facilitating recognition and discrimination. This couldthen more efficiently activate the subcortical circuit to elicit and sustain maternal behavior.
Collapse
Affiliation(s)
- Sunayana B. Banerjee
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
| | - Robert C. Liu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322
| |
Collapse
|
31
|
Pérez-Laso C, Ortega E, Martín JLR, Pérez-Izquierdo MA, Gómez F, Segovia S, Del Cerro MCR. Maternal care interacts with prenatal stress in altering sexual dimorphism in male rats. Horm Behav 2013; 64:624-33. [PMID: 23994571 DOI: 10.1016/j.yhbeh.2013.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022]
Abstract
The present study analyzes the interaction between prenatal stress and mother's behavior on brain, hormonal, and behavioral development of male offspring in rats. It extends to males our previous findings, in females, that maternal care can alter behavioral dimorphism that becomes evident in the neonates when they mature. Experiment 1 compares the maternal behavior of foster mothers toward cross-fostered pups versus mothers rearing their own litters. Experiment 2 ascertains the induced "maternal" behavior of the male pups, derived from Experiment 1 when they reached maturity. The most striking effect was that the males non-exposed to the stress as fetuses and raised by stressed foster mothers showed the highest levels of "maternal" behavior of all the groups (i.e., induction of maternal behavior and retrieving behavior), not differing from the control, unstressed, female groups. Furthermore, those males showed significantly fewer olfactory bulb mitral cells than the control males that were non-stressed as fetuses and raised by their own non-stressed mothers. They also presented the lowest levels of plasma testosterone of all the male groups. The present findings provide evidence that prenatal environmental stress can "demasculinize" the behavior, brain anatomy and hormone secretion in the male fetuses expressed when they reach maturity. Moreover, the nature of the maternal care received by neonates can affect the behavior and physiology that they express at maturity.
Collapse
Affiliation(s)
- C Pérez-Laso
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, C/Juan del Rosal 10, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 2013; 33:5120-6. [PMID: 23516278 DOI: 10.1523/jneurosci.2364-12.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sexually naive male mice show robust aggressive behavior toward pups. However, the proportion of male mice exhibiting pup-directed aggression declines after cohabitation with a pregnant female for 2 weeks after mating. Subsequently, on becoming fathers, they show parental behavior toward pups, similar to maternal behavior by mothers. To elucidate the neural mechanisms underlying this behavioral transition, we examined brain regions differentially activated in sexually naive males and fathers after exposure to pups, using c-Fos expression as a neuronal activation marker. We found that, after pup exposure, subsets of neurons along the vomeronasal neural pathway-including the vomeronasal sensory neurons, the accessory olfactory bulb, the posterior medial amygdala, the medioposterior division of the bed nucleus of stria terminalis, and the anterior hypothalamic area-were more strongly activated in sexually naive males than in fathers. Notably, c-Fos induction was not observed in the vomeronasal sensory neurons of fathers after pup exposure. Surgical ablation of the vomeronasal organ in sexually naive males resulted in the abrogation of pup-directed aggression and simultaneous induction of parental behavior. These results suggest that chemical cues evoking pup-directed aggression are received by the vomeronasal sensory neurons and activate the vomeronasal neural pathway in sexually naive male mice but not in fathers. Thus, the downregulation of pup pheromone-induced activation of the vomeronasal system might be important for the behavioral transition from attack to parenting in male mice.
Collapse
|
33
|
Chauke M, de Jong TR, Garland T, Saltzman W. Paternal responsiveness is associated with, but not mediated by reduced neophobia in male California mice (Peromyscus californicus). Physiol Behav 2012; 107:65-75. [PMID: 22634280 DOI: 10.1016/j.physbeh.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 04/21/2012] [Accepted: 05/14/2012] [Indexed: 01/21/2023]
Abstract
Hormones associated with pregnancy and parturition have been implicated in facilitating the onset of maternal behavior via reductions in neophobia, anxiety, and stress responsiveness. To determine whether the onset of paternal behavior has similar associations in biparental male California mice (Peromyscus californicus), we compared paternal responsiveness, neophobia (novel-object test), and anxiety-like behavior (elevated plus maze, EPM) in isolated virgins (housed alone), paired virgins (housed with another male), expectant fathers (housed with pregnant pairmate), and new fathers (housed with pairmate and pups). Corticotropin-releasing hormone (CRH) and Fos immunoreactivity (IR) were quantified in brain tissues following exposure to a predator-odor stressor or under baseline conditions. New fathers showed lower anxiety-like behavior than expectant fathers and isolated virgins in EPM tests. In all housing conditions, stress elevated Fos-IR in the hypothalamic paraventricular nucleus (PVN). Social isolation reduced overall (baseline and stress-induced) Fos- and colocalized Fos/CRH-IR, and increased overall CRH-IR, in the PVN. In the central nucleus of the amygdala, social isolation increased stress-induced CRH-IR and decreased stress-induced activation of CRH neurons. Across all housing conditions, paternally behaving males displayed more anxiety-related behavior than nonpaternal males in the EPM, but showed no differences in CRH- or Fos-IR. Finally, the latency to engage in paternal behavior was positively correlated with the latency to approach a novel object. These results suggest that being a new father does not reduce anxiety, neophobia, or neural stress responsiveness. Low levels of neophobia, however, were associated with, but not necessary for paternal responsiveness.
Collapse
Affiliation(s)
- Miyetani Chauke
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
34
|
Differential regional brain responses to induced maternal behavior in rats measured by cytochrome oxidase immunohistochemistry. Behav Brain Res 2011; 223:293-6. [DOI: 10.1016/j.bbr.2011.04.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
|
35
|
Mileva-Seitz V, Fleming AS. How Mothers Are Born: A Psychobiological Analysis of Mothering. NATIONAL SYMPOSIUM ON FAMILY ISSUES 2011. [DOI: 10.1007/978-1-4419-7361-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Taniguchi K, Saito S, Taniguchi K. Phylogenic outline of the olfactory system in vertebrates. J Vet Med Sci 2010; 73:139-47. [PMID: 20877153 DOI: 10.1292/jvms.10-0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phylogenic outline of the vertebrate olfactory system is summarized in the present review. In the fish and the birds, the olfactory system consists only of the olfactory epithelium (OE) and the olfactory bulb (B). In the amphibians, reptiles and mammals, the olfactory system is subdivided into the main olfactory and the vomeronasal olfactory systems, and the former consists of the OE and the main olfactory bulb (MOB), while the latter the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB). The subdivision of the olfactory system into the main and the vomeronasal olfactory systems may partly be induced by the difference between paraphyletic groups and monophyletic groups in the phylogeny of vertebrates.
Collapse
Affiliation(s)
- Kazumi Taniguchi
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan.
| | | | | |
Collapse
|
37
|
Booth KK, Webb EC. Effect of Blockage of the Ducts of the Vomeronasal Organ on LH Plasma Levels during the "Whitten Effect" in Does. Vet Med Int 2010; 2010. [PMID: 20871868 PMCID: PMC2943108 DOI: 10.4061/2011/305468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/13/2010] [Indexed: 11/25/2022] Open
Abstract
Eighteen mature, nonpregnant, and indigenous South African does were randomly divided into two groups to test if their vomeronasal organs exert an influence on LH plasma levels during a Whitten effect experimental trial. Does in the treatment (VNO ablated) group had their vomeronasal organs rendered nonfunctional by cauterization of the nasoincisive duct under surgical anesthesia. Does in the control group had their nasal civities irrigated with physiological saline under surgical anesthesia. All does were synchronized into oestrus and introduced to bucks one day prior to their expected second oestrus cycle. Successful matings were recorded. Timely blood samples were collected during each of the five days before and five days after buck introduction. Blood plasma concentrations of estradiol and LH were determined by radioimmunoassay. Analysis of variance between groups demonstrated that the does in the VNO ablated group did not demonstrate any interest in mating, did not become pregnant, and did not demonstrate the primary increase in tonic plasma levels of LH that is necessary for ovulation to occur. By contrast, all of the does in the control group demonstrated successful matings, became pregnant, and demonstrated typical primary tonic level increases and preovulation surges in LH. Thus, it was concluded that the vomeronasal organ modulates the primary increase in tonic levels of LH and thus influences ovulation that occurs during the Whitten effect in South African indigenous does.
Collapse
Affiliation(s)
- Kenneth Kurt Booth
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | | |
Collapse
|
38
|
Maternal care counteracts behavioral effects of prenatal environmental stress in female rats. Behav Brain Res 2010; 208:593-602. [DOI: 10.1016/j.bbr.2010.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
|
39
|
Furuta M, Bridges RS. Effects of maternal behavior induction and pup exposure on neurogenesis in adult, virgin female rats. Brain Res Bull 2009; 80:408-13. [PMID: 19712726 DOI: 10.1016/j.brainresbull.2009.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ.
Collapse
Affiliation(s)
- Miyako Furuta
- Department of Biomedical Sciences, Tufts University - Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, United States
| | | |
Collapse
|
40
|
Hagino-Yamagishi K. Diverse systems for pheromone perception: multiple receptor families in two olfactory systems. Zoolog Sci 2009; 25:1179-89. [PMID: 19267644 DOI: 10.2108/zsj.25.1179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditionally, the olfactory epithelium is considered to recognize conventional odors, while the vomeronasal organ detects pheromones. However, recent advances suggest that vertebrate pheromones can also be detected by the olfactory epithelium. In the vomeronasal organ and the olfactory epithelium, structurally distinct multiple receptor families are expressed. In rodents, two of these receptor families, V1R and V2R, are expressed specifically in the vomeronasal organ and detect pheromones and pheromone candidates. A newly isolated trace amine-associated receptor detects some of the putative pheromones in the mouse olfactory epithelium. In addition, distinct second-messenger pathways and neural circuits are used for pheromone perception mediated by each receptor family. Furthermore, the function of these receptor families in these olfactory organs appears to differ among various vertebrate species. The systems for pheromone perception in vertebrates are far more complex than previously predicted.
Collapse
Affiliation(s)
- Kimiko Hagino-Yamagishi
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Sciences, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
| |
Collapse
|
41
|
Ruscio MG, Sweeny TD, Hazelton JL, Suppatkul P, Boothe E, Carter CS. Pup exposure elicits hippocampal cell proliferation in the prairie vole. Behav Brain Res 2008; 187:9-16. [PMID: 17913255 PMCID: PMC2699755 DOI: 10.1016/j.bbr.2007.08.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
The onset of parental behavior has profound and enduring effects on behavior and neurobiology across a variety of species. In some cases, mere exposure to a foster neonate (and a subsequent parental response) can have similar effects. In the present experiment, we exposed adult male and female prairie voles (Microtus ochrogaster) to two foster pups for 20 min and quantified cell proliferation in the dentate gyrus of the hippocampus (DG), medial amygdala (MeA) and cortical amygdala (CorA). Prairie voles are highly social rodents that typically display biparental care and spontaneous parental care when exposed to foster pups. Comparisons were made between the animals that responded parentally or non-parentally towards the pups, as well as control conditions. Cell proliferation was assessed using injections of 5-bromo-2'-deoxyuridine (BrdU) and immunocytochemical localization of this marker. The phenotype of the cells was determined using double label immunofluoresence for BrdU and TuJ1 (a neuronal marker). An increase in cell proliferation in the DG was seen in animals exposed to pups. However, animals that responded non-parentally had a greater number of BrdU labeled cells in the DG compared to those that responded parentally. The majority of BrdU labeled cells co-expressed TuJ1 across all groups. These results demonstrate that exposure to a foster pup and the behavioral reaction to it (parental or non-parental) are associated with site-specific changes in cell proliferation.
Collapse
Affiliation(s)
- Michael G Ruscio
- Department of Psychology, College of Charleston, 66 George St., Charleston, SC 29401, United States.
| | | | | | | | | | | |
Collapse
|
42
|
Febo M, Ferris CF. Development of cocaine sensitization before pregnancy affects subsequent maternal retrieval of pups and prefrontal cortical activity during nursing. Neuroscience 2007; 148:400-12. [PMID: 17651902 PMCID: PMC2220157 DOI: 10.1016/j.neuroscience.2007.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/10/2007] [Accepted: 05/29/2007] [Indexed: 11/25/2022]
Abstract
Pups are a highly rewarding stimulus for early postpartum rats. Our previous work supports this notion by showing that suckling activates the mesocorticolimbic system in mothers. In the present study, we tested whether development of behavioral sensitization to cocaine before pregnancy affects the neural response to pups during the early postpartum days (PD). Virgin rats were repeatedly administered cocaine for 14 days (15 mg kg(-1)) and withdrawn from treatment during breeding and pregnancy. The neural response to suckling was measured at PD 4-8 using blood-oxygen-level-dependent (BOLD) MRI or microdialysis. Our results show that BOLD activation in the medial prefrontal cortex (PFC), septum and auditory cortex was curtailed in cocaine-sensitized dams. No differences between cocaine sensitized and saline control dams were observed in the nucleus accumbens, olfactory structures, or in 48 additional major brain regions that were analyzed. Baseline, but not pup-stimulated, dopamine (DA) levels in the medial PFC were lower in cocaine-sensitized dams than in controls. When tested for maternal behaviors, cocaine-sensitized dams showed significantly faster retrieval of pups without changes in other maternal behaviors such as grouping, crouching and defending the nest. Taken together, the present findings suggest that maternal motivation to retrieve pups was enhanced by repeated cocaine exposure and withdrawal, a result reminiscent of 'cross-sensitization' between the drug and a natural reward. Changes in retrieval behavior in cocaine-sensitized mothers might be associated with a hypo-responsive medial PFC.
Collapse
Affiliation(s)
- M Febo
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.
| | | |
Collapse
|
43
|
Mayes LC. Arousal regulation, emotional flexibility, medial amygdala function, and the impact of early experience: comments on the paper of Lewis et al. Ann N Y Acad Sci 2007; 1094:178-92. [PMID: 17347350 DOI: 10.1196/annals.1376.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The balance between optimal levels of emotional arousal and cognitive performance reflects the integration of several dopaminergically and adrenergically regulated neural systems. The amygdalar system is a key region for gating stimulation to cortical regions and the medial amygdala appears to play an especially key role in mediating the fear response. More generally, these arousal regulatory neural systems are key to frustration or stress impact prefrontal cortical function. Further, the threshold for when the level of stress is overwhelming and hence impairs cognitive function reflects minimally genetic and experiential influence. An important interface between Drs. Lewis and Davis's work is how early experience, especially through early parenting, may set the threshold of responsiveness for these arousal regulatory neural systems.
Collapse
Affiliation(s)
- Linda C Mayes
- Yale University, Child Study Center, 230 South Frontage Rd., New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Clinton SM, Vázquez DM, Kabbaj M, Kabbaj MH, Watson SJ, Akil H. Individual differences in novelty-seeking and emotional reactivity correlate with variation in maternal behavior. Horm Behav 2007; 51:655-64. [PMID: 17462647 PMCID: PMC1945104 DOI: 10.1016/j.yhbeh.2007.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 03/17/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Numerous studies have demonstrated that Sprague-Dawley rats exhibit a wide range of locomotor reactivity when placed in a novel environment. High Responder (HR) rats show exaggerated locomotor response to novelty, enhanced neuroendocrine stress reactivity, decreased anxiety-like behavior, and propensity to self-administer psychostimulants, compared to the less active Low Responder (LR) animals. Few studies have explored the early environmental factors which may underlie the HR-LR differences in emotional reactivity. Considering the enormous impact of maternal care on rodent neurodevelopment, we sought to examine maternal behavior in HR-LR dams to determine whether they exhibit differences which could contribute to their offspring's differential temperaments. Females, like males, can be classified as HR versus LR, showing marked differences in novelty-induced locomotor activity and anxiety-like behavior. HR-LR mothers behaved differently with their pups during the first two postpartum weeks. LR dams spent greater time licking and nursing their pups compared to HR dams, with the most prominent differences occurring during the second postpartum week. By contrast, when non-lactating HR-LR females were presented with orphaned pups, the pattern of maternal response was reversed. HR females were more responsive and showed greater maternal care of the novel pups compared to LR females, which were probably inhibited due to fear of the unfamiliar pups. This underscores the critical interplay between the female's emotional phenotype, her hormonal status and her familiarity with the pup as key factors in determining maternal behavior. Future work should explore neural and hormonal mechanisms which drive these HR-LR differences in maternal behavior and their impact on the development of the offspring.
Collapse
Affiliation(s)
- Sarah M Clinton
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Jay Rosenblatt's approach-avoidance model of maternal behavior proposes that maternal behavior occurs when the tendency to approach infant stimuli is greater than the tendency to avoid such stimuli. Our research program has uncovered neural circuits which conform to such a model. We present evidence that the medial preoptic area (MPOA: located in the rostral hypothalamus) may regulate maternal responsiveness by depressing antagonistic neural systems which promote withdrawal responses while also activating appetitive neural systems which increase the attractiveness of infant-related stimuli. These MPOA circuits are activated by the hormonal events of late pregnancy. Preoptic efferents may suppress a central aversion system which includes an amygdala to anterior hypothalamic circuit. Preoptic efferents are also shown to interact with components of the mesolimbic dopamine (DA) system to regulate proactive voluntary maternal responses. We make a distinction between specific (MPOA neurons) and nonspecific motivational systems (mesolimbic DA system) in the regulation of maternal responsiveness.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, McGuinn Hall, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
46
|
Swain JE, Lorberbaum JP, Kose S, Strathearn L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. J Child Psychol Psychiatry 2007; 48:262-87. [PMID: 17355399 PMCID: PMC4318551 DOI: 10.1111/j.1469-7610.2007.01731.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Parenting behavior critically shapes human infants' current and future behavior. The parent-infant relationship provides infants with their first social experiences, forming templates of what they can expect from others and how to best meet others' expectations. In this review, we focus on the neurobiology of parenting behavior, including our own functional magnetic resonance imaging (fMRI) brain imaging experiments of parents. We begin with a discussion of background, perspectives and caveats for considering the neurobiology of parent-infant relationships. Then, we discuss aspects of the psychology of parenting that are significantly motivating some of the more basic neuroscience research. Following that, we discuss some of the neurohormones that are important for the regulation of social bonding, and the dysregulation of parenting with cocaine abuse. Then, we review the brain circuitry underlying parenting, proceeding from relevant rodent and nonhuman primate research to human work. Finally, we focus on a study-by-study review of functional neuroimaging studies in humans. Taken together, this research suggests that networks of highly conserved hypothalamic-midbrain-limbic-paralimbic-cortical circuits act in concert to support aspects of parent response to infants, including the emotion, attention, motivation, empathy, decision-making and other thinking that are required to navigate the complexities of parenting. Specifically, infant stimuli activate basal forebrain regions, which regulate brain circuits that handle specific nurturing and caregiving responses and activate the brain's more general circuitry for handling emotions, motivation, attention, and empathy--all of which are crucial for effective parenting. We argue that an integrated understanding of the brain basis of parenting has profound implications for mental health.
Collapse
Affiliation(s)
- James E Swain
- Child Study Center, Yale University, New Haven, CT 06520-7900, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
48
|
Pereira M, Ferreira A. Demanding pups improve maternal behavioral impairments in sensitized and haloperidol-treated lactating female rats. Behav Brain Res 2006; 175:139-48. [PMID: 16996623 DOI: 10.1016/j.bbr.2006.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
The impairments in the maternal behavior of ovariectomized sensitized females, relative to lactating dams, resemble those deficits found in lactating females after treatment with the D1/D2 DA receptor antagonist haloperidol, which interferes with maternal motivation. Therefore, it could be speculated that these behavioral deficits found in sensitized females and haloperidol-treated dams are due to a reduced motivation to interact with pups. In support of this hypothesis, we have found that both sensitized and haloperidol-treated lactating females exhibited remarkably similar impairments in the expression of all active maternal behaviors relative to lactating dams. Furthermore, these deficits were overridden when they were allowed to interact with 12h-isolated pups (demanding pups). Interestingly, lactating dams also improved their maternal behavior in the presence of demanding pups, and clearly chose demanding more than non-demanding pups in a preference paradigm. These data support the idea that the behavioral deficits of sensitized and haloperidol-treated lactating females are due to a reduced behavioral activation in response to the incentive cues from pups compared to lactating dams, and not because of a motor inability to express maternal behavior. These findings ultimately suggest that pups modulate the activity of DA system involved in the regulation of maternal behavior.
Collapse
Affiliation(s)
- Mariana Pereira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
49
|
Febo M, Numan M, Ferris CF. Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci 2006; 25:11637-44. [PMID: 16354922 PMCID: PMC6726012 DOI: 10.1523/jneurosci.3604-05.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxytocin is released in the maternal brain during breastfeeding and may help strengthen the mother-infant relationship. Here, we used functional magnetic resonance imaging to determine whether oxytocin modulates brain activity in postpartum day 4-8 dams receiving suckling stimulation. During imaging sessions, dams were exposed to pup suckling before and after administration of an oxytocin receptor antagonist. Another group of dams received oxytocin alone. Changes in brain activation in response to suckling closely matched that elicited by oxytocin administration. The overlapping brain areas included the olfactory system, nucleus accumbens, insular cortex, prefrontal cortex, ventral tegmental area, cortical amygdala, and several cortical and hypothalamic nuclei. Blockade of oxytocin receptors largely attenuated activation in these regions. The data suggest that oxytocin may strengthen mother-infant bond formation partly by acting through brain areas involved in regulating olfactory discrimination, emotions, and reward.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
50
|
Abstract
The brain systems that motivate humans to form emotional bonds with others probably first evolved to mobilize the high-quality maternal care necessary for reproductive success in placental mammals. In these species, the helplessness of infants at birth and their dependence upon nutrition secreted from their mothers' bodies (milk) and parental body heat to stay warm required the evolution of a new motivational system in the brain to stimulate avid and sustained mothering behavior. Other types of social bonds that emerged subsequently in placental mammals, in particular monogamous bonds between breeding pairs, appear to have evolved from motivational brain systems that stimulate maternal behavior. This chapter focuses on aspects of the evolution and neurobiology of maternal and pair bonding and associated behavioral changes that may provide insights into the origins of human violence. The roles of the neuropeptides oxytocin and vasopressin as well as the neurotransmitter dopamine will be emphasized. Maternal and pair bonding are accompanied by increased aggressiveness toward perceived threats to the object of attachment as well as diminished fear and anxiety in stressful situations. The sustained closeness with mother required for the survival of infant mammals opened a new evolutionary niche in which aspects of the mother's care became increasingly important in regulating development in offspring. The quantity and quality of maternal care received during infancy determines adult social competence, ability to cope with stress, aggressiveness, and even preference for addictive substances. Indeed, the development of neurochemical systems within the brain that regulate mothering, aggression, and other types of social behavior, such as the oxytocin and vasopressin systems, are strongly affected by parental nurturing received during infancy. Evidence will be reviewed that the neural circuitry and neurochemistry implicated in studies of lower mammals also facilitate primate/human interpersonal bonding. It is hypothesized that neural bonding systems may also be important for the development in individuals of loyalty to the social group and its culture. Neglect and abuse during early life may cause bonding systems to develop abnormally and compromise capacity for rewarding interpersonal relationships and commitment to societal and cultural values later in life. Other means of stimulating reward pathways in the brain, such as drugs, sex, aggression, and intimidating others, could become relatively more attractive and less constrained by concern about violating trusting relationships. The ability to modify behavior based on negative experiences may be impaired. Unmet needs for social bonding and acceptance early in life might increase the emotional allure of groups (gangs, sects) with violent and authoritarian values and leadership. Social neurobiology has the potential to provide new strategies for treating and preventing violence and associated social dysfunction.
Collapse
Affiliation(s)
- Cort A Pedersen
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7160, USA.
| |
Collapse
|