1
|
Alberti G, Russo E, Lo Iacono M, Di Pace MR, Grasso F, Baldanza F, Pensabene M, La Rocca G, Sergio M. Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers. Cells 2025; 14:520. [PMID: 40214474 PMCID: PMC11988040 DOI: 10.3390/cells14070520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
The obstruction of the urinary tract is responsible for obstructive nephropathy (ON), also known as uropathy, which may then evolve in a renal parenchymal disease (hydronephrosis). Regarding the etiology of ON, it has been linked to the perturbation of processes occurring during the urinary tract development such as morphogenesis, maturation, and growth. Despite the research carried out in recent years, there is still a pressing need to elucidate the molecular processes underlying the disease. This may then result in the definition of novel biomarkers that can help in patient stratification and the monitoring of therapeutic choices. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with key roles in extracellular matrix remodeling due to their wide cleavage specificity and ability to modulate the bioavailability of growth factors. Despite the known changes in the local tissue microenvironment at the site of the urinary tract obstruction, the role of MMPs in ureteropelvic junction obstruction (UPJO) and, therefore, in the pathogenesis of renal damage in ON is not well-documented. In this review, we underline the possible roles of MMPs both in the pathogenesis of UPJO and in the progression of related hydronephrosis. The potential use of MMPs as biomarkers detectable in bodily fluids (such as the patient's urine) is also discussed.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Eleonora Russo
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Melania Lo Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Maria Rita Di Pace
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Francesco Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Fabio Baldanza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Marco Pensabene
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.L.I.)
| | - Maria Sergio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.R.D.P.); (F.G.); (F.B.); (M.P.)
| |
Collapse
|
2
|
McDermott A, Panduro NS, Taghavi I, Kjer HM, Søgaard SB, Nielsen MB, Jensen JA, Sørensen CM. The Zucker Diabetic Fatty Rat as a Model for Vascular Changes in Diabetic Kidney Disease: Characterising Hydronephrosis. Diagnostics (Basel) 2025; 15:782. [PMID: 40150124 PMCID: PMC11941088 DOI: 10.3390/diagnostics15060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Diabetic kidney disease (DKD) is a significant concern for global healthcare, particularly in individuals with diabetes. The Zucker rat strain is a commonly used model of type 2 diabetes, despite awareness that this animal can develop hydronephrosis. In this study, we present novel imaging data evaluating the accuracy of this animal model in replicating the vascular aspects of human DKD while examining the impact of hydronephrosis on its validity as a disease model. Methods: This study reused data from a population of male Zucker Diabetic Fatty (ZDF; n = 22) rats and Zucker Lean (ZL) rats (n = 22) aged 12 to approximately 40 weeks. Vascular casting was performed to enable visualisation of the renal vasculature. Anatomical regional volumes and vascular density data were obtained from μCT scans using image thresholding and manual analysis. The effects of hydronephrosis were evaluated using renal functional parameters and histological examination. Results: A significantly lower cortical vascular density, as well as lower total renal vascular density, was seen in ZDF rats compared to ZL rats, independent of age. We identified that hydronephrosis affected 92% of ZDF rats and 69% of ZL rats. Hydronephrosis cavity size was significantly correlated with the degree of hyperglycaemia and rate of diuresis but had no other detected impact on renal function, vascularity, or tissue histological architecture. Conclusions: These findings support using the Zucker rat strain as a model for vascular changes in DKD. Despite identifying severe hydronephrosis in this population, it had minimal quantifiable impact on renal function or diabetes modelling.
Collapse
Affiliation(s)
- Amy McDermott
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| | | | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|
3
|
Fan X, Li J, Gao Y, Li L, Zhang H, Bi Z. The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway. Mol Med 2025; 31:19. [PMID: 39844078 PMCID: PMC11756144 DOI: 10.1186/s10020-025-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway. METHODS The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca2+/P3+, and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured. RESULTS Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway. CONCLUSIONS Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.
Collapse
Affiliation(s)
- Xing Fan
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Jing Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Yan Gao
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Lin Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Haisong Zhang
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Zhaoyu Bi
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| |
Collapse
|
4
|
Miyano H, Endo A, Mizutani A, Nakagawa M, Sakuraya K, Murano Y, Nishizaki N, Fujinaga S, Ohtomo Y, Shimizu T. Inhibition of renal fibrosis via Nrf2 activators for unilateral ureteral obstruction in a rat model. Pediatr Int 2025; 67:e70000. [PMID: 40244713 DOI: 10.1111/ped.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 04/19/2025]
Abstract
BACKGROUND Reactive oxygen species aggravate renal fibrosis, prompting the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key mediator in the cellular response to oxygen stress. Nrf2 exerts renoprotective effects by upregulating antioxidant response element (ARE)-dependent genes that antagonize renal fibrosis. Elucidating mechanisms to attenuate renal fibrosis in children is essential for developing therapeutic interventions. This study aimed to examine the renoprotective effects of Nrf2 activators on ARE action in rats with unilateral ureteral obstruction (UUO)-induced renal injury. METHODS The time course of Nrf2 was evaluated in 8-week-old male Sprague-Dawley rats with UUO, with or without Nrf2 activators (bardoxolone methyl) for 2 weeks postoperatively. Kidney tissues were collected on Days 7 and 14 post-surgery. Renoprotective effects were examined using real-time polymerase chain reaction (RT-PCR) and histopathological analyses of kidney samples. RESULTS Nrf2 activators reduced the interstitial fibrotic area in UUO kidneys, causing a substantial decline in ED-1-positive cell infiltration and transforming growth factor-β expression. RT-PCR revealed that Nrf2 activators suppressed the expression of renal fibrotic factors and promoted the expression of ARE-dependent genes. Moreover, immunostaining for Nrf2 demonstrated increased nuclear translocation and activation induced by Nrf2 activators. CONCLUSIONS Nrf2 activators induced nuclear translocation and activation of Nrf2, resulting in upregulation of ARE-dependent genes. Although the function of Nrf2 in children is often unknown, this study may lead to future progress in oxidation and antioxidant function in children.
Collapse
Affiliation(s)
- Hiroki Miyano
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Amane Endo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Mizutani
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mayu Nakagawa
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Sakuraya
- Division of Nephrology, Saitama Children's Medical Center, Saitama, Japan
| | - Yayoi Murano
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoto Nishizaki
- Department of Pediatrics, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Shuichiro Fujinaga
- Division of Nephrology, Saitama Children's Medical Center, Saitama, Japan
| | - Yoshiyuki Ohtomo
- Department of Pediatrics, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Zhao H, Liu T, Yang CE, Hu YH, Niu Y, Lei SP, Chen L, Zhang MX. Poricoic acid A attenuates renal fibrosis by inhibiting endoplasmic reticulum stress-mediated apoptosis. Braz J Med Biol Res 2024; 57:e14249. [PMID: 39607209 DOI: 10.1590/1414-431x2024e14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Renal fibrosis is a common manifestation in the progression of chronic kidney disease (CKD) to kidney failure. Currently, there is no available therapy to prevent the progression of renal fibrosis. Poricoic acid A (PAA) isolated from Poria cocos shows notable antifibrotic effects. However, its potential mechanism is still unclear. This study aimed to evaluate the effects and the potential mechanisms of PAA against renal fibrosis. A mouse model of renal fibrosis was established using unilateral ureteral obstruction (UUO). We showed that PAA administration significantly alleviated renal lesions and collagen deposition in UUO mice. Mice with UUO resulted in epithelial-to-mesenchymal transition (EMT) and the activation of endoplasmic reticulum stress (ERS) in the renal tissues, while PAA treatment significantly inhibited EMT and ERS activation. Additionally, PAA markedly alleviated ERS-mediated apoptosis in UUO mice. Molecular docking results indicated that PAA stably combined to GRP78 and ATF4. In conclusion, these results demonstrated that PAA possesses a significant bioactivity against renal fibrosis and its treatment mechanism might be the inhibition of ERS-mediated apoptosis.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Chang-E Yang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yue-Huan Hu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Sheng-Ping Lei
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Lin Chen
- College of Biology, Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Northwest University Affiliated Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Khandelwal S, Dhande R, Parihar P, Mishra GV, Sood A. Role of Multidetector Computed Tomography Urography in Evaluating Obstructive Uropathy in a Tertiary Hospital in Rural India. Cureus 2024; 16:e70596. [PMID: 39483558 PMCID: PMC11527506 DOI: 10.7759/cureus.70596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION This study aims to evaluate the role of multidetector computed tomography (MDCT) urography in cases of obstructive uropathy to determine the cause, side, site, and level of obstruction and to differentiate between acute and chronic cases of obstructive uropathy based on imaging features. METHODS Using Cochran's formula, a sample size of 121 patients was calculated. The patients underwent computed tomography (CT) urography to assess the obstructing agents causing obstructive uropathy. The conducted scan had four phases: the non-contrast phase, corticomedullary phase, nephrographic phase, and excretory phase. We assessed the obstructive agents and the changes they caused in the urinary tract. RESULTS A total of 74 patients (61.16%) had calculus as their obstructive agent, followed by stricture (14.88%). The obstructive agents were intraluminal in 102 patients (84.3%) and extraluminal in 19 patients (15.7%). The ureter was the most common site of obstruction, accounting for 41.32%. The acute cases were 66 (54.55%), and the chronic cases were 55 (45.45%). A statistically significant (p<0.05) association was found using the chi-square test in the comparison of the enhancement and excretion of the kidneys and the type of case (acute or chronic). A statistically significant (p<0.05) association was found using the chi-square test in the comparison of the distribution of the secondary findings, such as perinephric fat stranding and perinephric fluid collection, and the type of case (acute or chronic). CONCLUSION MDCT urography is a highly reliable method of imaging the cause of obstructing agents in cases of obstructive uropathy and the damage caused by them. The type of enhancement and excretion and the secondary findings play an important role in determining the acuteness or the chronicity of the obstructive agent.
Collapse
Affiliation(s)
- Shreya Khandelwal
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Rajasbala Dhande
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| | - Anshul Sood
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha, IND
| |
Collapse
|
7
|
Belyaeva K, Rudenko V, Serova N, Morozov A, Taratkin M, Androsov A, Singla N, Shpunt I, Gomez Rivas J, Fajkovic H, Enikeev D, Kapanadze L. Kidney computed tomography perfusion in patients with ureteral obstruction. Urologia 2024; 91:486-493. [PMID: 38666713 DOI: 10.1177/03915603241244935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Kidney perfusion on CT is an encouraging surrogate for renal scintigraphy in assessing renal function. However, data on dynamic volumetric CT in patients with kidney obstruction is lacking. Thus, the aim of this study is to determine the feasibility of CT-based renal perfusion using a dynamic volume to assess renal hemodynamics at different degrees and durations of obstruction. MATERIALS AND METHODS We included patients with unilateral kidney obstruction in our single-center, prospective study. The patients were divided into three groups. Patients without dilatation of the pelvicalyceal system (PCS) and normal parenchyma thickness were included into Group 1; patients with PCS dilatation and parenchyma thickness 1.8-2.4 cm-into Group 2; and patients with ureteropyelocalicoectasia and parenchyma thickness less than 1.8 cm-into Group 3. RESULTS Total of 56 patients were enrolled. In Group 1 mean values of cortical and medullar arterial blood flow, blood volume, and extraction fraction were within the normal range. Changes in contralateral kidney were not determined. Patients from Group 2 showed significant differences in blood flow parameters in the cortical and medulla of the obstructed kidney. No changes in perfusion values in the contralateral kidney was observed. In patients from Group 3 there was a marked decrease in perfusion on the side of obstruction compared to Group 2, indicating that the degree of expansion of the PCS directly correlates with the change in blood flow. However, in the contralateral kidney, these indicators exceeded the normal values of perfusion. CONCLUSION CT perfusion allows to objectively assess changes in blood flow in the setting of renal obstruction. The degree of obstruction directly affects the measured rate of blood flow.
Collapse
Affiliation(s)
- Ksenia Belyaeva
- Department of Radiation Diagnostics and Radiation Therapy, Faculty of Medicine, Sechenov University, Moscow, Russia
| | - Vadim Rudenko
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Natalya Serova
- Department of Radiation Diagnostics and Radiation Therapy, Faculty of Medicine, Sechenov University, Moscow, Russia
| | - Andrey Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Mark Taratkin
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | | | - Nirmish Singla
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Igal Shpunt
- Department of Urology, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Juan Gomez Rivas
- Department of Urology, Clinico San Carlos University Hospital, Madrid, Spain
| | - Harun Fajkovic
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Dmitry Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
- Department of Urology, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Lida Kapanadze
- Department of Radiation Diagnostics and Radiation Therapy, Faculty of Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
8
|
Zhang K, Sun L, Zhang W, Cao M, Ma X, Yu BY, Xu H, Zheng X, Tian J. Discovery of Natural Products Alleviating Renal Fibrosis with a Viscosity-Responsive Molecular Probe. Anal Chem 2024; 96:6356-6365. [PMID: 38588440 DOI: 10.1021/acs.analchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Kaiyu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mingyuan Cao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xiaonan Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
10
|
Zhu JH, Wang L, Ma ZX, Duan JA, Tao JH. Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple ameliorates renal interstitial fibrosis in CKD rats by inhibiting the TGF-β1/MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117039. [PMID: 37579922 DOI: 10.1016/j.jep.2023.117039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb couple Rehmannia glutinosa Libosch and Cornus officinalis Sieb (RC), originated from "Liuwei Dihuang Pill" which recorded in Key to Therapeutics of Children's Diseases. Traditionally, they have been used widely for their ability to nourish yin and energize the kidneys. Our previous study indicated that the RC could protect against adenine induced Chronic kidney disease (CKD) rats. Nevertheless, there is still no clear explanation of the mechanisms by which RC affects renal interstitial fibrosis in CKD rats. AIM OF THE STUDY Current Work aims to explore the amelioration and potential mechanism of RC on renal interstitial fibrosis in CKD rats. MATERIALS AND METHODS CKD rats were induced by adenine. Two weeks after administration, blood, urine, and kidney tissue were collected for biochemical analysis. Observing the physiological state of rats through the changes of rat body weight and renal index. The pro-inflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA), while renal tissue damage and fibrosis were assessed with Hematoxylin-eosin staining (H&E) and Masson's trichrome staining. In order to determine the levels of indicators and proteins associated with fibrosis signaling pathways, real time PCR (Rt-PCR), Western blot (WB), and immunofluorescence were employed. RESULTS The renal interstitial fibrosis led to impaired cellular functions with increased the levels of Blood Urea Nitrogen (BUN), Urine protein (UP), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor alpha (TNF-α). and simultaneous up-regulated collagenⅠ(COL-1), fibronection (FN), α-smooth muscle actin (a-SMA), transforming growth factor-β1 (TGF-β1), c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK), down-regulated the expression of the E-cadherin proteins. RC notably improved renal dysfunction in CKD rats as indicated by decreases in BUN, UP, and renal index. In addition, consistent with the morphological changes of renal tissue, renal interstitial fibrosis in CKD rats after RC intervention was significantly improved, mainly manifested by a decrease in the positive expression of COL-1, FN, and a-SMA, and increased levels of E-cadherin protein. Meanwhile, RC reduced the classical pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in adenine-induced CKD rats. Additionally, RC administration also down-regulated TGF-β1, JNK, p38 and ERK. CONCLUSION In conclusion, RC may reduce inflammation in adenine induced CKD rats, improve extracellular matrix (ECM) components deposition, and diminish epithelial-mesenchymal transition (EMT) marker protein levels. Furthermore, RC intervention significantly reduces the release of inflammatory cytokines and inhibits the TGF-β1/MAPK signaling pathway. Based on the results, RC might be useful in the treatment of adenine induced renal fibrosis.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Ling Wang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China
| | - Zhen-Xiang Ma
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jin-Ao Duan
- Collaborative Innovation Center of Chinese Medicine Resources, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, China
| | - Jin-Hua Tao
- School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China.
| |
Collapse
|
11
|
Zhao Y, Wang H, Tang Y, Wang J, Wu X, He Z, He Y, Tang Z. SNHG16/miR-205/HDAC5 is involved in the progression of renal fibrosis. J Biochem Mol Toxicol 2024; 38:e23617. [PMID: 38079211 DOI: 10.1002/jbt.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Renal interstitial fibrosis (RIF) represents an irreversible and progressive pathological manifestation of chronic renal disease, which ultimately leads to end-stage renal disease. Long noncoding RNAs (lncRNAs) have been suggested to be involved in the progression of RIF. Small nucleolar RNA host gene 16 (SNHG16), a member of lncRNAs, has been found to be involved in the progression of pulmonary fibrosis. This paper first researched the effect of SNHG16 on renal fibrosis. We established a unilateral ureteral obstruction (UUO)-induced mouse RIF model by ligation of the left ureter to evaluate the biological function of SNHG16 in RIF. As a result, SNHG16 was upregulated in UUO-induced renal fibrotic tissues. Knockdown of SNHG16 inhibited RIF and reduced alpha-smooth muscle actin (α-SMA), fibronectin, and college IV expression. miR-205 was a target of SNHG16, and downregulated in UUO-induced renal fibrotic tissues. Inhibition of miR-205 promoted RIF and increased the expression of α-SMA, college IV, and fibronectin. Overexpression of SNHG16 promoted the UUO-induced RIF, but miR-205 abrogated this effect of SNHG16. Histone deacetylase 5 (HDAC5) showed high expression in UUO-induced renal fibrotic tissues. Knockdown of HDAC5 significantly reduced α-SMA, fibronectin, and college IV expression in renal tissues of UUO-induced mice. Inhibition of miR-205 promoted HDAC5 expression, but knockdown of SNHG16 inhibited HDAC5 expression in renal tissues of UUO-induced mice. In conclusion, SHNG16 is highly expressed in renal fibrotic tissues of UUO-induced mice. Knockdown of SHNG16 may prevent UUO-induced RIF by indirectly upregulating HDAC5 via targeting miR-205. SHNG16 may be novel target for treating renal fibrosis.
Collapse
Affiliation(s)
- Yingdan Zhao
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Hanqing Wang
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai City, China
| | - Yunhai Tang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Juan Wang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Xia Wu
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Zifan He
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Yayun He
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| | - Zhihuan Tang
- Department of Nephrology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai City, China
| |
Collapse
|
12
|
Claude-Taupin A, Isnard P, Bagattin A, Kuperwasser N, Roccio F, Ruscica B, Goudin N, Garfa-Traoré M, Regnier A, Turinsky L, Burtin M, Foretz M, Pontoglio M, Morel E, Viollet B, Terzi F, Codogno P, Dupont N. The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells. Nat Commun 2023; 14:8056. [PMID: 38052799 DOI: 10.1038/s41467-023-43775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| | - Pierre Isnard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Alessia Bagattin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | | | - Federica Roccio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Biagina Ruscica
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Goudin
- Structure Fédérative de Recherche Necker, US24-UMS3633, Paris, France
| | | | - Alice Regnier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Lisa Turinsky
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Martine Burtin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Marc Foretz
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Marco Pontoglio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Benoit Viollet
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Fabiola Terzi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Dupont
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
13
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
15
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
16
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
17
|
Han S, Choi H, Park H, Kim JJ, Lee EJ, Ham YR, Na KR, Lee KW, Chang YK, Choi DE. Omega-3 Fatty Acids Attenuate Renal Fibrosis via AMPK-Mediated Autophagy Flux Activation. Biomedicines 2023; 11:2553. [PMID: 37760994 PMCID: PMC10525956 DOI: 10.3390/biomedicines11092553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The unilateral ureteral obstruction (UUO) injury model is well-known to mimic human chronic kidney disease, promoting the rapid onset and development of kidney injury. ω3-poly unsaturated fatty acids (PUFAs) have been observed to protect against tissue injury in many disease models. In this study, we assessed the efficacy of ω3-PUFAs in attenuating UUO injury and investigated their mechanism of action. The immortalized human proximal tubular cells human kidney-2 (HK2) were incubated for 72 h with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) in various concentrations, in the presence or absence of transforming growth factor (TGF)-β. DHA/EPA reduced the epithelial-mesenchymal transition in the TGF-β-treated HK2 cells by enhancing autophagy flux and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. C57BL/6 mice were divided into four groups and treated as follows: sham (no treatment, n = 5), sham + ω3-PUFAs (n = 5), UUO (n = 10), and UUO + ω3-PUFAs (n = 10). Their kidneys and blood were harvested on the seventh day following UUO injury. The kidneys of the ω3-PUFAs-treated UUO mice showed less oxidative stress, inflammation, and fibrosis compared to those of the untreated UUO mice. Greater autophagic flux, higher amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7, lower amounts of p62, and higher levels of cathepsin D and ATP6E were observed in the kidneys of the omega-3-treated UUO mice compared to those of the control UUO mice. In conclusion, ω3-PUFAs enhanced autophagic activation, leading to a renoprotective response against chronic kidney injury.
Collapse
Affiliation(s)
- Suyeon Han
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon Saint Mary’s Hospital, Daejeon 34943, Republic of Korea;
| | - Hyerim Park
- Department of Medical Science, Medical School, Chungnam National University, Daejeon 35015, Republic of Korea; (H.P.); (J.-J.K.)
| | - Jwa-Jin Kim
- Department of Medical Science, Medical School, Chungnam National University, Daejeon 35015, Republic of Korea; (H.P.); (J.-J.K.)
| | - Eu-Jin Lee
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Young-Rok Ham
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Ki-Rayng Na
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Kang-Wook Lee
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
| | - Yoon-Kyung Chang
- Department of Nephrology, Daejeon Saint Mary’s Hospital, Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Dae-Eun Choi
- Department of Nephrology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; (S.H.); (E.-J.L.); (Y.-R.H.); (K.-R.N.); (K.-W.L.)
- Department of Medical Science, Medical School, Chungnam National University, Daejeon 35015, Republic of Korea; (H.P.); (J.-J.K.)
| |
Collapse
|
18
|
Song SH, Han D, Park K, Um JE, Kim S, Ku M, Yang J, Yoo TH, Yook JI, Kim NH, Kim HS. Bone morphogenetic protein-7 attenuates pancreatic damage under diabetic conditions and prevents progression to diabetic nephropathy via inhibition of ferroptosis. Front Endocrinol (Lausanne) 2023; 14:1172199. [PMID: 37293506 PMCID: PMC10244744 DOI: 10.3389/fendo.2023.1172199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Background Approximately 30% of diabetic patients develop diabetic nephropathy, a representative microvascular complication. Although the etiological mechanism has not yet been fully elucidated, renal tubular damage by hyperglycemia-induced expression of transforming growth factor-β (TGF-β) is known to be involved. Recently, a new type of cell death by iron metabolism called ferroptosis was reported to be involved in kidney damage in animal models of diabetic nephropathy, which could be induced by TGF-β. Bone morphogenetic protein-7 (BMP7) is a well-known antagonist of TGF-β inhibiting TGF-β-induced fibrosis in many organs. Further, BMP7 has been reported to play a role in the regeneration of pancreatic beta cells in diabetic animal models. Methods We used protein transduction domain (PTD)-fused BMP7 in micelles (mPTD-BMP7) for long-lasting in vivo effects and effective in vitro transduction and secretion. Results mPTD-BMP7 successfully accelerated the regeneration of diabetic pancreas and impeded progression to diabetic nephropathy. With the administration of mPTD-BMP7, clinical parameters and representative markers of pancreatic damage were alleviated in a mouse model of streptozotocin-induced diabetes. It not only inhibited the downstream genes of TGF-β but also attenuated ferroptosis in the kidney of the diabetic mouse and TGF-β-stimulated rat kidney tubular cells. Conclusion BMP7 impedes the progression of diabetic nephropathy by inhibiting the canonical TGF-β pathway, attenuating ferroptosis, and helping regenerate diabetic pancreas.
Collapse
Affiliation(s)
- Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dawool Han
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kyeonghui Park
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jo Eun Um
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Seonghun Kim
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
- R&D Center, MET Life Science, Seoul, Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
19
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
20
|
Kuo KL, Chiang CW, Chen YMA, Yu CC, Lee TS. Folic Acid Ameliorates Renal Injury in Experimental Obstructive Nephropathy: Role of Glycine N-Methyltransferase. Int J Mol Sci 2023; 24:ijms24076859. [PMID: 37047834 PMCID: PMC10095475 DOI: 10.3390/ijms24076859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid exerts both anti-inflammatory and antifibrotic effects. Glycine N-methyltransferase (GNMT), the major folic acid-binding protein in the liver, is a crucial enzyme that regulates the cellular methylation process by maintaining S-adenosylmethionine levels. However, as yet neither the therapeutic effects of folic acid in renal fibrosis nor whether GNMT is involved in these folic acid-associated mechanisms has been investigated. First, the expression of GNMT was examined in human kidneys with or without obstructive nephropathy. Later, wild-type and GNMT knockout (GNMT-/-) mice were subjected to unilateral ureteral obstruction (UUO) and then treated with either folic acid or vehicle for 14 days. Renal tubular injury, inflammation, fibrosis, and autophagy were evaluated by histological analysis and Western blotting. We observed increased expression of GNMT in humans with obstructive nephropathy. Furthermore, UUO significantly increased the expression of GNMT in mice; in addition, it caused renal injury as well as the development of both hydronephrosis and tubular injury. These were all alleviated by folic acid treatment. In contrast, GNMT-/- mice exhibited exacerbated UUO-induced renal injury, but the protective effect of folic acid was not observed in GNMT-/- mice. We propose a novel role for folic acid in the treatment of renal fibrosis, which indicates that GNMT may be a therapeutic target.
Collapse
Affiliation(s)
- Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231405, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chin-Wei Chiang
- Department of Physiology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chih-Chin Yu
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231405, Taiwan
- College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute, Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
21
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
22
|
Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis. Nat Commun 2023; 14:1223. [PMID: 36869030 PMCID: PMC9984537 DOI: 10.1038/s41467-023-36664-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Renal tubular atrophy is a hallmark of chronic kidney disease. The cause of tubular atrophy, however, remains elusive. Here we report that reduction of renal tubular cell polynucleotide phosphorylase (PNPT1) causes renal tubular translation arrest and atrophy. Analysis of tubular atrophic tissues from renal dysfunction patients and male mice with ischemia-reperfusion injuries (IRI) or unilateral ureteral obstruction (UUO) treatment shows that renal tubular PNPT1 is markedly downregulated under atrophic conditions. PNPT1 reduction leads to leakage of mitochondrial double-stranded RNA (mt-dsRNA) into the cytoplasm where it activates protein kinase R (PKR), followed by phosphorylation of eukaryotic initiation factor 2α (eIF2α) and protein translational termination. Increasing renal PNPT1 expression or inhibiting PKR activity largely rescues IRI- or UUO-induced mouse renal tubular injury. Moreover, tubular-specific PNPT1-knockout mice display Fanconi syndrome-like phenotypes with impaired reabsorption and significant renal tubular injury. Our results reveal that PNPT1 protects renal tubules by blocking the mt-dsRNA-PKR-eIF2α axis.
Collapse
|
23
|
Chen Z, Wu S, Zeng Y, Li X, Wang M, Chen Z, Chen M. The antifibrotic and anti-inflammatory effects of FZHY prescription on the kidney in rats after unilateral ureteral obstruction. Acta Cir Bras 2023; 37:e371003. [PMID: 36629622 PMCID: PMC9829242 DOI: 10.1590/acb371003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To explore the potential impact of traditional Chinese herb FuZhengHuaYuJiangZhuTongLuo recipe (FZHY) on renal interstitial fibrosis (RIF) in chronic kidney disease (CKD) at cellular and molecular levels. METHODS Unilateral ureteral obstruction (UUO) rats were established as the RIF model in vivo. The rats were given intragastric administration with FZHY once a day for consecutive 7, 14 and 21 days, respectively. The renal function parameters and inflammation indicators in kidney tissues were measured using enzyme-linked immunosorbent assay, the CD4+/CD8+ T cells in peripheral blood was detected using flow cytometry, the renal fibrosis degree was estimated using Masson's staining, and the fibrosis-related genes' expression was detected using quantitative polymerase chain reaction, western blotting, and immunohistochemistry analyses. RESULTS FZHY prescription reduced the serum creatinine and blood urea nitrogen, decreased the levels of c-reactive protein, interleukin-1, interleukin-6 and tumor necrosis factor-α in kidney tissues, and increased the ratio of CD4+/CD8+ T cells in peripheral blood. FZHY prescription suppressed the renal tissue fibrosis and reduced the levels of laminin, fibronectin, collagen I and collagen III. CONCLUSIONS FZHY prescription suppressed the renal fibrosis and improved the condition of "Healthy Qi Deficiency and Evil Qi Excess" in rats with UUO, which may provide an effective method for CKD treatment.
Collapse
Affiliation(s)
- Ziwei Chen
- M.M. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Affiliated Integrated TCM and Western Medicine Hospital of Chengdu – Chengdu Integrated TCM and Western Medicine Hospital – Chengdu First People’s Hospital – Chengdu, China.,Corresponding author:
- (86) 18980880236
| | - Shaobo Wu
- M.M. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Hospital of Chengdu – Chengdu, China
| | - Yu Zeng
- B.S. Chengdu University of Traditional Chinese Medicine – Department of Clinical Laboratory – Hospital of Chengdu – Chengdu, China
| | - Xueying Li
- M.M. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Hospital of Chengdu – Chengdu, China
| | - Mengping Wang
- M.M. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Hospital of Chengdu – Chengdu, China
| | - Zejun Chen
- M.D. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Affiliated Integrated TCM and Western Medicine Hospital of Chengdu – Chengdu Integrated TCM and Western Medicine Hospital – Chengdu First People’s Hospital – Chengdu, China
| | - Ming Chen
- M.M. Chengdu University of Traditional Chinese Medicine – Department of Nephrology – Hospital of Chengdu – Chengdu, China.,Corresponding author:
- (86) 18980880236
| |
Collapse
|
24
|
Yokoi H, Toda N, Mukoyama M. Generation of Conditional KO Mice of CCN2 and Its Function in the Kidney. Methods Mol Biol 2023; 2582:391-409. [PMID: 36370365 DOI: 10.1007/978-1-0716-2744-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CCN2 has been shown to be closely involved in the progression of renal fibrosis, indicating the potential of CCN2 inhibition as a therapeutic target. Although the examination of the renal disease phenotypes of adult CCN2 knockout mice has yielded valuable scientific insights, perinatal death has limited studies of CCN2 in vivo. Conditional knockout technology has become widely used to delete genes in the target cell populations or time points using cell-specific Cre recombinase-expressing mice. Therefore, several lines of CCN2-floxed mice have been developed to assess the functional role of CCN2 in adult mice.CCN2 levels are elevated in renal fibrosis and proliferative glomerulonephritis, making them suitable disease models for assessing the effects of CCN2 deletion on the kidney. Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis and transforming growth factor-β. CCN2 is increased in fibrosis and modulates a number of downstream signaling pathways involved in the fibrogenic properties of TGF-β. Unilateral ureteral obstruction is one of the most widely used models of renal tubulointerstitial fibrosis. In addition, anti-glomerular basement membrane antibody glomerulonephritis has become the most widely used model for evaluating the effect of increased renal CCN2 expression. Herein, we describe the construction of CCN2-floxed mice and inducible systemic CCN2 conditional knockout mice and methods for the operation of unilateral ureteral obstruction and the induction of anti-glomerular basement membrane antibody glomerulonephritis.
Collapse
Affiliation(s)
- Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Naohiro Toda
- Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
25
|
Zhou B, Zhang Y, Dang X, Li B, Wang H, Gong S, Li S, Meng F, Xing J, Li T, He L, Zou P, Wan Y. Up-regulation of the human-specific CHRFAM7A gene protects against renal fibrosis in mice with obstructive nephropathy. J Cell Mol Med 2023; 27:52-65. [PMID: 36479618 PMCID: PMC9806291 DOI: 10.1111/jcmm.17630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a major factor in the progression of chronic kidney diseases. Obstructive nephropathy is a common cause of renal fibrosis, which is also accompanied by inflammation. To explore the effect of human-specific CHRFAM7A expression, an inflammation-related gene, on renal fibrosis during obstructive nephropathy, we studied CHRFAM7A transgenic mice and wild type mice that underwent unilateral ureteral obstruction (UUO) injury. Transgenic overexpression of CHRFAM7A gene inhibited UUO-induced renal fibrosis, which was demonstrated by decreased fibrotic gene expression and collagen deposition. Furthermore, kidneys from transgenic mice had reduced TGF-β1 and Smad2/3 expression following UUO compared with those from wild type mice with UUO. In addition, the overexpression of CHRFAM7A decreased release of inflammatory cytokines in the kidneys of UUO-injured mice. In vitro, the overexpression of CHRFAM7A inhibited TGF-β1-induced increase in expression of fibrosis-related genes in human renal tubular epithelial cells (HK-2 cells). Additionally, up-regulated expression of CHRFAM7A in HK-2 cells decreased TGF-β1-induced epithelial-mesenchymal transition (EMT) and inhibited activation f TGF-β1/Smad2/3 signalling pathways. Collectively, our findings demonstrate that overexpression of the human-specific CHRFAM7A gene can reduce UUO-induced renal fibrosis by inhibiting TGF-β1/Smad2/3 signalling pathway to reduce inflammatory reactions and EMT of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Bingru Zhou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Yudian Zhang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Bowen Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Shu Gong
- Science and Technology DivisionSouthwest Medical UniversityLuzhouChina
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Fanyin Meng
- Indiana Center for Liver Research, Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Tian Li
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Longfei He
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ping Zou
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
26
|
Wu J, Xu Y, Geng Z, Zhou J, Xiong Q, Xu Z, Li H, Han Y. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway. Sci Rep 2022; 12:19160. [PMID: 36357407 PMCID: PMC9649626 DOI: 10.1038/s41598-022-20719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Renal fibrosis (RF) is the common pathway for a variety of chronic kidney diseases that progress to end-stage renal disease. Chitosan oligosaccharide (COS) has been identified as possessing many health functions. However, it is not clear whether COS can prevent RF. The purpose of this paper was to explore the action and mechanism of COS in alleviating RF. First, an acute unilateral ureteral obstruction operation (UUO) in male BALB/c mice was performed to induce RF, and COS or fosinopril (positive control drug) were administered for 7 consecutive days. Data from our experiments indicated that COS treatment can significantly alleviate kidney injury and decrease the levels of blood urea nitrogen (BUN) and serum creatinine (SCr) in the UUO mouse model. More importantly, our results show that COS can reduce collagen deposition and decrease the expression of fibrosis proteins, such as collagen IV, fibronectin, collagen I, α-smooth muscle actin (α-SMA) and E-cadherin, ameliorating experimental renal fibrosis in vivo. In addition, we also found that COS suppressed oxidative stress and inflammation in RF model mice. Further studies indicated that the mechanism by which COS alleviates renal fibrosis is closely related to the regulation of the TGF-β1/Smad pathway. COS has a therapeutic effect on ameliorating renal fibrosis similar to that of the positive control drug fosinopril. Taken together, COS can alleviate renal fibrosis induced by UUO by reducing oxidative stress damage and regulating the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Jun Wu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China ,grid.411866.c0000 0000 8848 7685Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong People’s Republic of China
| | - Yingtao Xu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China
| | - Zikai Geng
- grid.440653.00000 0000 9588 091XSchool of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003 Shandong People’s Republic of China
| | - Jianqing Zhou
- grid.511252.0Department of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223003 Jiangsu China
| | - Qingping Xiong
- grid.417678.b0000 0004 1800 1941Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu People’s Republic of China
| | - Zhimeng Xu
- grid.417678.b0000 0004 1800 1941Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu People’s Republic of China
| | - Hailun Li
- grid.417303.20000 0000 9927 0537Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, 223002, Huai’an, Jiangsu People’s Republic of China
| | - Yun Han
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, 264199 Shandong People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003 Shandong People’s Republic of China
| |
Collapse
|
27
|
El-Waseif EG, Sharawy MH, Suddek GM. The modulatory effect of sodium molybdate against cisplatin-induced CKD: Role of TGF-β/Smad signaling pathway. Life Sci 2022; 306:120845. [DOI: 10.1016/j.lfs.2022.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
28
|
Stabinska J, Singh A, Haney NM, Li Y, Sedaghat F, Kates M, McMahon MT. Noninvasive assessment of renal dynamics and
pH
in a unilateral ureter obstruction model using
DCE MR‐CEST
urography. Magn Reson Med 2022; 89:343-355. [PMID: 36089805 PMCID: PMC9753579 DOI: 10.1002/mrm.29436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To assess the potential of DCE MR CEST urography for assessing renal function in mice with unilateral ureter obstruction (UUO) by simultaneous pH and renal uptake/clearance measurements following injection of iopamidol. METHODS The right ureter of nine mice was obstructed via suture ligation. The animals were imaged at day 1, 2, and 3 post-obstruction on an 11.7T MRI scanner. Ninety-six sets of saturated CEST images at 4.3 and 5.5 ppm were collected. Renal pH values were obtained by calculating the signal ratio for these two frequencies and using a pH calibration curve. Renal time activity curves were measured as a percentage change in the post-injection CEST signal at 4.3 ppm relative to the average pre-injection signal. RESULTS For the healthy mice, the time activity curves of both kidneys were nearly identical and displayed rapid excretion of contrast. For the UUO mice, the dynamic CEST curves for the obstructed kidneys displayed prolonged time to peak (TTP) values and delayed contrast excretion compared with the contralateral (CL) kidneys. Renal pH maps of the healthy animals showed similar acidic values for both kidneys (pH 6.65 ± 0.04 vs 6.67 ± 0.02), whereas in the obstructed kidneys there was a significant increase in pH values compared with the CL kidneys (pH 6.67 ± 0.08 vs 6.79 ± 0.11 in CL and UUO kidneys, respectively). CONCLUSION Our findings indicate that DCE-MR-CEST urography can detect changes in renal uptake/excretion and pH homeostasis and distinguish between obstructed and unobstructed kidney as early as 1 day after UUO.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Aruna Singh
- F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Nora M. Haney
- James Buchanan Brady Urological Institute and Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Farzad Sedaghat
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Max Kates
- James Buchanan Brady Urological Institute and Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Michael T. McMahon
- F.M. Kirby Research Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland USA
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
29
|
You D, Weng M, Wu X, Nie K, Cui J, Chen Y, Yang L, Wan J. C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the activation of the NLRP3 inflammasome. Life Sci 2022; 308:120905. [PMID: 36041502 DOI: 10.1016/j.lfs.2022.120905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
AIMS Complement component 3a and its receptor (C3a/C3aR) and nucleotide-binding oligomerization domain-like receptor protein-3 (NLRP3) inflammasome are involved in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanisms have not been clearly illuminated. This study aimed to elucidate the roles of C3aR and the NLRP3 inflammasome involved in unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MAIN METHODS UUO models were established using male C57BL/6 wild-type (WT) mice and age-matched C3aR-deficient mice. MCC950, an inhibitor of the NLRP3 inflammasome, was intraperitoneally injected in UUO mice. Blood samples were collected to quantify serum creatinine and urea. Kidney samples were collected for hematoxylin-eosin (HE), Masson, and immunohistochemistry staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and Western blotting. KEY FINDINGS Renal function, renal fibrosis, and renal inflammation in WT mice were aggravated with longer periods of UUO. C3aR deficiency improved renal function and attenuated renal fibrosis and the activation of the NLRP3 inflammasome in UUO mice. Renal function and renal fibrosis in UUO mice were attenuated after NLRP3 inflammasome inhibition; however, the expression of C3aR did not change. SIGNIFICANCE Our data revealed that C3aR may aggravate RIF by regulating the activation of the NLRP3 inflammasome (particularly regulating inflammasome assembly) in renal tubular epithelial cells in the UUO model.
Collapse
Affiliation(s)
- Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
30
|
Jia Q, Zhang X, Hao G, Zhao Y, Lowe S, Han L, Qin J. Tongluo Yishen Decoction Ameliorates Renal Fibrosis via NLRP3-Mediated Pyroptosis In Vivo and In Vitro. Front Pharmacol 2022; 13:936853. [PMID: 35873572 PMCID: PMC9298980 DOI: 10.3389/fphar.2022.936853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: In this study, we investigated the mechanism of Tongluo Yishen (TLYS) decoction in more detail, from the perspective of pyroptosis in the unilateral ureteral ligation (UUO) model and the hypoxia-induced renal tubular epithelial (NRK-52E) cell. Method: The UUO model was used, and after 14 days of TLYS intervention, rats were tested for blood creatinine and urea nitrogen, HE staining was used to observe the pathological changes in the kidney, Masson staining was used to assess the degree of interstitial fibrosis, western blot was used to detect the changes of α-smooth muscle actin (α-SMA) protein expression level, immunohistochemistry and western blot detected the changes in protein expression levels of NOD-like receptor protein 3 inflammasome (NLRP3), gasdermin D (GSDMD), cysteinyl aspartate specific proteinase (caspase-1), interleukin 18 (IL-18) and interleukin 1β (I L-1β). A hypoxia model was created using NRK-52E cell, and after different concentrations of TLYS decoction intervention, the changes in the expression levels of pyroptosis were used with immunofluorescence and western blot methods. Results: TLYS decoction improved renal function, delayed the advancement of renal interstitial fibrosis, and inhibited pyroptosis in UUO rats. Furthermore, we observed that TLYS can mitigate hypoxia-induced NRK-52E cell damage via the suppression of the NLRP3-mediated pyroptosis. Conclusion: TLYS decoction exert renoprotective effects by inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Qi Jia
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Scott Lowe
- Kansas City University of Medicine and Biosciences, College of Osteopathic Medicine, Kansas City, MO, United States
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Baek S, Jang MG, Kim JW, Ko HC, Nam MH, Hur SP, Park SA, Kim SJ. Polymethoxyflavone-rich Fraction from Citrus sunki Leaves Alleviates Renal Dysfunction in Mice with Unilateral Ureteral Obstruction. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Polymethoxyflavones (PMFs) are flavonoid compounds present in citrus plants that are proposed to be advantageous to human health. However, the advantageous effects of PMFs in the context of renal dysfunction are unclear. In this study, we made a PMF-rich fraction (PRF) from the leaves of Citrus sunki Hort ex. Tanaka and identified its components using liquid chromatography and mass spectrometry. We then investigated the effect of PRF—comprising 9 types of PMF—on renal dysfunction induced by unilateral ureteral obstruction (UUO) in mice. Animals were divided into four experimental groups ( n = 7 per group): I) sham-operated group (Sham); II) UUO group (UUO); III) UUO + Enalapril 0.1 mg/1 mL (UUO + Enap); IV) UUO + PRF 100 mg/kg/day (UUO + PRF). All mice were orally administered with the drugs once a day from 7 days before UUO to 1 week after UUO. After the experiments were over, serum and tissues were taken for biochemical and histological analysis. PRF promoted the recovery of body weight in the background of UUO. Biochemical and histological analysis revealed that PRF ameliorated UUO-induced renal dysfunction and moderately reversed inflammation and tubulointerstitial fibrosis. Further, PRF inhibited the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), transforming growth factor-β (TGF-β), collagen I (Col-I), and collagen IV (Col-IV). These results suggest that PRF improves UUO-induced renal dysfunction by regulating the expression of inflammatory and fibrotic response-related genes.
Collapse
Affiliation(s)
- Songyee Baek
- Department of Biology, Jeju National University, Jeju, Korea
- Biotech Regional Innovation Center, Jeju National University, Jeju, Korea
| | - Mi Gyeong Jang
- Biotech Regional Innovation Center, Jeju National University, Jeju, Korea
| | - Jae-Won Kim
- Biotech Regional Innovation Center, Jeju National University, Jeju, Korea
| | - Hee Chul Ko
- Jeju Institute of Korean Medicine, Jeju, Korea
| | - Mi Hyun Nam
- Jeju Institute of Korean Medicine, Jeju, Korea
| | - Sung-Pyo Hur
- Korea Institute of Ocean Science & Technology, Jeju, Korea
| | - Soo Ah Park
- In Vivo Research Center, Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Se-Jae Kim
- Department of Biology, Jeju National University, Jeju, Korea
- Biotech Regional Innovation Center, Jeju National University, Jeju, Korea
| |
Collapse
|
32
|
SS-31, a Mitochondria-Targeting Peptide, Ameliorates Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1295509. [PMID: 35707274 PMCID: PMC9192202 DOI: 10.1155/2022/1295509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential for eukaryotic cell activity and function, and their dysfunction is associated with the development and progression of renal diseases. In recent years, there has been a rapid development in mitochondria-targeting pharmacological strategies as mitochondrial biogenesis, morphology, and function, as well as dynamic changes in mitochondria, have been studied in disease states. Mitochondria-targeting drugs include nicotinamide mononucleotide, which supplements the NAD+ pool; mitochondria-targeted protective compounds, such as MitoQ; the antioxidant coenzyme, Q10; and cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. However, traditional drugs targeting mitochondria have limited clinical applications due to their inability to be effectively absorbed by mitochondria in vivo and their high toxicity. Recently, SS-31, a mitochondria-targeting antioxidant, has received significant research attention as it decreases mitochondrial reactive oxygen species production and prevents mitochondrial depolarization, mitochondrial permeability transition pore formation, and Ca2+-induced mitochondrial swelling, and has no effects on normal mitochondria. At present, few studies have evaluated the effects of SS-31 against renal diseases, and the mechanism underlying its action is unclear. In this review, we first discuss the pharmacokinetics of SS-31 and the possible mechanisms underlying its protective effects against renal diseases. Then, we analyze its renal disease-improving effects in various experimental models, including animal and cell models, and summarize the clinical evidence of its benefits in renal disease treatment. Finally, the potential mechanism underlying the action of SS-31 against renal diseases is explored to lay a foundation for future preclinical studies and for the evaluation of its clinical applications.
Collapse
|
33
|
Yin H, Liang W, Zhao D. The Application Value of the Renal Region of Interest Corrected by Computed Tomography in Single-Kidney Glomerular Filtration Rate for the Evaluation of Patients With Moderate or Severe Hydronephrosis. Front Physiol 2022; 13:861895. [PMID: 35615674 PMCID: PMC9124959 DOI: 10.3389/fphys.2022.861895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: This study aimed to investigate the application value of the renal region of interest (ROI) corrected by computed tomography (CT) in single-kidney glomerular filtration rate (GFR) in patients with hydronephrosis. Methods: A total of 46 patients with hydronephrosis were divided into four groups based on their degree of unilateral hydronephrosis: a normal group (left kidney and right kidney) and three abnormal groups (mild, moderate, and severe hydronephrosis). GFR was measured using the two-sample method (tGFR). The single-kidney GFR of each patient was derived from differential renal function values in dynamic renal imaging multiplied by GFR. The single-kidney GFRs, including GFR from the Gates method (gGFRsingle) and CT area-corrected GFR (aGFRsingle), were compared with tGFRsingle. A paired-sample t-test and Pearson's test were used for data analysis. p < 0.05 was considered statistically significant. Results: There were no significant differences between aGFRsingle and tGFRsingle in patients in the normal, mild hydronephrosis, and moderate hydronephrosis groups (t = -0.604∼1.982, all p > 0.05), but there was a significant difference between them in the severe hydronephrosis group (t = 2.302, p < 0.05). There were no significant differences between gGFRsingle and tGFRsingle in the normal and mild hydronephrosis groups (t = 0.194∼0.962, all p > 0.05), but there was a significant difference between them in the moderate and severe hydronephrosis groups (t = 3.321, 3.494, p < 0.05). Both gGFRsingle and aGFRsingle were correlated with tGFRsingle, with aGFRsingle being more strongly correlated (r = 0.890, p < 0.001). Conclusion: In patients with moderate hydronephrosis, aGFRsingle is more strongly correlated with tGFRsingle than gGFRsingle. However, in patients with severe hydronephrosis and accompanying renal morphological changes, the aGFRsingle measured by the renal ROI area-correction method using CT has higher accuracy and better clinical application value than the conventional gGFRsingle.
Collapse
Affiliation(s)
| | | | - Deshan Zhao
- Department of Nuclear Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Susceptibility to kidney fibrosis in mice is associated with early growth response-2 protein and tissue inhibitor of metaloproteinase-1 expression. Kidney Int 2022; 102:337-354. [PMID: 35513123 PMCID: PMC9393427 DOI: 10.1016/j.kint.2022.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
Patients with chronic kidney disease and experimental animal models of kidney fibrosis manifest diverse progression rates. Genetic susceptibility may contribute to this diversity, but the causes remain largely unknown. We have previously described kidney fibrosis with a mild or severe phenotype in mice expressing transforming growth factor-beta1 (TGF-β1) under the control of a mouse albumin promoter (Alb/TGFβ1), on a mixed genetic background with CBAxC57Bl6 mice. Here, we aimed to examine how genetic background may influence kidney fibrosis in TGF-β1 transgenic mice, and in the unilateral ureteral obstruction (UUO) and subtotal nephrectomy (SNX) mouse models. Congenic C57Bl6(B6)-TGFβ and CBAxB6-TGFβ (F1) transgenic mice were generated and survival, proteinuria, kidney histology, transcriptome and protein expressions were analyzed. We investigated the kidneys of B6 and CBA mice subjected to UUO and SNX, and the effects of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) neutralization on the fibrotic process. CBAxB6-TGFβ mice developed severe kidney fibrosis and premature death, while B6-TGF-β mice had mild fibrosis and prolonged survival. Kidney early growth response factor-2 (EGR2) and TIMP-1 expression were induced only in CBAxB6-TGFβ mice. Similar strain-dependent early changes in EGR2 and TIMP-1 of mice subjected to UUO or SNX were observed. TIMP-1 neutralization in vivo hindered fibrosis both in transgenic mice and the SNX model. EGR2 over-expression in cultured HEK293 cells induced TIMP-1 while EGR2 silencing hindered TGF-β induced TIMP-1 production in HK-2 cells and ureteral obstructed kidneys. Finally, EGR2 and TIMP1 was increased in human kidneys manifesting focal segmental glomerulosclerosis suggesting a correlation between animal studies and patient clinical settings. Thus, our observations demonstrate a strong relationship between genetic background and the progression of kidney fibrosis, which might involve early altered EGR2 and TIMP-1 response, but the relationship to patient genetics remains to be explored.
Collapse
|
35
|
Tezcan N, Özdemir-Kumral ZN, Yenal NÖ, Çilingir-Kaya ÖT, Virlan AT, Özbeyli D, Çetinel Ş, Yeğen BÇ, Koç M. Nesfatin-1 treatment preserves antioxidant status and attenuates renal fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 2022; 37:1238-1248. [PMID: 35218196 DOI: 10.1093/ndt/gfac053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nesfatin-1 (NES-1), an anorexigenic peptide, was reported to have anti-inflammatory and anti-apoptotic actions in several inflammation models. METHODS To elucidate potential renoprotective effects of NES-1, unilateral ureteral obstruction (UUO) was induced in male Sprague Dawley rats by ligating left ureters. The rats were injected intraperitoneally with either saline (SL) or NES-1 (10 μg/kg/day) for 7 or 14 days (n = 8 in each group). On the 7th or 14th day, obstructed kidneys were removed for the isolation of leukocytes for flow-cytometric analysis and for the assessments of biochemical and histopathological changes. RESULTS Opposite to glutathione levels, renal myeloperoxidase activity in the SL-treated UUO group was significantly increased compared to sham-operated group, while NES-1 treatment abolished the elevation. The percentages of CD8+/CD4+ T-lymphocytes infiltrating the obstructed kidneys were increased in SL-treated groups but treatment with NES-1 did not prevent lymphocyte infiltration. Elevated TNF-a levels in SL-treated UUO group was decreased with NES-1. Although total degeneration scores were similarly increased in all UUO groups, tubular dilatation scores were significantly increased in UUO groups and lowered by NES-1 only in the 7-day treated group. Elevated interstitial fibrosis scores in the SL-treated groups were decreased in both 7- and 14-day NES-1 treated groups, while alpha smooth muscle actin (α-SMA) and apoptosis scores were depressed in both NES-1 treated groups. CONCLUSION The present data demonstrate that UUO-induced renal fibrosis is ameliorated by NES-1, which appears to involve the inhibition of neutrophil infiltration and thereby amelioration of oxidative stress and inflammation. These data suggest that NES-1 may have a regulatory role in protecting the kidneys against obstruction-induced renal injury.
Collapse
Affiliation(s)
- Neslihan Tezcan
- Marmara University School of Medicine, Department of Internal Medicine, Turkey
| | | | - Naziye Özkan Yenal
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | | | | | - Dilek Özbeyli
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | - Şule Çetinel
- Marmara University School of Medicine, Department of Histology & Embryology, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Mehmet Koç
- Marmara University School of Medicine, Department of Physiology, Turkey.,Marmara University School of Medicine, Division of Nephrology, Turkey
| |
Collapse
|
36
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
37
|
Song Z, Zhu M, Wu J, Yu T, Chen Y, Ye X, Li S, Xu N. Fucoidans from Cucumaria frondosa ameliorate renal interstitial fibrosis via inhibition of the PI3K/Akt/NF-κB signaling pathway. Food Funct 2022; 13:1168-1179. [PMID: 35018932 DOI: 10.1039/d1fo03067a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effects of Cucumaria frondosa polysaccharides (CFPs) on renal interstitial fibrosis by regulating the phosphatidylinositol-3-hydroxykinase/protein kinase-B/nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. The common unilateral urethral obstruction (UUO) model was used to examine the renoprotective effect and its mechanism in vivo. Compared to the UUO group, CFP administration could ameliorate renal function, inhibit inflammation and fibrosis, and reduce the deposition of the extracellular matrix and epithelial-mesenchymal transition. Mechanistic results indicated that CFPs could inhibit the expression of the total protein of PI3K and the conversion of the AKT and NF-κB p65 phosphorylated proteins, thereby inhibiting the transduction of the PI3K/AKT/NF-κB pathway. In addition, CFP treatment could improve inflammation and fibrosis in HK-2 cells induced by TGF-β1, and its in vitro mechanism was also verified to inhibit the PI3K/Akt/NF-κB signaling pathway. Overall, these results showed that CFP could alleviate renal interstitial fibrosis related to the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuoyue Song
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Mengru Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Jun Wu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, Shandong, PR China
| | - Tian Yu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Yao Chen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Xianying Ye
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Shijie Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Nenggui Xu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
38
|
Gembillo G, Siligato R, Cernaro V, Satta E, Conti G, Salvo A, Romeo A, Calabrese V, Sposito G, Ferlazzo G, Santoro D. Monocyte to HDL ratio: a novel marker of resistant hypertension in CKD patients. Int Urol Nephrol 2022; 54:395-403. [PMID: 34109496 DOI: 10.1007/s11255-021-02904-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/30/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Inflammation, oxidative stress (OS), atherosclerosis and resistant hypertension (RH) are common features of chronic kidney disease (CKD) leading to a higher risk of death from cardiovascular disease. These effects seem to be modulated by impaired anti-oxidant, anti-inflammatory and reverse cholesterol transport actions of high-density lipoprotein cholesterol (HDL). HDL prevents and reverses monocyte recruitment and activation into the arterial wall and impairs endothelial adhesion molecule expression. Recently, monocyte count to HDL-cholesterol ratio (MHR) has emerged as a potential marker of inflammation and OS, demonstrating to be relevant in CKD. Our research was aimed to assess, for the first time, its reliability in RH. METHODS We performed a retrospective study on 214 patients with CKD and arterial hypertension who were admitted between January and June 2019 to our Department, 72 of whom were diagnosed with RH. RESULTS MHR appeared inversely related to eGFR (ρ = - 0.163; P = 0.0172). MHR was significantly higher among RH patients compared to non-RH ones (12.39 [IQR 10.67-16.05] versus 7.30 [5.49-9.06]; P < 0.0001). Moreover, MHR was significantly different according to the number of anti-hypertensive drugs per patient in the whole study cohort (F = 46.723; P < 0.001) as well as in the non-RH group (F = 14.191; P < 0.001). Moreover, MHR positively correlates with diabetes mellitus (ρ = 0.253; P = 0.0002), white blood cells (ρ = 0.664; P < 0.0001) and C-reactive protein (ρ = 0.563; P < 0.0001). CONCLUSIONS MHR may be a reliable biomarker due to the connection between HDL and monocytes. Our study suggests that MHR is linked with the use of multiple anti-hypertensive therapy and resistant hypertension in CKD patients, and can be a useful ratio to implement appropriate treatment strategies.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Ersilia Satta
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | | | - Antonino Salvo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Adolfo Romeo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Giovanna Sposito
- Pediatric Nephrology Unit, AOU Policlinic "G Martino", University of Messina, 98125, Messina, Italy
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Pediatric Nephrology Unit, AOU Policlinic "G Martino", University of Messina, 98125, Messina, Italy
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy.
| |
Collapse
|
39
|
Xie Z, Wei L, Chen J, Chen Z. Calcium dobesilate alleviates renal dysfunction and inflammation by targeting nuclear factor kappa B (NF-κB) signaling in sepsis-associated acute kidney injury. Bioengineered 2022; 13:2816-2826. [PMID: 35038964 PMCID: PMC8974157 DOI: 10.1080/21655979.2021.2024394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a serious complication of sepsis that increases mortality and the risk of progression to chronic kidney disease. Oxidative stress and apoptosis are reported to exert critical function in the pathogenesis of sepsis-associated AKI. Calcium dobesilate (CaD) was reported to play a protective role in renal diseases. Therefore, we explored the antioxidant effect and potential mechanism of CaD in lipopolysaccharide (LPS)-induced AKI in mice. We evaluated renal function (blood urea nitrogen (BUN) and serum creatinine (SCr)), histopathology, oxidative stress (superoxide dismutase (SOD) and malondialdehyde (MDA)), inflammation cytokines, and apoptosis in kidneys of mice. The effect of CaD on NF-κB signaling was evaluated by Western blot. Our findings showed that CaD alleviated renal dysfunction and kidney injury, and also reversed upregulated MDA concentration and reduced SOD enzyme activity in AKI mice. Moreover, LPS-induced inflammatory response was attenuated by CaD. CaD treatment also reduced the apoptosis evoked by LPS. Additionally, CaD downregulated phosphorylation of nuclear factor kappa B (NF-κB) signaling components in LPS mice. Conclusively, CaD alleviates renal dysfunction and inflammation by targeting NF-κB signaling in sepsis-associated AKI.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lanji Wei
- Department of Health Management Center, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
40
|
Gao J, Wu L, Zhao Y, Hong Q, Feng Z, Chen X. Cxcl10 deficiency attenuates renal interstitial fibrosis through regulating epithelial-to-mesenchymal transition. Exp Cell Res 2022; 410:112965. [PMID: 34896075 DOI: 10.1016/j.yexcr.2021.112965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
IFN-γ-inducible protein 10 (IP-10, CXCL10) has been widely demonstrated to be involved in multiple kidney pathological processes. However, the role of CXCL10 in renal fibrosis remains unclear. In this study, Cxcl10-deficient (Cxcl10-/-) mice were used to generate the unilateral ureteral obstruction (UUO) model. The level of renal fibrosis and inflammatory cell infiltration was examined in vivo and the effects of CXCL10 on EMT process of HK-2 cells was investigated in vitro. We observed that the injury degree of renal tissue and the collagen deposition levels were lighter and the expression of α-SMA, collagen I and fibronectin was significantly reduced in Cxcl10-/- mice, while the expression of E-cadherin was increased. However, interstitial F4/80-positive macrophages and CD4-positive T lymphocytes were unaffected by knockout of Cxcl10. Furthermore, IFN-γ or CXCL10 stimulation could obviously promote the expression of α-SMA, collagen I, fibronectin and reduce the expression of E-cadherin in HK-2 cells, which could be inhibited by transfection of Cxcl10-siRNA. Our findings suggested Cxcl10 knockout could reduce renal dysfunction and inhibit renal fibrosis through regulating EMT process of renal tubular epithelial cells in murine UUO model. These results may provide a novel insight into the mechanism and a potential therapy target of renal fibrosis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Road 324, Jinan, 250021, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Yinghua Zhao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing, 100853, China.
| |
Collapse
|
41
|
Li M, Yan Y, He J, Wang YM, Guo YX, Wang ZX, Zhang WK, Zhang HJ, Xu JK. Jolkinolide B alleviates renal fibrosis via anti-inflammation and inhibition of epithelial-mesenchymal transition in unilateral ureteral obstruction mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:76-87. [PMID: 34937462 DOI: 10.1080/10286020.2021.2016715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Renal fibrosis is a critical pathological process lead to a progressive loss of renal function. Jolkinolide B (JB) is a natural compound with anti-inflammatory activity from Euphorbia fischeriana Steud. The study evaluated the effect of JB on renal fibrosis in mice with unilateral ureteral obstruction (UUO). The results showed that JB could decrease renal fibrotic area, reduce phosphorylation of NF-κB p65 and the release of TNF-α, IL-6 and IL-1β, restore the expression of vementin, α-SMA and E-cadherin, as well as TGF-β1 and p-smad2/3. In conclusion, JB might reduce renal fibrosis by inhibiting inflammation induced by NF-κB pathway and EMT mediated by TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu-Ming Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ze-Xing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hao-Jun Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
42
|
Zahan MS, Ahmed KA, Moni A, Sinopoli A, Ha H, Uddin MJ. Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:1-13. [PMID: 34965991 PMCID: PMC8723984 DOI: 10.4196/kjpp.2022.26.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.
Collapse
Affiliation(s)
| | | | - Akhi Moni
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
| | - Alessandra Sinopoli
- Department of Prevention, Local Health Unit Roma 1, Rome 00185, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00185, Italy
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, Ewha Womans University College of Pharmacy, Seoul 03760, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
- Graduate School of Pharmaceutical Sciences, Ewha Womans University College of Pharmacy, Seoul 03760, Korea
| |
Collapse
|
43
|
Yang J, Sun BG, Min HJ, Son YB, Kim TB, Lee J, Oh SW, Kim MG, Cho WY, Ahn SY, Ko GJ, Kwon YJ, Cha JJ, Kang YS, Cha DR, Jo SK. Impact of acute kidney injury on long-term adverse outcomes in obstructive uropathy. Sci Rep 2021; 11:23639. [PMID: 34880338 PMCID: PMC8654816 DOI: 10.1038/s41598-021-03033-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Obstructive uropathy is known to be associated with acute kidney injury (AKI). This study aimed to investigate the etiologies, clinical characteristics, consequences and also assess the impact of AKI on long-term outcomes. This multicenter, retrospective study of 1683 patients with obstructive uropathy who underwent percutaneous nephrostomy (PCN) analyzed clinical characteristics, outcomes including progression to end-stage kidney disease (ESKD), overall mortality, and the impact of AKI on long-term outcomes. Obstructive uropathy in adults was most commonly caused by malignancy, urolithiasis, and other causes. AKI was present in 78% of the patients and was independently associated with preexisting chronic kidney disease (CKD). Short-term recovery was achieved in 56.78% after the relief of obstruction. ESKD progression rate was 4.4% in urolithiasis and 6.8% in other causes and older age, preexisting CKD, and stage 3 AKI were independent factors of progression. The mortality rate (34%) was highly attributed to malignant obstruction (52%) stage 3 AKI was also an independent predictor of mortality in non-malignant obstruction. AKI is a frequent complication of adult obstructive uropathy. AKI negatively affects long-term kidney outcomes and survival in non-malignant obstructions. A better understanding of the epidemiology and prognostic factors is needed for adult obstructive uropathy.
Collapse
Affiliation(s)
- Jihyun Yang
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Bong Gyun Sun
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Hyeon-Jin Min
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Young-Bin Son
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Tae Bum Kim
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Jonghyun Lee
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Se Won Oh
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Won Yong Cho
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea
| | - Shin Young Ahn
- Department of Internal Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, Korea
| | - Young Joo Kwon
- Department of Internal Medicine, Korea University Guro Hospital, Gurodong-Ro 148, Guro-Gu, Seoul, Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Jeokgeum-Ro 123, Danwon-Gu, Ansan, Korea
| | - Young Sun Kang
- Department of Internal Medicine, Korea University Ansan Hospital, Jeokgeum-Ro 123, Danwon-Gu, Ansan, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Jeokgeum-Ro 123, Danwon-Gu, Ansan, Korea
| | - Sang-Kyung Jo
- Department of Internal Medicine, Korea University Anam Hospital, Korea University Medical College, Koreadae-Ro 73, Sungbuk-Gu, Seoul, Korea.
| |
Collapse
|
44
|
Huang L, Ni J, Duncan T, Song Z, Johnson TS. Development of a unilateral ureteral obstruction model in cynomolgus monkeys. Animal Model Exp Med 2021; 4:359-368. [PMID: 34977487 PMCID: PMC8690991 DOI: 10.1002/ame2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD. Methods In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau. Results We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD. Conclusion This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.
Collapse
Affiliation(s)
| | - Jia Ni
- Research and DevelopmentPrisys BiotechnologiesPudongChina
- Present address:
Haisco Pharmaceutical Group Co., LtdChengduChina
| | | | - Zhizhan Song
- Research and DevelopmentPrisys BiotechnologiesPudongChina
| | - Timothy S. Johnson
- Immunology Therapeutic AreaUCB PharmaSloughUK
- Present address:
Experimental Renal Medicine, Oncology & Human Metabolism, School of MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
45
|
Wang LL, Zhu XL, Han SH, Xu L. Hypoxia Upregulates NOTCH3 Signaling Pathway to Promote Endothelial-Mesenchymal Transition in Pulmonary Artery Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1525619. [PMID: 34868328 PMCID: PMC8639273 DOI: 10.1155/2021/1525619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND To investigate the effect of hypoxia on pulmonary artery endothelial cells and the role of NOTCH3 in endothelial-mesenchymal transition (EnMT) and to provide a research model for pulmonary disease and explain the pathogenesis of the pulmonary disease. METHODS Pulmonary artery endothelial cells were divided into two groups and cultured in normoxic and hypoxic environments, respectively. QPCR, western blot, and immunofluorescence were used to detect endothelial cell-specific marker protein and mRNA expression in each group, and the ability of endothelial cells migration was evaluated by scratch and transwell experiment. RESULTS The pulmonary artery endothelial cells in the normoxic group presented a typical pebble-like arrangement, and the endothelial cells in hypoxic culture showed a long spindle appearance. Hypoxia induced high expression of NOTCH3, Jagged-1, Hes1, c-Src, and CSL. Immunofluorescence showed that endothelial cells in hypoxic culture began to express the α-SMA, and the expression of vWF increased with hypoxia. Cell viability, scratch, and transwell results showed that endothelial cells in the hypoxic group were more capable of viability and migration than those in the normoxic group. The induction of EnMT by hypoxia can be inhibited by using notch3-specific inhibitor DAPT and Jagged-1. This study also found that miR-7-5p can regulate endothelial NOTCH3, indicating that miRNA is also involved in the process of endothelial-mesenchymal transformation. CONCLUSION Hypoxia promotes the transformation of endothelial cells into mesenchymal cells by opening the NOTCH3 pathway, which lays the foundation for disease progression or clinical prognosis, and is of great significance in the treatment of diseases.
Collapse
Affiliation(s)
- Li-Le Wang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Li Zhu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shu-Hua Han
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Xu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
46
|
Doke T, Huang S, Qiu C, Sheng X, Seasock M, Liu H, Ma Z, Palmer M, Susztak K. Genome-wide association studies identify the role of caspase-9 in kidney disease. SCIENCE ADVANCES 2021; 7:eabi8051. [PMID: 34739325 PMCID: PMC8570608 DOI: 10.1126/sciadv.abi8051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk regions for kidney dysfunction [estimated glomerular filtration rate (eGFR)]; however, the causal genes, cell types, and pathways are poorly understood. Integration of GWAS and human kidney expression of quantitative trait analysis using Bayesian colocations, transcriptome-wide association studies, and summary-based Mendelian randomization studies prioritized caspase-9 (CASP9) as a kidney disease risk gene. Human kidney single-cell epigenetic and immunostaining studies indicated kidney tubule cells as a disease-causing cell type. Mice with genetic deletion or pharmacological inhibition of CASP9 showed lower apoptosis while having improved mitophagy, resulting in dampened activation of cytosolic nucleotide sensing pathways (cGAS-STING), reduction of inflammation, and protection from acute kidney disease or renal fibrosis. In summary, here, we prioritized CASP9 as an eGFR GWAS target gene and demonstrated the causal role of CASP9 in kidney disease development via improving mitophagy and lowering inflammation and apoptosis.
Collapse
Affiliation(s)
- Tomohito Doke
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Sheng
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Seasock
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziyuan Ma
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Jeong JY, Na KR, Shin JA, Suh KS, Kim JJ, Lee KW, Choi DE. Collecting Duct-Specific CR6-Interacting Factor-1-Deletion Aggravates Renal Inflammation and Fibrosis Induced by Unilateral Ureteral Obstruction. Int J Mol Sci 2021; 22:11699. [PMID: 34769136 PMCID: PMC8584192 DOI: 10.3390/ijms222111699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Although inflammation and fibrosis, which are key mechanisms of chronic kidney disease, are associated with mitochondrial damage, little is known about the effects of mitochondrial damage on the collecting duct in renal inflammation and fibrosis. To generate collecting duct-specific mitochondrial injury mouse models, CR6-interacting factor-1 (CRIF1) flox/flox mice were bred with Hoxb7-Cre mice. We evaluated the phenotype of these mice. To evaluate the effects on unilateral ureteral obstruction (UUO)-induced renal injury, we divided the mice into the following four groups: a CRIF1flox/flox (wild-type (WT)) group, a CRIF1flox/flox-Hob7 Cre (CRIF1-KO) group, a WT-UUO group, and a CRIF1-KO UUO group. We evaluated the blood and urine chemistries, inflammatory and fibrosis markers, light microscopy, and electron microscopy of the kidneys. The inhibition of Crif1 mRNA in mIMCD cells reduced oxygen consumption and membrane potential. No significant differences in blood and urine chemistries were observed between WT and CRIF1-KO mice. In UUO mice, monocyte chemoattractant protein-1 and osteopontin expression, number of F4/80 positive cells, transforming growth factor-β and α-smooth muscle actin staining, and Masson's trichrome staining were significantly higher in the kidneys of CRIF1-KO mice compared with the kidneys of WT mice. In sham mice, urinary 8-hydroxydeoxyguanosine (8-OHDG) was higher in CRIF1-KO mice than in WT mice. Moreover, CRIF1-KO sham mice had increased 8-OHDG-positive cell recruitment compared with WT-sham mice. CRIF1-KO-UUO kidneys had increased recruitment of 8-OHDG-positive cells compared with WT-UUO kidneys. In conclusion, collecting duct-specific mitochondrial injury increased oxidative stress. Oxidative stress associated with mitochondrial damage may aggravate UUO-induced renal injury.
Collapse
Affiliation(s)
- Jin Young Jeong
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (J.Y.J.); (K.R.N.); (J.-J.K.); (K.W.L.)
| | - Ki Ryang Na
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (J.Y.J.); (K.R.N.); (J.-J.K.); (K.W.L.)
| | - Jin Ah Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
| | - Kwang-Sun Suh
- Department of Pathology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
| | - Jwa-Jin Kim
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (J.Y.J.); (K.R.N.); (J.-J.K.); (K.W.L.)
| | - Kang Wook Lee
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (J.Y.J.); (K.R.N.); (J.-J.K.); (K.W.L.)
| | - Dae Eun Choi
- Department of Nephrology, Chungnam National University School of Medicine, Daejeon 35015, Korea; (J.Y.J.); (K.R.N.); (J.-J.K.); (K.W.L.)
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea;
| |
Collapse
|
48
|
Honma S, Tani I, Sakai M, Soma I, Toriyabe K, Yoshida M. Effect of N-Acetyl Cysteine on Renal Interstitial Fibrosis in Mice. Biol Pharm Bull 2021; 43:1940-1944. [PMID: 33268712 DOI: 10.1248/bpb.b20-00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) inhibitor, on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO led to a significant increase in the fibrotic area of obstructed kidneys, which was attenuated by NAC (84.8 mg/kg/d) in the drinking water. Renal expression of type III collagen and tumor necrosis factor (TNF)-α mRNAs was elevated in UUO mice and inhibited by NAC. Extracellular signal-regulated kinase (ERK1/2) phosphorylation was significantly elevated by UUO, and NAC significantly attenuated the elevation. UUO inhibited the activity of glutathione peroxidase, while NAC restored its activity. Together, the results of this study suggest that renal interstitial fibrosis induced by UUO was ameliorated by NAC via several mechanisms including increased glutathione peroxidase activity, reduced phosphorylation of ERK1/2, and reduced expression of TNF-α and type III collagen mRNAs.
Collapse
Affiliation(s)
- Shigeyoshi Honma
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Iori Tani
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Mayu Sakai
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Iori Soma
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Kohei Toriyabe
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Makoto Yoshida
- Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
49
|
Zhang SM, Wei CY, Wang Q, Wang L, Lu L, Qi FZ. M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways. Mol Biol Rep 2021; 48:6443-6456. [PMID: 34398425 DOI: 10.1007/s11033-021-06646-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Timely and sufficient M1 recruitment and M2 polarization are necessary for fibrosis during wound healing. The mechanism of how M2 mediates wound healing is worth exploring. Abnormally up-regulated connective tissue growth factor (CTGF) influences multiple organ fibrosis, including cardiac, pulmonary, hepatic, renal, and cutaneous fibrosis. Previous studies reported that M2 contributed to hepatic and renal fibrosis by secreting CTGF. It is worth discussing if M2 regulates fibrosis through secreting CTGF in wound healing. METHODS AND RESULTS We established the murine wound model and inhibited macrophages during proliferation phase with clodronate liposomes in vivo. Macrophages depletion led to down-regulation of wound healing rates, collagen deposition, as well as expression of collagen 1/3 and Ki67. M2 was induced by interleukin-4 (IL-4) and measured by flow cytometry in vitro. Secreted pro-fibrotic and anti-fibrotic factors were tested by enzyme-linked immunosorbent assay (ELISA). M2 was polarized, which producing more CTGF, transforming growth factor-beta1 (TGF-β1), and IL-6, as well as less tumor necrosis factor-α (TNF-α) and IL-10. M2 CTGF gene was blocked using siCTGF. Effects of M2 on fibroblasts activities were detected by cell counting kit 8 (CCK8) and cellular wound healing assay. Expressions of related signaling pathway were assessed by western blotting. Blockade of CTGF in M2 deactivated fibroblasts proliferation and migration by regulating AKT, ERK1/2, and STAT3 pathway. Recombinant CTGF restored these effects. CONCLUSIONS Our research, for the first time, indicated that M2 promoted wound healing by secreting CTGF, which further mediating proliferation and migration of fibroblasts via AKT, ERK1/2, and STAT3 pathway.
Collapse
Affiliation(s)
- Si-Min Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Chuan-Yuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Abstract
Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phos-phorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Yeo Jin Hwang
- Division of Electronics & Information System, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jun-Hyuk Choi
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|