1
|
Lopes JJ, Carruthers SP, Meyer D, Dean B, Rossell SL. Glutamatergic neurotransmission in schizophrenia: A systematic review and quantitative synthesis of proton magnetic resonance spectroscopy studies across schizophrenia spectrum disorders. Aust N Z J Psychiatry 2024; 58:930-951. [PMID: 38812258 PMCID: PMC11529133 DOI: 10.1177/00048674241254216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Studies using proton magnetic resonance spectroscopy reveal substantial inconsistencies in the levels of brain glutamate, glutamine and glutamate + glutamine across schizophrenia spectrum disorders. This systematic review employs qualitative and quantitative methods to analyse the patterns and relationships between glutamatergic metabolites, schizophrenia spectrum disorders and brain regions. METHODS A literature search was conducted using various databases with keywords including glutamate, glutamine, schizophrenia, psychosis and proton magnetic resonance spectroscopy. Inclusion criteria were limited to case-control studies that reported glutamatergic metabolite levels in adult patients with a schizophrenia spectrum disorder diagnosis - i.e. first-episode psychosis, schizophrenia, treatment-resistant schizophrenia and/or ultra-treatment-resistant schizophrenia - using proton magnetic resonance spectroscopy at 3 T or above. Pooled study data were synthesized and analysed. RESULTS A total of 92 studies met the inclusion criteria, including 2721 healthy controls and 2822 schizophrenia spectrum disorder participants. Glu levels were higher in the basal ganglia, frontal cortex and medial prefrontal of first-episode psychosis participants, contrasting overall lower levels in schizophrenia participants. For Gln, strong differences in metabolite levels were evident in the basal ganglia, dorsolateral prefrontal cortex and frontal cortex, with first-episode psychosis showing significantly higher levels in the basal ganglia. In glutamate + glutamine, higher metabolite levels were found across schizophrenia spectrum disorder groups, particularly in the basal ganglia and dorsolateral prefrontal cortex of treatment-resistant schizophrenia participants. Significant relationships were found between metabolite levels and medication status, clinical measures and methodological variables. CONCLUSION The review highlights abnormal glutamatergic metabolite levels throughout schizophrenia spectrum disorders and in specific brain regions. The review underscores the importance of standardized future research assessing glutamatergic metabolites using proton magnetic resonance spectroscopy due to considerable literature heterogeneity.
Collapse
Affiliation(s)
- Jamie J Lopes
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Denny Meyer
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Brian Dean
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Fan L, Liang L, Wang Y, Ma X, Yuan L, Ouyang L, He Y, Li Z, Li C, Chen X, Palaniyappan L. Glutamatergic basis of antipsychotic response in first-episode psychosis: a dual voxel study of the anterior cingulate cortex. Neuropsychopharmacology 2024; 49:845-853. [PMID: 37752221 PMCID: PMC10948866 DOI: 10.1038/s41386-023-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
A subgroup of patients with schizophrenia is believed to have aberrant excess of glutamate in the frontal cortex; this subgroup is thought to show poor response to first-line antipsychotic treatments that focus on dopamine blockade. If we can identify this subgroup early in the course of illness, we can reduce the repeated use of first-line antipsychotics and potentially stratify first-episode patients to intervene early with second-line treatments such as clozapine. The use of proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate and Glx (glutamate plus glutamine) may provide a means for such a stratification. We must first establish if there is robust evidence linking elevations in anterior cingulate cortex (ACC) glutamate metabolites to poor response, and determine if the use of antipsychotics worsens the glutamatergic excess in eventual nonresponders. In this study, we estimated glutamate levels at baseline in 42 drug-naive patients with schizophrenia. We then treated them all with risperidone at a standard dose range of 2-6 mg/day and followed them up for 3 months to categorize their response status. We expected to see baseline "hyperglutamatergia" in nonresponders, and expected this to worsen over time at the follow-up. In line with our predictions, nonresponders had higher glutamate than responders, but patients as a group did not differ in glutamate and Glx from the healthy control (HC) group before treatment-onset (F1,79 = 3.20, p = 0.046, partial η2 = 0.075). Glutamatergic metabolites did not change significantly over time in both nonresponders and responders over the 3 months of antipsychotic exposure (F1,31 = 1.26, p = 0.270, partial η2 = 0.039). We conclude that the use of antipsychotics without prior knowledge of later response delays symptom relief in a subgroup of first-episode patients, but does not worsen the glutamatergic excess seen at the baseline. Given the current practice of nonstratified use of antipsychotics, longer-time follow-up MRS studies are required to see if improvement in symptoms accompanies a dynamic shift in glutamate profile.
Collapse
Affiliation(s)
- Lejia Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Liangbing Liang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Wasserthal S, Lehmann M, Neumann C, Delis A, Philipsen A, Hurlemann R, Ettinger U, Schultz J. Effects of NMDA-receptor blockade by ketamine on mentalizing and its neural correlates in humans: a randomized control trial. Sci Rep 2023; 13:17184. [PMID: 37821513 PMCID: PMC10567921 DOI: 10.1038/s41598-023-44443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Schizophrenia is associated with various deficits in social cognition that remain relatively unaltered by antipsychotic treatment. While faulty glutamate signaling has been associated with general cognitive deficits as well as negative symptoms of schizophrenia, no direct link between manipulation of glutamate signaling and deficits in mentalizing has been demonstrated thus far. Here, we experimentally investigated whether ketamine, an uncompetitive N-methyl-D-aspartate receptor antagonist known to induce psychotomimetic effects, influences mentalizing and its neural correlates. In a randomized, placebo-controlled between-subjects experiment, we intravenously administered ketamine or placebo to healthy participants performing a video-based social cognition task during functional magnetic resonance imaging. Psychotomimetic effects of ketamine were assessed using the Positive and Negative Syndrome Scale. Compared to placebo, ketamine led to significantly more psychotic symptoms and reduced mentalizing performance (more "no mentalizing" errors). Ketamine also influenced blood oxygen level dependent (BOLD) response during mentalizing compared to placebo. Specifically, ketamine increased BOLD in right posterior superior temporal sulcus (pSTS) and increased connectivity between pSTS and anterior precuneus. These increases may reflect a dysfunctional shift of attention induced by ketamine that leads to mentalizing deficits. Our findings show that a psychotomimetic dose of ketamine impairs mentalizing and influences its neural correlates, a result compatible with the notion that deficient glutamate signaling may contribute to deficits in mentalizing in schizophrenia. The results also support efforts to seek novel psychopharmacological treatments for psychosis and schizophrenia targeting glutamatergic transmission.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Achilles Delis
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | | | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Zhang Y, Lu Z, Sun Y, Zhang X, Li Q, Li M, Liao Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Yan H, Zhang D, Yue W. Predictive role of pulvinar in social functional outcome of schizophrenia. Psychiatry Res 2023; 327:115419. [PMID: 37598626 DOI: 10.1016/j.psychres.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Identifying objective biological subtypes that predict long-term functional outcomes is crucial for understanding neurobiological mechanisms and identifying potential targets. Using resting-state functional magnetic resonance imaging data from 178 patients and 70 controls, we explored social function patterns using latent profile analysis. Long-term outcomes were compared among the biological subtypes using K-means clustering. Partial least squares regression (PLSR) was used to identify gene expression profiles associated with alterations in activity by leveraging transcriptional data from the Allen Human Brain Atlas. In patients with more functional impairment, left medial pulvinar (PM) exhibited significantly lower regional homogeneity of brain activity (ReHo, [95% CI (0.06-0.27), P = 0.002), a finding validated in the independent cohort. Functional connectivity between PM and secondary visual cortex displayed a suggestive decrease. Patients belonging to "higher pulvinar ReHo - better information processing" demonstrated better long-term outcomes and acute treatment response [95% CI (11.2-34.4), P < 0.001]. The PLSR component of imaging-transcriptomic associations partly explained the ReHo differences among patients with varying levels of functional impairment. It revealed enrichment of genes in the synaptic signaling pathway. Pathological changes in the pulvinar may affect social functioning. Higher pulvinar ReHo and better information processing, two objective biomarkers, have a predictive value for better long-term functional outcomes.
Collapse
Affiliation(s)
- Yuyanan Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhe Lu
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yaoyao Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiao Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Qianqian Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Mingzhu Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yundan Liao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhewei Kang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiaoyang Feng
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Guorui Zhao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Junyuan Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yang Yang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Hao Yan
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Dai Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing 100191, China.
| |
Collapse
|
5
|
Sigvard AK, Bojesen KB, Ambrosen KS, Nielsen MØ, Gjedde A, Tangmose K, Kumakura Y, Edden R, Fuglø D, Jensen LT, Rostrup E, Ebdrup BH, Glenthøj BY. Dopamine Synthesis Capacity and GABA and Glutamate Levels Separate Antipsychotic-Naïve Patients With First-Episode Psychosis From Healthy Control Subjects in a Multimodal Prediction Model. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:500-509. [PMID: 37519478 PMCID: PMC10382695 DOI: 10.1016/j.bpsgos.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Disturbances in presynaptic dopamine activity and levels of GABA (gamma-aminobutyric acid) and glutamate plus glutamine collectively may have a role in the pathophysiology of psychosis, although separately they are poor diagnostic markers. We tested whether these neurotransmitters in combination improve the distinction of antipsychotic-naïve patients with first-episode psychosis from healthy control subjects. Methods We included 23 patients (mean age 22.3 years, 9 male) and 20 control subjects (mean age 22.4 years, 8 male). We determined dopamine metabolism in the nucleus accumbens and striatum from 18F-fluorodopa (18F-FDOPA) positron emission tomography. We measured GABA levels in the anterior cingulate cortex (ACC) and glutamate plus glutamine levels in the ACC and left thalamus with 3T proton magnetic resonance spectroscopy. We used binominal logistic regression for unimodal prediction when we modeled neurotransmitters individually and for multimodal prediction when we combined the 3 neurotransmitters. We selected the best combination based on Akaike information criterion. Results Individual neurotransmitters failed to predict group. Three triple neurotransmitter combinations significantly predicted group after Benjamini-Hochberg correction. The best model (Akaike information criterion 48.5) carried 93.5% of the cumulative model weight. It reached a classification accuracy of 83.7% (p = .003) and included dopamine synthesis capacity (Ki4p) in the nucleus accumbens (p = .664), GABA levels in the ACC (p = .019), glutamate plus glutamine levels in the thalamus (p = .678), and the interaction term Ki4p × GABA (p = .016). Conclusions Our multimodal approach proved superior classification accuracy, implying that the pathophysiology of patients represents a combination of neurotransmitter disturbances rather than aberrations in a single neurotransmitter. Particularly aberrant interrelations between Ki4p in the nucleus accumbens and GABA values in the ACC appeared to contribute diagnostic information.
Collapse
Affiliation(s)
- Anne K. Sigvard
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Karen S. Ambrosen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Japan
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- FM. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Yang YS, Smucny J, Zhang H, Maddock RJ. Meta-analytic evidence of elevated choline, reduced N-acetylaspartate, and normal creatine in schizophrenia and their moderation by measurement quality, echo time, and medication status. Neuroimage Clin 2023; 39:103461. [PMID: 37406595 PMCID: PMC10509531 DOI: 10.1016/j.nicl.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Brain metabolite abnormalities measured with magnetic resonance spectroscopy (MRS) provide insight into pathological processes in schizophrenia. Prior meta-analyses have not yet answered important questions about the influence of clinical and technical factors on neurometabolite abnormalities and brain region differences. To address these gaps, we performed an updated meta-analysis of N-acetylaspartate (NAA), choline, and creatine levels in patients with schizophrenia and assessed the moderating effects of medication status, echo time, measurement quality, and other factors. METHODS We searched citations from three earlier meta-analyses and the PubMed database after the most recent meta-analysis to identify studies for screening. In total, 113 publications reporting 366 regional metabolite datasets met our inclusion criteria and reported findings in medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex, frontal white matter, hippocampus, thalamus, and basal ganglia from a total of 4445 patient and 3944 control observations. RESULTS Patients with schizophrenia had reduced NAA in five of the six brain regions, with a statistically significant sparing of the basal ganglia. Patients had elevated choline in the basal ganglia and both prefrontal cortical regions. Patient creatine levels were normal in all six regions. In some regions, the NAA and choline differences were greater in studies enrolling predominantly medicated patients compared to studies enrolling predominantly unmedicated patients. Patient NAA levels were more reduced in hippocampus and frontal white matter in studies using longer echo times than those using shorter echo times. MPFC choline and NAA abnormalities were greater in studies reporting better metabolite measurement quality. CONCLUSIONS Choline is elevated in the basal ganglia and prefrontal cortical regions, suggesting regionally increased membrane turnover or glial activation in schizophrenia. The basal ganglia are significantly spared from the well-established widespread reduction of NAA in schizophrenia suggesting a regional difference in disease-associated factors affecting NAA. The echo time findings agree with prior reports and suggest microstructural changes cause faster NAA T2 relaxation in hippocampus and frontal white matter in schizophrenia. Separating the effects of medication status and illness chronicity on NAA and choline abnormalities will require further patient-level studies. Metabolite measurement quality was shown to be a critical factor in MRS studies of schizophrenia.
Collapse
Affiliation(s)
- Yvonne S Yang
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Jason Smucny
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA
| | - Huailin Zhang
- Department of Internal Medicine, Adventist Health White Memorial, 1720 E Cesar E Chavez Ave, Los Angeles, CA 90033, USA
| | - Richard J Maddock
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
7
|
Wang M, Barker PB, Cascella NG, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Kelly A, Younes L, Geman D, Palaniyappan L, Sawa A, Yang K. Longitudinal changes in brain metabolites in healthy controls and patients with first episode psychosis: a 7-Tesla MRS study. Mol Psychiatry 2023; 28:2018-2029. [PMID: 36732587 PMCID: PMC10394114 DOI: 10.1038/s41380-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.
Collapse
Affiliation(s)
- Min Wang
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Peter B Barker
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra Kelly
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lena Palaniyappan
- Robarts Research Institution, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Alden EC, Smith MJ, Reilly JL, Wang L, Csernansky JG, Cobia DJ. Shape features of working memory-related deep-brain regions differentiate high and low community functioning in schizophrenia. Schizophr Res Cogn 2022; 29:100250. [PMID: 35368990 PMCID: PMC8968669 DOI: 10.1016/j.scog.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/06/2022]
Abstract
We have previously shown that schizophrenia (SCZ) participants with high community functioning demonstrate better verbal working memory (vWM) performance relative to those with low community functioning. In the present study, we investigated whether neuroanatomical differences in regions supporting vWM also exist between schizophrenia groups that vary on community functioning. Utilizing magnetic resonance imaging, shape features of deep-brain nuclei known to be involved in vWM were calculated in samples of high functioning (HF-SCZ, n = 23) and low functioning schizophrenia participants (LF-SCZ, n = 18), as well as in a group of healthy control participants (CON, n = 45). Large deformation diffeomorphic metric mapping was employed to characterize surface anatomy of the caudate nucleus, globus pallidus, hippocampus, and thalamus. Statistical analyses involved linear mixed-effects models and vertex-wise contrast mapping to assess between-group differences in structural shape features, and Pearson correlations to evaluate relationships between shape metrics and vWM performance. We found significant between-group main effects in deep-brain surface anatomy across all structures. Post-hoc comparisons revealed HF-SCZ and LF-SCZ groups significantly differed on both caudate and hippocampal shape, however, significant correlations with vWM were only observed in hippocampal shape for both SCZ groups. Specifically, more abnormal hippocampal deformation was associated with lower vWM suggesting hippocampal shape is both a neural substrate for vWM deficits and a potential biomarker to predict or monitor the efficacy of cognitive rehabilitation. These findings add to a growing body of literature related to functional outcomes in schizophrenia by demonstrating unique shape patterns across the spectrum of community functioning in SCZ. Deep-brain abnormalities are present in patients regardless of functional severity. Caudate and hippocampal shape differ between community functioning-based groups. Verbal working memory relates to hippocampal shape in both patient groups.
Collapse
Affiliation(s)
- Eva C Alden
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN 55904, USA
| | - Matthew J Smith
- School of Social Work, University of Michigan, 1080 South University Avenue, Ann Arbor, MI, USA
| | - James L Reilly
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John G Csernansky
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA
| | - Derin J Cobia
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
10
|
Zahid U, McCutcheon RA, Borgan F, Jauhar S, Pepper F, Nour MM, Rogdaki M, Osugo M, Murray GK, Hathway P, Murray RM, Egerton A, Howes OD. The effect of antipsychotics on glutamate levels in the anterior cingulate cortex and clinical response: A 1H-MRS study in first-episode psychosis patients. Front Psychiatry 2022; 13:967941. [PMID: 36032237 PMCID: PMC9403834 DOI: 10.3389/fpsyt.2022.967941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Glutamatergic dysfunction is implicated in the pathophysiology of schizophrenia. It is unclear whether glutamatergic dysfunction predicts response to treatment or if antipsychotic treatment influences glutamate levels. We investigated the effect of antipsychotic treatment on glutamatergic levels in the anterior cingulate cortex (ACC), and whether there is a relationship between baseline glutamatergic levels and clinical response after antipsychotic treatment in people with first episode psychosis (FEP). Materials and methods The sample comprised 25 FEP patients; 22 completed magnetic resonance spectroscopy scans at both timepoints. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Results There was no significant change in glutamate [baseline 13.23 ± 2.33; follow-up 13.89 ± 1.74; t(21) = -1.158, p = 0.260], or Glx levels [baseline 19.64 ± 3.26; follow-up 19.66 ± 2.65; t(21) = -0.034, p = 0.973]. There was no significant association between glutamate or Glx levels at baseline and the change in PANSS positive (Glu r = 0.061, p = 0.777, Glx r = -0.152, p = 0.477), negative (Glu r = 0.144, p = 0.502, Glx r = 0.052, p = 0.811), general (Glu r = 0.110, p = 0.607, Glx r = -0.212, p = 0.320), or total scores (Glu r = 0.078, p = 0.719 Glx r = -0.155, p = 0.470). Conclusion These findings indicate that treatment response is unlikely to be associated with baseline glutamatergic metabolites prior to antipsychotic treatment, and there is no major effect of antipsychotic treatment on glutamatergic metabolites in the ACC.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robert A. McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London Centre, London, United Kingdom
| | - Matthew M. Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Hathway
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- H. Lundbeck UK, Valby, Denmark
| |
Collapse
|
11
|
Newman SD, Schnakenberg Martin AM, Raymond D, Cheng H, Wilson L, Barnes S, O’Donnell BF. The relationship between cannabis use and taurine: A MRS and metabolomics study. PLoS One 2022; 17:e0269280. [PMID: 35653401 PMCID: PMC9162360 DOI: 10.1371/journal.pone.0269280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Taurine is an essential amino acid. It has been shown to be neuroprotective including protecting against the neurotoxic effects of glutamate. The goal of the current study was to examine the relationship between CB use and taurine measured in brain using magnetic resonance spectroscopy (MRS), and peripherally from a urine sample. Two experiments are presented. The first is a reanalysis of published data that examined taurine and glutamate in the dorsal anterior cingulate of a CB user group and non-user group using MRS. The second experiment, in a separate CB user group, used metabolomics analysis to measure taurine levels in urine. Because body composition has been associated with the pharmacokinetics of cannabis and taurine levels, a moderation model was examined with body composition included as the covariate. The MRS study found taurine levels were correlated with glutamate in both groups and taurine was correlated with frequency of CB use in the CB user group. The moderation model demonstrated significant effects of CB use and BMI; the interaction was marginally significant with lower BMI individuals showing a positive relationship between CB use and taurine. A similar finding was observed for the urine analysis. Both CB use and weight, as well as the interaction were significant. In this case, individuals with higher weight showed an association between CB use and taurine levels. This study shows the feasibility and potential importance of examining the relationship between taurine and CB use as it may shed light on a mechanism that underlies the neuroprotective effects of CB.
Collapse
Affiliation(s)
- Sharlene D. Newman
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| | - Ashley M. Schnakenberg Martin
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Psychology Service, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - David Raymond
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
12
|
Chen X, Fan X, Song X, Gardner M, Du F, Öngür D. White Matter Metabolite Relaxation and Diffusion Abnormalities in First-Episode Psychosis: A Longitudinal Study. Schizophr Bull 2022; 48:712-720. [PMID: 34999898 PMCID: PMC9077413 DOI: 10.1093/schbul/sbab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microstructural abnormalities in the white matter (WM) are implicated in the pathophysiology of psychosis. In vivo magnetic resonance spectroscopy (MRS) can probe the brain's intracellular microenvironment through the measurement of transverse relaxation and diffusion of neurometabolites and possibly provide cell-specific information. In our previous studies, we observed differential metabolite signal abnormalities in first episode and chronic stages of psychosis. In the present work, longitudinal data were presented for the first time on white matter cell-type specific abnormalities using a combination of diffusion tensor spectroscopy (DTS), T2 MRS, and diffusion tensor imaging (DTI) from a group of 25 first episode psychosis patients and nine matched controls scanned at baseline and one and two years of follow-up. We observed significantly reduced choline ADC in the year 1 of follow-up (0.194 µm2/ms) compared to baseline (0.229 µm2/ms), followed by a significant increase in NAA ADC in the year 2 follow-up (0.258 µm2/ms) from baseline (0.222 µm2/ms) and year 1 follow-up (0.217 µm2/ms). In contrast, NAA T2 relaxation, reflecting a related but different aspect of microenvironment from diffusion, was reduced at year 1 follow-up (257 ms) compared to baseline (278 ms). These abnormalities were observed in the absence of any abnormalities in water relaxation and diffusion at any timepoint. These findings indicate that abnormalities are seen in in glial-enriched (choline) signals in early stages of psychosis, followed by the subsequent emergence of neuronal-enriched (NAA) diffusion abnormalities, all in the absence of nonspecific water signal abnormalities.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Xiaoying Fan
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margaret Gardner
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Wang L, Ma T, Qiao D, Cui K, Bi X, Han C, Yang L, Sun M, Liu L. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022; 22:171. [PMID: 35260124 PMCID: PMC8903623 DOI: 10.1186/s12888-022-03799-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies have shown that the excitatory amino acid transporters (EAATs) are associated with schizophrenia. The aim of this study was to investigate the relationship between the polymorphism of EAAT1 and EAAT2 genes and schizophrenia in Chinese Han population. METHODS A total of 233 patients with schizophrenia and 342 healthy controls were enrolled. Two SNPs in EAAT1 gene (rs2269272, rs2731880) and four SNPs in EAAT2 gene (rs12360706, rs3088168, rs12294045, rs10836387) were genotyped by SNaPshot. Clinical features were collected using a self-made questionnaire. Psychotic symptoms of patients were measured by the Positive and Negative Syndrome Scale (PANSS), and patients' cognitive function was assessed by Matrics Consensus Cognitive Battery (MCCB). RESULTS Significant difference in allelic distributions between cases and controls was confirmed at locus rs12294045 (Ρ = 0.004) of EAAT2 gene. Different genotypes of rs12294045 were associated with family history (P = 0.046), in which patients with CT genotype had higher proportion of family history of psychosis. The polymorphism of rs12294045 was related to working operational memory (LNS: P = 0.016) and verbal learning function (HVLT-R: P = 0.042) in patients in which CT genotype had lower scores. However, these differences were no longer significant after Bonferroni correction. CONCLUSIONS Our study showed that the polymorphism of rs12294045 in EAAT2 gene may be associated with schizophrenia in Chinese Han population. CT genotype may be one of the risk factors for family history and cognitive deficits of patients.
Collapse
Affiliation(s)
- Lina Wang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Tantan Ma
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Dongdong Qiao
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Kaiyan Cui
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Xiaojiao Bi
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Chao Han
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Limin Yang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Mengmeng Sun
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Lanfen Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
14
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
15
|
Frontal neural metabolite changes in schizophrenia and their association with cognitive control: A systematic review. Neurosci Biobehav Rev 2021; 132:224-247. [PMID: 34864431 PMCID: PMC8830497 DOI: 10.1016/j.neubiorev.2021.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
GABA levels are decreased in medial frontal brain areas of schizophrenia patients. Glutamate levels are lower in medial and lateral frontal areas in chronic patients. Working memory performance is associated with frontal GABA and Glu. Prediction errors are associated Glu and medial frontal GABA. Processing speed correlates with medial frontal GABA levels.
A large proportion of patients with schizophrenia exhibit deficits in cognitive control functions including working memory, processing speed and inhibitory control, which have been associated with frontal brain areas. In this systematic review, we investigated differences between chronic schizophrenia patients, first-episode (FEP) patients and healthy control groups in the neurometabolite levels of GABA, glutamate, glutamine and Glx in frontal brain areas. Additionally, we reviewed correlations between cognitive control functions or negative symptoms and these neurometabolite levels. Several studies reported decreased GABA or glutamate concentrations in frontal lobe areas, particularly in chronic schizophrenia patients, while the results were mixed for FEP patients. Working memory performance and prediction errors have been associated with frontal GABA and glutamate levels, and processing speed with frontomedial GABA levels in chronic patients. The relationship between metabolites and negative symptom severity was somewhat inconsistent. Future studies should take the participants' age, medication status or responsivity, disease stage and precise anatomical location of the voxel into account when comparing neurometabolite levels between schizophrenia patients and healthy controls.
Collapse
|
16
|
Smucny J, Carter CS, Maddock RJ. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 90:643-651. [PMID: 34344534 PMCID: PMC9303057 DOI: 10.1016/j.biopsych.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies measuring brain glutamate separately from glutamine are helping elucidate schizophrenia pathophysiology. An expanded literature and improved methodologies motivate an updated meta-analysis examining effects of measurement quality and other moderating factors in characterizing abnormal glutamate levels in schizophrenia. METHODS Searching previous meta-analyses and the MEDLINE database identified 83 proton magnetic resonance spectroscopy datasets published through March 25, 2020. Three quality metrics were extracted-Cramér-Rao lower bound (CRLB), line width, and coefficient of variation. Pooled effect sizes (Hedges' g) were calculated with random-effects, inverse variance-weighted models. Moderator analyses were conducted using quality metrics, field strength, echo time, medication, age, and stage of illness. RESULTS Across 36 datasets (2086 participants), medial prefrontal cortex glutamate was significantly reduced in patients (g = -0.19, confidence interval [CI] = -0.07 to -0.32). CRLB and coefficient of variation quality subgroups significantly moderated this effect. Glutamate was significantly more reduced in studies with lower CRLB or coefficient of variation (g = -0.44, CI = -0.29 to -0.60, and g = -0.43, CI = -0.29 to -0.57, respectively). Studies using echo time ≤20 ms also showed significantly greater reduction in glutamate (g = -0.41, CI = -0.26 to -0.55). Across 11 hippocampal datasets, group differences and moderator effects were nonsignificant. Group effects in thalamus and dorsolateral prefrontal cortex were also nonsignificant. CONCLUSIONS High-quality measurements reveal consistently reduced medial prefrontal cortex glutamate in schizophrenia. Stricter CRLB criteria and reduced nuisance variance may increase the sensitivity of future studies examining additional regions and the pathophysiological significance of abnormal glutamate levels in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| |
Collapse
|
17
|
Park MTM, Jeon P, Khan AR, Dempster K, Chakravarty MM, Lerch JP, MacKinley M, Théberge J, Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110297. [PMID: 33691200 DOI: 10.1016/j.pnpbp.2021.110297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
Disrupted serotonergic and glutamatergic signaling interact and contribute to the pathophysiology of schizophrenia, which is particularly relevant for the hippocampus where diverse expression of serotonin receptors is noted. Hippocampal atrophy is a well-established feature of schizophrenia, with select subfields hypothesized as particularly vulnerable due to variation in glutamate receptor densities. We investigated hippocampal anomalies in first-episode psychosis (FEP) in relation to receptor distributions by leveraging 4 sources of data: (1) ultra high-field (7-Tesla) structural neuroimaging, and (2) proton magnetic resonance spectroscopy (1H-MRS) of glutamate from 27 healthy and 41 FEP subjects, (3) gene expression data from the Allen Human Brain Atlas and (4) atlases of the serotonin receptor system. Automated methods delineated the hippocampus to map receptor density across subfields. We used gene expression data to correlate serotonin and glutamate receptor genes across the hippocampus. Measures of individual hippocampal shape-receptor alignment were derived through normative modelling and correlations to receptor distributions, termed Receptor-Specific Morphometric Signatures (RSMS). We found reduced hippocampal volumes in FEP, while CA4-dentate gyrus showed greatest reductions. Gene expression indicated 5-HT1A and 5-HT4 to correlate with AMPA and NMDA expression, respectively. Magnitudes of subfield volumetric reduction in FEP correlated most with 5-HT1A (R = 0.64, p = 4.09E-03) and 5-HT4 (R = 0.54, p = 0.02) densities as expected, and replicated using previously published data from two FEP studies. Right-sided 5-HT4-RSMS was correlated with MRS glutamate (R = 0.357, p = 0.048). We demonstrate a putative glutamate-driven hippocampal variability in FEP through a serotonin receptor-density gated mechanism, thus outlining a mechanistic interplay between serotonin and glutamate in determining the hippocampal morphology in schizophrenia.
Collapse
Affiliation(s)
- Min Tae M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada
| | - Kara Dempster
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - M Mallar Chakravarty
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Lawson Health Research Institute, London, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada; Lawson Health Research Institute, London, Canada.
| |
Collapse
|
18
|
Social functioning and brain imaging in individuals at clinical high-risk for psychosis: A systematic review. Schizophr Res 2021; 233:3-12. [PMID: 34126554 PMCID: PMC8380704 DOI: 10.1016/j.schres.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022]
Abstract
Impairments in social functioning are a core impairment in psychosis and are associated with poor outcomes. These deficits are found in those at clinical high-risk (CHR) for psychosis, and can persist even in the absence of transition. However, the neurobiological underpinnings of social functioning remain unclear, therefore we conducted a systematic review of brain metrics that have been associated with social functioning in youth at CHR for psychosis. Five databases (MEDLINE, CINAHL, EBM reviews, Embase, and PsycINFO) were searched from inception to May 5, 2020. Studies were selected if they examined brain imaging, and social functioning in youth at CHR for psychosis. Of the 9629 citations found through online database searching, 12 studies with 696 CHR participants met inclusion criteria. Too few studies were focused on the same brain region using the same methodology to perform a meta-analysis, however, loci within the prefrontal cortex were most often associated with social functioning. Few studies have linked social functioning to brain imaging metrics, suggesting that future work should focus on this relationship.
Collapse
|
19
|
Merritt K, McGuire PK, Egerton A, Aleman A, Block W, Bloemen OJN, Borgan F, Bustillo JR, Capizzano AA, Coughlin JM, De la Fuente-Sandoval C, Demjaha A, Dempster K, Do KQ, Du F, Falkai P, Galinska-Skok B, Gallinat J, Gasparovic C, Ginestet CE, Goto N, Graff-Guerrero A, Ho BC, Howes OD, Jauhar S, Jeon P, Kato T, Kaufmann CA, Kegeles LS, Keshavan M, Kim SY, Kunugi H, Lauriello J, Liemburg EJ, Mcilwain ME, Modinos G, Mouchlianitis ED, Nakamura J, Nenadic I, Öngür D, Ota M, Palaniyappan L, Pantelis C, Plitman E, Posporelis S, Purdon SE, Reichenbach JR, Renshaw PF, Russell BR, Sawa A, Schaefer M, Shungu DC, Smesny S, Stanley JA, Stone JM, Szulc A, Taylor R, Thakkar K, Théberge J, Tibbo PG, van Amelsvoort T, Walecki J, Williamson PC, Wood SJ, Xin L, Yamasue H. Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level: A Mega-analysis of Individual Participant-Level Data. JAMA Psychiatry 2021; 78:667-681. [PMID: 33881460 PMCID: PMC8060889 DOI: 10.1001/jamapsychiatry.2021.0380] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, United Kingdom
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Philip K McGuire
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - André Aleman
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor
| | - Jennifer Marie Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Camilo De la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Arsime Demjaha
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Peter Falkai
- Department of Psychiatry, University Hospital, LMU Munich, Munich, Germany
| | - Beata Galinska-Skok
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland
| | - Jurgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | | | - Cedric E Ginestet
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience King's College London, London, United Kingdom
| | - Naoki Goto
- Department of Psychiatry, Kokura Gamo Hospital, Kitakyushu, Fukuoka, Japan
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Beng Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City
| | - Oliver D Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Peter Jeon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Charles A Kaufmann
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York
| | | | | | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - John Lauriello
- Jefferson Health-Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Edith Jantine Liemburg
- Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Meghan E Mcilwain
- School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Elias D Mouchlianitis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
- Editor, JAMA Psychiatry
| | - Miho Ota
- National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sotirios Posporelis
- Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley, Bethlem Royal Hospital, Beckenham, United Kingdom
| | - Scot E Purdon
- Neuropsychology Department, Alberta Hospital Edmonton, Edmonton, Alberta, Canada
- Edmonton Early Intervention in Psychosis Clinic, Edmonton, Alberta, Canada
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City
| | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Kliniken Essen-Mitte, Essen, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jeffrey A Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - James M Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| | - Reggie Taylor
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Lawson Health Research Institute, London, Ontario, Canada
| | - Katy Thakkar
- Department of Psychology, Michigan State University, East Lansing
- Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | | | - Peter C Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Stephen James Wood
- Orygen, Melbourne, Australia
- Institute for Mental Health, University of Birmingham, Edgbaston, United Kingdom
- Centre for Youth Mental Health, University of Melbourne, Australia
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Bojesen KB, Broberg BV, Fagerlund B, Jessen K, Thomas MB, Sigvard A, Tangmose K, Nielsen MØ, Andersen GS, Larsson HBW, Edden RA, Rostrup E, Glenthøj BY. Associations Between Cognitive Function and Levels of Glutamatergic Metabolites and Gamma-Aminobutyric Acid in Antipsychotic-Naïve Patients With Schizophrenia or Psychosis. Biol Psychiatry 2021; 89:278-287. [PMID: 32928500 PMCID: PMC9683086 DOI: 10.1016/j.biopsych.2020.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been found in the early phase of schizophrenia and may underlie cognitive deficits. However, the association between cognitive function and levels of glutamatergic metabolites and GABA has not been investigated in a large group of antipsychotic-naïve patients. METHODS In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, and IQ were assessed. RESULTS The whole group of antipsychotic-naïve patients had lower levels of GABA in dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ between groups. Glx levels in dorsal ACC were positively associated with working memory (logarithmically transformed: b = -.016 [higher score indicates worse performance], p = .005) and attention (b = .056, p = .035) in both patients and healthy control subjects, although the association with attention did not survive adjustment for multiple comparisons. CONCLUSIONS The findings suggest a positive association between glutamatergic metabolites and cognitive function that do not differ between patients and healthy control subjects. Moreover, our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive deficits may gain from glutamate-modulating compounds.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Faculty of Health and Medical Sciences, and Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Marie Bjerregaard Thomas
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gitte Saltoft Andersen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
21
|
Smesny S, Berberich D, Gussew A, Schönfeld N, Langbein K, Walther M, Reichenbach JR. Alterations of neurometabolism in the dorsolateral prefrontal cortex and thalamus in transition to psychosis patients change under treatment as usual - A two years follow-up 1H/ 31P-MR-spectroscopy study. Schizophr Res 2021; 228:7-18. [PMID: 33429152 DOI: 10.1016/j.schres.2020.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The ultra-high risk (UHR) paradigm allows early contact with patients developing acute psychosis and the study of treatment effects on the underlying pathology. METHODS 29 patients with first acute psychosis according to CAARMS criteria (transition patients, TP) (T0) and thereof 22 patients after two-year follow-up (mean 788 d) (T1) underwent 1H-/31P-MR spectroscopy of the prefrontal (DLPFC) and anterior midcingulate (aMCC) cortices and the thalamus. N-acetylaspartate (NAA), glutamate (Glu, Glx), energy (PCr, ATP) and phospholipid metabolites (PME, PDE) were compared to 27 healthy controls by ANCOVA and correlated with patients' symptom ratings (BPRS-E, SCL-90R). For longitudinal analysis, linear mixed model (LMM) and ANCOVA for repeated measures were used. RESULTS DLPFC: In patients, NAA and PME were decreased bilaterally and Glu on the left side at T0. Left-sided Glu and NAA (trend) and bilateral Glx increased during follow-up. Thalamus: In TP, bilateral NAA, left-sided Glu and right-sided Glx were decreased at T0; bilateral NAA and left-sided Glx increased during follow-up. aMCC: In TP, bilateral NAA, right-sided Glu, and bilateral PME and PDE were decreased, while left-sided PCr was increased at T0. No changes were observed during follow-up. CONCLUSION Regardless of the long-term diagnosis, the psychotic state of illness includes disturbed neuronal function in the DLPFC, thalamus and aMCC. Treatment-as-usual (TAU), including antipsychotic/antidepressant medication and supportive psychotherapy, had an effect on the thalamo-frontal area but not or less pronounced on the neurometabolic deficits of the aMCC.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Diana Berberich
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Alexander Gussew
- Department of Radiology, University Hospital Halle (Saale), Ernst-Grube-Str. 40, D-06120 Halle (Saale), Germany
| | - Nils Schönfeld
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Mario Walther
- Jena University of Applied Sciences, Department of Fundamental Sciences, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
22
|
Wijtenburg SA, Wang M, Korenic SA, Chen S, Barker PB, Rowland LM. Metabolite Alterations in Adults With Schizophrenia, First Degree Relatives, and Healthy Controls: A Multi-Region 7T MRS Study. Front Psychiatry 2021; 12:656459. [PMID: 34093272 PMCID: PMC8170030 DOI: 10.3389/fpsyt.2021.656459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Proton magnetic resonance spectroscopy (MRS) studies in schizophrenia have shown altered GABAergic, glutamatergic, and bioenergetic pathways, but if these abnormalities are brain region or illness-stage specific is largely unknown. MRS at 7T MR enables reliable quantification of multiple metabolites, including GABA, glutamate (Glu) and glutamine (Gln), from multiple brain regions within the time constraints of a clinical examination. In this study, GABA, Glu, Gln, the ratio Gln/Glu, and lactate (Lac) were quantified using 7T MRS in five brain regions in adults with schizophrenia (N = 40), first-degree relatives (N = 11), and healthy controls (N = 38). Metabolites were analyzed for differences between groups, as well as between subjects with schizophrenia with either short (<5 years, N = 19 or long (>5 years, N = 21) illness duration. For analyses between the three groups, there were significant glutamatergic and GABAergic differences observed in the anterior cingulate, centrum semiovale, and dorsolateral prefrontal cortex. There were also significant relationships between anterior cingulate cortex, centrum semiovale, and dorsolateral prefrontal cortex and cognitive measures. There were also significant glutamatergic, GABAergic, and lactate differences between subjects with long and short illness duration in the anterior cingulate, centrum semiovale, dorsolateral prefrontal cortex, and hippocampus. Finally, negative symptom severity ratings were significantly correlated with both anterior cingulate and centrum semiovale metabolite levels. In summary, 7T MRS shows multi-region differences in GABAergic and glutamatergic metabolites between subjects with schizophrenia, first-degree relatives and healthy controls, suggesting relatively diffuse involvement that evolves with illness duration. Unmedicated first-degree relatives share some of the same metabolic characteristics as patients with a diagnosis of schizophrenia, suggesting that these differences may reflect a genetic vulnerability and are not solely due to the effects of antipsychotic interventions.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephanie A Korenic
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shuo Chen
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,FM Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Proton Magnetic Resonance Spectroscopy of N-acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2020; 119:255-267. [PMID: 33068555 DOI: 10.1016/j.neubiorev.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
N-acetyl-aspartate (NAA) is a readily measured marker of neuronal metabolism. Previous analyses in schizophrenia have shown NAA levels are low in frontal, temporal and thalamic regions, but may be underpowered to detect effects in other regions, in high-risk states and in first episode psychosis. We searched for magnetic resonance spectroscopy studies comparing NAA in chronic schizophrenia, first episode psychosis and high risk of psychosis to controls. 182 studies were included and meta-analysed using a random-effects model for each region and illness stage. NAA levels were significantly lower than controls in the frontal lobe [Hedge's g = -0.36, p < 0.001], hippocampus [-0.52, p < 0.001], temporal lobe [-0.35, p = 0.031], thalamus [-0.32, p = 0.012] and parietal lobe [-0.25, p = 0.028] in chronic schizophrenia, and lower than controls in the frontal lobe [-0.26, p = 0.002], anterior cingulate cortex [-0.24, p = 0.016] and thalamus [-0.28, p = 0.028] in first episode psychosis. NAA was lower in high-risk of psychosis in the hippocampus [-0.20, p = 0.049]. In schizophrenia, NAA alterations appear to begin in hippocampus, frontal cortex and thalamus, and extend later to many other regions.
Collapse
|
24
|
Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr Res 2020; 226:95-110. [PMID: 30935700 DOI: 10.1016/j.schres.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Due to the limitations of analytical techniques and the complicity of schizophrenia, nowadays it is still a challenge to diagnose and stratify schizophrenia patients accurately. Many attempts have been made to identify and validate available biomarkers for schizophrenia from CSF and/or peripheral blood in clinical studies with consideration to disease stages, antipsychotic effects and even gender differences. However, conflicting results handicap the validation and application of biomarkers for schizophrenia. In view of availability and feasibility, peripheral biomarkers have superior advantages over biomarkers in CNS. Meanwhile, schizophrenia is considered to be a devastating neuropsychiatric disease mainly taking place in CNS featured by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to difficult to investigate. Evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions among relevant biochemical pathways. Taken these points together, it will be interesting to investigate possible associations of biomarkers between CNS and periphery. Numerous studies have suggested putative correlations within peripheral and CNS systems especially for dopaminergic and glutamatergic metabolic biomarkers. In addition, it has been demonstrated that blood concentrations of BDNF protein can also reflect its changes in the nervous system. In turn, BDNF also interacts with glutamatergic, dopaminergic and serotonergic systems. Therefore, this review will summarize metabolic biomarkers identified both in the CNS (brain tissues and CSF) and peripheral blood. Further, more attentions will be paid to discussing possible physical and functional associations between CNS and periphery, especially with respect to BDNF.
Collapse
|
25
|
Bojesen KB, Ebdrup BH, Jessen K, Sigvard A, Tangmose K, Edden RA, Larsson HB, Rostrup E, Broberg BV, Glenthøj BY. Treatment response after 6 and 26 weeks is related to baseline glutamate and GABA levels in antipsychotic-naïve patients with psychosis. Psychol Med 2020; 50:2182-2193. [PMID: 31524118 PMCID: PMC7557159 DOI: 10.1017/s0033291719002277] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Poor response to dopaminergic antipsychotics constitutes a major challenge in the treatment of psychotic disorders and markers for non-response during first-episode are warranted. Previous studies have found increased levels of glutamate and γ-aminobutyric acid (GABA) in non-responding first-episode patients compared to responders, but it is unknown if non-responders can be identified using reference levels from healthy controls (HCs). METHODS Thirty-nine antipsychotic-naïve patients with first-episode psychosis and 36 matched HCs underwent repeated assessments with the Positive and Negative Syndrome Scale and 3T magnetic resonance spectroscopy. Glutamate scaled to total creatine (/Cr) was measured in the anterior cingulate cortex (ACC) and left thalamus, and levels of GABA/Cr were measured in ACC. After 6 weeks, we re-examined 32 patients on aripiprazole monotherapy and 35 HCs, and after 26 weeks we re-examined 30 patients on naturalistic antipsychotic treatment and 32 HCs. The Andreasen criteria defined non-response. RESULTS Before treatment, thalamic glutamate/Cr was higher in the whole group of patients but levels normalized after treatment. ACC levels of glutamate/Cr and GABA/Cr were lower at all assessments and unaffected by treatment. When compared with HCs, non-responders at week 6 (19 patients) and week 26 (16 patients) had higher baseline glutamate/Cr in the thalamus. Moreover, non-responders at 26 weeks had lower baseline GABA/Cr in ACC. Baseline levels in responders and HCs did not differ. CONCLUSION Glutamatergic and GABAergic abnormalities in antipsychotic-naïve patients appear driven by non-responders to antipsychotic treatment. If replicated, normative reference levels for glutamate and GABA may aid estimation of clinical prognosis in first-episode psychosis patients.
Collapse
Affiliation(s)
- Kirsten B. Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Henrik B.W. Larsson
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Brian V. Broberg
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Y. Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Clinical Medicine, Copenhagen, Denmark
| |
Collapse
|
26
|
Kubota M, Moriguchi S, Takahata K, Nakajima S, Horita N. Treatment effects on neurometabolite levels in schizophrenia: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Schizophr Res 2020; 222:122-132. [PMID: 32505446 DOI: 10.1016/j.schres.2020.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although there is growing evidence of alterations in the neurometabolite status associated with the pathophysiology of schizophrenia, how treatments influence these metabolite levels in patients with schizophrenia remains poorly studied. METHODS We conducted a literature search using Embase, Medline, and PsycINFO to identify proton magnetic resonance spectroscopy studies that compared neurometabolite levels before and after treatment in patients with schizophrenia. Six neurometabolites (glutamate, glutamine, glutamate + glutamine, gamma-aminobutyric acid, N-acetylaspartate, myo-inositol) and six regions of interest (frontal cortex, temporal cortex, parieto-occipital cortex, thalamus, basal ganglia, hippocampus) were investigated. RESULTS Thirty-two studies (n = 773 at follow-up) were included in our meta-analysis. Our results demonstrated that the frontal glutamate + glutamine level was significantly decreased (14 groups; n = 292 at follow-up; effect size = -0.35, P = 0.0003; I2 = 22%) and the thalamic N-acetylaspartate level was significantly increased (7 groups; n = 184 at follow-up; effect size = 0.47, P < 0.00001; I2 = 0%) after treatment in schizophrenia patients. No significant associations were found between neurometabolite changes and age, gender, duration of illness, duration of treatment, or baseline symptom severity. CONCLUSIONS The current results suggest that glutamatergic neurometabolite levels in the frontal cortex and neuronal integrity in the thalamus in schizophrenia might be modified following treatment.
Collapse
Affiliation(s)
- Manabu Kubota
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Sho Moriguchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada
| | - Keisuke Takahata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Neuropsychiatry, Keio University Graduate School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada; Department of Neuropsychiatry, Keio University Graduate School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyuki Horita
- Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
27
|
Tarumi R, Tsugawa S, Noda Y, Plitman E, Honda S, Matsushita K, Chavez S, Sawada K, Wada M, Matsui M, Fujii S, Miyazaki T, Chakravarty MM, Uchida H, Remington G, Graff-Guerrero A, Mimura M, Nakajima S. Levels of glutamatergic neurometabolites in patients with severe treatment-resistant schizophrenia: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 2020; 45:632-640. [PMID: 31842203 PMCID: PMC7021829 DOI: 10.1038/s41386-019-0589-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 01/20/2023]
Abstract
Approximately 30% of patients with schizophrenia do not respond to antipsychotics and are thus considered to have treatment-resistant schizophrenia (TRS). To date, only four studies have examined glutamatergic neurometabolite levels using proton magnetic resonance spectroscopy (1H-MRS) in patients with TRS, collectively suggesting that glutamatergic dysfunction may be implicated in the pathophysiology of TRS. Notably, the TRS patient population in these studies had mild-to-moderate illness severity, which is not entirely reflective of what is observed in clinical practice. In this present work, we compared glutamate + glutamine (Glx) levels in the dorsal anterior cingulate cortex (dACC) and caudate among patients with TRS, patients with non-TRS, and healthy controls (HCs), using 3T 1H-MRS (PRESS, TE = 35 ms). TRS criteria were defined by severe positive symptoms (i.e., ≥5 on 2 Positive and Negative Syndrome Scale (PANSS)-positive symptom items or ≥4 on 3 PANSS-positive symptom items), despite standard antipsychotic treatment. A total of 95 participants were included (29 TRS patients [PANSS = 111.2 ± 20.4], 33 non-TRS patients [PANSS = 49.8 ± 13.7], and 33 HCs). dACC Glx levels were higher in the TRS group vs. HCs (group effect: F[2,75] = 4.74, p = 0.011; TRS vs. HCs: p = 0.012). No group differences were identified in the caudate. There were no associations between Glx levels and clinical severity in either patient group. Our results are suggestive of greater heterogeneity in TRS relative to non-TRS with respect to dACC Glx levels, necessitating further research to determine biological subtypes of TRS.
Collapse
Affiliation(s)
- Ryosuke Tarumi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,grid.415439.eDepartment of Psychiatry, Komagino Hospital, Hachioji, Japan
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshihiro Noda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada
| | - Shiori Honda
- 0000 0004 1936 9959grid.26091.3cGraduate School of Media and Governance, Keio University, Tokyo, Japan
| | - Karin Matsushita
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Sofia Chavez
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Kyosuke Sawada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Mie Matsui
- 0000 0001 2308 3329grid.9707.9Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Shinya Fujii
- 0000 0004 1936 9959grid.26091.3cFaculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - M. Mallar Chakravarty
- 0000 0004 1936 8649grid.14709.3bCerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, McGill University, Montreal, QC Canada ,0000 0004 1936 8649grid.14709.3bDepartment of Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Hiroyuki Uchida
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan ,0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Gary Remington
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Ariel Graff-Guerrero
- 0000 0000 8793 5925grid.155956.bCampbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan. .,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
28
|
Wenneberg C, Nordentoft M, Rostrup E, Glenthøj LB, Bojesen KB, Fagerlund B, Hjorthøj C, Krakauer K, Kristensen TD, Schwartz C, Edden RAE, Broberg BV, Glenthøj BY. Cerebral Glutamate and Gamma-Aminobutyric Acid Levels in Individuals at Ultra-high Risk for Psychosis and the Association With Clinical Symptoms and Cognition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:569-579. [PMID: 32008981 DOI: 10.1016/j.bpsc.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies examining glutamate or gamma-aminobutyric acid (GABA) in ultra-high risk for psychosis (UHR) and the association with pathophysiology and cognition have shown conflicting results. We aimed to determine whether perturbed glutamate and GABA levels in the anterior cingulate cortex and glutamate levels in the left thalamus were present in UHR individuals and to investigate associations between metabolite levels and clinical symptoms and cognition. METHODS We included 122 UHR individuals and 60 healthy control subjects. Participants underwent proton magnetic resonance spectroscopy to estimate glutamate and GABA levels and undertook clinical and cognitive assessments. RESULTS We found no differences in metabolite levels between UHR individuals and healthy control subjects. In UHR individuals, we found negative correlations in the anterior cingulate cortex between the composite of glutamate and glutamine (Glx) and the Comprehensive Assessment of At-Risk Mental States composite score (p = .04) and between GABA and alogia (p = .01); positive associations in the anterior cingulate cortex between glutamate (p = .01) and Glx (p = .01) and spatial working memory and between glutamate (p = .04), Glx (p = .04), and GABA (p = .02) and set-shifting; and a positive association in the thalamus between glutamate and attention (p = .04). No associations between metabolites and clinical or cognitive scores were found in the healthy control subjects. CONCLUSIONS An association between glutamate and GABA levels and clinical symptoms and cognition found only in UHR individuals suggests a loss of the normal relationship between metabolite levels and cognitive function. Longitudinal studies with investigation of clinical and cognitive outcome and the association with baseline levels of glutamate and GABA could illuminate whether glutamatergic and GABAergic dysfunction predicts clinical outcome.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Krakauer
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Tina Dam Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Camilla Schwartz
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
29
|
Neurometabolic correlates of 6 and 16 weeks of treatment with risperidone in medication-naive first-episode psychosis patients. Transl Psychiatry 2020; 10:15. [PMID: 32066680 PMCID: PMC7026447 DOI: 10.1038/s41398-020-0700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Antipsychotic medications are the cornerstone of treatment in schizophrenia spectrum disorders. In first-episode psychosis, the recommended time for an antipsychotic medication trial is up to 16 weeks, but the biological correlates of shorter and longer antipsychotic treatment trials in these cohorts remain largely unknown. We enrolled 29 medication-naive first-episode patients (FEP) and 22 matched healthy controls (HC) in this magnetic resonance spectroscopy (MRS) study, examining the levels of combined glutamate and glutamine (commonly referred to as Glx) in the bilateral medial prefrontal cortex (MPFC) with a PRESS sequence (TR/TE = 2000/80 ms) before initiation of antipsychotic treatment, after 6 and 16 weeks of treatment with risperidone. Data were quantified in 18 HC and 20 FEP at baseline, for 19 HC and 15 FEP at week 6, and for 14 HC and 16 FEP at week 16. At baseline, none of the metabolites differed between groups. Metabolite levels did not change after 6 or 16 weeks of treatment in patients. Our data suggest that metabolite levels do not change after 6 or 16 weeks of treatment with risperidone in FEP. It is possible that our choice of sequence parameters and the limited sample size contributed to negative findings reported here. On the other hand, longer follow-up may be needed to detect treatment-related metabolic changes with MRS. In summary, our study adds to the efforts in better understanding glutamatergic neurometabolism in schizophrenia, especially as it relates to antipsychotic exposure.
Collapse
|
30
|
Li J, Ren H, He Y, Li Z, Ma X, Yuan L, Ouyang L, Zhou J, Wang D, Li C, Chen X, Han H, Tang J. Anterior Cingulate Cortex Glutamate Levels Are Related to Response to Initial Antipsychotic Treatment in Drug-Naive First-Episode Schizophrenia Patients. Front Psychiatry 2020; 11:553269. [PMID: 33192666 PMCID: PMC7644538 DOI: 10.3389/fpsyt.2020.553269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023] Open
Abstract
The glutamatergic system has previously been shown to be involved in the pathophysiology of schizophrenia and the mechanisms of action of antipsychotic treatment. The present study aimed to investigate the relationship between the levels of glutamate (Glu) or Glu/total creatine (Glu/Cr+PCr) in the anterior cingulate cortex (ACC) and psychiatric symptoms as well as the response to antipsychotic treatment. We performed proton magnetic resonance spectroscopy (1H-MRS) to measure Glu and Glu/Cr+PCr in the ACC of 35 drug-naïve first-episode schizophrenia (FES) patients and 40 well-matched healthy controls (HCs). After scanning, we treated the patients with risperidone for eight weeks. Remission status was based on the Positive and Negative Syndrome Scale (PANSS) scores at week 8. At baseline, there were no significant differences in the levels of Glu or Glu/Cr+PCr in the ACC between drug-naïve FES patients and HCs. Lower baseline levels of Glu/Cr+PCr but not Glu in the ACC were associated with more severe negative symptoms of schizophrenia. Compared to the remission group (RM), the non-remission group (NRM) had lower baseline ACC Glu levels (P < 0.05). Our results suggest that ACC Glu levels may be related to the severity of symptoms in the early stages of schizophrenia and therefore may be a marker with which to evaluate the treatment effect of antipsychotics in schizophrenia patients.
Collapse
Affiliation(s)
- Jinguang Li
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Honghong Ren
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying He
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - ZongChang Li
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Yuan
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Ouyang
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Wang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chunwang Li
- Department of Radiology, Hunan Childen's Hospital, Changsha, China
| | - Xiaogang Chen
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsong Tang
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Dempster K, Jeon P, MacKinley M, Williamson P, Théberge J, Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol Psychiatry 2020; 25:1640-1650. [PMID: 32205866 PMCID: PMC7387300 DOI: 10.1038/s41380-020-0704-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with shorter time to response (F = 4.86, P = 0.017), while higher glutamate was associated with more severe functional impairment (F = 5.33, P = 0.008). There were no significant differences between patients and controls on measures of glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early intervention in psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Peter Jeon
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada
| | - Michael MacKinley
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada
| | - Peter Williamson
- 0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0004 1936 8884grid.39381.30Department of Psychiatry, University of Western Ontario, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada
| | - Jean Théberge
- 0000 0004 1936 8884grid.39381.30Department of Medical Biophysics, University of Western Ontario, London, ON Canada ,0000 0004 1936 8884grid.39381.30Robarts Research Institute, London, ON Canada ,0000 0001 0556 2414grid.415847.bLawson Health Research Institute, London, ON Canada ,0000 0000 9674 4717grid.416448.bDepartment of Diagnostic Imaging, St. Joseph’s Health Care London, London, ON Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Robarts Research Institute, London, ON, Canada. .,Department of Psychiatry, University of Western Ontario, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
32
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
33
|
Merritt K, Perez-Iglesias R, Sendt KV, Goozee R, Jauhar S, Pepper F, Barker GJ, Glenthøj B, Arango C, Lewis S, Kahn R, Stone J, Howes O, Dazzan P, McGuire P, Egerton A. Remission from antipsychotic treatment in first episode psychosis related to longitudinal changes in brain glutamate. NPJ SCHIZOPHRENIA 2019; 5:12. [PMID: 31371817 PMCID: PMC6672005 DOI: 10.1038/s41537-019-0080-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/19/2019] [Indexed: 02/04/2023]
Abstract
Neuroimaging studies in schizophrenia have linked elevated glutamate metabolite levels to non-remission following antipsychotic treatment, and also indicate that antipsychotics can reduce glutamate metabolite levels. However, the relationship between symptomatic reduction and change in glutamate during initial antipsychotic treatment is unclear. Here we report proton magnetic resonance spectroscopy (1H-MRS) measurements of Glx and glutamate in the anterior cingulate cortex (ACC) and thalamus in patients with first episode psychosis (n = 23) at clinical presentation, and after 6 weeks and 9 months of treatment with antipsychotic medication. At 9 months, patients were classified into Remission (n = 12) and Non-Remission (n = 11) subgroups. Healthy volunteers (n = 15) were scanned at the same three time-points. In the thalamus, Glx varied over time according to remission status (P = 0.020). This reflected an increase in Glx between 6 weeks and 9 months in the Non-Remission subgroup that was not evident in the Remission subgroup (P = 0.031). In addition, the change in Glx in the thalamus over the 9 months of treatment was positively correlated with the change in the severity of Positive and Negative Syndrome Scale (PANSS) positive, total and general symptoms (P<0.05). There were no significant effects of group or time on glutamate metabolites in the ACC, and no differences between either patient subgroup and healthy volunteers. These data suggest that the nature of the response to antipsychotic medication may be related to the pattern of changes in glutamatergic metabolite levels over the course of treatment. Specifically, longitudinal reductions in thalamic Glx levels following antipsychotic treatment are associated with symptomatic improvement.
Collapse
Affiliation(s)
- Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| | - Rocio Perez-Iglesias
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK.,CIBERSAM: Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Rhianna Goozee
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Birte Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, & Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Center Glostrup, University of Copenhagen, København, Denmark
| | - Celso Arango
- CIBERSAM: Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Shôn Lewis
- Institute of Brain, Behaviour and Mental Health, Manchester Academic Health Sciences Centre and Manchester Mental Health and Social Care Trust, Manchester, M13 9PL, UK
| | - René Kahn
- Department of Psychiatry, Icahn School of Medicine, New York, USA
| | - James Stone
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
34
|
Iwata Y, Nakajima S, Plitman E, Caravaggio F, Kim J, Shah P, Mar W, Chavez S, De Luca V, Mimura M, Remington G, Gerretsen P, Graff-Guerrero A. Glutamatergic Neurometabolite Levels in Patients With Ultra-Treatment-Resistant Schizophrenia: A Cross-Sectional 3T Proton Magnetic Resonance Spectroscopy Study. Biol Psychiatry 2019; 85:596-605. [PMID: 30389132 DOI: 10.1016/j.biopsych.2018.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND In terms of antipsychotic treatment response, patients with schizophrenia can be classified into three groups: 1) treatment resistant to both non-clozapine (non-CLZ) antipsychotics and CLZ (ultra-treatment-resistant schizophrenia [URS]), 2) treatment resistant to non-CLZ antipsychotics but CLZ-responsive schizophrenia [non-URS]), and 3) responsive to first-line antipsychotics (non-treatment-resistant schizophrenia). This study aimed to compare glutamatergic neurometabolite levels among these three patient groups and healthy control subjects using proton magnetic resonance spectroscopy. METHODS Glutamate and glutamate+glutamine levels were assessed in the caudate, the dorsal anterior cingulate cortex (dACC), and the dorsolateral prefrontal cortex using 3T proton magnetic resonance spectroscopy (point-resolved spectroscopy, echo time = 35 ms). Glutamatergic neurometabolite levels were compared between the groups. RESULTS A total of 100 participants were included, consisting of 26 patients with URS, 27 patients with non-URS, 21 patients with non-treatment-resistant schizophrenia, and 26 healthy control subjects. Group differences were detected in ACC glutamate+glutamine levels (F3,96 = 2.93, p = .038); patients with URS showed higher dACC glutamate+glutamine levels than healthy control subjects (p = .038). There were no group differences in the caudate or dorsolateral prefrontal cortex. CONCLUSIONS Taken together with previous studies that demonstrated higher ACC glutamate levels in patients with treatment-resistant schizophrenia, this study suggests that higher levels of ACC glutamatergic metabolites may be among the shared biological characteristics of treatment resistance to antipsychotics, including CLZ.
Collapse
Affiliation(s)
- Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Galińska-Skok B, Szulc A, Małus A, Konarzewska B, Cwalina U, Tarasów E, Waszkiewicz N. Proton magnetic resonance spectroscopy changes in a longitudinal schizophrenia study: a pilot study in eleven patients. Neuropsychiatr Dis Treat 2019; 15:839-847. [PMID: 31040683 PMCID: PMC6459157 DOI: 10.2147/ndt.s196932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Investigation of the longitudinal effect of schizophrenia on changes in various brain-metabolite levels and their relationships with cognitive deficits that have not been fully explained yet. METHODS Five years subsequent to their first examination for their first episode of schizophrenia, eleven patients from an original group of 30 were reexamined. Their cognitive functions were assessed with the Wisconsin Card Sorting Test. Magnetic resonance imaging and proton magnetic resonance spectroscopy were performed on a 1.5 T scanner. Voxels of 8 cm3 were positioned in the left frontal lobe, left temporal lobe, and the left thalamus. The study had a naturalistic design, and patients were treated with various antipsychotics. RESULTS No significant statistical differences between the baseline and follow-up in N-acetylaspartate (NAA:creatine plus phosphocreatine [Cr] and NAA/H2O) levels were observed in any region of interest. We found a significant statistical correlation between 5-year difference in frontal NAA/Cr levels and duration of the last antipsychotic treatment in this period (R=0.908, P=0.012). We found a trend (P=0.068) toward lower choline-containing compounds (Cho/Cr ratio) in the temporal lobe over 5 years and a trend (P=0.079) in higher glutamate-glutamine- GABA (Glx/H2O) levels in the left thalamus. The patients showed social and clinical improvement at follow-up examination, and there were no changes in Wisconsin Card Sorting Test results. CONCLUSION The observed tendency toward decline in choline ratio might have been due to decreased temporal cell density or impaired neuron-membrane or myelin functions. A tendency for higher Glx levels suggest the involvement of thalamus dysfunction in the chronic schizophrenia process. The lack of NAA decrease might have been due to effective antipsychotic treatment. Further longitudinal studies on large patient groups are required to confirm these metabolic changes in schizophrenia.
Collapse
Affiliation(s)
- Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland,
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszków, Poland
| | - Aleksandra Małus
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland,
| | - Beata Konarzewska
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland,
| | - Urszula Cwalina
- Department of Statistics and Medical Informatics, Medical University of Białystok, Białystok, Poland
| | - Eugeniusz Tarasów
- Department of Radiology, Medical University of Białystok, Białystok, Poland
| | | |
Collapse
|
36
|
Reid MA, Salibi N, White DM, Gawne TJ, Denney TS, Lahti AC. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr Bull 2019; 45:180-189. [PMID: 29385594 PMCID: PMC6293230 DOI: 10.1093/schbul/sbx190] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent magnetic resonance spectroscopy (MRS) studies suggest that abnormalities of the glutamatergic system in schizophrenia may be dependent on illness stage, medication status, and symptomatology. Glutamatergic metabolites appear to be elevated in the prodromal and early stages of schizophrenia but unchanged or reduced below normal in chronic, medicated patients. However, few of these studies have measured metabolites with high-field 7T MR scanners, which offer higher signal-to-noise ratio and better spectral resolution than 3T scanners and facilitate separation of glutamate and glutamine into distinct signals. In this study, we examined glutamate and other metabolites in the dorsal anterior cingulate cortex (ACC) of first-episode schizophrenia patients. Glutamate and N-acetylaspartate (NAA) were significantly lower in schizophrenia patients vs controls. No differences were observed in levels of glutamine, GABA, or other metabolites. In schizophrenia patients but not controls, GABA was negatively correlated with the total score on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) as well as the immediate memory and language subscales. Our findings suggest that glutamate and NAA reductions in the ACC may be present early in the illness, but additional large-scale studies are needed to confirm these results as well as longitudinal studies to determine the effect of illness progression and treatment. The correlation between GABA and cognitive function suggests that MRS may be an important technique for investigating the neurobiology underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Meredith A Reid
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University
| | | | - David M White
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham
| | - Timothy J Gawne
- Department of Vision Sciences, The University of Alabama at Birmingham
| | - Thomas S Denney
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 2 Ave S, Birmingham, AL 35294-0017, US; tel: 205-996-6776, fax: 205-975-4879, e-mail:
| |
Collapse
|
37
|
Wang X, Zhao J, Hu Y, Jiao Z, Lu Y, Ding M, Kou Y, Li B, Meng F, Zhao H, Li H, Li W, Yang Y, Lv L. Sodium nitroprusside treatment for psychotic symptoms and cognitive deficits of schizophrenia: A randomized, double-blind, placebo-controlled trial. Psychiatry Res 2018; 269:271-277. [PMID: 30170285 DOI: 10.1016/j.psychres.2018.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/07/2018] [Accepted: 08/19/2018] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents with a broad range of negative, positive, and cognitive symptoms, and comprehensive treatment is still a challenge. Sodium nitroprusside (SNP) has been reported to rapidly reduce psychotic symptoms and improve cognitive functions in patients with schizophrenia, providing a new possible direction for treatment. In this study, we tested whether SNP can improve psychotic symptoms and cognitive function in schizophrenia patients with longer disease history. This was a randomized, double-blind, placebo-controlled trial conducted between May 2016 and April 2017. Forty-two schizophrenia patients aged 18-45 years were recruited from Henan Province Mental Hospital. Baseline psychiatric symptoms were measured using the Positive and Negative Syndrome Scale (PANSS), and baseline cognitive functions were measured using the Wechsler Adult Intelligence Scale. Patients received two SNP or placebo infusions (0.5 μg/kg per min for 4 h) at a one-week interval. We reassessed psychiatric symptoms and cognitive functions using the same tests shortly after the first and second infusions and 4 weeks after the second infusion. We did not find any significant effect of SNP over placebo on psychotic symptoms or cognitive functions, although SNP was relatively well tolerated with a good safety profile.
Collapse
Affiliation(s)
- Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - YunQing Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Zhiqiang Jiao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Benliang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fancui Meng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongzu Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hong Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
38
|
Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: a multicentre 1H-MRS study (OPTiMiSE). Mol Psychiatry 2018; 23:2145-2155. [PMID: 29880882 DOI: 10.1038/s41380-018-0082-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
Conventional antipsychotic medication is ineffective in around a third of patients with schizophrenia, and the nature of the therapeutic response is unpredictable. We investigated whether response to antipsychotics is related to brain glutamate levels prior to treatment. Proton magnetic resonance spectroscopy was used to measure glutamate levels (Glu/Cr) in the anterior cingulate cortex (ACC) and in the thalamus in antipsychotic-naive or minimally medicated patients with first episode psychosis (FEP, n = 71) and healthy volunteers (n = 60), at three sites. Following scanning, patients were treated with amisulpride for 4 weeks (n = 65), then 1H-MRS was repeated (n = 46). Remission status was defined in terms of Positive and Negative Syndrome Scale for Schizophrenia (PANSS) scores. Higher levels of Glu/Cr in the ACC were associated with more severe symptoms at presentation and a lower likelihood of being in remission at 4 weeks (P < 0.05). There were longitudinal reductions in Glu/Cr in both the ACC and thalamus over the treatment period (P < 0.05), but these changes were not associated with the therapeutic response. There were no differences in baseline Glu/Cr between patients and controls. These results extend previous evidence linking higher levels of ACC glutamate with a poor antipsychotic response by showing that the association is evident before the initiation of treatment.
Collapse
|
39
|
Iwata Y, Nakajima S, Plitman E, Mihashi Y, Caravaggio F, Chung JK, Kim J, Gerretsen P, Mimura M, Remington G, Graff-Guerrero A. Neurometabolite levels in antipsychotic-naïve/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:340-352. [PMID: 29580804 DOI: 10.1016/j.pnpbp.2018.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Studies using proton magnetic resonance spectroscopy (1H-MRS) have reported altered neurometabolite levels in patients with schizophrenia. However, results are possibly confounded by the influence of antipsychotic (AP). Thus, this meta-analysis aimed to examine neurometabolite levels in AP-naïve/free patients with schizophrenia. METHODS A literature search was conducted using Embase, Medline, and PsycINFO to identify studies that compared neurometabolite levels in AP-naïve/free patients with schizophrenia to healthy controls (HCs). Eight neurometabolites (glutamate, glutamine, glutamate + glutamine, N-acetylaspartate [NAA], choline, creatine, myo-inositol, and γ-Aminobutyric acid [GABA]) and seven regions of interest (ROI; medial prefrontal cortex, dorsolateral prefrontal cortex, frontal white matter, occipital lobe, basal ganglia, hippocampus/medial temporal lobe, and thalamus) were examined. RESULTS Twenty-one studies (N = 1281) were included in the analysis. The results showed lower thalamic NAA levels (3 studies, n = 174, effect size = -0.56, P = 0.0005) in the patient group. No group differences were identified for other neurometabolites. CONCLUSIONS Our findings suggest that impaired neuronal integrity in the thalamus may be a potential trait maker in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Yukiko Mihashi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Modinos G, Egerton A, McLaughlin A, McMullen K, Kumari V, Lythgoe DJ, Barker GJ, Aleman A, Williams SCR. Neuroanatomical changes in people with high schizotypy: relationship to glutamate levels. Psychol Med 2018; 48:1880-1889. [PMID: 29198207 PMCID: PMC5884418 DOI: 10.1017/s0033291717003403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cortical glutamatergic dysfunction is thought to be fundamental for psychosis development, and may lead to structural degeneration through excitotoxicity. Glutamate levels have been related to gray matter volume (GMV) alterations in people at ultra-high risk of psychosis, and we previously reported GMV changes in individuals with high schizotypy (HS), which refers to the expression of schizophrenia-like characteristics in healthy people. This study sought to examine whether GMV changes in HS subjects are related to glutamate levels. METHODS We selected 22 healthy subjects with HS and 23 healthy subjects with low schizotypy (LS) based on their rating on a self-report questionnaire for psychotic-like experiences. Glutamate levels were measured in the bilateral anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, and GMV was assessed using voxel-based morphometry. RESULTS Subjects with HS showed GMV decreases in the rolandic operculum/superior temporal gyrus (pFWE = 0.045). Significant increases in GMV were also detected in HS, in the precuneus (pFWE = 0.043), thereby replicating our previous finding in a separate cohort, as well as in the ACC (pFWE = 0.041). While the HS and LS groups did not differ in ACC glutamate levels, in HS subjects ACC glutamate was negatively correlated with ACC GMV (pFWE = 0.026). Such association was absent in LS. CONCLUSIONS Our study shows that GMV findings in schizotypy are related to glutamate levels, supporting the hypothesis that glutamatergic function may lead to structural changes associated with the expression of psychotic-like experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - André Aleman
- University of Groningen, Department of Neuroscience, University Medical Centre Groningen, The Netherlands
| | - Steve CR Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| |
Collapse
|
41
|
Jelen LA, King S, Mullins PG, Stone JM. Beyond static measures: A review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia. J Psychopharmacol 2018; 32:497-508. [PMID: 29368979 DOI: 10.1177/0269881117747579] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormalities of the glutamate system are increasingly implicated in schizophrenia but their exact nature remains unknown. Proton magnetic resonance spectroscopy (1H-MRS), while fundamental in revealing glutamatergic alterations in schizophrenia, has, until recently, been significantly limited and thought to only provide static measures. Functional magnetic resonance spectroscopy (fMRS), which uses sequential scans for dynamic measurement of a range of brain metabolites in activated brain areas, has lately been applied to a variety of task or stimulus conditions, producing interesting insights into neurometabolite responses to neural activation. Here, we summarise the existing 1H-MRS studies of brain glutamate in schizophrenia. We then present a comprehensive review of research studies that have utilised fMRS, and lastly consider how fMRS methods might further the understanding of glutamatergic abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Luke A Jelen
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,2 South London and Maudsley NHS Foundation Trust, UK
| | - Sinead King
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Paul G Mullins
- 3 Bangor Imaging Unit, School of Psychology, Bangor University, Gwynedd, UK
| | - James M Stone
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
42
|
Duarte JMN, Xin L. Magnetic Resonance Spectroscopy in Schizophrenia: Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism. Neurochem Res 2018; 44:102-116. [PMID: 29616444 PMCID: PMC6345729 DOI: 10.1007/s11064-018-2521-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
In the past couple of decades, major efforts were made to increase reliability of metabolic assessments by magnetic resonance methods. Magnetic resonance spectroscopy (MRS) has been valuable for providing in vivo evidence and investigating biomarkers in neuropsychiatric disorders, namely schizophrenia. Alterations of glutamate and glutamine levels in brains of schizophrenia patients relative to healthy subjects are generally interpreted as markers of glutamatergic dysfunction. However, only a small fraction of MRS-detectable glutamate is involved in neurotransmission. Here we review and discuss brain metabolic processes that involve glutamate and that are likely to be implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, BMC C11, Sölvegatan 19, 221 84, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Plitman E, Chavez S, Nakajima S, Iwata Y, Chung JK, Caravaggio F, Kim J, Alshehri Y, Chakravarty MM, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Striatal neurometabolite levels in patients with schizophrenia undergoing long-term antipsychotic treatment: A proton magnetic resonance spectroscopy and reliability study. Psychiatry Res Neuroimaging 2018; 273:16-24. [PMID: 29414127 DOI: 10.1016/j.pscychresns.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Previous proton magnetic resonance spectroscopy (1H-MRS) studies have reported disrupted levels of various neurometabolites in patients with schizophrenia. An area of particular interest within this patient population is the striatum, which is highly implicated in the pathophysiology of schizophrenia. The present study examined neurometabolite levels in the striatum of 12 patients with schizophrenia receiving antipsychotic treatment for at least 1 year and 11 healthy controls using 3-Tesla 1H-MRS (PRESS, TE = 35 ms). Glutamate, glutamate+glutamine (Glx), myo-inositol, choline, N-acetylaspartate, and creatine levels were estimated using LCModel, and corrected for fraction of cerebrospinal fluid in the 1H-MRS voxel. Striatal neurometabolite levels were compared between groups. Multiple study visits permitted a reliability assessment for neurometabolite levels (days between paired 1H-MRS acquisitions: average = 90.33; range = 7-306). Striatal neurometabolite levels did not differ between groups. Within the whole sample, intraclass correlation coefficients for glutamate, Glx, myo-inositol, choline, and N-acetylaspartate were fair to excellent (0.576-0.847). The similarity in striatal neurometabolite levels between groups implies a marked difference from the antipsychotic-naïve first-episode state, especially in terms of glutamatergic neurometabolites, and might provide insight regarding illness progression and the influence of antipsychotic medication.
Collapse
Affiliation(s)
- Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Youssef Alshehri
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Penner J, Osuch EA, Schaefer B, Théberge J, Neufeld RWJ, Menon RS, Rajakumar N, Bourne JA, Williamson PC. Higher order thalamic nuclei resting network connectivity in early schizophrenia and major depressive disorder. Psychiatry Res Neuroimaging 2018; 272:7-16. [PMID: 29247717 DOI: 10.1016/j.pscychresns.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
The pulvinar and the mediodorsal (MDN) nuclei of the thalamus are higher order nuclei which have been implicated in directed effort and corollary discharge systems. We used seed-based resting fMRI to examine functional connectivity to bilateral pulvinar and MDN in 24 schizophrenic patients (SZ), 24 major depressive disorder patients (MDD), and 24 age-matched healthy controls. SZ had less connectivity than controls between the left pulvinar and precuneus, left ventral-lateral prefrontal cortex (vlPFC), and superior and medial-frontal regions, between the right pulvinar and right frontal pole, and greater connectivity between the right MDN and left dorsolateral prefrontal cortex (dlPFC). SZ had less connectivity than MDD between the left pulvinar and ventral anterior cingulate (vACC), left vlPFC, anterior insula, posterior cingulate cortex (PCC), and right hippocampus, between the right pulvinar and right PCC, and between the right MDN and right dorsal anterior cingulate (dACC). This is the first study to measure the functional connectivity to the higher order nuclei of the thalamus in both SZ and MDD. We observed less connectivity in SZ than MDD between pulvinar and emotional encoding regions, a directed effort region, and a region involved in representation and salience, and between MDN and a directed effort region.
Collapse
Affiliation(s)
- Jacob Penner
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; First Episode Mood & Anxiety Program (FEMAP), London Health Sciences Centre, London, Ontario, Canada.
| | - Elizabeth A Osuch
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; First Episode Mood & Anxiety Program (FEMAP), London Health Sciences Centre, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Richard W J Neufeld
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Department of Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Nagalingam Rajakumar
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Peter C Williamson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
45
|
Javitt DC, Carter CS, Krystal JH, Kantrowitz JT, Girgis RR, Kegeles LS, Ragland JD, Maddock RJ, Lesh TA, Tanase C, Corlett PR, Rothman DL, Mason G, Qiu M, Robinson J, Potter WZ, Carlson M, Wall MM, Choo TH, Grinband J, Lieberman JA. Utility of Imaging-Based Biomarkers for Glutamate-Targeted Drug Development in Psychotic Disorders: A Randomized Clinical Trial. JAMA Psychiatry 2018; 75:11-19. [PMID: 29167877 PMCID: PMC5833531 DOI: 10.1001/jamapsychiatry.2017.3572] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE Despite strong theoretical rationale and preclinical evidence, several glutamate-targeted treatments for schizophrenia have failed in recent pivotal trials, prompting questions as to target validity, compound inadequacy, or lack of target engagement. A key limitation for glutamate-based treatment development is the lack of functional target-engagement biomarkers for translation between preclinical and early-stage clinical studies. We evaluated the utility of 3 potential biomarkers-ketamine-evoked changes in the functional magnetic imaging (fMRI) blood oxygen level-dependent response (pharmacoBOLD), glutamate proton magnetic resonance spectroscopy (1H MRS), and task-based fMRI-for detecting ketamine-related alterations in brain glutamate. OBJECTIVE To identify measures with sufficient effect size and cross-site reliability to serve as glutamatergic target engagement biomarkers within early-phase clinical studies. DESIGN, SETTING, AND PARTICIPANTS This randomized clinical trial was conducted at an academic research institution between May 2014 and October 2015 as part of the National Institute of Mental Health-funded Fast-Fail Trial for Psychotic Spectrum Disorders project. All raters were blinded to study group. Healthy volunteers aged 18 to 55 years of either sex and free of significant medical or psychiatric history were recruited from 3 sites. Data were analyzed between November 2015 and December 2016. INTERVENTIONS Volunteers received either sequential ketamine (0.23 mg/kg infusion over 1 minute followed by 0.58 mg/kg/h infusion over 30 minutes and then 0.29 mg/kg/h infusion over 29 minutes) or placebo infusions. MAIN OUTCOMES AND MEASURES Ketamine-induced changes in pharmacoBOLD, 1H MRS, and task-based fMRI measures, along with symptom ratings. Measures were prespecified prior to data collection. RESULTS Of the 65 volunteers, 41 (63%) were male, and the mean (SD) age was 31.1 (9.6) years; 59 (91%) had at least 1 valid scan. A total of 53 volunteers (82%) completed both ketamine infusions. In pharmacoBOLD, a highly robust increase (Cohen d = 5.4; P < .001) in fMRI response was observed, with a consistent response across sites. A smaller but significant signal (Cohen d = 0.64; P = .04) was also observed in 1H MRS-determined levels of glutamate+glutamine immediately following ketamine infusion. By contrast, no significant differences in task-activated fMRI responses were found between groups. CONCLUSIONS AND RELEVANCE These findings demonstrate robust effects of ketamine on pharmacoBOLD across sites, supporting its utility for definitive assessment of functional target engagement. Other measures, while sensitive to ketamine effects, were not sufficiently robust for use as cross-site target engagement measures. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT02134951.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, New York
| | | | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Joshua T. Kantrowitz
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, New York
| | - Ragy R. Girgis
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| | - Lawrence S. Kegeles
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| | | | | | - Tyler A. Lesh
- Department of Psychiatry, University of California, Davis
| | - Costin Tanase
- Department of Psychiatry, University of California, Davis
| | | | | | - Graeme Mason
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Maolin Qiu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - James Robinson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, New York
| | | | - Marlene Carlson
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| | - Melanie M. Wall
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York,National Institute of Mental Health, Rockville, Maryland
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| | - Jeffrey A. Lieberman
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York
| |
Collapse
|
46
|
Bojesen KB, Andersen KA, Rasmussen SN, Baandrup L, Madsen LM, Glenthøj BY, Rostrup E, Broberg BV. Glutamate Levels and Resting Cerebral Blood Flow in Anterior Cingulate Cortex Are Associated at Rest and Immediately Following Infusion of S-Ketamine in Healthy Volunteers. Front Psychiatry 2018; 9:22. [PMID: 29467681 PMCID: PMC5808203 DOI: 10.3389/fpsyt.2018.00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/19/2018] [Indexed: 11/15/2022] Open
Abstract
Progressive loss of brain tissue is seen in some patients with schizophrenia and might be caused by increased levels of glutamate and resting cerebral blood flow (rCBF) alterations. Animal studies suggest that the normalisation of glutamate levels decreases rCBF and prevents structural changes in hippocampus. However, the relationship between glutamate and rCBF in anterior cingulate cortex (ACC) of humans has not been studied in the absence of antipsychotics and illness chronicity. Ketamine is a noncompetitive N-methyl-D-aspartate receptor antagonist that transiently induces schizophrenia-like symptoms and neurobiological disturbances in healthy volunteers (HVs). Here, we used S-ketamine challenge to assess if glutamate levels were associated with rCBF in ACC in 25 male HVs. Second, we explored if S-ketamine changed the neural activity as reflected by rCBF alterations in thalamus (Thal) and accumbens that are connected with ACC. Glutamatergic metabolites were measured in ACC with magnetic resonance (MR) spectroscopy and whole-brain rCBF with pseudo-continuous arterial spin labelling on a 3-T MR scanner before, during, and after infusion of S-ketamine (total dose 0.375 mg/kg). In ACC, glutamate levels were associated with rCBF before (p < 0.05) and immediately following S-ketamine infusion (p = 0.03), but not during and after. S-Ketamine increased rCBF in ACC (p < 0.001) but not the levels of glutamate (p = 0.96). In subcortical regions, S-ketamine altered rCBF in left Thal (p = 0.03). Our results suggest that glutamate levels in ACC are associated with rCBF at rest and in the initial phase of an increase. Furthermore, S-ketamine challenge transiently induces abnormal activation of ACC and left Thal that both are implicated in the pathophysiology of schizophrenia. Future longitudinal studies should investigate if increased glutamate and rCBF are related to the progressive loss of brain tissue in initially first-episode patients.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Aagaard Andersen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Nordahl Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Line Malmer Madsen
- Department of Anaesthesia, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Brian Villumsen Broberg
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
47
|
Raghavan V, Ramamurthy M, Rangaswamy T. Social functioning in individuals with first episode psychosis: One-year follow-up study. Asian J Psychiatr 2017; 30:124-126. [PMID: 28898807 DOI: 10.1016/j.ajp.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Improvement in social functioning is important for recovery in first episode psychosis (FEP). METHODOLOGY 51 individuals diagnosed with first episode psychosis were assessed for social functioning at baseline and one year follow-up. RESULTS Significant improvement was seen in certain domains of social functioning measured by LSP scale such as communication and non-turbulence while no significant changes were observed in self-care and social contact. CONCLUSION At one year follow-up, partial improvement in social functioning is observed in individuals with first episode psychosis. This warrants inclusion of specific interventions to improve social functioning in the management plan of individuals with FEP.
Collapse
Affiliation(s)
- Vijaya Raghavan
- Schizophrenia Research Foundation, R/7A, North Main Road, Anna Nagar West Extension, Chennai, Tamil Nadu, 600101, India.
| | - Mangala Ramamurthy
- Schizophrenia Research Foundation, R/7A, North Main Road, Anna Nagar West Extension, Chennai, Tamil Nadu, 600101, India
| | - Thara Rangaswamy
- Schizophrenia Research Foundation, R/7A, North Main Road, Anna Nagar West Extension, Chennai, Tamil Nadu, 600101, India
| |
Collapse
|
48
|
Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia. Schizophr Bull 2017; 43:1329-1347. [PMID: 28204755 PMCID: PMC5737663 DOI: 10.1093/schbul/sbx008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,To whom correspondence should be addressed; School of Social Work, University of Pittsburgh, 2117 Cathedral of Learning, Pittsburgh, PA 15260, US; tel: 412-624-6304, e-mail:
| | - Matthew J Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
49
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
50
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Cognitive performance is associated with gray matter decline in first-episode psychosis. Psychiatry Res Neuroimaging 2017; 264:46-51. [PMID: 28458083 DOI: 10.1016/j.pscychresns.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Progressive loss of gray matter has been demonstrated over the early course of schizophrenia. Identification of an association between cognition and gray matter may lead to development of early interventions directed at preserving gray matter volume and cognitive ability. The present study evaluated the association between gray matter using voxel-based morphometry (VBM) and cognitive testing in a sample of 16 patients with first-episode psychosis. A simple regression was applied to investigate the association between gray matter at baseline and 80 months and cognitive tests at baseline. Performance on the Wisconsin Card Sorting Task (WCST) at baseline was positively associated with gray matter volume in several brain regions. There was an association between decreased gray matter at baseline in the nucleus accumbens and Trails B errors. Performing worse on Trails B and making more WCST perseverative errors at baseline was associated with gray matter decline over 80 months in the right globus pallidus, left inferior parietal lobe, Brodmann's area (BA) 40, and left superior parietal lobule and BA 7 respectively. All significant findings were cluster corrected. The results support a relationship between aspects of cognitive impairment and gray matter abnormalities in first-episode psychosis.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|