1
|
An X, Zhao R, Wang L, Xiao X, Xu Z, Zhang S, Xie D, Xiao Y, Zhang Q. Thiocyanate degradation by mixed bacterial consortia: Adaptive mechanism in response to thiocyanate stress and metabolic pathway. ENVIRONMENTAL RESEARCH 2025; 278:121688. [PMID: 40280386 DOI: 10.1016/j.envres.2025.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Thiocyanate, frequently detected in various industrial wastewater, poses significant risks to organisms. The activated sludge isolate thiocyanate-degrading bacterial consortia (TDBC) efficiently metabolizes thiocyanate. However, the adaptive mechanism in response to thiocyanate stress and metabolic pathway by TDBC have not been elucidated. Metagenomic analysis showed that Thiobacillus (77.73 %) were the primary degraders for the efficient degradation of thiocyanate. A total of 27 genes related to thiocyanate biodegradation were identified, including SCNase, COSase, sulfur oxidation, denitrification and carbon fixation. Metaproteomic revealed the high expression of chemotaxis protein and thioredoxin enhances cellular oxidative stress and maintains normal physiological metabolism. Additionally, the differentially expressed proteins were primarily involved in metabolic pathways including sphingolipid metabolism, energy metabolism, oxidative phosphorylation, two-component system and amino acid metabolism. Then the lipid, organic acid and amino acid metabolism were up-regulated by metabolomic analysis, thereby achieving the degradation of thiocyanate. Using a combination of qRT-PCR and parallel reaction monitoring (PRM), 27 key genes involved in thiocyanate biodegradation have been identified, providing a theoretical basis for developing microbial strategies to mitigate thiocyanate pollution. Molecular docking deepens the understanding of the interaction between degrading enzyme and thiocyanate. This study provides a theoretical basis for the microbial remediation of thiocyanate-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Rui Zhao
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaoshuang Xiao
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Dong Xie
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yao Xiao
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
2
|
Xu G, Liu X, Han J, Shao K, Yang H, Yuan J, Dou J. Insights into the enhanced uranium reduction efficiency through extracellular polymeric substances from Desulfovibrio vulgaris UR1 induced by mediating materials. BIORESOURCE TECHNOLOGY 2025; 421:132143. [PMID: 39892586 DOI: 10.1016/j.biortech.2025.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Understanding the role of extracellular polymeric substances (EPS) in the microbial reduction of uranium accelerated by mediating materials is crucial for enhancing the bioremediation of uranium-contaminated wastewater. In this study, biochar- and magnetite-loaded Desulfovibrio vulgaris UR1 exhibited significantly higher uranium reduction efficiency, with increases of 1.52 and 1.44 times respectively within one day. After loading with mediating materials, the charge transfer resistance of EPS was reduced, facilitating the extracellular electron transfer process. The increase of redox components, such as aromatic compounds and flavins, in EPS explained the enhanced extracellular electron transfer capacity. Moreover, the higher α-helix content in extracellular proteins could promote electron hopping. Proteomics analysis showed that extracellular proteins involved in iron-sulfur cluster binding, oxidoreductase activity, and electron transfer were significantly up-regulated, which facilitated the rapid microbial reduction of uranium. These findings provide valuable insights into the in-depth development of bioremediation technology for uranium-contaminated wastewater.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Juncheng Han
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Jing Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
3
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Lee H, Hwang K, Cho A, Kim S, Kim M, Morgan-Kiss R, Priscu JC, Kim KM, Kim OS. Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica. ENVIRONMENTAL MICROBIOME 2024; 19:60. [PMID: 39160591 PMCID: PMC11334312 DOI: 10.1186/s40793-024-00605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney. RESULTS Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus. CONCLUSIONS The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.
Collapse
Affiliation(s)
- Hanbyul Lee
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | - Kyuin Hwang
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | - Ahnna Cho
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | - Soyeon Kim
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | - Minkyung Kim
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | | | - John C Priscu
- Emeritus, Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Kyung Mo Kim
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| | - Ok-Sun Kim
- Division of Life Sciences, Korea Polar Research Institute, Yeonsu-Gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
5
|
Alarcon HV, Mohl JE, Chong GW, Betancourt A, Wang Y, Leng W, White JC, Xu J. Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source. Appl Environ Microbiol 2024; 90:e0086324. [PMID: 38899885 PMCID: PMC11267869 DOI: 10.1128/aem.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis. IMPORTANCE Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.
Collapse
Affiliation(s)
- Hugo V. Alarcon
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
| | - Jonathon E. Mohl
- Department of Mathematical Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Grace W. Chong
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
| | - Ana Betancourt
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Yi Wang
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Weinan Leng
- The National Center for Earth and Environmental Nanotechnology Infrastructure, Blacksburg, Virginia, USA
| | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jie Xu
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Kümpel C, Grosser M, Tanabe TS, Dahl C. Fe/S proteins in microbial sulfur oxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119732. [PMID: 38631440 DOI: 10.1016/j.bbamcr.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Iron-sulfur clusters serve as indispensable cofactors within proteins across all three domains of life. Fe/S clusters emerged early during the evolution of life on our planet and the biogeochemical cycle of sulfur is one of the most ancient and important element cycles. It is therefore no surprise that Fe/S proteins have crucial roles in the multiple steps of microbial sulfur metabolism. During dissimilatory sulfur oxidation in prokaryotes, Fe/S proteins not only serve as electron carriers in several steps, but also perform catalytic roles, including unprecedented reactions. Two cytoplasmic enzyme systems that oxidize sulfane sulfur to sulfite are of particular interest in this context: The rDsr pathway employs the reverse acting dissimilatory sulfite reductase rDsrAB as its key enzyme, while the sHdr pathway utilizes polypeptides resembling the HdrA, HdrB and HdrC subunits of heterodisulfide reductase from methanogenic archaea. Both pathways involve components predicted to bind unusual noncubane Fe/S clusters acting as catalysts for the formation of disulfide or sulfite. Mapping of Fe/S cluster machineries on the sulfur-oxidizing prokaryote tree reveals that ISC, SUF, MIS and SMS are all sufficient to meet the Fe/S cluster maturation requirements for operation of the sHdr or rDsr pathways. The sHdr pathway is dependent on lipoate-binding proteins that are assembled by a novel pathway, involving two Radical SAM proteins, namely LipS1 and LipS2. These proteins coordinate sulfur-donating auxiliary Fe/S clusters in atypical patterns by three cysteines and one histidine and act as lipoyl synthases by jointly inserting two sulfur atoms to an octanoyl residue. This article is part of a Special Issue entitled: Biogenesis and Function of Fe/S proteins.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Xu X, He M, Xue Q, Li X, Liu A. Genome-based taxonomic classification of the genus Sulfitobacter along with the proposal of a new genus Parasulfitobacter gen. nov. and exploring the gene clusters associated with sulfur oxidation. BMC Genomics 2024; 25:389. [PMID: 38649849 PMCID: PMC11034169 DOI: 10.1186/s12864-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.
Collapse
Affiliation(s)
- Xiaokun Xu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Mengdan He
- School of Basic Medical Sciences, Shandong Second Medical University, 261042, Weifang, Shandong, P. R. China
| | - Qingjie Xue
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Xiuzhen Li
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Ang Liu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China.
| |
Collapse
|
8
|
Wang T, Li X, Liu H, Liu H, Xia Y, Xun L. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170504. [PMID: 38307292 DOI: 10.1016/j.scitotenv.2024.170504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Zero-valent sulfur, commonly utilized as a fertilizer or fungicide, is prevalent in various environmental contexts. Its most stable and predominant form, octasulfur (S8), plays a crucial role in microbial sulfur metabolism, either through oxidation or reduction. However, the mechanism underlying its cellular uptake remains elusive. We presented evidence that zero-valent sulfur was adsorbed to the cell surface and then dissolved into the membrane lipid layer as lipid-soluble S8 molecules, which reacted with cellular low-molecular thiols to form persulfide, e.g., glutathione persulfide (GSSH), in the cytoplasm. The process brought extracellular zero-valent sulfur into the cells. When persulfide dioxygenase is present in the cells, GSSH will be oxidized. Otherwise, GSSH will react with another glutathione (GSH) to produce glutathione disulfide (GSSG) and hydrogen sulfide (H2S). The mechanism is different from simple diffusion, as insoluble S8 becomes soluble GSSH after crossing the cytoplasmic membrane. The uptake process is limited by physical contact of insoluble zero-valent sulfur with microbial cells and the regeneration of cellular thiols. Our findings elucidate the cellular uptake mechanism of zero-valent sulfur, which provides critical information for its application in agricultural practices and the bioremediation of sulfur contaminants and heavy metals.
Collapse
Affiliation(s)
- Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
9
|
Sato Y, Takita A, Suzue K, Hashimoto Y, Hiramoto S, Murakami M, Tomita H, Hirakawa H. TusDCB, a sulfur transferase complex involved in tRNA modification, contributes to UPEC pathogenicity. Sci Rep 2024; 14:8978. [PMID: 38637685 PMCID: PMC11026471 DOI: 10.1038/s41598-024-59614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.
Collapse
Affiliation(s)
- Yumika Sato
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
10
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Klier KM, Martin C, Langwig MV, Anantharaman K. Evolutionary history and origins of Dsr-mediated sulfur oxidation. THE ISME JOURNAL 2024; 18:wrae167. [PMID: 39206688 PMCID: PMC11406059 DOI: 10.1093/ismejo/wrae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms play vital roles in sulfur cycling through the oxidation of elemental sulfur and reduction of sulfite. These metabolisms are catalyzed by dissimilatory sulfite reductases (Dsr) functioning in either the reductive or reverse, oxidative direction. Dsr-mediated sulfite reduction is an ancient metabolism proposed to have fueled energy metabolism in some of Earth's earliest microorganisms, whereas sulfur oxidation is believed to have evolved later in association with the widespread availability of oxygen on Earth. Organisms are generally believed to carry out either the reductive or oxidative pathway, yet organisms from diverse phyla have been discovered with gene combinations that implicate them in both pathways. A comprehensive investigation into the metabolisms of these phyla regarding Dsr is currently lacking. Here, we selected one of these phyla, the metabolically versatile candidate phylum SAR324, to study the ecology and evolution of Dsr-mediated metabolism. We confirmed that diverse SAR324 encode genes associated with reductive Dsr, oxidative Dsr, or both. Comparative analyses with other Dsr-encoding bacterial and archaeal phyla revealed that organisms encoding both reductive and oxidative Dsr proteins are constrained to a few phyla. Further, DsrAB sequences from genomes belonging to these phyla are phylogenetically positioned at the interface between well-defined oxidative and reductive bacterial clades. The phylogenetic context and dsr gene content in these organisms points to an evolutionary transition event that ultimately gave way to oxidative Dsr-mediated metabolism. Together, this research suggests that SAR324 and other phyla with mixed dsr gene content are associated with the evolution and origins of Dsr-mediated sulfur oxidation.
Collapse
Affiliation(s)
- Katherine M Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marguerite V Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Neukirchen S, Pereira IAC, Sousa FL. Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction. THE ISME JOURNAL 2023; 17:1680-1692. [PMID: 37468676 PMCID: PMC10504309 DOI: 10.1038/s41396-023-01477-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth's history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.
Collapse
Affiliation(s)
- Sinje Neukirchen
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipa L Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
13
|
Sun K, Yu M, Zhu XY, Xue CX, Zhang Y, Chen X, Yao P, Chen L, Fu L, Yang Z, Zhang XH. Microbial communities related to the sulfur cycle in the Sansha Yongle Blue Hole. Microbiol Spectr 2023; 11:e0114923. [PMID: 37623326 PMCID: PMC10580873 DOI: 10.1128/spectrum.01149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The Sansha Yongle Blue Hole (SYBH), the deepest blue hole in the world, is an excellent habitat for revealing biogeochemical cycles in the anaerobic environment. However, how sulfur cycling is mediated by microorganisms in the SYBH hasn't been fully understood. In this study, the water layers of the SYBH were divided into oxic zone, hypoxic zone, anoxic zone I and II, and microbial-mediated sulfur cycling in the SYBH was comprehensively interpreted. The 16S rRNA genes/transcripts analyses showed that the microbial community structures associated with the sulfur cycling in each zone had distinctive features. Sulfur-oxidizing bacteria were mostly constituted by Gammaproteobacteria, Alphaproteobacteria, Campylobacterota, and Chlorobia above the anoxic zone I and sulfate-reducing bacteria were dominated by Desulfobacterota in anoxic zones. Metagenomic analyses showed that the sulfide-oxidation-related gene sqr and genes encoding the Sox system were mainly distributed in the anoxic zone I, while genes related to dissimilatory sulfate reduction and sulfur intermediate metabolite reduction were mainly distributed in the anoxic zone II, indicating different sulfur metabolic processes between these two zones. Moreover, sulfur-metabolism-related genes were identified in 81 metagenome-assembled genomes (MAGs), indicating a high diversity of microbial communities involved in sulfur cycling. Among them, three MAGs from the candidate phyla JdFR-76 and AABM5-125-24 with genes related to dissimilatory sulfate reduction exhibited distinctive metabolic features. Our results showed unique and novel microbial populations in the SYBH sulfur cycle correlated to the sharp redox gradients, revealing complex biogeochemical processes in this extreme environment. IMPORTANCE Oxygen-deficient regions in the global ocean are expanding rapidly and affect the growth, reproduction and ecological processes of marine organisms. The anaerobic water body of about 150 m in the Sansha Yongle Blue Hole (SYBH) provided a suitable environment to study the specific microbial metabolism in anaerobic seawater. Here, we found that the vertical distributions of the total and active communities of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were different in each water layer of the SYBH according to the dissolved oxygen content. Genes related to sulfur metabolism also showed distinct stratification characteristics. Furthermore, we have obtained diverse metagenome-assembled genomes, some of which exhibit special sulfur metabolic characteristics, especially candidate phyla JdFR-76 and AABM5-125-24 were identified as potential novel SRB. The results of this study will promote further understanding of the sulfur cycle in extreme environments, as well as the environmental adaptability of microorganisms in blue holes.
Collapse
Affiliation(s)
- Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lin Chen
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Kümpel C, Grein F, Dahl C. Fluorescence Microscopy Study of the Intracellular Sulfur Globule Protein SgpD in the Purple Sulfur Bacterium Allochromatium vinosum. Microorganisms 2023; 11:1792. [PMID: 37512964 PMCID: PMC10386293 DOI: 10.3390/microorganisms11071792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
When oxidizing reduced sulfur compounds, the phototrophic sulfur bacterium Allochromatium vinosum forms spectacular sulfur globules as obligatory intracellular-but extracytoplasmic-intermediates. The globule envelope consists of three extremely hydrophobic proteins: SgpA and SgpB, which are very similar and can functionally replace each other, and SgpC which is involved in the expansion of the sulfur globules. The presence of a fourth protein, SgpD, was suggested by comparative transcriptomics and proteomics of purified sulfur globules. Here, we investigated the in vivo function of SgpD by coupling its carboxy-terminus to mCherry. This fluorescent protein requires oxygen for chromophore maturation, but we were able to use it in anaerobically growing A. vinosum provided the cells were exposed to oxygen for one hour prior to imaging. While mCherry lacking a signal peptide resulted in low fluorescence evenly distributed throughout the cell, fusion with SgpD carrying its original Sec-dependent signal peptide targeted mCherry to the periplasm and co-localized it exactly with the highly light-refractive sulfur deposits seen in sulfide-fed A. vinosum cells. Insertional inactivation of the sgpD gene showed that the protein is not essential for the formation and degradation of sulfur globules.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| | - Fabian Grein
- Institut für Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 16, D-53115 Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany
| |
Collapse
|
15
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
16
|
Kronen M, Vázquez-Campos X, Wilkins MR, Lee M, Manefield MJ. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. mSystems 2023; 8:e0011923. [PMID: 36943133 PMCID: PMC10134865 DOI: 10.1128/msystems.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Collapse
Affiliation(s)
- Miriam Kronen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Xin Y, Wang Y, Zhang H, Wu Y, Xia Y, Li H, Qu X. Cupriavidus pinatubonensis JMP134 Alleviates Sulfane Sulfur Toxicity after the Loss of Sulfane Dehydrogenase through Oxidation by Persulfide Dioxygenase and Hydrogen Sulfide Release. Metabolites 2023; 13:metabo13020218. [PMID: 36837837 PMCID: PMC9959259 DOI: 10.3390/metabo13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
An incomplete Sox system lacking sulfane dehydrogenase SoxCD may produce and accumulate sulfane sulfur when oxidizing thiosulfate. However, how bacteria alleviate the pressure of sulfane sulfur accumulation remains largely unclear. In this study, we focused on the bacterium Cupriavidus pinatubonensis JMP134, which contains a complete Sox system. When soxCD was deleted, this bacterium temporarily produced sulfane sulfur when oxidizing thiosulfate. Persulfide dioxygenase (PDO) in concert with glutathione oxidizes sulfane sulfur to sulfite. Sulfite can spontaneously react with extra persulfide glutathione (GSSH) to produce thiosulfate, which can feed into the incomplete Sox system again and be oxidized to sulfate. Furthermore, the deletion strain lacking PDO and SoxCD produced volatile H2S gas when oxidizing thiosulfate. By comparing the oxidized glutathione (GSSG) between the wild-type and deletion strains, we speculated that H2S is generated during the interaction between sulfane sulfur and the glutathione/oxidized glutathione (GSH/GSSG) redox couple, which may reduce the oxidative stress caused by the accumulation of sulfane sulfur in bacteria. Thus, PDO and H2S release play a critical role in alleviating sulfane sulfur toxicity after the loss of soxCD in C. pinatubonensis JMP134.
Collapse
Affiliation(s)
- Yufeng Xin
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| | - Yaxin Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honglin Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yu Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohua Qu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| |
Collapse
|
18
|
Wang L, Shen Z, Cheng X, Hwang JS, Guo Y, Sun M, Cao J, Liu R, Fang J. Metagenomic insights into the functions of microbial communities in sulfur-rich sediment of a shallow-water hydrothermal vent off Kueishan Island. Front Microbiol 2022; 13:992034. [DOI: 10.3389/fmicb.2022.992034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrothermal vent (HTV) systems are important habitats for understanding the biological processes of extremophiles on Earth and their relative contributions to material and energy cycles in the ocean. Current understanding on hydrothermal systems have been primarily focused on deep-sea HTVs, and little is known about the functions and metabolisms of microorganisms in shallow-water HTVs (SW-HTVs), which are distinguished from deep-sea HTVs by a depth limit of 200 m. In this study, we analyzed metagenomes of sulfur-rich sediment samples collected from a SW-HTV of Kueishan Island, located in a marginal sea of the western Pacific Ocean. Comparing with a previously published report of pelagic samples from the nearby sampling site, microbial communities in the SW-HTV sediments enriching with genes of both aerobic and anaerobic respiration inferred variable environments in the tested sediments. Abundant genes of energy metabolism encoding sulfur oxidation, H2 oxidation, and carbon fixation were detected from the sediment samples. Sixty-eight metagenome-assembled-genomes (MAGs) were reconstructed to further understand the metabolism and potential interactions between different microbial taxa in the SW-HTVs sediment. MAGs with the highest abundant were chemolithotrophic sulfur-oxidization bacteria, including Sulfurovum represented Campylobacteria involved sox multienzyme, sulfide oxidation genes and rTCA cycle, and Gammaproteobacteria involved dsr gene and CBB cycle. In addition, Desulfobacterota with the potential to participate in sulfur-disproportionating processes also had higher abundance than the sample’s overall mean value. The interaction of these bacterial groups allows the microbial communities to efficiently metabolize a large variety of sulfur compounds. In addition, the potential to use simple organic carbon, such as acetate, was found in chemolithotrophic Campylobacterial MAGs. Collectively, our results revealed the complexity of environmental conditions of the vent sediment and highlight the interactive relationships of the dominant microbial populations in driving sulfur cycles in the SW-HTV sediments off Kueishan Island.
Collapse
|
19
|
Novel antimicrobial activity of protein produced by Streptomyces lividans TK24 against the phytopathogen Clavibacter michiganensis. Arch Microbiol 2022; 204:687. [DOI: 10.1007/s00203-022-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
|
20
|
Du R, Gao D, Wang Y, Liu L, Cheng J, Liu J, Zhang XH, Yu M. Heterotrophic Sulfur Oxidation of Halomonas titanicae SOB56 and Its Habitat Adaptation to the Hydrothermal Environment. Front Microbiol 2022; 13:888833. [PMID: 35774465 PMCID: PMC9237845 DOI: 10.3389/fmicb.2022.888833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Halomonas bacteria are ubiquitous in global marine environments, however, their sulfur-oxidizing abilities and survival adaptations in hydrothermal environments are not well understood. In this study, we characterized the sulfur oxidation ability and metabolic mechanisms of Halomonas titanicae SOB56, which was isolated from the sediment of the Tangyin hydrothermal field in the Southern Okinawa Trough. Physiological characterizations showed that it is a heterotrophic sulfur-oxidizing bacterium that can oxidize thiosulfate to tetrathionate, with the Na2S2O3 degradation reaching 94.86%. Two potential thiosulfate dehydrogenase-related genes, tsdA and tsdB, were identified as encoding key catalytic enzymes, and their expression levels in strain SOB56 were significantly upregulated. Nine of fifteen examined Halomonas genomes possess TsdA- and TsdB-homologous proteins, whose amino acid sequences have two typical Cys-X2-Cys-His heme-binding regions. Moreover, the thiosulfate oxidation process in H. titanicae SOB56 might be regulated by quorum sensing, and autoinducer-2 synthesis protein LuxS was identified in its genome. Regarding the mechanisms underlying adaptation to hydrothermal environment, strain SOB56 was capable of forming biofilms and producing EPS. In addition, genes related to complete flagellum assembly system, various signal transduction histidine kinases, heavy metal transporters, anaerobic respiration, and variable osmotic stress regulation were also identified. Our results shed light on the potential functions of heterotrophic Halomonas bacteria in hydrothermal sulfur cycle and revealed possible adaptations for living at deep-sea hydrothermal fields by H. titanicae SOB56.
Collapse
Affiliation(s)
- Rui Du
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Di Gao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yiting Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Lijun Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jingguang Cheng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Min Yu,
| |
Collapse
|
21
|
Wang K, Qaisar M, Chen B, Xiao J, Cai J. Metagenomic analysis of microbial community and metabolic pathway of simultaneous sulfide and nitrite removal process exposed to divergent hydraulic retention times. BIORESOURCE TECHNOLOGY 2022; 354:127186. [PMID: 35439563 DOI: 10.1016/j.biortech.2022.127186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The role of hydraulic retention time (HRT) on S0 production was assessed through metagenomics analyses. Considering comprehensive performance for the tested HRTs (0.25-13.33 h), the optimal HRT was 1 h, while respective sulfide and nitrite loading rate could reach 6.84 kg S/(m3·d) and 1.95 kg N/(m3·d), and total S0 yield was 0.36 kg S/(kg (VSS)·d). Bacterial community richness decreased along the shortening of HRT. Microbacterium, Sulfurimonas, Sulfurovum, Paracoccus and Thauera were highly abundant bacteria. During sulfur metabolism, high expression of sqr gene was the main reason of maintaining high desulfurization load, while lacking soxB caused the continuous increase of S0. Regarding nitrogen metabolism, the rapid decrease of nitrite transporter prevented nitrite to enter in cells, which caused a rapid decrease of nitrite removal under extreme HRT. Adjusting HRT is an effective way to enhance S0 production for the application of the simultaneous sulfide and nitrite removal process.
Collapse
Affiliation(s)
- Kaiquan Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; College of Science, University of Bahrain, Bahrain
| | - Bilong Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jinghong Xiao
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
22
|
Napieralski SA, Fang Y, Marcon V, Forsythe B, Brantley SL, Xu H, Roden EE. Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. GEOBIOLOGY 2022; 20:271-291. [PMID: 34633148 DOI: 10.1111/gbi.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (Percak-Dennett et al., 2017, Geobiology, 15, 690) has demonstrated the ability of aerobic chemolithotrophic microorganisms to accelerate pyrite oxidation at circumneutral pH and proposed two mechanistic models by which this phenomenon might occur. Here, we assess the potential relevance of aerobic microbially catalyzed circumneutral pH pyrite oxidation in relation to subsurface shale weathering at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in Pennsylvania, USA. Specimen pyrite mixed with native shale was incubated in groundwater for 3 months at the inferred depth of in situ pyrite oxidation. The colonized materials were used as an inoculum for pyrite-oxidizing enrichment cultures. Microbial activity accelerated the release of sulfate across all conditions. 16S rRNA gene sequencing and metagenomic analysis revealed the dominance of a putative chemolithoautotrophic sulfur-oxidizing bacterium from the genus Thiobacillus in the enrichment cultures. Previously proposed models for aerobic microbial pyrite oxidation were assessed in terms of physical constraints, enrichment culture geochemistry, and metagenomic analysis. Although we conclude that subsurface pyrite oxidation at SSCHZO is largely abiotic, this work nonetheless yields new insight into the potential pathways by which aerobic microorganisms may accelerate pyrite oxidation at circumneutral pH. We propose a new "direct sulfur oxidation" pathway, whereby sulfhydryl-bearing outer membrane proteins mediate oxidation of pyrite surfaces through a persulfide intermediate, analogous to previously proposed mechanisms for direct microbial oxidation of elemental sulfur. The action of this and other direct microbial pyrite oxidation pathways have major implications for controls on pyrite weathering rates in circumneutral pH sedimentary environments where pore throat sizes permit widespread access of microorganisms to pyrite surfaces.
Collapse
Affiliation(s)
| | - Yihang Fang
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Virginia Marcon
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Forsythe
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
| | - Susan L Brantley
- Earth and Environmental Systems Institute, University Park, Pennsylvania, USA
- The Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Huifang Xu
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Yi B, Dalpke AH. Revisiting the intrageneric structure of the genus Pseudomonas with complete whole genome sequence information: Insights into diversity and pathogen-related genetic determinants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105183. [PMID: 34920102 DOI: 10.1016/j.meegid.2021.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pseudomonas spp. exhibit considerable differences in host specificity and virulence. Most Pseudomonas species were isolated exclusively from environmental sources, ranging from soil to plants, but some Pseudomonas species have been detected from versatile sources, including both human host and environmental sources. Understanding genome variations that generate the tremendous diversity in Pseudomonas biology is important in controlling the incidence of infections. With a data set of 704 Pseudomonas complete whole genome sequences representing 186 species, Pseudomonas intrageneric structure was investigated by hierarchical clustering based on average nucleotide identity, and by phylogeny analysis based on concatenated core-gene alignment. Further comparative functional analyses indicated that Pseudomonas species only living in natural habitats lack multiple functions that are important in the regulation of bacterial pathogenesis, indicating the possession of these functions might be characteristic of Pseudomonas human pathogens. Moreover, we have performed pan-genome based homogeneity analyses, and detected genes with conserved structures but diversified functions across the Pseudomonas genomes, suggesting these genes play a role in driving diversity. In summary, this study provided insights into the dynamics of genome diversity and pathogen-related genetic determinants in Pseudomonas, which might help the development of more targeted antibiotics for the treatment of Pseudomonas infections.
Collapse
Affiliation(s)
- Buqing Yi
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021; 7. [PMID: 34241589 PMCID: PMC8477390 DOI: 10.1099/mgen.0.000603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current methods in comparative genomic analyses for metabolic potential prediction of proteins involved in, or associated with the Dsr (dissimilatory sulphite reductase)-dependent dissimilatory sulphur metabolism are both time-intensive and computationally challenging, especially when considering metagenomic data. We developed DiSCo, a Dsr-dependent dissimilatory sulphur metabolism classification tool, which automatically identifies and classifies the protein type from sequence data. It takes user-supplied protein sequences and lists the identified proteins and their classification in terms of protein family and predicted type. It can also extract the sequence data from user-input to serve as basis for additional downstream analyses. DiSCo provides the metabolic functional prediction of proteins involved in Dsr-dependent dissimilatory sulphur metabolism with high levels of accuracy in a fast manner. We ran DiSCo against a dataset composed of over 190 thousand (meta)genomic records and efficiently mapped Dsr-dependent dissimilatory sulphur proteins in 1798 lineages across both prokaryotic domains. This allowed the identification of new micro-organisms belonging to Thaumarchaeota and Spirochaetes lineages with the metabolic potential to use the Dsr-pathway for energy conservation. DiSCo is implemented in Perl 5 and freely available under the GNU GPLv3 at https://github.com/Genome-Evolution-and-Ecology-Group-GEEG/DiSCo.
Collapse
Affiliation(s)
- Sinje Neukirchen
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria. Int J Mol Sci 2021; 22:ijms22126398. [PMID: 34203823 PMCID: PMC8232776 DOI: 10.3390/ijms22126398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed.
Collapse
|
26
|
Dos Santos ES, de Azevedo Santos Ferreira J, Dos Santos JN, Chinalia FA, Matos JL, Coqueiro G, Ramos-de-Souza E, de Almeida PF. Screening and testing potential inhibitors of sulphide gas production by sulphate-reducing bacteria. J Mol Model 2021; 27:189. [PMID: 34046767 DOI: 10.1007/s00894-021-04801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Sulphate-reducing bacteria are commonly associated with biological causes of oil well souring. Biosulphetogenesis can directly affect oil quality and storage due to the accumulation of sulphides. In addition, these microorganisms can create bio-incrustation that can clog pipes. Sulphite reductase (SIR) is the enzyme responsible for converting ion sulphite into sulphide and several substances may interfere or control such activity. This interference can hinder growth of the sulphate-reducing bacteria and, consequently, it reduces sulphide accumulation in situ. This work focuses on molecular modelling techniques along with in vitro experiments in order to investigate the potential of two essential oils and one vegetable oil as main inhibitors of sulphite reductase activity. Docking simulation identified several substances present in Rosmarinus officinalis, Tea tree and Neem extractable oils as potential inhibitors of SIR. Substances present in Neem vegetable oil are the most potent inhibitors, followed by Rosmarinus officinalis and Tea tree essential oils. The Neem oil mixture showed a superior effectiveness in intracellular SIR inhibitory effects.
Collapse
Affiliation(s)
- Elias Silva Dos Santos
- Instituto de Física, Universidade Federal da Bahia, Rua Barão de Geremoabo s/n - Ondina, Salvador, BA, 40.300-000, Brazil.
| | - Joalene de Azevedo Santos Ferreira
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Jacson Nunes Dos Santos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Fábio Alexandre Chinalia
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Josilene Lima Matos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Gustavo Coqueiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Elias Ramos-de-Souza
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Rua Emídio dos Santos, s/n, Barbalho, Salvador, BA, 40.301-015, Brazil
| | - Paulo Fernando de Almeida
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| |
Collapse
|
27
|
Valkanas MM, Rosso T, Packard JE, Trun NJ. Limited carbon sources prevent sulfate remediation in circumneutral abandoned mine drainage. FEMS Microbiol Ecol 2021; 97:6070647. [PMID: 33417684 DOI: 10.1093/femsec/fiaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Passive remediation systems (PRS) use both biotic and abiotic processes to precipitate contaminants from abandoned mine drainage (AMD) so that the contaminants do not spread into local watersheds. PRS are efficient at removing heavy metals but sulfate remediation frequently does not occur. To understand the reasons for the lack of sulfate remediation, we studied four PRS that treat circumneutral AMD and one raw mine drainage discharge. Using 16S sequencing analysis, microbial community composition revealed a high relative abundance of bacterial families with sulfur cycling genera. Anaerobic abiotic studies showed that sulfide was quickly geochemically oxidized in the presence of iron hydroxides, leading to a buildup of sulfur intermediates. Supplementation of laboratory grown microbes from the PRS with lactate demonstrated the ability of actively growing microbes to overcome this abiotic sulfide oxidation by increasing the rate of sulfate reduction. Thus, the lack of carbon sources in the PRS contributes to the lack of sulfate remediation. Bacterial community analysis of 16S rRNA gene revealed that while the microbial communities in different parts of the PRS were phylogenetically distinct, the contaminated environments selected for communities that shared similar metabolic capabilities.
Collapse
Affiliation(s)
- Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Taylor Rosso
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Jessica E Packard
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Nancy J Trun
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| |
Collapse
|
28
|
Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148416. [PMID: 33753023 DOI: 10.1016/j.bbabio.2021.148416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
In prokaryotes, the proton or sodium motive force required for ATP synthesis is produced by respiratory complexes that present an ion-pumping mechanism or are involved in redox loops performed by membrane proteins that usually have substrate and quinone-binding sites on opposite sides of the membrane. Some respiratory complexes include a dimeric redox module composed of a quinone-interacting membrane protein of the NrfD family and an iron‑sulfur protein of the NrfC family. The QrcABCD complex of sulfate reducers, which includes the QrcCD module homologous to NrfCD, was recently shown to perform electrogenic quinone reduction providing the first conclusive evidence for energy conservation among this family. Similar redox modules are present in multiple respiratory complexes, which can be associated with electroneutral, energy-driven or electrogenic reactions. This work discusses the presence of the NrfCD/PsrBC dimeric redox module in different bioenergetics contexts and its role in prokaryotic energy conservation mechanisms.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| | - Ana C C Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Gonçalo Manteigas
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Renato M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| |
Collapse
|
29
|
Lee J, Mahandra H, Hein GA, Ramsay J, Ghahreman A. Toward Sustainable Solution for Biooxidation of Waste and Refractory Materials Using Neutrophilic and Alkaliphilic Microorganisms—A Review. ACS APPLIED BIO MATERIALS 2021; 4:2274-2292. [DOI: 10.1021/acsabm.0c01582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jung Lee
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Harshit Mahandra
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Guillermo Alvial Hein
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| | - Juliana Ramsay
- Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Ahmad Ghahreman
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Ionescu D, Zoccarato L, Zaduryan A, Schorn S, Bizic M, Pinnow S, Cypionka H, Grossart HP. Heterozygous, Polyploid, Giant Bacterium, Achromatium, Possesses an Identical Functional Inventory Worldwide across Drastically Different Ecosystems. Mol Biol Evol 2021; 38:1040-1059. [PMID: 33169788 PMCID: PMC7947748 DOI: 10.1093/molbev/msaa273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Achromatium is large, hyperpolyploid and the only known heterozygous bacterium. Single cells contain approximately 300 different chromosomes with allelic diversity far exceeding that typically harbored by single bacteria genera. Surveying all publicly available sediment sequence archives, we show that Achromatium is common worldwide, spanning temperature, salinity, pH, and depth ranges normally resulting in bacterial speciation. Although saline and freshwater Achromatium spp. appear phylogenetically separated, the genus Achromatium contains a globally identical, complete functional inventory regardless of habitat. Achromatium spp. cells from differing ecosystems (e.g., from freshwater to saline) are, unexpectedly, equally functionally equipped but differ in gene expression patterns by transcribing only relevant genes. We suggest that environmental adaptation occurs by increasing the copy number of relevant genes across the cell's hundreds of chromosomes, without losing irrelevant ones, thus maintaining the ability to survive in any ecosystem type. The functional versatility of Achromatium and its genomic features reveal alternative genetic and evolutionary mechanisms, expanding our understanding of the role and evolution of polyploidy in bacteria while challenging the bacterial species concept and drivers of bacterial speciation.
Collapse
Affiliation(s)
- Danny Ionescu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
| | - Luca Zoccarato
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Artur Zaduryan
- Department of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mina Bizic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
| | - Solvig Pinnow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Berlin Brandenburg Institute of Biodiversity, Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| |
Collapse
|
31
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Löffler M, Wallerang KB, Venceslau SS, Pereira IAC, Dahl C. The Iron-Sulfur Flavoprotein DsrL as NAD(P)H:Acceptor Oxidoreductase in Oxidative and Reductive Dissimilatory Sulfur Metabolism. Front Microbiol 2020; 11:578209. [PMID: 33178160 PMCID: PMC7596348 DOI: 10.3389/fmicb.2020.578209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
DsrAB-type dissimilatory sulfite reductase is a key enzyme of microbial sulfur-dependent energy metabolism. Sulfur oxidizers also contain DsrL, which is essential for sulfur oxidation in Allochromatium vinosum. This NAD(P)H oxidoreductase acts as physiological partner of oxidative-type rDsrAB. Recent analyses uncovered that DsrL is not confined to sulfur oxidizers but also occurs in (probable) sulfate/sulfur-reducing bacteria. Here, phylogenetic analysis revealed a separation into two major branches, DsrL-1, with two subgroups, and DsrL-2. When present in organisms with reductive-type DsrAB, DsrL is of type 2. In the majority of cases oxidative-type rDsrAB occurs with DsrL-1 but combination with DsrL-2-type enzymes is also observed. Three model DsrL proteins, DsrL-1A and DsrL-1B from the sulfur oxidizers A. vinosum and Chlorobaculum tepidum, respectively, as well as DsrL-2 from thiosulfate- and sulfur-reducing Desulfurella amilsii were kinetically characterized. DaDsrL-2 is active with NADP(H) but not with NAD(H) which we relate to a conserved YRR-motif in the substrate-binding domains of all DsrL-2 enzymes. In contrast, AvDsrL-1A has a strong preference for NAD(H) and the CtDsrL-1B enzyme is completely inactive with NADP(H). Thus, NAD+ as well as NADP+ are suitable in vivo electron acceptors for rDsrABL-1-catalyzed sulfur oxidation, while NADPH is required as electron donor for sulfite reduction. This observation can be related to the lower redox potential of the NADPH/NADP+ than the NADH/NAD+ couple under physiological conditions. Organisms with a rdsrAB and dsrL-1 gene combination can be confidently identified as sulfur oxidizers while predictions for organisms with other combinations require much more caution and additional information sources.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kai B Wallerang
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
33
|
Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, Beinart RA. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME JOURNAL 2020; 14:2568-2579. [PMID: 32616905 PMCID: PMC7490688 DOI: 10.1038/s41396-020-0707-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.
Collapse
Affiliation(s)
- Corinna Breusing
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA.
| | - Jessica Mitchell
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Jennifer Delaney
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Sean P Sylva
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Jeffrey S Seewald
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Peter R Girguis
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Roxanne A Beinart
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| |
Collapse
|
34
|
Ghosh S, Bagchi A. Protein dynamics and molecular motions study in relation to molecular interaction between proteins from sulfur oxidizing proteobacteria Allochromatium vinosum. J Biomol Struct Dyn 2020; 39:2771-2787. [DOI: 10.1080/07391102.2020.1754914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
35
|
Active sulfur cycling in the terrestrial deep subsurface. ISME JOURNAL 2020; 14:1260-1272. [PMID: 32047278 DOI: 10.1038/s41396-020-0602-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The deep terrestrial subsurface remains an environment where there is limited understanding of the extant microbial metabolisms. At Olkiluoto, Finland, a deep geological repository is under construction for the final storage of spent nuclear fuel. It is therefore critical to evaluate the potential impact microbial metabolism, including sulfide generation, could have upon the safety of the repository. We investigated a deep groundwater where sulfate is present, but groundwater geochemistry suggests limited microbial sulfate-reducing activity. Examination of the microbial community at the genome-level revealed microorganisms with the metabolic capacity for both oxidative and reductive sulfur transformations. Deltaproteobacteria are shown to have the genetic capacity for sulfate reduction and possibly sulfur disproportionation, while Rhizobiaceae, Rhodocyclaceae, Sideroxydans, and Sulfurimonas oxidize reduced sulfur compounds. Further examination of the proteome confirmed an active sulfur cycle, serving for microbial energy generation and growth. Our results reveal that this sulfide-poor groundwater harbors an active microbial community of sulfate-reducing and sulfide-oxidizing bacteria, together mediating a sulfur cycle that remained undetected by geochemical monitoring alone. The ability of sulfide-oxidizing bacteria to limit the accumulation of sulfide was further demonstrated in groundwater incubations and highlights a potential sink for sulfide that could be beneficial for geological repository safety.
Collapse
|
36
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Löffler M, Feldhues J, Venceslau SS, Kammler L, Grein F, Pereira IAC, Dahl C. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ Microbiol 2019; 22:783-795. [PMID: 31854015 DOI: 10.1111/1462-2920.14899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
Abstract
Dissimilatory sulphite reductase DsrAB occurs in sulphate/sulphite-reducing prokaryotes, in sulphur disproportionators and also in sulphur oxidizers, where it functions in reverse. Predictions of physiological traits in metagenomic studies relying on the presence of dsrAB, other dsr genes or combinations thereof suffer from the lack of information on crucial Dsr proteins. The iron-sulphur flavoprotein DsrL is an example of this group. It has a documented essential function during sulphur oxidation and was recently also found in some metagenomes of probable sulphate and sulphite reducers. Here, we show that DsrL and reverse acting rDsrAB can form a complex and are copurified from the phototrophic sulphur oxidizer Allochromatium vinosum. Recombinant DsrL exhibits NAD(P)H:acceptor oxidoreductase activity with a strong preference for NADH over NADPH. In vitro, the rDsrABL complex effectively catalyses NADH-dependent sulphite reduction, which is strongly enhanced by the sulphur-binding protein DsrC. Our work reveals NAD+ as suitable in vivo electron acceptor for sulphur oxidation in organisms operating the rDsr pathway and points to reduced nicotinamide adenine dinucleotides as electron donors for sulphite reduction in sulphate/sulphite-reducing prokaryotes that contain DsrL. In addition, dsrL cannot be used as a marker distinguishing sulphate/sulphite reducers and sulphur oxidizers in metagenomic studies without further analysis.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Julia Feldhues
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lydia Kammler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Fabian Grein
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
38
|
Arcobacter peruensis sp. nov., a Chemolithoheterotroph Isolated from Sulfide- and Organic-Rich Coastal Waters off Peru. Appl Environ Microbiol 2019; 85:AEM.01344-19. [PMID: 31585991 DOI: 10.1128/aem.01344-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Members of the epsilonproteobacterial genus Arcobacter have been identified to be potentially important sulfide oxidizers in marine coastal, seep, and stratified basin environments. In the highly productive upwelling waters off the coast of Peru, Arcobacter cells comprised 3 to 25% of the total microbial community at a near-shore station where sulfide concentrations exceeded 20 μM in bottom waters. From the chemocline where the Arcobacter population exceeded 106 cells ml-1 and where high rates of denitrification (up to 6.5 ± 0.4 μM N day-1) and dark carbon fixation (2.8 ± 0.2 μM C day-1) were measured, we isolated a previously uncultivated Arcobacter species, Arcobacter peruensis sp. nov. (BCCM LMG-31510). Genomic analysis showed that A. peruensis possesses genes encoding sulfide oxidation and denitrification pathways but lacks the ability to fix CO2 via autotrophic carbon fixation pathways. Genes encoding transporters for organic carbon compounds, however, were present in the A. peruensis genome. Physiological experiments demonstrated that A. peruensis grew best on a mix of sulfide, nitrate, and acetate. Isotope labeling experiments further verified that A. peruensis completely reduced nitrate to N2 and assimilated acetate but did not fix CO2, thus coupling heterotrophic growth to sulfide oxidation and denitrification. Single-cell nanoscale secondary ion mass spectrometry analysis of samples taken from shipboard isotope labeling experiments also confirmed that the Arcobacter population in situ did not substantially fix CO2 The efficient growth yield associated with the chemolithoheterotrophic metabolism of A. peruensis may allow this Arcobacter species to rapidly bloom in eutrophic and sulfide-rich waters off the coast of Peru.IMPORTANCE Our multidisciplinary approach provides new insights into the ecophysiology of a newly isolated environmental Arcobacter species, as well as the physiological flexibility within the Arcobacter genus and sulfide-oxidizing, denitrifying microbial communities within oceanic oxygen minimum zones (OMZs). The chemolithoheterotrophic species Arcobacter peruensis may play a substantial role in the diverse consortium of bacteria that is capable of coupling denitrification and fixed nitrogen loss to sulfide oxidation in eutrophic, sulfidic coastal waters. With increasing anthropogenic pressures on coastal regions, e.g., eutrophication and deoxygenation (D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, et al., Science 359:eaam7240, 2018, https://doi.org/10.1126/science.aam7240), niches where sulfide-oxidizing, denitrifying heterotrophs such as A. peruensis thrive are likely to expand.
Collapse
|
39
|
Payne D, Dunham EC, Mohr E, Miller I, Arnold A, Erickson R, Fones EM, Lindsay MR, Colman DR, Boyd ES. Geologic legacy spanning >90 years explains unique Yellowstone hot spring geochemistry and biodiversity. Environ Microbiol 2019; 21:4180-4195. [PMID: 31397054 DOI: 10.1111/1462-2920.14775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur-rich, anoxic chemical environment that supports a unique archaeal-dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate-reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur-rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric C Dunham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth Mohr
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717
| | - Isaac Miller
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Adrienne Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Reece Erickson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth M Fones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| |
Collapse
|
40
|
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei AŞ, Ghai R, Sorokin DY, Muyzer G. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 2019; 17:69. [PMID: 31438955 PMCID: PMC6704655 DOI: 10.1186/s12915-019-0688-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. RESULTS Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the "Candidatus Woesearchaeota." Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. CONCLUSIONS The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.
Collapse
Affiliation(s)
- Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Cherel Balkema
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Rutger van Hall
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Cui YX, Biswal BK, Guo G, Deng YF, Huang H, Chen GH, Wu D. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microbiol Biotechnol 2019; 103:6023-6039. [DOI: 10.1007/s00253-019-09935-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
|
42
|
Roy C, Bakshi U, Rameez MJ, Mandal S, Haldar PK, Pyne P, Ghosh W. Phylogenomics of an uncultivated, aerobic and thermophilic, photoheterotrophic member of Chlorobia sheds light into the evolution of the phylum Chlorobi. Comput Biol Chem 2019; 80:206-216. [DOI: 10.1016/j.compbiolchem.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
|
43
|
Li X, Yu H, Sun X, Yang J, Wang D, Shen L, Pan Y, Wu Y, Wang Q, Zhao Y. Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:308-315. [PMID: 30685719 DOI: 10.1016/j.jhazmat.2018.12.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
A potting experiment was conducted to investigate the effect of sulfur application on the bioaccumulation by tobacco and its mechanisms of rhizospheric microorganisms. Cadmium content in tobacco was analyzed using atomic absorption spectrometer, while bacterial community and related gene in soil were analyzed via high-throughput sequencing and quantitative PCR techniques, respectively. The obtained results indicated that tobacco had the ability to accumulate cadmium under no sulfur application conditions, with cadmium contents of 35.4, 23.6, and 26.3 mg kg-1 in leaves, stems, and roots, respectively. Under high-sulfur treatment, these values increased to 66.4, 46.1, and 42.6 mg kg-1, respectively, probably due to the increase of the available cadmium content (from 1.1 to 3.3 mg kg-1) in the soil through a decrease of the soil pH value, which was contributed by the sulfur oxidation reaction. dsrA and soxB genes might play an important role in sulfur oxidation, and Thiobacillus sp. was the dominant bacterial genus during the sulfur oxidation process. In addition, sulfur application exerted little effect on the diversity and structure of the soil bacterial community. The combined results indicate that sulfur application is an effective and safe method for Cd phytoextraction by tobacco.
Collapse
Affiliation(s)
- Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hao Yu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaowei Sun
- Henan Academy of Forestry, Zhengzhou, 450008, China
| | - Jiantao Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Daichang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lianfeng Shen
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanshuo Pan
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
44
|
Watanabe T, Kojima H, Umezawa K, Hori C, Takasuka TE, Kato Y, Fukui M. Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera. Front Microbiol 2019; 10:316. [PMID: 30858836 PMCID: PMC6397845 DOI: 10.3389/fmicb.2019.00316] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family ‘Sulfuricellaceae’. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Ghosh S, Bagchi A. Structural study to analyze the DNA-binding properties of DsrC protein from the dsr operon of sulfur-oxidizing bacterium Allochromatium vinosum. J Mol Model 2019; 25:74. [PMID: 30798412 DOI: 10.1007/s00894-019-3945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/29/2019] [Indexed: 01/11/2023]
Abstract
Our environment is densely populated with various beneficial sulfur-oxidizing prokaryotes (SOPs). These organisms are responsible for the proper maintenance of biogeochemical sulfur cycles to regulate the turnover of biological sulfur substrates in the environment. Allochromatium vinosum strain DSM 180T is a gamma-proteobacterium and is a member of SOP. The organism codes for the sulfur-oxidizing dsr operon, which is comprised of dsrABEFHCMKLJOPNRS genes. The Dsr proteins formed from dsr operon are responsible for formation of sulfur globules. However, the molecular mechanism of the regulation of the dsr operon is not yet fully established. Among the proteins encoded by dsr genes, DsrC is known to have some regulatory functions. DsrC possesses a helix-turn-helix (HTH) DNA-binding motif. Interestingly, the structural details of this interaction have not yet been fully established. Therefore, we tried to analyze the binding interactions of the DsrC protein with the promoter DNA structure of the dsr operon as well as a random DNA as the control. We also performed molecular dynamics simulations of the DsrC-DNA complexes. This structure-function relationship investigation revealed the most probable binding interactions of the DsrC protein with the promoter region present upstream of the dsrA gene in the dsr operon. As expected, the random DNA structure could not properly interact with DsrC. Our analysis will therefore help researchers to predict a plausible biochemical mechanism for the sulfur oxidation process. Graphical Abstract Interaction of Allochromatium vinosum DsrC protein with the promoter region present upstream of the dsrA gene.
Collapse
Affiliation(s)
- Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.,Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.
| |
Collapse
|
46
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Diversity and Distribution of Sulfur Oxidation-Related Genes in Thioalkalivibrio, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. Front Microbiol 2019; 10:160. [PMID: 30837958 PMCID: PMC6382920 DOI: 10.3389/fmicb.2019.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Soda lakes are saline alkaline lakes characterized by high concentrations of sodium carbonate/bicarbonate which lead to a stable elevated pH (>9), and moderate to extremely high salinity. Despite this combination of extreme conditions, biodiversity in soda lakes is high, and the presence of diverse microbial communities provides a driving force for highly active biogeochemical cycles. The sulfur cycle is one of the most important of these and bacterial sulfur oxidation is dominated by members of the obligately chemolithoautotrophic genus Thioalkalivibrio. Currently, 10 species have been described in this genus, but over one hundred isolates have been obtained from soda lake samples. The genomes of 75 strains were sequenced and annotated previously, and used in this study to provide a comprehensive picture of the diversity and distribution of genes related to dissimilatory sulfur metabolism in Thioalkalivibrio. Initially, all annotated genes in 75 Thioalkalivibrio genomes were placed in ortholog groups and filtered by bi-directional best BLAST analysis. Investigation of the ortholog groups containing genes related to sulfur oxidation showed that flavocytochrome c (fcc), the truncated sox system, and sulfite:quinone oxidoreductase (soe) are present in all strains, whereas dissimilatory sulfite reductase (dsr; which catalyzes the oxidation of elemental sulfur) was found in only six strains. The heterodisulfide reductase system (hdr), which is proposed to oxidize sulfur to sulfite in strains lacking both dsr and soxCD, was detected in 73 genomes. Hierarchical clustering of strains based on sulfur gene repertoire correlated closely with previous phylogenomic analysis. The phylogenetic analysis of several sulfur oxidation genes showed a complex evolutionary history. All in all, this study presents a comprehensive investigation of sulfur metabolism-related genes in cultivated Thioalkalivibrio strains and provides several avenues for future research.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute for Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Tanabe TS, Leimkühler S, Dahl C. The functional diversity of the prokaryotic sulfur carrier protein TusA. Adv Microb Physiol 2019; 75:233-277. [PMID: 31655739 DOI: 10.1016/bs.ampbs.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein.
Collapse
|
48
|
Christel S, Herold M, Bellenberg S, Buetti-Dinh A, El Hajjami M, Pivkin IV, Sand W, Wilmes P, Poetsch A, Vera M, Dopson M. Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching. Front Microbiol 2018; 9:3059. [PMID: 30631311 PMCID: PMC6315122 DOI: 10.3389/fmicb.2018.03059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15-20% of the world's copper production can be traced back to this method. However, bioleaching of the world's most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans' weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.,Aquatic Biotechnology, Universität Duisburg-Essen, Essen, Germany
| | - Antoine Buetti-Dinh
- Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Igor V Pivkin
- Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Wolfgang Sand
- Aquatic Biotechnology, Universität Duisburg-Essen, Essen, Germany.,College of Environmental Science and Engineering, Donghua University, Shanghai, China.,Mining Academy and Technical University Freiberg, Freiberg, Germany
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - Mario Vera
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
49
|
Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME JOURNAL 2018; 12:2479-2491. [PMID: 29930335 DOI: 10.1038/s41396-018-0209-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Dimethylsulfide (DMS) plays a globally significant role in carbon and sulfur cycling and impacts Earth's climate because its oxidation products serve as nuclei for cloud formation. While the initial steps of aerobic DMS degradation and the fate of its carbon atoms are reasonably well documented, oxidation of the contained sulfur is largely unexplored. Here, we identified a novel pathway of sulfur compound oxidation in the ubiquitously occurring DMS-degrader Hyphomicrobium denitrificans XT that links the oxidation of the volatile organosulfur compound with that of the inorganic sulfur compound thiosulfate. DMS is first transformed to methanethiol from which sulfide is released and fully oxidized to sulfate. Comparative proteomics indicated thiosulfate as an intermediate of this pathway and pointed at a heterodisulfide reductase (Hdr)-like system acting as a sulfur-oxidizing entity. Indeed, marker exchange mutagenesis of hdr-like genes disrupted the ability of H. denitrificans to metabolize DMS and also prevented formation of sulfate from thiosulfate provided as an additional electron source during chemoorganoheterotrophic growth. Complementation with the hdr-like genes under a constitutive promoter rescued the phenotype on thiosulfate as well as on DMS. The production of sulfate from an organosulfur precursor via the Hdr-like system is previously undocumented and provides a new shunt in the biogeochemical sulfur cycle. Furthermore, our findings fill a long-standing knowledge gap in microbial dissimilatory sulfur metabolism because the Hdr-like pathway is abundant not only in chemoheterotrophs, but also in a wide range of chemo- and photolithoautotrophic sulfur oxidizers acting as key players in global sulfur cycling.
Collapse
Affiliation(s)
- Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
50
|
Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina Del Rio T, Huemer M, Nielsen PH, Rattei T, Stingl U, Tringe SG, Trojan D, Wentrup C, Woebken D, Pester M, Loy A. Peatland Acidobacteria with a dissimilatory sulfur metabolism. THE ISME JOURNAL 2018; 12:1729-1742. [PMID: 29476143 PMCID: PMC6018796 DOI: 10.1038/s41396-018-0077-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.
Collapse
Affiliation(s)
- Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Stephanie A Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | | | - Martin Huemer
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Ulrich Stingl
- Department for Microbiology and Cell Science, Fort Lauderdale Research and Education Center, UF/IFAS, University of Florida, Davie, FL, USA
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Cecilia Wentrup
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Leibniz Institute DSMZ, Braunschweig, Germany.
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| |
Collapse
|