1
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations, and clinical observations to provide a comprehensive view of the mechanisms by which these pathways cause pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis. We aim to delineate approaches towards effectively treating fibrosis in SSc by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128 Trieste, Italy; Public Health Department, University Health Agency Giuliano-Isontina (ASUGI), 34148 Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Sener S, Batu ED. Use of biologic drug in the treatment of localized scleroderma and systemic sclerosis in children: A scoping review. Semin Arthritis Rheum 2025; 71:152634. [PMID: 39938346 DOI: 10.1016/j.semarthrit.2025.152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Biologic drugs are a potential treatment option in resistant cases of juvenile scleroderma. In this review, we aimed to examine previous studies regarding biologic drug use in pediatric patients with localized scleroderma and systemic sclerosis. METHODS We performed a search on MEDLINE and Scopus for articles involving pediatric localized scleroderma and systemic sclerosis patients treated with biologic drugs. RESULTS We identified 17 articles describing 58 pediatric patients with localized scleroderma treated with biologic drugs and 12 articles describing 29 pediatric patients with systemic sclerosis treated with biologic drugs during our literature search. The most frequently used biologic drug in localized scleroderma treatment was abatacept (55.2 %), followed by tocilizumab (48.3 %). These biologic drugs were mainly preferred for treating resistant/progressive skin disease in pediatric patients with localized scleroderma (58.5 % and 68.8 %, respectively). The improvement rates associated with abatacept and tocilizumab were 92.9 % and 77.4 %, respectively. Adverse events were observed in 23.5 % of all localized scleroderma patients. The most frequently used biologic drug in systemic sclerosis treatment was rituximab (51.7 %), followed by tocilizumab (44.8 %). Rituximab was predominantly favored for managing cardiac involvement (45.5 %), whereas tocilizumab was preferred for pulmonary involvement (50 %) in pediatric patients with systemic sclerosis. The improvement rates associated with rituximab and tocilizumab were 72.7 % and 94.1 %, respectively. Adverse events were reported in 40 % of all systemic sclerosis patients. CONCLUSION Our results showed that abatacept and tocilizumab were more frequently used in patients with localized scleroderma, while rituximab and tocilizumab were the predominantly used biologics in patients with systemic sclerosis. The improvement rate with these biologics were quite high with acceptable safety profile.
Collapse
Affiliation(s)
- Seher Sener
- Adana City Research and Training Hospital, Department of Pediatrics, Division of Pediatric Rheumatology, Adana, Turkey
| | - Ezgi Deniz Batu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Rheumatology, Ankara, Turkey.
| |
Collapse
|
3
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Poorkazem H, Saber M, Moradmand A, Yakhkeshi S, Seydi H, Hajizadeh-Saffar E, Shekari F, Hassani SN. Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process. Int J Biochem Cell Biol 2025; 180:106737. [PMID: 39828140 DOI: 10.1016/j.biocel.2025.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied. This study aimed to evaluate the effects of two distinct subpopulations of clonal mesenchymal stromal cells (cMSC)-derived EVs (cMSC-EVs), namely 20 K and 110K-cMSC-EVs, primarily on in vitro wound healing process, providing fast and cost-effective alternatives to animal models. METHODS In vitro assays were conducted to compare the effects of 20 K and 110K-cMSC-EVs, isolated through high-speed centrifugation and differential ultracentrifugation, respectively. For evaluation the main mechanisms of wound healing, including cell proliferation, cell migration, angiogenesis, and contraction. Human dermal fibroblasts (HDF) were considered as the main cells for analysis of these procedures. Moreover, gene expression analysis was performed to assess the impact of these EV subpopulations on the related process of wound healing on HDF. RESULTS The results demonstrated that both 20 K and 110K-cMSC-EVs exhibited beneficial effects on cell proliferation, cell migration, angiogenesis, and gel contraction. RT-qPCR revealed that both EV types downregulated interleukin 6 (IL6), induced proliferation by upregulating proliferating cell nuclear antigen (PCNA), and regulated remodeling by upregulating matrix metallopeptidase 1 (MMP1) and downregulating collagen type 1 (COL1). DISCUSSION This study highlights the effects of both 20 K and 110K-cMSC-EVs on the potency of HDFs in wound healing-related process. As the notable finding, 20K-cMSC-EVs offer a more feasible and cost-effective subpopulation for isolation and follow the GMP standard, recommended to utilize this fraction for therapeutic application.
Collapse
Affiliation(s)
- Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Vijayakumar G, Latha A, Anil AP, Surve Y, R A, Nair BG, Pillai ICL. Cell autonomous TLR4 signaling modulates TGF-β induced activation of human cardiac fibroblasts. Heliyon 2025; 11:e42452. [PMID: 40028530 PMCID: PMC11868938 DOI: 10.1016/j.heliyon.2025.e42452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Fibrosis is one of the major outcomes following injury in the heart. Immune response in the injury niche modulates fibrosis, yet little is known about how cell-autonomous immune signaling in adult cardiac fibroblasts regulates fibrosis. Using FACS, single-cell sequencing of cardiac fibroblasts from Collagen1-α1GFP mice and human heart failure patients, we demonstrate that TLR4 is the major immune sensor expressed in cardiac fibroblasts. Inhibition of TLR4 signaling reduces TGF-β induced fibrotic changes such as contractibility and migration of adult human cardiac fibroblasts in TGF-β treated fibrotic conditions. TGF-β treated cardiac fibroblastss show enhanced cytokine expression, and inhibition of TLR4 signaling reduces the expression of cytokines, thereby reducing TGF-β targets such as extracellular matrix genes. Thus, our data demonstrate that TLR4 and other signaling molecules downstream of TLR4 are expressed in cardiac fibroblast, and inhibition of TLR4 modulates fibrotic changes in vitro.
Collapse
Affiliation(s)
- Gayathri Vijayakumar
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Anisha Latha
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswaria P. Anil
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Yogini Surve
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya R
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Indulekha CL. Pillai
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
6
|
Chikhoune L, Poggi C, Moreau J, Dubucquoi S, Hachulla E, Collet A, Launay D. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev Med Interne 2025; 46:89-106. [PMID: 39550233 DOI: 10.1016/j.revmed.2024.10.452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Janus kinase (JAK) molecules are involved in important cellular activation pathways. Over the past decade, many targeted therapies have emerged, including the increasingly promising role of JAK inhibitors (JAKi) in the treatment of inflammatory and autoimmune diseases. The spectrum of use of these small molecules is increasingly broader. JAKi have been approved in several autoimmune diseases. Currently, four molecules (tofacitinib, baricitinib, upadacitinib and filgotinib) have been labeled for moderate to severe rheumatoid arthritis (RA) with failure or poor tolerance of one or more conventional disease-modifying antirheumatic drug (csDMARDS), or biologics (bDMARDS). JAKi are now also commonly used in other diseases such as psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis. They have also shown promising results in clinical trials for the treatment of other autoimmune conditions. We present here their mechanisms of action, and the main data about JAKi use on systemic and autoimmune diseases.
Collapse
Affiliation(s)
- Liticia Chikhoune
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Claire Poggi
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Julie Moreau
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Sylvain Dubucquoi
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - Eric Hachulla
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France
| | - Aurore Collet
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - David Launay
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France.
| |
Collapse
|
7
|
Meng Q, Bao D, Liu S, Huang J, Guo M, Dai B, Ding L, Xie S, Meng M, Lv C, He W, Luo H, Zhu H. ADAM Metallopeptidase domain 19 promotes skin fibrosis in systemic sclerosis via neuregulin-1. Mol Med 2024; 30:269. [PMID: 39716051 DOI: 10.1186/s10020-024-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND ADAM19 (ADAM Metallopeptidase Domain 19) is known to be involved in extracellular matrix (ECM) remodeling, yet its specific function in systemic sclerosis (SSc) fibrosis remains unclear. OBJECTIVES This study sought to clarify the role and underlying mechanism of ADAM19 in SSc skin fibrosis. METHODS The expression of ADAM19 was assessed in skin tissues of SSc and wound healing using publicly available transcriptome datasets. This analysis was further validated through real-time PCR, western blot, and immunostaining in our SSc cohort, as well as in a mouse model of hypochlorite (HOCl)-induced fibrosis. To downregulate the expression of ADAM19, ADAM19 siRNA was employed. The influence of ADAM19 on fibroblast transcriptomics was examined using bulk RNA-seq. Data analysis and visualization were conducted using R packages, including edgeR, limma, clusterProfiler, ggplot2, gseaplot2, and complexheatmap. RESULTS ADAM19 exhibited a significant upregulation in skin tissues of SSc patients, as well as in wound healing and a HOCl-induced fibrosis mouse model. Additionally, there was a notable positive correlation between ADAM19 and fibrosis-related genes, local skin score, Modified Rodnan skin score, skin thickness progression rate, and the presence of ARA antibodies in SSc patients. Furthermore, ADAM19 levels were markedly elevated in SSc primary dermal fibroblasts and TGF-β-stimulated healthy controls primary dermal fibroblasts. The downregulation of ADAM19 resulted in the repression of TGF-β-induced ECM deposition and fibroblast activation. ADAM19 was identified as a mediator for the shedding of neuregulin-1 (NRG1) in fibroblasts, a pro-fibrotic cytokine that must be cleaved to exert its function. CONCLUSION ADAM19 plays a role in TGF-β-induced ECM deposition and fibroblast activation by mediating the shedding of NRG1, ultimately contributing to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Qiming Meng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Sijia Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jing Huang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shasha Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Meng Meng
- Department of Pathology, Xiangya Hospital, Changsha, 410008, P.R. China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Weijia He
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
8
|
Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, Gül M. Unveiling the molecular Hallmarks of Peyronie's disease: a comprehensive narrative review. Int J Impot Res 2024; 36:801-808. [PMID: 38454161 DOI: 10.1038/s41443-024-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Peyronie's disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie's disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie's disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie's disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie's disease.
Collapse
Affiliation(s)
- Ali Şahin
- Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265, Davos, Switzerland
| | - Lorenzo Cirigliano
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mirko Preto
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Falcone
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emre Altıntas
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Murat Gül
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey.
| |
Collapse
|
9
|
Panopoulos S, Tzilas V, Bournia VK, Tektonidou MG, Sfikakis PP. Tocilizumab plus Nintedanib for progressive interstitial lung disease in systemic sclerosis: a one-year observational study. Rheumatol Int 2024; 44:1959-1966. [PMID: 39180531 DOI: 10.1007/s00296-024-05695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Randomized controlled trials have recently shown that both the IL-6 inhibitor Tocilizumab and the antifibrotic Nintedanib are efficacious for Systemic Sclerosis (SSc)-associated progressive interstitial lung disease (ILD). Since real-world clinical data on Tocilizumab/Nintedanib combination are lacking, we report on their long-term safety and efficacy. Consecutive patients who received off-label Tocilizumab for SSc plus Nintedanib for progressive ILD were retrospectively studied. Adverse events, and changes in Forced Vital Capacity (FVC), Diffucing Capacity for Carbon Monoxide (DLCO) and high resolution chest tomography (HRCT) between baseline and 6 and 12 months were assessed. Tocilizumab/Nintedanib combination was well tolerated by all 20 patients [aged 52 ± 13 years (mean ± SD), 14 women, 15 diffuse SSc, disease duration of 5.7 ± 4.9 years]; 7 of 20 patients received concomitant mycophenolate mofetil safely. No serious adverse events or laboratory abnormalities were noted. Five patients developed persistent diarrhea and 2 of them reduced dosage of Nintedanib. Baseline FVC (74%±12%) and DLCO (45%±10%) remained overall stable both at 6 months (73.5%±13% and 46%±11%, respectively) and 12 months (73%±14% and 45%±11%, respectively), regardless of disease duration. The extent of fibrotic reticular pattern in available pairs of HRCTs (n = 12) remained also stable at 12 months, whereas proportion (%) of ground glass opacities decreased from 29%±16 to 21%±14% (p = 0.048); improvement in HRCTs by almost 75% was noted in 2 of these12 patients. Tocilizumab/Nintedanib combination for one year was safe and stabilized lung function in real-world SSc patients with progressive ILD. Additional studies of this combination treatment in SSc-ILD are warranted.
Collapse
MESH Headings
- Humans
- Female
- Middle Aged
- Indoles/therapeutic use
- Indoles/administration & dosage
- Indoles/adverse effects
- Lung Diseases, Interstitial/drug therapy
- Lung Diseases, Interstitial/etiology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Male
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/drug therapy
- Adult
- Aged
- Retrospective Studies
- Drug Therapy, Combination
- Treatment Outcome
- Disease Progression
- Vital Capacity
- Lung/physiopathology
- Lung/drug effects
- Lung/diagnostic imaging
Collapse
Affiliation(s)
- Stylianos Panopoulos
- 1st Department of Propaedeutic and Internal Medicine, and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Vasilios Tzilas
- 2nd Respiratory Medicine Department, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Vasiliki-Kalliopi Bournia
- 1st Department of Propaedeutic and Internal Medicine, and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Maria G Tektonidou
- 1st Department of Propaedeutic and Internal Medicine, and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Petros P Sfikakis
- 1st Department of Propaedeutic and Internal Medicine, and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
10
|
Goldman N, Ong VH, Denton CP. Pathogenesis of interstitial lung disease in systemic sclerosis. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:141-151. [PMID: 39439973 PMCID: PMC11492824 DOI: 10.2478/rir-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
Interstitial lung disease (ILD) is a frequent important complication of systemic sclerosis (SSc). Factors relevant to aetiopathogenesis of SSc are also central to SSc-ILD. Severity of SSc-ILD is variable but it has a major impact on morbidity and mortality. Factors determining SSc-ILD susceptibility reflect the genetic architecture of SSc and are increasingly being defined. There are aspects linked to immunogenomics and non-immunological genetic factors that may be less conserved and underlie some of the geographical and racial diversity of SSc. These associations may also underlie important links between autoantibody subgroups and patient level risk of SSc-ILD. Examination of blood and tissue samples and observational clinical research together with integrated analysis of in vitro and in vivo preclinical models have elucidated pathogenic mechanisms of SSc-ILD. These have confirmed the potential importance of immune mechanisms in the innate and adaptive immune systemic as well as a significant role for profibrotic pathways especially transforming growth factor beta (TGFbeta) and its regulators and downstream mediators. Recent analysis of clinical trial cohorts as well as integrated and multilevel high dimensional analysis of bio-samples has shed further light on SSc-ILD. This is likely to underpin future advances in stratified and precision medicine for treatment of SSc.
Collapse
Affiliation(s)
- Nina Goldman
- Center for Rheumatology, University College London, London, UK
| | - Voon H Ong
- Center for Rheumatology, University College London, London, UK
| | | |
Collapse
|
11
|
Xie S, Meng Q, Wang L. The effect of gut microbiome and plasma metabolome on systemic sclerosis: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2024; 15:1427195. [PMID: 39086645 PMCID: PMC11288946 DOI: 10.3389/fmicb.2024.1427195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Background Cellular and molecular biology, combined with research on the human microbiome and metabolome, have provided new insights into the pathogenesis of systemic sclerosis (SSc). However, most studies on gut microbiota (GM) and metabolome in SSc are observational studies. The impact of confounding factors and reverse causation leads to different insights. To shed light on this matter, we utilized Mendelian randomization (MR) to determine the causal effect of GM/metabolites on SSc. Methods Based on summary-level data from genome-wide association studies, bidirectional Two-sample MR was conducted involving 196 GM, 1400 plasma metabolism, and 9,095 SSc. Inverse Variance Weighting (IVW) was mainly used for effect estimation. Results Forward MR analysis found that three GM and two plasma metabolites are causally related to SSc. IVW results showed Victivallaceae (family) (OR, 1.469; 95%CI, 1.099-1.963; p = 0.009) and LachnospiraceaeUCG004 (genus) (OR, 1.548; 95%CI, 1.020-2.349; p = 0.04) were risk factor of SSc. Conversely, Prevotella7 (genus) (OR, 0.759; 95%CI, 0.578-0.997; p = 0.048)was a protective factor of SSc. The results on plasma metabolites indicated that Pregnenediol disulfate (C21H34O8S2) levels (OR, 1.164; 95%CI, 1.006-1.347; p = 0.041)was a risk factor of SSc, while Sphingomyelin (d18:1/19:0, d19:1/18:0) levels (OR, 0.821; 95%CI, 0.677-0.996; p = 0.045)was a protective factor of SSc. Reverse MR analysis did not find causally relationship between SSc and the above GM/plasma metabolites. Conclusion Our results revealed the causally effect between GM/plasma metabolites and SSc. These findings provided new insights into the mechanism of SSc. In particular, we demonstrated Prevotella7 was a protective factor of SSc despite its controversial role in SSc in previous researches.
Collapse
Affiliation(s)
- Shasha Xie
- Department of Rheumatology and Nephrology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Meng
- Department of Rheumatology and Nephrology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wang
- Department of Rheumatology and Nephrology, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Sharma M, Fadl A, Leask A. Orofacial Complications of the Connective Tissue Disease Systemic Sclerosis. J Dent Res 2024; 103:689-696. [PMID: 38779873 PMCID: PMC11191658 DOI: 10.1177/00220345241249408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Scleroderma (systemic sclerosis, SSc) is an autoimmune fibrosing connective tissue disease of unknown etiology. SSc patients show increased levels of autoantibodies, profibrotic cytokines, and extracellular matrix remodeling enzymes that collectively cause activated (myo)fibroblasts, the effector cell type of fibrosis. Despite these impacts, no disease-modifying therapy exists; individual symptoms are treated on a patient-to-patient basis. SSc research has been principally focused on symptoms observed in the lung and skin. However, SSc patients display significant oral complications that arise due to fibrosis of the not only skin, causing microstomia, but also the gastrointestinal tract, causing acid reflux, and the oral cavity itself, causing xerostomia and gingival recession. Due to these complications, SSc patients have impaired quality of life, including periodontitis, tooth loss, reduced tongue mobility, and malnutrition. Indeed, due to their characteristic oral presentation, SSc patients are often initially diagnosed by dentists. Despite their clinical importance, the oral complications of SSc are severely understudied; high-quality publications on this topic are scant. However, SSc patients with periodontal complications possess increased levels of matrix metalloproteinase-9 and chemokines, such as interleukin-6 and chemokine (C-X-C motif) ligand-4. Although many unsuccessful clinical trials, mainly exploring the antifibrotic effects of anti-inflammatory agents, have been conducted in SSc, none have used oral symptoms, which may be more amenable to anti-inflammatory drugs, as clinical end points. This review summarizes the current state of knowledge regarding oral complications in SSc with the goal of inspiring future research in this extremely important and underinvestigated area.
Collapse
Affiliation(s)
- M. Sharma
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Fadl
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Wang Y, Chen Y, Wu J, Shi X. BMP1 Promotes Keloid by Inducing Fibroblast Inflammation and Fibrogenesis. J Cell Biochem 2024; 125:e30609. [PMID: 38860429 DOI: 10.1002/jcb.30609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1β secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-β pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-β/p38 MAPK, and TGF-β/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.
Collapse
Affiliation(s)
- Yi Wang
- Department of Plastic and Burns Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yahui Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
15
|
Takahashi T, Takahashi T, Ueki M, Terui H, Segawa Y, Ikawa T, Takahashi T, Kambayashi Y, Asano Y. Case report: Nodular scleroderma successfully treated with tocilizumab. Int J Rheum Dis 2024; 27:e15200. [PMID: 38794840 DOI: 10.1111/1756-185x.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Affiliation(s)
- Takuya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ueki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Segawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Bracken SJ, Suthers AN, DiCioccio RA, Su H, Anand S, Poe JC, Jia W, Visentin J, Basher F, Jordan CZ, McManigle WC, Li Z, Hakim FT, Pavletic SZ, Bhuiya NS, Ho VT, Horwitz ME, Chao NJ, Sarantopoulos S. Heightened TLR7 signaling primes BCR-activated B cells in chronic graft-versus-host disease for effector functions. Blood Adv 2024; 8:667-680. [PMID: 38113462 PMCID: PMC10839617 DOI: 10.1182/bloodadvances.2023010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.
Collapse
Affiliation(s)
- Sonali J. Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy N. Suthers
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel A. DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Hsuan Su
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sarah Anand
- Division of Hematology and Medical Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan C. Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jonathan Visentin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- UMR CNRS 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Fahmin Basher
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham NC
| | - William C. McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham NC
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Frances T. Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Nazmim S. Bhuiya
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Vincent T. Ho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mitchell E. Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
17
|
Ma F, Tsou PS, Gharaee-Kermani M, Plazyo O, Xing X, Kirma J, Wasikowski R, Hile GA, Harms PW, Jiang Y, Xing E, Nakamura M, Ochocki D, Brodie WD, Pillai S, Maverakis E, Pellegrini M, Modlin RL, Varga J, Tsoi LC, Lafyatis R, Kahlenberg JM, Billi AC, Khanna D, Gudjonsson JE. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat Commun 2024; 15:210. [PMID: 38172207 PMCID: PMC10764940 DOI: 10.1038/s41467-023-44645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Olesya Plazyo
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Kirma
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Enze Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Ochocki
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - William D Brodie
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Matteo Pellegrini
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - John Varga
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA.
| | | |
Collapse
|
18
|
Santiago S, Enwereji N, Jiang C, Durrani K, Chaudhry S, Lu J. Ocular and eyelid involvement in collagen vascular diseases. Part II. Dermatomyositis, scleroderma, and sarcoidosis. Clin Dermatol 2024; 42:9-16. [PMID: 37913844 DOI: 10.1016/j.clindermatol.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Collagen vascular disease is a heterogeneous group of autoimmune diseases that affect multiple organ systems. Sjögren syndrome, dermatomyositis, scleroderma, systemic lupus erythematosus, and sarcoidosis are collagen vascular diseases that often present with characteristic cutaneous manifestations. Although less known, various ocular manifestations that affect both external and internal structures of the eye can also be seen in these conditions. Multidisciplinary management between dermatologists and ophthalmologists is essential in the early diagnosis and management of collagen vascular diseases affecting both the skin and eye. In part II of our series, we discuss the ocular manifestations, diagnosis, and therapeutic options of dermatomyositis, scleroderma, and sarcoidosis.
Collapse
Affiliation(s)
- Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ndidi Enwereji
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut, USA
| | - Christina Jiang
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Khayyam Durrani
- Division of Ophthalmology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Sona Chaudhry
- Division of Ophthalmology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
19
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
20
|
O’Reilly S. Interleukin-11 and its eminent role in tissue fibrosis: a possible therapeutic target. Clin Exp Immunol 2023; 214:154-161. [PMID: 37724596 PMCID: PMC10714194 DOI: 10.1093/cei/uxad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Interleukin-11 is a cytokine from the IL-6 family of cytokines that includes IL-6 and oncostatin-M. Initially described for its role in platelet generation, it is now appreciated that this cytokine has multiple functions. Recently it has been found that IL-11 is critical in fibrosis in multiple different organ systems and systemically as in the autoimmune disease systemic sclerosis. Animal models of fibrosis have determined that animals with IL-11 receptor deletions have retarded fibrosis and that in wild-type animals IL-11 is found at the organ of fibrosis. Recent evidence suggests that IL-11 may be a master regulator of fibrosis regardless of end target organ. With the development of neutralizing antibodies targeting the cytokine in pre-clinical models this could be a possible therapeutic, in a disease in which no specific therapies exist. This review appraises the evidence of the role of IL-11 in tissue fibrosis, its signalling properties, and therapeutic targeting. The review ends with an appraisal of indications for which IL-11 modulation is targeted.
Collapse
|
21
|
Clark KEN, Xu S, Attah M, Ong VH, Buckley CD, Denton CP. Single-cell analysis reveals key differences between early-stage and late-stage systemic sclerosis skin across autoantibody subgroups. Ann Rheum Dis 2023; 82:1568-1579. [PMID: 37580109 PMCID: PMC10646865 DOI: 10.1136/ard-2023-224184] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES The severity of skin involvement in diffuse cutaneous systemic sclerosis (dcSSc) depends on stage of disease and differs between anti-RNA-polymerase III (ARA) and anti-topoisomerase antibody (ATA) subsets. We have investigated cellular differences in well-characterised dcSSc patients compared with healthy controls (HCs). METHODS We performed single-cell RNA sequencing on 4 mm skin biopsy samples from 12 patients with dcSSc and HCs (n=3) using droplet-based sequencing (10× genomics). Patients were well characterised by stage (>5 or <5 years disease duration) and autoantibody (ATA+ or ARA+). Analysis of whole skin cell subsets and fibroblast subpopulations across stage and ANA subgroup were used to interpret potential cellular differences anchored by these subgroups. RESULTS Fifteen forearm skin biopsies were analysed. There was a clear separation of SSc samples, by disease, stage and antibody, for all cells and fibroblast subclusters. Further analysis revealed differing cell cluster gene expression profiles between ATA+ and ARA+ patients. Cell-to-cell interaction suggest differing interactions between early and late stages of disease and autoantibody. TGFβ response was mainly seen in fibroblasts and smooth muscle cells in early ATA+dcSSc skin samples, whereas in early ARA+dcSSc patient skin samples, the responding cells were endothelial, reflect broader differences between clinical phenotypes and distinct skin score trajectories across autoantibody subgroups of dcSSc. CONCLUSIONS We have identified cellular differences between the two main autoantibody subsets in dcSSc (ARA+ and ATA+). These differences reinforce the importance of considering autoantibody and stage of disease in management and trial design in SSc.
Collapse
Affiliation(s)
| | - Shiwen Xu
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| | - Moustafa Attah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Voon H Ong
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| | | | - Christopher P Denton
- Centre for Rheumatology, Royal Free Campus, University College London, London, UK
| |
Collapse
|
22
|
Kenny FN, Marcotti S, De Freitas DB, Drudi EM, Leech V, Bell RE, Easton J, Díaz-de-la-Loza MDC, Fleck R, Allison L, Philippeos C, Manhart A, Shaw TJ, Stramer BM. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol 2023; 123:1-16. [PMID: 37660739 PMCID: PMC10878985 DOI: 10.1016/j.matbio.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Fibrosis is associated with dramatic changes in extracellular matrix (ECM) architecture of unknown etiology. Here we exploit keloid scars as a paradigm to understand fibrotic ECM organization. We reveal that keloid patient fibroblasts uniquely produce a globally aligned ECM network in 2-D culture as observed in scar tissue. ECM anisotropy develops after rapid initiation of a fibroblast supracellular actin network, suggesting that cell alignment initiates ECM patterning. Keloid fibroblasts produce elevated levels of IL-6, and autocrine IL-6 production is both necessary and sufficient to induce cell and ECM alignment, as evidenced by ligand stimulation of normal dermal fibroblasts and treatment of keloid fibroblasts with the function blocking IL-6 receptor monoclonal antibody, tocilizumab. Downstream of IL-6, supracellular organization of keloid fibroblasts is controlled by activation of cell-cell adhesion. Adhesion formation inhibits contact-induced cellular overlap leading to nematic organization of cells and an alignment of focal adhesions. Keloid fibroblasts placed on isotropic ECM align the pre-existing matrix, suggesting that focal adhesion alignment leads to active anisotropic remodeling. These results show that IL-6-induced fibroblast cooperativity can control the development of a nematic ECM, highlighting both IL-6 signaling and cell-cell adhesions as potential therapeutic targets to inhibit this common feature of fibrosis.
Collapse
Affiliation(s)
- Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elena M Drudi
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Vivienne Leech
- Department of Mathematics, University College London, UK
| | - Rachel E Bell
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jennifer Easton
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Roland Fleck
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Leanne Allison
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Angelika Manhart
- Department of Mathematics, University College London, UK; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
23
|
Ye W, Wang Q, Zhao L, Wang C, Zhang D, Zhou M, Chen F, Wang W, Zhu Z, Guo W, Liu Y, Zou H, Xue Y. Blockade of IL-11 Trans-Signaling or JAK2/STAT3 Signaling Ameliorates the Profibrotic Effect of IL-11. Immunol Invest 2023; 52:703-716. [PMID: 37401665 DOI: 10.1080/08820139.2023.2222746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a rare rheumatic disease characterized by vascular damage, dysregulated immune response, and fibrosis. Interleukin-11 (IL-11) is upregulated in SSc. This study aimed to investigate the pathological and therapeutic role of the IL-11 trans-signaling pathway in SSc. METHODS Plasma IL-11 level was evaluated in 32 patients with SSc and 15 healthy controls, while the expression levels of ADAM10, ADAM17, IL-11, IL-11 Rα, or IL-11 co-stained with CD3 or CD163 in the skin of SSc patients and healthy controls were analyzed. Fibroblasts were treated with IL-11 and ionomycin to evaluate the profibrotic effect of IL-11 trans-signaling pathway. TJ301 (sgp130Fc) and WP1066 (a JAK2/STAT3 inhibitor) intervention groups were set up to investigate the antifibrotic effect of targeting IL-11. RESULTS Levels of plasma IL-11 were extremely low in most SSc patients and healthy controls. In contrast, levels of IL-11, IL-11 Rα, and ADAM10, but not ADAM17, were significantly elevated in the skin of SSc patients. Moreover, the numbers of IL-11+ CD3+ cells and IL-11+ CD163+ cells were increased in the skin of SSc patients. Besides, IL-11 and ADAM10 were also elevated in the skin and pulmonary of bleomycin-induced SSc mouse. Fibroblasts co-stimulated with IL-11 and ionomycin showed increased expression of COL3 and phosphorylation of STAT3, which could be inhibited by TJ301 or WP1066. TJ301 also ameliorated skin and lung fibrosis in BLM-induced SSc mouse. CONCLUSIONS IL-11 induces fibrosis in SSc by regulating the trans-signaling pathway. Blockage of sgp130Fc or inhibition of the JAK2/STAT3 pathway could ameliorate the profibrotic effect of IL-11.
Collapse
Affiliation(s)
- Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Changcheng Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyu Zhou
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fangfang Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaihua Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Guo
- Clinical Development, I-Mab Biopharma, Hangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
25
|
Li Z, Cao T, Li Q, Zhang J, Du J, Chen J, Bai Y, Hao J, Zhu Z, Qiao H, Fu M, Dang E, Wang G, Shao S. Cross-disease characterization of fibroblast heterogeneities and their pathogenic roles in skin inflammation. Clin Immunol 2023; 255:109742. [PMID: 37595936 DOI: 10.1016/j.clim.2023.109742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Fibroblasts are critical pro-inflammatory regulators in chronic inflammatory and fibrotic skin diseases. However, fibroblast heterogeneity and the absence of a unified cross-disease taxonomy have hindered our understanding of the shared/distinct pathways in non-communicable skin inflammation. By integrating 10× single-cell data from 75 skin samples, we constructed a single-cell atlas across inflammatory and fibrotic skin diseases and identified 9 distinct subsets of skin fibroblasts. We found a shared subset of CCL19+ fibroblasts across these diseases, potentially attracting and educating immune cells. Moreover, COL6A5+ fibroblasts were a distinct subset implicated in the initiation and relapse of psoriasis, which tended to differentiate into CXCL1+ fibroblasts, inducing neutrophil chemotaxis and infiltration; while CXCL1+ fibroblasts exhibited a more heterogeneous response to certain inflammatory conditions. Differentiation trajectory and regulatory factors of these fibroblast subsets were also revealed. Therefore, our study presents a comprehensive atlas of skin fibroblasts and highlights pathogenic fibroblast subsets in skin disorders.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Du
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junfeng Hao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhanlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
26
|
Steadman T, O'Reilly S. Elevated interleukin-11 in systemic sclerosis and role in disease pathogenesis. J Dermatol 2023; 50:1255-1261. [PMID: 37291792 DOI: 10.1111/1346-8138.16854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease in which there is elevated inflammation, aberrant cytokine expression, and subsequent fibrosis. Interleukin-11 (IL-11) is a recently described profibrotic cytokine that can mediate fibrosis in the heart, lungs, and skin and is upregulated by transforming Growth Factor-β (TGF-β1). The objective of this study was to quantify the serum levels of IL-11 in early diffuse SSc patients. Also, if IL-11 could regulate the alarmin IL-33 in dermal fibroblasts was quantified. Early diffuse SSc patient sera was isolated and IL-11 was quantified by specific commercial ELISA compared to healthy control (n = 17). Healthy dermal fibroblasts were cultured in vitro and then serum starved and incubated with or without recombinant IL-11. At specific early and late time points the supernatant was quantified for the alarmin IL-33 by specific ELISA. In early diffuse SSc patients it was demonstrated that they have elevated IL-11 in their sera. In a subgroup of SSc patients with interstitial lung disease (ILD) this elevation was particularly pronounced compared to those devoid of fibrotic lung disease. In vitro incubation of healthy dermal fibroblasts led to a significant induction of IL-33 cytokine release into the cell media. IL-11 is a profibrotic cytokine that is elevated in early diffuse SSc and is particularly elevated in those with ILD. This suggests that IL-11 could be a possible biomarker of ILD in SSc. It was also found that IL-11 led to release of the cytokine alarmin IL-33 in fibroblasts at earlier time points but not late time points, suggesting early stimulation elicits an inflammatory response in the local microenvironment but prolonged stimulation leads to fibrosis.
Collapse
|
27
|
Di Maggio G, Confalonieri P, Salton F, Trotta L, Ruggero L, Kodric M, Geri P, Hughes M, Bellan M, Gilio M, Lerda S, Baratella E, Confalonieri M, Mondini L, Ruaro B. Biomarkers in Systemic Sclerosis: An Overview. Curr Issues Mol Biol 2023; 45:7775-7802. [PMID: 37886934 PMCID: PMC10604992 DOI: 10.3390/cimb45100490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood perfusion. Several studies have reported more than 240 pathways and numerous dysregulation proteins, giving insight into how the field of biomarkers in SSc is still extremely complex and evolving. Antinuclear antibodies (ANA) are present in more than 90% of SSc patients, and anti-centromere and anti-topoisomerase I antibodies are considered classic biomarkers with precise clinical features. Recent studies have reported that trans-forming growth factor β (TGF-β) plays a central role in the fibrotic process. In addition, interferon regulatory factor 5 (IRF5), interleukin receptor-associated kinase-1 (IRAK-1), connective tissue growth factor (CTGF), transducer and activator of transcription signal 4 (STAT4), pyrin-containing domain 1 (NLRP1), as well as genetic factors, including DRB1 alleles, are implicated in SSc damage. Several interleukins (e.g., IL-1, IL-6, IL-10, IL-17, IL-22, and IL-35) and chemokines (e.g., CCL 2, 5, 23, and CXC 9, 10, 16) are elevated in SSc. While adiponectin and maresin 1 are reduced in patients with SSc, biomarkers are important in research but will be increasingly so in the diagnosis and therapeutic approach to SSc. This review aims to present and highlight the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Giuseppe Di Maggio
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Luca Ruggero
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Metka Kodric
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Pietro Geri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK;
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Center for Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Medicine, Azienda Ospedaliero–Universitaria, Maggiore della Carità, 28100 Novara, Italy
| | - Michele Gilio
- Infectious Disease Unit, San Carlo Hospital, 85100 Potenza, Italy
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milano, Italy
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| |
Collapse
|
28
|
Yu D, Xiang Y, Gou T, Tong R, Xu C, Chen L, Zhong L, Shi J. New therapeutic approaches against pulmonary fibrosis. Bioorg Chem 2023; 138:106592. [PMID: 37178650 DOI: 10.1016/j.bioorg.2023.106592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu 610072, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
29
|
Denton CP, Xu S, Zhang F, Maclean RH, Clark KEN, Borchert S, Hussain RI, Klingelhöfer J, Hallén J, Ong VH. Clinical and pathogenic significance of S100A4 overexpression in systemic sclerosis. Ann Rheum Dis 2023; 82:1205-1217. [PMID: 37414521 DOI: 10.1136/ard-2023-223862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/13/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES We have studied the damage-associated molecular pattern protein S100A4 as a driver of fibroblast activation in systemic sclerosis (SSc). METHODS S100A4 protein concentration was measured by ELISA in serum of SSc (n=94) and healthy controls (n=15). Protein expression in skin fibroblast cultures from diffuse cutaneous SSc (SScF, n=6) and healthy controls (normal fibroblasts (NF), n=6) was assessed. Recombinant S100A4 and a high affinity anti-S100A4 neutralising monoclonal antibody (AX-202) were tested on SScF and NF. RESULTS Median (range) S100A4 (ng/mL) was higher in serum of SSc (89.9 (15.0-240.0)) than healthy controls (71.4 (7.9-131.8); p=0.027). There was association with SSc-interstitial lung disease (p=0.025, n=55), scleroderma renal crisis (p=0.026, n=4). Median (range) S100A4 (ng/mL) was higher in culture supernatants of SScF (4.19 (0.52-8.42)) than NF controls (0.28 (0.02-3.29); p<0.0001). AX-202 reduced the constitutive profibrotic gene and protein expression phenotype of SScF. Genome-wide RNA sequencing analysis identified an S100A4 activated signature in NF overlapping the hallmark gene expression signature of SScF. Thus, 464 differentially expressed genes (false discovery rate (FDR) <0.001 and fold change (FC) >1.5) induced in NF by S100A4 were also constitutively overexpressed, and downregulated by AX-202, in SScF. Pathway mapping of these S100A4 dependent genes in SSc showed the most significant enriched Kegg pathways (FDR <0.001) were regulation of stem cell pluripotency (4.6-fold) and metabolic pathways (1.9-fold). CONCLUSION Our findings provide compelling evidence for a profibrotic role for S100A4 in SSc and suggest that serum level may be a biomarker of major organ manifestations and disease severity. This study supports examining the therapeutic potential of targeting S100A4 in SSc.
Collapse
Affiliation(s)
| | - Shiwen Xu
- Centre for Rheumatology, Division of Medicine, UCL, London, UK
| | - Fenge Zhang
- Centre for Rheumatology, Division of Medicine, UCL, London, UK
| | - Rory H Maclean
- Centre for Rheumatology, Division of Medicine, UCL, London, UK
| | | | | | | | | | - Jonas Hallén
- Research Department, Arxx Therapeutics, Oslo, Norway
| | - Voon H Ong
- Centre for Rheumatology, Division of Medicine, UCL, London, UK
| |
Collapse
|
30
|
Sheng XR, Gao X, Schiffman C, Jiang J, Ramalingam TR, Lin CJF, Khanna D, Neighbors M. Biomarkers of fibrosis, inflammation, and extracellular matrix in the phase 3 trial of tocilizumab in systemic sclerosis. Clin Immunol 2023; 254:109695. [PMID: 37479123 DOI: 10.1016/j.clim.2023.109695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Drug development for systemic sclerosis (SSc) benefits from understanding the relationship between disease and circulating biomarkers to enable activities such as patient stratification and evaluation of therapeutic response. We measured biomarkers in serum from SSc patients from a phase 3 trial of tocilizumab (focuSSced) and compared baseline levels with healthy controls (HCs). Several baseline biomarkers appeared elevated in SSc patients compared to HCs, suggesting activation of epithelial damage, inflammation, fibrosis, and extracellular matrix (ECM) remodeling. Baseline correlations among both periostin/COMP and ECM biomarker subsets implicated their participation in fibroblast activation. Tocilizumab treatment modulated serum biomarkers of macrophage activation, inflammation, and ECM turnover, including collagen formation and degradation neoepitopes. Baseline CRP, periostin, and SP-D showed prognostic trends for worsening lung function, and IL-6, COMP, periostin, and Pro-C3 showed prognostic trends for worsening skin thickness. These prognostic results warrant confirmation in additional patient cohorts to verify their utility.
Collapse
Affiliation(s)
- X Rebecca Sheng
- Genentech Inc., South San Francisco, CA, United States of America.
| | - Xia Gao
- Genentech Inc., South San Francisco, CA, United States of America
| | | | - Jenny Jiang
- Genentech Inc., South San Francisco, CA, United States of America
| | | | - Celia J F Lin
- Genentech Inc., South San Francisco, CA, United States of America
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Division of Rheumatology/Department of Internal Medicine, Ann Arbor, MI, United States of America
| | | |
Collapse
|
31
|
Benfaremo D, Agarbati S, Mozzicafreddo M, Paolini C, Svegliati S, Moroncini G. Skin Gene Expression Profiles in Systemic Sclerosis: From Clinical Stratification to Precision Medicine. Int J Mol Sci 2023; 24:12548. [PMID: 37628728 PMCID: PMC10454358 DOI: 10.3390/ijms241612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis, also known as scleroderma or SSc, is a condition characterized by significant heterogeneity in clinical presentation, disease progression, and response to treatment. Consequently, the design of clinical trials to successfully identify effective therapeutic interventions poses a major challenge. Recent advancements in skin molecular profiling technologies and stratification techniques have enabled the identification of patient subgroups that may be relevant for personalized treatment approaches. This narrative review aims at providing an overview of the current status of skin gene expression analysis using computational biology approaches and highlights the benefits of stratifying patients upon their skin gene signatures. Such stratification has the potential to lead toward a precision medicine approach in the management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
32
|
Suzuki M, Ototake Y, Akita A, Asami M, Ikeda N, Watanabe T, Kanaoka M, Yamaguchi Y. Periostin-An inducer of pro-fibrotic phenotype in monocytes and monocyte-derived macrophages in systemic sclerosis. PLoS One 2023; 18:e0281881. [PMID: 37531393 PMCID: PMC10395906 DOI: 10.1371/journal.pone.0281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 08/04/2023] Open
Abstract
Enhanced circulating blood periostin levels positively correlate with disease severity in patients with systemic sclerosis (SSc). Monocytes/macrophages are predominantly associated with the pathogenesis of SSc, but the effect of periostin on immune cells, particularly monocytes and macrophages, still remains to be elucidated. We examined the effect of periostin on monocytes and monocyte-derived macrophages (MDM) in the pathogenesis of SSc. The modified Rodnan total skin thickness score in patients with dcSSc was positively correlated with the proportion of CD80-CD206+ M2 cells. The proportion of M2 macrophages was significantly reduced in rPn-stimulated MDMs of HCs compared to that of SSc patients. The mRNA expression of pro-fibrotic cytokines, chemokines, and ECM proteins was significantly upregulated in rPn-stimulated monocytes and MDMs as compared to that of control monocytes and MDMs. A similar trend was observed for protein expression in the respective MDMs. In addition, the ratio of migrated cells was significantly higher in rPn-stimulated as compared to control monocytes. These results suggest that periostin promotes inflammation and fibrosis in the pathogenesis of SSc by possible modulation of monocytes/macrophages.
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
33
|
Chen Y, Zhou J, Xu S, Nie J. Role of Interleukin-6 Family Cytokines in Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:239-253. [PMID: 37900004 PMCID: PMC10601952 DOI: 10.1159/000530288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 10/31/2023]
Abstract
Background Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Zhou
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihui Xu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Xuan T, Yuan X, Zheng S, Wang L, Wang Q, Zhang S, Qi F, Luan W. Repeated Lipoteichoic Acid Injection at Low Concentration Induces Capsular Contracture by Activating Adaptive Immune Response through the IL-6/STAT3 Signaling Pathway. Plast Reconstr Surg 2023; 152:349-359. [PMID: 36700876 DOI: 10.1097/prs.0000000000010224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Capsular contracture is the most common complication of breast implantation surgery. Bacterial contamination was considered to play an important role in the occurrence of capsular contracture, and Gram-positive bacteria such as Staphylococcus epidermidis were discovered in the clinical specimens. Lipoteichoic acid (LTA) was a component of the cell wall of Gram-positive bacteria and was sufficient in the pathogenicity of the bacteria. The authors assumed that LTA could trigger the immunologic response against the implant and cause capsular contracture. METHODS The authors developed a rat model of capsular contracture by repeated injection of 10 μg/mL LTA. The histologic changes of the capsule tissue were measured by hematoxylin and eosin, sirius red, Masson, and immunohistochemical staining. The expression of related cytokines was measured by quantitative real-time polymerase chain reaction. The downstream pathway activation was shown by Western blot. The authors also applied tocilizumab, an interleukin (IL)-6 receptor antagonist, to verify the role of IL-6 in this pathologic process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce the thickening of capsule tissue, the deposition of collagen fiber, and the activation of myofibroblasts. The IL-6/signal transducer and activator of transcription 3 signaling pathway was activated in this process, and the inhibition of IL-6 receptor could relieve the symptoms. B cells and T-helper cells, especially T-helper type 1, could be related to this phenomenon. CONCLUSIONS The authors' research corroborated that subclinical infection could trigger capsular contracture, and the immune system played an important role in this process. The authors' results provided a possible research direction for the mechanism of bacterial infection-induced immune response against breast implants. CLINICAL RELEVANCE STATEMENT The authors' research provides a possible research direction for the mechanism of bacterial infection-induced immune response against breast implants, and a potential target for predicting the prognosis of capsular contracture.
Collapse
Affiliation(s)
- Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Xin Yuan
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University
| | - Shaoluan Zheng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch)
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
35
|
Madsen SF, Sand JMB, Juhl P, Karsdal M, Thudium CS, Siebuhr AS, Bay-Jensen AC. Fibroblasts are not just fibroblasts: clear differences between dermal and pulmonary fibroblasts' response to fibrotic growth factors. Sci Rep 2023; 13:9411. [PMID: 37296166 PMCID: PMC10256773 DOI: 10.1038/s41598-023-36416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Systemic Sclerosis (SSc) hallmark is skin fibrosis, but up to 80% of the patients have fibrotic involvement in the pulmonary system. Antifibrotic drugs which have failed in a general SSc population have now been approved in patients with SSc-associated interstitial lung disease (ILD). This indicates that the fibrotic progression and regulation of fibroblasts likely depend on local factors specific to the tissue type. This study investigated the difference between dermal and pulmonary fibroblasts in a fibrotic setting, mimicking the extracellular matrix. Primary healthy fibroblasts were grown in a crowded environment and stimulated with TGF-β1 and PDGF-AB. The viability, morphology, migration capacity, extracellular matrix formation, and gene expression were assessed: TGF-β1 only increased the viability in the dermal fibroblasts. PDGF-AB increased the migration capacity of dermal fibroblasts while the pulmonary fibroblasts fully migrated. The morphology of the fibroblasts was different without stimulation. TGF-β1 increased the formation of type III collagen in pulmonary fibroblasts, while PDGF-AB increased it in dermal fibroblasts. The gene expression trend of type VI collagen was the opposite after PDGF-AB stimulation. The fibroblasts exhibit different response profiles to TGF-β1 and PDGF-AB; this suggests that drivers of fibrosis are tissue-dependent, which needs to be considered in drug development.
Collapse
Affiliation(s)
- Sofie Falkenløve Madsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Immunoscience, Nordic Bioscience, Herlev, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
38
|
Pope JE, Denton CP, Johnson SR, Fernandez-Codina A, Hudson M, Nevskaya T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat Rev Rheumatol 2023; 19:212-226. [PMID: 36849541 PMCID: PMC9970138 DOI: 10.1038/s41584-023-00909-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 03/01/2023]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease with multi-organ involvement, fibrosis and vasculopathy. Treatment in SSc, including early diffuse cutaneous SSc (dcSSc) and the use of organ-specific therapies, has improved, as evident from randomized clinical trials. Treatments for early dcSSc include immunosuppressive agents such as mycophenolate mofetil, methotrexate, cyclophosphamide, rituximab and tocilizumab. Patients with rapidly progressive early dcSSc might be eligible for autologous haematopoietic stem cell transplantation, which can improve survival. Morbidity from interstitial lung disease and pulmonary arterial hypertension is improving with the use of proven therapies. Mycophenolate mofetil has surpassed cyclophosphamide as the initial treatment for SSc-interstitial lung disease. Nintedanib and possibly perfinidone can be considered in SSc pulmonary fibrosis. Pulmonary arterial hypertension is frequently treated with initial combination therapy (for example, with phosphodiesterase 5 inhibitors and endothelin receptor antagonists) and, if necessary, the addition of a prostacyclin analogue. Raynaud phenomenon and digital ulcers are treated with dihydropyridine calcium channel blockers (especially nifedipine), then phosphodiesterase 5 inhibitors or intravenous iloprost. Bosentan can reduce the development of new digital ulcers. Trial data for other manifestations are mostly lacking. Research is needed to develop targeted and highly effective treatments, best practices for organ-specific screening and early intervention, and sensitive outcome measurements.
Collapse
Affiliation(s)
- Janet E Pope
- Division of Rheumatology, St Joseph's Health Care, London, ON, Canada.
- Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
| | | | - Sindhu R Johnson
- Toronto Scleroderma Program, Toronto Western Hospital, Mount Sinai Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Andreu Fernandez-Codina
- Division of Rheumatology, St Joseph's Health Care, London, ON, Canada
- General Internal Medicine, Windsor Regional Hospital, Windsor, ON, Canada
- Critical Care, Emergency and Systemic Autoimmune Diseases, Hospital Clinic, Barcelona, Spain
| | - Marie Hudson
- Department of Medicine, McGill University, Montreal, QC, Canada
- Division of Rheumatology and Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Tatiana Nevskaya
- Division of Rheumatology, St Joseph's Health Care, London, ON, Canada
| |
Collapse
|
39
|
Fujino M, Morito N, Hayashi T, Ojima M, Ishibashi S, Kuno A, Koshiba S, Yamagata K, Takahashi S. Transcription factor c-Maf deletion improves streptozotocin-induced diabetic nephropathy by directly regulating Sglt2 and Glut2. JCI Insight 2023; 8:163306. [PMID: 36787192 PMCID: PMC10070115 DOI: 10.1172/jci.insight.163306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The transcription factor c-Maf has been widely studied and has been reported to play a critical role in embryonic kidney development; however, the postnatal functions of c-Maf in adult kidneys remain unknown as c-Maf-null C57BL/6J mice exhibit embryonic lethality. In this study, we investigated the role of c-Maf in adult mouse kidneys by comparing the phenotypes of tamoxifen-inducible (TAM-inducible) c-Maf-knockout mice (c-Maffl/fl; CAG-Cre-ERTM mice named "c-MafΔTAM") with those of c-Maffl/fl control mice, 10 days after TAM injection [TAM(10d)]. In addition, we examined the effects of c-Maf deletion on diabetic conditions by injecting the mice with streptozotocin, 4 weeks before TAM injection. c-MafΔTAM mice displayed primary glycosuria caused by sodium-glucose cotransporter 2 (Sglt2) and glucose transporter 2 (Glut2) downregulation in the kidneys without diabetes, as well as morphological changes and life-threatening injuries in the kidneys on TAM(10d). Under diabetic conditions, c-Maf deletion promoted recovery from hyperglycemia and suppressed albuminuria and diabetic nephropathy by causing similar effects as did Sglt2 knockout and SGLT2 inhibitors. In addition to demonstrating the potentially unique gene regulation of c-Maf, these findings highlight the renoprotective effects of c-Maf deficiency under diabetic conditions and suggest that c-Maf could be a novel therapeutic target gene for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine
- PhD Program in Human Biology, School of Integrative and Global Majors
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine; and
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Shun Ishibashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization and
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Laboratory Animal Resource Center
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)
- International Institute for Integrative Sleep Medicine (WPI-IIIS), and
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
40
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
41
|
Peng B, Hu Q, He R, Hou H, Lian D, Chen Y, Li H, Song L, Gao Y, Chen T, Zhang G, Li J. Baicalein alleviates fibrosis and inflammation in systemic sclerosis by regulating B-cell abnormalities. BMC Complement Med Ther 2023; 23:62. [PMID: 36810081 PMCID: PMC9942410 DOI: 10.1186/s12906-023-03885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc; also known as "scleroderma") is an autoimmune disorder characterized by extensive fibrosis, vascular changes, and immunologic dysregulation. Baicalein (phenolic flavonoid derived from Scutellaria baicalensis Georgi) has been used to treat the pathological processes of various fibrotic and inflammatory diseases. In this study, we investigated the effect of baicalein on the major pathologic characteristics of SSc: fibrosis, B-cell abnormalities, and inflammation. METHODS The effect of baicalein on collagen accumulation and expression of fibrogenic markers in human dermal fibroblasts were analyzed. SSc mice were produced by injecting bleomycin and treated with baicalein (25, 50, or 100 mg/kg). The antifibrotic features of baicalein and its mechanisms were investigated by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, western blotting and flow cytometry. RESULTS Baicalein (5-120 μM) significantly inhibited the accumulation of the extracellular matrix and fibroblast activation in transforming growth factor (TGF)-β1- and platelet derived growth factor (PDGF)-induced human dermal fibroblasts, as evidenced by abrogated deposition of total collagen, decreased secretion of soluble collagen, reduced collagen contraction capability and downregulation of various fibrogenesis molecules. In a bleomycin-induced model of dermal fibrosis in mice, baicalein (25-100 mg/kg) restored dermal architecture, ameliorated inflammatory infiltrates, and attenuated dermal thickness and collagen accumulation in a dose-dependent manner. According to flow cytometry, baicalein reduced the proportion of B cells (B220+ lymphocytes) and increased the proportion of memory B cells (B220+CD27+ lymphocytes) in the spleens of bleomycin-induced mice. Baicalein treatment potently attenuated serum levels of cytokines (interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor-α), chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1 beta) and autoantibodies (anti-scleroderma 70 (Scl-70), anti-polymyositis-scleroderma (PM-Scl), anti-centromeres, anti-double stranded DNA (dsDNA). In addition, baicalein treatment can significantly inhibit the activation of TGF-β1 signaling in dermal fibroblasts and bleomycin-induce mice of SSc, evidenced by reducing the expression of TGF-β1 and IL-11, as well as inhibiting both small mother against decapentaplegic homolog 3 (SMAD3) and extracellular signal-related kinase (ERK) activation. CONCLUSIONS These findings suggest that baicalein has therapeutic potential against SSc, exerting modulating B-cell abnormalities, anti-inflammatory effects, and antifibrosis.
Collapse
Affiliation(s)
- Bo Peng
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Qin Hu
- grid.28703.3e0000 0000 9040 3743College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024 People’s Republic of China
| | - Rong He
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Hongping Hou
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Dongyin Lian
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ying Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Han Li
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Ling Song
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Yunhang Gao
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Tengfei Chen
- grid.506261.60000 0001 0706 7839Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Jianrong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
42
|
Fernández-Lázaro D, Iglesias-Lázaro M, Garrosa E, Rodríguez-García S, Jerves Donoso D, Gutiérrez-Abejón E, Jorge-Finnigan C. Impact of Innovative Treatment Using Biological Drugs for the Modulation of Diffuse Cutaneous Systemic Sclerosis: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020247. [PMID: 36837449 PMCID: PMC9967997 DOI: 10.3390/medicina59020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Scleroderma or systemic sclerosis (SSc) is an autoimmune disease affecting the connective tissue, characterized by fibrosis of the skin and internal organs. There is currently no curative treatment available, so therapeutic action is aimed at a symptomatic treatment of the affected organs. The development of biotechnology has made it possible to implement certain biological drugs that could represent a window of opportunity to modulate the evolution and symptomatology of scleroderma with greater efficacy and less toxicity than conventional treatments. This study aimed to review the current evidence critically and systematically on the effects of biological drugs on the pulmonary function, skin disease, and health status of patients afflicted by diffuse cutaneous systemic sclerosis (dcSSc). Three electronic databases (Pubmed, Dialnet, and Cochrane Library Plus) were systematically searched until the cut-off date of October 2022. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and included original articles in English and Spanish with a controlled trial design, comparing biological drug treatments (tocilizumab, belimumab, riociguat, abatacept, and romilkimab) with a control group. The methodological quality of the studies was assessed using the McMaster quantitative form and the PEDro scale. A total of 383 studies were identified, 6 of them met the established criteria and were included in the present systematic review. A total of 426 patients treated with tocilizumab, belimumab, riociguat, abatacept, and romilkimab were included. The results showed substantial non-significant (p < 0.05) improvement trends after treatment with the biological drugs included in this review for the modified Rodnan Scale Value, Forced Vital Capacity, and Carbon Monoxide Diffusion Test; however, no benefits were shown on the Health Assessment Questionnaire-Disability Index when compared to the control group. Biological drugs, therefore, maybe a new therapeutic strategy for dcSSc and could be recommended as an additional and/or adjunctive treatment that promotes anti-fibrotic activity. This review could further define the clinical rationale for the use of biologics in the treatment of dcSSc and could provide key details on the study protocol, design, and outcome reporting.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence: (D.F.-L.); (E.G.)
| | - María Iglesias-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
| | - Evelina Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence: (D.F.-L.); (E.G.)
| | - Saray Rodríguez-García
- Department of Medicine, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Internal Medicine Department of Soria University Assistance Complex (CAUSO), Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42005 Soria, Spain
| | - David Jerves Donoso
- Pneumology Department of Soria University Assistance Complex (CAUSO), Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42003 Soria, Spain
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
| | - Eduardo Gutiérrez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castile and Leon Health Council, 47007 Valladolid, Spain
| | - Conrado Jorge-Finnigan
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Dermatology Department of Soria University Assistance Complex (CAUSO), Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42005 Soria, Spain
| |
Collapse
|
43
|
Fritz D, Inamo J, Zhang F. Single-cell computational machine learning approaches to immune-mediated inflammatory disease: New tools uncover novel fibroblast and macrophage interactions driving pathogenesis. Front Immunol 2023; 13:1076700. [PMID: 36685542 PMCID: PMC9846263 DOI: 10.3389/fimmu.2022.1076700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Recent advances in single-cell sequencing technologies call for greater computational scalability and sensitivity to analytically decompose diseased tissues and expose meaningful biological relevance in individual cells with high resolution. And while fibroblasts, one of the most abundant cell types in tissues, were long thought to display relative homogeneity, recent analytical and technical advances in single-cell sequencing have exposed wide variation and sub-phenotypes of fibroblasts of potential and apparent clinical significance to inflammatory diseases. Alongside anticipated improvements in single cell spatial sequencing resolution, new computational biology techniques have formed the technical backbone when exploring fibroblast heterogeneity. More robust models are required, however. This review will summarize the key advancements in computational techniques that are being deployed to categorize fibroblast heterogeneity and their interaction with the myeloid compartments in specific biological and clinical contexts. First, typical machine-learning-aided methods such as dimensionality reduction, clustering, and trajectory inference, have exposed the role of fibroblast subpopulations in inflammatory disease pathologies. Second, these techniques, coupled with single-cell predicted computational methods have raised novel interactomes between fibroblasts and macrophages of potential clinical significance to many immune-mediated inflammatory diseases such as rheumatoid arthritis, ulcerative colitis, lupus, systemic sclerosis, and others. Third, recently developed scalable integrative methods have the potential to map cross-cell-type spatial interactions at the single-cell level while cross-tissue analysis with these models reveals shared biological mechanisms between disease contexts. Finally, these advanced computational omics approaches have the potential to be leveraged toward therapeutic strategies that target fibroblast-macrophage interactions in a wide variety of inflammatory diseases.
Collapse
Affiliation(s)
- Douglas Fritz
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, United States,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jun Inamo
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States,Center for Health Artificial Intelligence, Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Fan Zhang,
| |
Collapse
|
44
|
Papazoglou A, Huang M, Bulik M, Lafyatis A, Tabib T, Morse C, Sembrat J, Rojas M, Valenzi E, Lafyatis R. Epigenetic Regulation of Profibrotic Macrophages in Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Rheumatol 2022; 74:2003-2014. [PMID: 35849803 PMCID: PMC9771864 DOI: 10.1002/art.42286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc with unclear pathogenesis and limited treatment options. Evidence strongly supports an important role for profibrotic secreted phosphoprotein 1 (SPP1)-expressing macrophages in SSc-ILD. This study was undertaken to define the transcriptome and chromatin structural changes of SPP1 SSc-ILD macrophages in order to better understand their role in promoting fibrosis and to identify transcription factors associated with open chromatin driving their altered phenotype. METHODS We performed single-cell RNA sequencing (scRNA-Seq) on 11 explanted SSc-ILD and healthy control lung samples, as well as single-cell assay for transposase-accessible chromatin sequencing on 5 lung samples to define altered chromatin accessibility of SPP1 macrophages. We predicted transcription factors regulating SPP1 macrophages using single-cell regulatory network inference and clustering (SCENIC) and determined transcription factor binding sites associated with global alterations in SPP1 chromatin accessibility using Signac/Seurat. RESULTS We identified distinct macrophage subpopulations using scRNA-Seq analysis in healthy and SSc-ILD lungs and assessed gene expression changes during the change of healthy control macrophages into SPP1 macrophages. Analysis of open chromatin validated SCENIC predictions, indicating that microphthalmia-associated transcription factor, transcription factor EB, activating transcription factor 6, sterol regulatory element binding transcription factor 1, basic helix-loop-helix family member E40, Kruppel-like factor 6, ETS variant transcription factor 5, and/or members of the activator protein 1 family of transcription factors regulate SPP1 macrophage differentiation. CONCLUSION Our findings shed light on the underlying changes in chromatin structure and transcription factor regulation of profibrotic SPP1 macrophages in SSc-ILD. Similar alterations in SPP1 macrophages may underpin fibrosis in other organs involved in SSc and point to novel targets for the treatment of SSc-ILD, specifically targeting profibrotic macrophages.
Collapse
Affiliation(s)
- Anna Papazoglou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melissa Bulik
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annika Lafyatis
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus, OH, USA
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Sun H, Tan J, Chen H, Wu N, Su B. Immune niches orchestrated by intestinal mesenchymal stromal cells lining the crypt-villus. Front Immunol 2022; 13:1057932. [PMID: 36405734 PMCID: PMC9669707 DOI: 10.3389/fimmu.2022.1057932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.
Collapse
Affiliation(s)
- Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongqian Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
Graßhoff H, Fourlakis K, Comdühr S, Riemekasten G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines 2022; 10:2150. [PMID: 36140251 PMCID: PMC9496142 DOI: 10.3390/biomedicines10092150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disorder characterized by immune dysregulation evoking the pathophysiological triad of inflammation, fibrosis and vasculopathy. In SSc, several alterations in the B-cell compartment have been described, leading to polyclonal B-cell hyperreactivity, hypergammaglobulinemia and autoantibody production. Autoreactive B cells and autoantibodies promote and maintain pathologic mechanisms. In addition, autoantibodies in SSc are important biomarkers for predicting clinical phenotype and disease progression. Autoreactive B cells and autoantibodies represent potentially promising targets for therapeutic approaches including B-cell-targeting therapies, as well as strategies for unselective and selective removal of autoantibodies. In this review, we present mechanisms of the innate immune system leading to the generation of autoantibodies, alterations of the B-cell compartment in SSc, autoantibodies as biomarkers and autoantibody-mediated pathologies in SSc as well as potential therapeutic approaches to target these.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|
47
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
48
|
Denton CP, del Galdo F, Khanna D, Vonk MC, Chung L, Johnson SR, Varga J, Furst DE, Temple J, Zecchin C, Csomor E, Lee A, Wisniacki N, Flint SM, Reid J. Biological and clinical insights from a randomized phase 2 study of an anti-oncostatin M monoclonal antibody in systemic sclerosis. Rheumatology (Oxford) 2022; 62:234-242. [PMID: 35583273 PMCID: PMC9788816 DOI: 10.1093/rheumatology/keac300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The cytokine oncostatin M (OSM) is implicated in the pathology of SSc. Inhibiting OSM signalling using GSK2330811 (an anti-OSM monoclonal antibody) in patients with SSc has the potential to slow or stop the disease process. METHODS This multicentre, randomized, double-blind, placebo-controlled study enrolled participants ≥18 years of age with active dcSSc. Participants were randomized 3:1 (GSK2330811:placebo) in one of two sequential cohorts to receive GSK2330811 (cohort 1: 100 mg; cohort 2: 300 mg) or placebo s.c. every other week for 12 weeks. The primary endpoint was safety; blood and skin biopsy samples were collected to explore mechanistic effects on inflammation and fibrosis. Clinical efficacy was an exploratory endpoint. RESULTS Thirty-five participants were randomized to placebo (n = 8), GSK2330811 100 mg (n = 3) or GSK2330811 300 mg (n = 24). Proof of mechanism, measured by coordinate effects on biomarkers of inflammation or fibrosis, was not demonstrated following GSK2330811 treatment. There were no meaningful differences between GSK2330811 and placebo for any efficacy endpoints. The safety and tolerability of GSK2330811 were not favourable in the 300 mg group, with on-target, dose-dependent adverse events related to decreases in haemoglobin and platelet count that were not observed in the 100 mg or placebo groups. CONCLUSION Despite a robust and novel experimental medicine approach and evidence of target engagement, anticipated SSc-related biologic effects of GSK2330811 were not different from placebo and safety was unfavourable, suggesting OSM inhibition may not be a useful therapeutic strategy in SSc. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT03041025; EudraCT, 2016-003417-95.
Collapse
Affiliation(s)
- Christopher P Denton
- Correspondence to: Christopher Denton, Centre for Rheumatology and Connective Tissue Diseases, University College London, Division of Medicine, Rowland Hill Street, London NW3 2PF, UK. E-mail:
| | - Francesco del Galdo
- Institute of Rheumatic and Musculoskeletal Medicine, and Biomedical Research Centre, University of Leeds, Leeds, UK
| | - Dinesh Khanna
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorinda Chung
- Stanford University School of Medicine and Palo Alto VA Health Care System, Palo Alto, CA, USA
| | - Sindhu R Johnson
- Toronto Scleroderma Program, Toronto Western Hospital,Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - John Varga
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA,Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel E Furst
- University of California, Los Angeles, Los Angeles, CA,University of Washington, Seattle, WA, USA,University of Florence, Florence, Italy
| | | | | | | | - Amy Lee
- GlaxoSmithKline, Mississauga, Canada
| | | | | | | |
Collapse
|
49
|
Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: an updated review with therapeutic implications. Arthritis Res Ther 2022; 24:108. [PMID: 35562771 PMCID: PMC9102675 DOI: 10.1186/s13075-022-02787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a disease of connective tissue with high rate of morbidity and mortality highlighted by extreme fibrosis affecting various organs such as the dermis, lungs, and heart. Until now, there is no specific cure for the fibrosis occurred in SSc disease. The SSc pathogenesis is yet unknown, but transforming growth factor beta (TGF-β), endothelin-1 (ET-1), and Ras-ERK1/2 cascade are the main factors contributing to the tissue fibrosis through extracellular matrix (ECM) accumulation. Several studies have hallmarked the association of ET-1 with or without TGF-β and Ras-ERK1/2 signaling in the development of SSc disease, vasculopathy, and fibrosis of the dermis, lungs, and several organs. Accordingly, different clinical and experimental studies have indicated the potential therapeutic role of ET-1 and Ras antagonists in these situations in SSc. In addition, ET-1 and connective tissue growth factor (CTGF) as a cofactor of the TGF-β cascade play a substantial initiative role in inducing fibrosis. Once initiated, TGF-β alone or in combination with ET-1 and CTGF can activate several kinase proteins such as the Ras-ERK1/2 pathway that serve as the fundamental factor for developing fibrosis. Furthermore, Salirasib is a synthetic small molecule that is able to inhibit all Ras forms. Therefore, it can be used as a potent therapeutic factor for fibrotic disorders. So, this review discusses the role of TGF-β/ET-1/Ras signaling and their involvement in SSc pathogenesis, particularly in its fibrotic situation.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shokoofi
- Rheumatology Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Ocon A, Lokineni S, Korman B. Understanding and Therapeutically Targeting the Scleroderma Myofibroblast. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2022. [DOI: 10.1007/s40674-021-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|