1
|
Liang P, Li M, Chen Y, Cheng Z, Wang N, Wang Y, Zhang N, Che Y, Li J, Liang C, Guo L. Associations of choroid plexus volume with white matter hyperintensity volume and susceptibility and plasma amyloid markers in cerebral small vessel disease. Alzheimers Res Ther 2025; 17:90. [PMID: 40270041 PMCID: PMC12016351 DOI: 10.1186/s13195-025-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND White matter hyperintensity (WMH) is a key feature of cerebral small vessel disease (CSVD). The impact of the choroid plexus (CP) volume on disease progression remains largely unexplored. This study evaluated the relationship between CP volume and CSVD severity via WMH volume and susceptibility values. Additionally, we explored whether Alzheimer's disease (AD)-related plasma proteins influence the volume of the CP. METHODS AND MATERIALS Our study included 291 CSVD individuals, with 84 participants completing subsequent brain MRI at a mean follow-up of 20 months. To explore the potential CP-associated pathways, we assessed the relationships between AD-related plasma biomarkers and CP volume via multiple linear regression analysis. The longitudinal associations between CP volume and WMH characteristics (WMH volume and susceptibility) were analyzed via linear mixed-effects models. Finally, we employed random forest analysis with the Boruta algorithm to identify key predictors of CSVD severity. RESULTS Plasma Aβ1‒40 levels were positively correlated with CP volume (β = 0.115, P = 0.009), whereas Aβ42‒40 ratio were negatively associated with CP volume (β = -0.135, P = 0.03). Notably, increased CP volume was associated with both greater WMH burden (β = 0.191, P = 0.011) and decreased WMH susceptibility (β = -0.192, P = 0.012). Furthermore, random forest modeling identified CP volume and WMH susceptibility as the strongest predictors of CSVD severity. CONCLUSIONS CP volume changes were significantly correlated with both WMH volume and WMH susceptibility in CSVD patients. These findings suggest that CP-mediated pathways may link amyloid metabolism to CSVD progression.
Collapse
Affiliation(s)
- Pengcheng Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena, 07743, Germany
| | - Yiwen Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Zhenyu Cheng
- Binzhou Medical University, China. Guanhai Road No.346, Yantai, Shandong, 264003, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Yuanyuan Wang
- Binzhou Medical University, China. Guanhai Road No.346, Yantai, Shandong, 264003, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Yena Che
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing, 102218, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Zhào H, Zhang H, Ding Y, Li H, Huang Y. Circadian rest-activity rhythm pattern in the elderly with cerebral small vessel disease: Using multiple estimated methods. J Alzheimers Dis 2025; 103:856-864. [PMID: 39784723 DOI: 10.1177/13872877241307254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: Disruption of circadian rest-activity rhythm (RAR) has been found in many neurological disorders. Objective: In this study, actigraphic data were collected and analyzed to identify the RAR pattern in the elderly with cerebral small vessel disease. Methods: 115 cerebral small vessel disease (CSVD) cases were recruited. The presence of lacune infarct, white matter hyperintensities, and cerebral microbleeds in magnetic resonance imaging (MRI) images were rated independently, as well as using a simple MRI score of 0-3 points. Each subject wore an Actigraph device in their nondominant hand for 4-7 days to collect raw data. RAR parameters were generated using both extended cosinor model (RAR α, RAR β, amplitude, acrophase, up-mesor, down-mesor, and pseudo-F statistic) and non-parametric methods (interdaily stability, intradaily variability, and relative amplitude). Results: Elder patients with a simple MRI score of 2-3 points showed a statistically lower amplitude compared with individuals with a simple MRI score of 0 points in the extended cosinor model. For the non-parametric method, elderly people with a simple MRI score of 1-3 points exhibited higher intradaily variability relative to those participants with a simple MRI score of 0 points. However, no differences were found regarding sleep quality among individuals with different simple MRI scores. White matter hyperintensities, lacune infarct, and cerebral microbleeds were independently associated with RAR β, RAR α, and intradaily variability, respectively. Conclusions: The RAR pattern was disturbed in elderly adults with CSVD. Abnormal RAR parameters were independently associated with CSVD MRI markers.
Collapse
Affiliation(s)
- Hóngyi Zhào
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Neurology, NO 984 Hospital of PLA, Beijing, China
| | - Haiyang Zhang
- Center for Disease Control and Prevention of Central Theater Command, Beijing, China
| | - Yu Ding
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hong Li
- Center for Disease Control and Prevention of Central Theater Command, Beijing, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Wang N, Li J, Zhang X, Gao Y, Sui C, Zhang N, Che Y, Liang C, Guo L, Li M. Hippocampal fimbria atrophy and its mediating effect between cerebral small vessel disease and cognitive impairment. Neuroscience 2024; 562:54-62. [PMID: 39461662 DOI: 10.1016/j.neuroscience.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
We aimed to investigate the relationship between the volume reduction in hippocampal (HP) subregions and cognitive impairment in patients with cerebral small vessel disease (CSVD). Clinical, cognitive, and magnetic resonance imaging data were obtained for 315 participants. The CSVD group included 146 participants with a total CSVD score of 1-4. 169 participants with a total CSVD score of zero were used as control group (CSVD-0). The volume differences of 19 HP subregions between CSVD and CSVD-0 groups were analyzed, and we investigated the hazard factors that might cause subregional volume reduction in HP. Mediation analysis was performed to detect the relationship among HP subregional volumes, CSVD burden, and cognitive function. In our results, significant differences can be found in the volumes of CA4 body, presubiculum-head, presubiculum-body, subiculum-body, GC-ML-DG-head, GC-ML-DG-body, fimbria, and HP tail between CSVD group and control group. Regression analysis showed that fimbria was the most impacted HP subregion by CSVD. And mediation analysis revealed fimbria volume was a mediator variable between total CSVD score and MoCA/SCWT score. These results suggest that the volumes of HP subregions, especially the fimbria, may be effective potential biomarkers for early detecting cognitive impairment in CSVD.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xinyue Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Yena Che
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
You T, Wang Y, Chen S, Dong Q, Yu J, Cui M. Vascular cognitive impairment: Advances in clinical research and management. Chin Med J (Engl) 2024; 137:2793-2807. [PMID: 39048312 PMCID: PMC11649275 DOI: 10.1097/cm9.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Vascular cognitive impairment (VCI) encompasses a wide spectrum of cognitive disorders, ranging from mild cognitive impairment to vascular dementia. Its diagnosis relies on thorough clinical evaluations and neuroimaging. VCI predominately arises from vascular risk factors (VRFs) and cerebrovascular disease, either independently or in conjunction with neurodegeneration. Growing evidence underscores the prevalence of VRFs, highlighting their potential for early prediction of cognitive impairment and dementia in later life. The precise mechanisms linking vascular pathologies to cognitive deficits remain elusive. Chronic cerebrovascular pathology is the most common neuropathological feature of VCI, often interacting synergistically with neurodegenerative processes. Current research efforts are focused on developing and validating reliable biomarkers to unravel the etiology of vascular brain changes in VCI. The collaborative integration of these biomarkers into clinical practice, alongside routine incorporation into neuropathological assessments, presents a promising strategy for predicting and stratifying VCI. The cornerstone of VCI prevention remains the control of VRFs, which includes multi-domain lifestyle modifications. Identifying appropriate pharmacological approaches is also of paramount importance. In this review, we synthesize recent advancements in the field of VCI, including its definition, determinants of vascular risk, pathophysiology, neuroimaging and fluid-correlated biomarkers, predictive methodologies, and current intervention strategies. Increasingly evident is the notion that more rigorous research for VCI, which arises from a complex interplay of physiological events, is still needed to pave the way for better clinical outcomes and enhanced quality of life for affected individuals.
Collapse
Affiliation(s)
- Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufen Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Ren K, He J, Zhu L, Gu Y, Qu H, Zhao Y, Wang W. Assessing stroke recurrence in sICAS: a study on mCSVD score and culprit plaque magnetic resonance characteristics. Front Neurol 2024; 15:1478583. [PMID: 39628894 PMCID: PMC11611851 DOI: 10.3389/fneur.2024.1478583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Background Recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (sICAS) can be attributed to two main causes: intracranial atherosclerotic stenosis (ICAS) and cerebral small vessel disease (CSVD). This study investigates the potential associations between stroke recurrence and the modified cerebral small vessel disease (mCSVD) burden score, as well as the characteristics of culprit plaques related to intracranial artery high-resolution vessel wall imaging (HR-VWI). Methods A total of 145 patients presenting sICAS underwent intracranial artery HR-VWI and routine cranial MRI at two large Chinese hospitals from December 2019-2022 were participants of this retrospective analysis. Standard MRI scans were used to calculate the mCSVD score. Following a 12-month observation period, the patients were categorized into two distinct groups depending on whether or not they experienced a subsequent stroke. Results Within 12 months, 32 patients experienced stroke recurrence. The recurrence group's mCSVD score was higher compared to the non-recurrence group (p < 0.001). Their luminal stenosis and culprit plaque thickness and burden were also higher (p < 0.05). Additionally, higher rates of diabetes, T1WI hyperintensity of culprit plaques, and significant plaque enhancement were observed in the recurrence group (p < 0.05). The adjusted Cox regression model indicated that the mCSVD score (HR = 1.730, 95% CI 1.021-2.933, p = 0.042) and T1WI hyperintensity of the culprit plaque (HR = 6.568, 95% CI 1.104-39.059, p = 0.039) remained significantly independent risk variables. The combination of the mCSVD score and T1WI hyperintensity of the culprit plaque demonstrated the highest efficacy in predicting stroke recurrence (z = 2.678, p < 0.05). Conclusion The mCSVD score, associated with T1WI hyperintensity of culprit plaque, effectively predicts stroke recurrence and can be easily obtained, offering high clinical value.
Collapse
Affiliation(s)
- Kaixuan Ren
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Juan He
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Li Zhu
- Department of Medical Imaging, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gu
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hang Qu
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yi Zhao
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Noda K, Hattori Y, Murata H, Kokubo Y, Higashiyama A, Ihara M. Equol Nonproducing Status as an Independent Risk Factor for Acute Cardioembolic Stroke and Poor Functional Outcome. Nutrients 2024; 16:3377. [PMID: 39408343 PMCID: PMC11479244 DOI: 10.3390/nu16193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Equol has protective effects against coronary artery disease and dementia by strongly binding to estrogen receptor beta, whereas the intake of soy isoflavone alone does not always confer such protective effects. Equol production is completely dependent on the existence of equol-producing gut microbiota. The effects of equol-producing status on the cerebrovascular diseases remain unclear. The current study was aimed to investigate the association of equol-producing status with the development of stroke and its neurological prognosis. Methods: Frequencies of equol producers were compared between healthy subjects (HS) registered in the Suita Study and patients with acute stroke admitted to our stroke center from September 2019 to October 2021 in a retrospective cohort study. Results: The proportion of HSs and patients with ischemic stroke who were equol producers did not significantly differ (50/103 [48.5%] vs. 60/140 [42.9%], p = 0.38). However, cardioembolic stroke was significantly associated with low a prevalence of equol producers (adjusted odds ratio [aOR] 0.46, 95% confidence interval [CI] 0.21-0.99, p = 0.05). A higher left atrial volume index was observed in equol nonproducers (46.3 ± 23.8 vs. 36.0 ± 11.6 mL/m2, p = 0.06). The equol nonproducers had a significantly higher prevalence of atrial fibrillation than the equol producers (27.5% vs. 13.3%, p = 0.04). Furthermore, the equol producers exhibited a significantly favorable functional outcome upon discharge (aOR 2.84, 95% CI 1.20-6.75, p = 0.02). Conclusions: Equol is a promising candidate for interventions aiming to reduce the risk of CES and atrial dysfunction, such as atrial fibrillation and improve neurological prognosis after ischemic stroke.
Collapse
Affiliation(s)
- Kotaro Noda
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yorito Hattori
- Department of Neurology, Department of Preemptive Medicine for Dementia, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Hiroaki Murata
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Aya Higashiyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| |
Collapse
|
7
|
Zhang X, Liang C, Feng M, Xin H, Fu Y, Gao Y, Sui C, Wang N, Wang Y, Zhang N, Guo L, Wen H. Aberrant brain structural-functional connectivity coupling associated with cognitive dysfunction in different cerebral small vessel disease burdens. CNS Neurosci Ther 2024; 30:e70005. [PMID: 39228091 PMCID: PMC11371661 DOI: 10.1111/cns.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Emerging evidence suggests that cerebral small vessel disease (CSVD) pathology changes brain structural connectivity (SC) and functional connectivity (FC) networks. Although network-level SC and FC are closely coupled in the healthy population, how SC-FC coupling correlates with neurocognitive outcomes in patients with different CSVD burdens remains largely unknown. METHODS Using multimodal MRI, we reconstructed whole-brain SC and FC networks for 54 patients with severe CSVD burden (CSVD-s), 106 patients with mild CSVD burden (CSVD-m), and 79 healthy controls. We then investigated the aberrant SC-FC coupling and functional network topology in CSVD and their correlations with cognitive dysfunction. RESULTS Compared with controls, the CSVD-m patients showed no significant change in any SC-FC coupling, but the CSVD-s patients exhibited significantly decreased whole-brain (p = 0.014), auditory/motor (p = 0.033), and limbic modular (p = 0.011) SC-FC coupling. For functional network topology, despite no change in global efficiency, CSVD-s patients exhibited significantly reduced nodal efficiency of the bilateral amygdala (p = 0.024 and 0.035) and heschl gyrus (p = 0.001 and 0.005). Notably, for the CSVD-s patients, whole-brain SC-FC coupling showed a significantly positive correlation with MoCA (r = 0.327, p = 0.020) and SDMT (r = 0.373, p = 0.008) scores, limbic/subcortical modular SC-FC coupling showed a negative correlation (r = -0.316, p = 0.025) with SCWT score, and global/local efficiency (r = 0.367, p = 0.009 and r = 0.353, p = 0.012) showed a positive correlation with AVLT score. For the CSVD-m group, whole-brain and auditory/motor modular SC-FC couplings showed significantly positive correlations with SCWT (r = 0.217, p = 0.028 and r = 0.219, p = 0.027) and TMT (r = 0.324, p = 0.001 and r = 0.245, p = 0.013) scores, and global/local efficiency showed positive correlations with AVLT (r = 0.230, p = 0.020 and r = 0.248, p = 0.012) and SDMT (r = 0.263, p = 0.008 and r = 0.263, p = 0.007) scores. CONCLUSION Our findings demonstrated that decreased whole-brain and module-dependent SC-FC coupling associated with reduced functional efficiency might underlie more severe burden and worse cognitive decline in CSVD. SC-FC coupling might serve as a more sensitive neuroimaging biomarker of CSVD burden and provided new insights into the pathophysiologic mechanisms of clinical development of CSVD.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajie Fu
- Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yian Gao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Li QY, Fu Y, Cui XJ, Wang ZT, Tan L. Association of modified dementia risk score with cerebrospinal fluid biomarkers and cognition in adults without dementia. Front Aging Neurosci 2024; 16:1339163. [PMID: 39081396 PMCID: PMC11286572 DOI: 10.3389/fnagi.2024.1339163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction This study aimed to investigate the cognitive profile and prospective cognitive changes in non-demented adults with elevated Modified Dementia Risk Scores (MDRS), while also exploring the potential relationship between these associations and cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathology and neuroinflammation. Methods Within the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database, 994 participants without dementia were assessed on MDRS, CSF biomarkers and cognition. We examined the associations of the MDRS with CSF biomarkers and cognitive scores using linear regressions. Causal mediation analyses were conducted to analyze the associations among MDRS, brain pathologies, and cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) study was used to validate the mediation effects and to investigate the longitudinal association between MDRS and cognitive decline. Results The results revealed that higher MDRS were linked to poorer cognitive performance (Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) and increases in CSF levels of phosphorylated tau (P-tau, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001), total tau (T-tau, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001), P-tau/Aβ42 ratio (Model 1: PFDR = 0.023; Model 2: PFDR = 0.028), T-tau/Aβ42 ratio (Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) and soluble triggering receptor expressed on myeloid cells 2 (sTrem2, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) in the CABLE study. The impact of MDRS on cognition was partially mediated by neuroinflammation and tau pathology. These mediation effects were replicated in the ADNI study. Baseline MDRS were significantly associated with future cognitive decline, as indicated by lower scores on the Mini-Mental State Examination (MMSE, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001), ADNI composite memory score (ADNI-MEM, Model 1: PFDR = 0.005; Model 2: PFDR < 0.001), ADNI composite executive function score (ADNI-EF, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001), and higher score on the Alzheimer's Disease Assessment Scale (ADAS13, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001). Discussion The findings of this study revealed significant associations between MDRS and cognitive decline, suggesting a potential role of tau pathology and neuroinflammation in the link between MDRS and poorer cognitive performance in individuals without dementia. Consequently, the MDRS holds promise as a tool for targeted preventive interventions in individuals at high risk of cognitive impairment.
Collapse
Affiliation(s)
- Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xin-Jing Cui
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | | |
Collapse
|
9
|
Chen BA, Lee WJ, Meng LC, Lin YC, Chung CP, Hsiao FY, Chen LK. Sex-specific implications of inflammation in covert cerebral small vessel disease. BMC Neurol 2024; 24:220. [PMID: 38937678 PMCID: PMC11210151 DOI: 10.1186/s12883-024-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The relationship between inflammation and covert cerebral small vessel disease (SVD) with regards to sex difference has received limited attention in research. We aim to unravel the intricate associations between inflammation and covert SVD, while also scrutinizing potential sex-based differences in these connections. METHODS Non-stroke/dementia-free study population was from the I-Lan longitudinal Aging Study. Severity and etiology of SVD were assessed by 3T-MRI in each participant. Systemic and vascular inflammatory-status was determined by the circulatory levels of high-sensitivity C-reactive protein (hsCRP) and homocysteine, respectively. Sex-specific multivariate logistic regression to calculate odds ratios (ORs) and interaction models to scrutinize women-to-men ratios of ORs (RORs) were used to evaluate the potential impact of sex on the associations between inflammatory factors and SVD. RESULTS Overall, 708 participants (62.19 ± 8.51 years; 392 women) were included. Only women had significant associations between homocysteine levels and covert SVD, particularly in arteriosclerosis/lipohyalinosis SVD (ORs[95%CI]: 1.14[1.03-1.27] and 1.15[1.05-1.27] for more severe and arteriosclerosis/lipohyalinosis SVD, respectively). Furthermore, higher circulatory levels of homocysteine were associated with a greater risk of covert SVD in women compared to men, as evidenced by the RORs [95%CI]: 1.14[1.01-1.29] and 1.14[1.02-1.28] for more severe and arteriosclerosis/lipohyalinosis SVD, respectively. No significant associations were found between circulatory hsCRP levels and SVD in either sex. CONCLUSION Circulatory homocysteine is associated with covert SVD of arteriosclerosis/lipohyalinosis solely in women. The intricacies underlying the sex-specific effects of homocysteine on SVD at the preclinical stage warrant further investigations, potentially leading to personalized/tailored managements. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Bo-An Chen
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ju Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yi-Lan, Taiwan
| | - Lin-Chieh Meng
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chin Lin
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Fei-Yuan Hsiao
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
10
|
Xie H, Zhang N, Xia C, Ding Y, Zhao H, Huang Y. The clinical characteristics of cerebral small vessel disease patients with motoric cognitive risk syndrome during single- and dual-task walking. Heliyon 2024; 10:e30007. [PMID: 38742083 PMCID: PMC11089308 DOI: 10.1016/j.heliyon.2024.e30007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Objective We aimed to (1) identify neuroimaging biomarkers of distinguishing motoric cognitive risk syndrome (MCRS) risk among older Chinese adults with cerebral small vessel disease (CSVD) and (2) detect differences in gait parameters and neuroimaging biomarkers between CSVD individual with and without MCRS, especially during dual-task walking (DTW). Methods We enrolled 126 inpatients with CSVD who were divided into two groups according to MCRS status. Data on basic parameters, variability, asymmetry, and coordination were collected during single-task walking (STW) and DTW. Neuroimaging features (white matter hyperintensities, lacunes, and microbleeds) and total disease burden were calculated. Analysis of variance and logistic regression analyses were applied to assess the role of STW, DTW, and neuroimaging biomarkers in MCRS. Results In total, 126 consecutive inpatients with CSVD were included (84 and 42 patients were classified as MCRS-negative and MCRS-positive, respectively). The MCRS-positive group showed poorer performance for nearly all gait parameters compared with the MCRS-negative group during cognitive DTW. Meanwhile, all gait parameters except asymmetry were assessed in participants with MCRS for significant deterioration during cognitive DTW compared with that during STW. However, only basic parameters differed between STW and cognitive DTW in participants without MCRS. A significant independent association between total CSVD scores and MCRS was also detected. Conclusions For CSVD patients, with higher total CSVD burden rather than any single neuroimaging marker, was linked to a greater risk of MCRS. In addition, CSVD individuals with MCRS had higher variability and phase coordination index (PCI), especially in cognitive DTW. Thus, they should concentrate more on their gait variability or coordination and reduce secondary task loads while walking in daily life, especially in cognitive secondary tasks.
Collapse
Affiliation(s)
- Hongyang Xie
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Cuiqiao Xia
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yu Ding
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Hongyi Zhao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
- Department of Neurology, Number 984 Hospital of the PLA, Beijing, China
| | - Yonghua Huang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Egle M, Deal JA, Walker KA, Wong DF, Sharrett AR, Gottesman RF. Association between retinal microvascular abnormalities and late-life brain amyloid-β deposition: the ARIC-PET study. Alzheimers Res Ther 2024; 16:100. [PMID: 38711107 PMCID: PMC11071225 DOI: 10.1186/s13195-024-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Retinal microvascular signs are accessible measures of early alterations in microvascular dysregulation and have been associated with dementia; it is unclear if they are associated with AD (Alzheimer's disease) pathogenesis as a potential mechanistic link. This study aimed to test the association of retinal microvascular abnormalities in mid and late life and late life cerebral amyloid. METHODS Participants from the ARIC-PET (Atherosclerosis Risk in Communities-Positron Emission Tomography) study with a valid retinal measure (N = 285) were included. The associations of mid- and late-life retinal signs with late-life amyloid-β (Aβ) by florbetapir PET were tested. Two different measures of Aβ burden were included: (1) elevated amyloid (SUVR > 1.2) and (2) continuous amyloid SUVR. The retinal measures' association with Aβ burden was assessed using logistic and robust linear regression models. A newly created retinal score, incorporating multiple markers of retinal abnormalities, was also evaluated in association with greater Aβ burden. RESULTS Retinopathy in midlife (OR (95% CI) = 0.36 (0.08, 1.40)) was not significantly associated with elevated amyloid burden. In late life, retinopathy was associated with increased continuous amyloid standardized value uptake ratio (SUVR) (β (95%CI) = 0.16 (0.02, 0.32)) but not elevated amyloid burden (OR (95%CI) = 2.37 (0.66, 9.88)) when accounting for demographic, genetic and clinical risk factors. A high retinal score in late life, indicating a higher burden of retinal abnormalities, was also significantly associated with increased continuous amyloid SUVR (β (95% CI) = 0.16 (0.04, 0.32)) independent of vascular risk factors. CONCLUSIONS Retinopathy in late life may be an easily obtainable marker to help evaluate the mechanistic vascular pathway between retinal measures and dementia, perhaps acting via AD pathogenesis. Well-powered future studies with a greater number of retinal features and other microvascular signs are needed to test these findings.
Collapse
Affiliation(s)
- Marco Egle
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Rebecca F Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
12
|
Agbonon R, Forestier G, Bricout N, Benhassen W, Turc G, Bretzner M, Pasi M, Benzakoun J, Seners P, Derraz I, Legrand L, Trystram D, Rodriguez-Regent C, Charidimou A, Rost NS, Bracard S, Cordonnier C, Eker OF, Oppenheim C, Naggara O, Henon H, Boulouis G. Cerebral microbleeds and risk of symptomatic hemorrhagic transformation following mechanical thrombectomy for large vessel ischemic stroke. J Neurol 2024; 271:2631-2638. [PMID: 38355868 DOI: 10.1007/s00415-024-12205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND PURPOSE In patients with acute ischemic stroke (AIS) treated with endovascular therapy (EVT), the association of pre-existing cerebral small vessel disease (cSVD) with symptomatic intracerebral hemorrhage (sICH) remains controversial. We tested the hypothesis that the presence of cerebral microbleeds (CMBs) and their burden would be associated with sICH after EVT of AIS. METHODS We conducted a retrospective study combining cohorts of patients that underwent EVT between January 1st 2015 and January 1st 2020. CMB presence, burden, and other cSVD markers were assessed on a pre-treatment MRI, evaluated independently by two observers. Primary outcome was the occurrence of sICH. RESULTS 445 patients with pretreatment MRI were included, of which 70 (15.7%) demonstrated CMBs on baseline MRI. sICH occurred in 36 (7.6%) of all patients. Univariate analysis did not demonstrate an association between CMB and the occurrence of sICH (7.5% in CMB+ group vs 8.6% in CMB group, p = 0.805). In multivariable models, CMBs' presence was not significantly associated with increased odds for sICH (-aOR- 1.19; 95% CI [0.43-3.27], p = 0.73). Only ASPECTs (aOR 0.71 per point increase; 95% CI [0.60-0.85], p < 0.001) and collaterals status (aOR 0.22 for adequate versus poor collaterals; 95% CI [0.06-0.93], p 0.019) were independently associated with sICH. CONCLUSION CMB presence and burden is not associated with increased occurrence of sICH after EVT. This result incites not to exclude patients with CMBs from EVT. The risk of sICH after EVT in patients with more than10 CMBs will require further investigation. REGISTRATION Registration-URL: http://www. CLINICALTRIALS gov ; Unique identifier: NCT01062698.
Collapse
Affiliation(s)
- Rémi Agbonon
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Géraud Forestier
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France.
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France.
- Neuroradiology Department, Limoges University Hospital, 2 avenue Martin Luther-King, 87042, Limoges, France.
| | - Nicolas Bricout
- Neuroradiology Department, Univ. Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neurosciences & Cognition, 59000, Lille, France
| | - Wagih Benhassen
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Guillaume Turc
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
- Neurology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Martin Bretzner
- Neuroradiology Department, Univ. Lille, Inserm, CHU Lille, U1172-LilNCog (JPARC)-Lille Neurosciences & Cognition, 59000, Lille, France
| | - Marco Pasi
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000, Lille, France
| | - Joseph Benzakoun
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Pierre Seners
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
- Neurology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Imad Derraz
- Department of Neuroradiology, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France
| | - Laurence Legrand
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Denis Trystram
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Christine Rodriguez-Regent
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Andreas Charidimou
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Serge Bracard
- Neuroradiology Department, Lorraine University, INSERM U1254 CHRU Nancy, Nancy, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000, Lille, France
| | - Omer F Eker
- Department of Neuroradiology of Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon, France
| | - Catherine Oppenheim
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Olivier Naggara
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
| | - Hilde Henon
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
- Neurology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Grégoire Boulouis
- Neuroradiology Department, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, IMA-BRAIN INSERM U1266, Université de Paris, Paris, France
- Neuroradiology Department, CHU de Tours, Centre Val de Loire Region, Tours, France
| |
Collapse
|
13
|
Liao M, Wang M, Li H, Li J, Yi M, Lan L, Ouyang F, Shi L, Fan Y. Discontinuity of deep medullary veins in SWI is associated with deep white matter hyperintensity volume and cognitive impairment in cerebral small vessel disease. J Affect Disord 2024; 350:600-607. [PMID: 38253134 DOI: 10.1016/j.jad.2024.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Discontinuation of the deep medullary veins (DMVs) may be an early imaging marker for identifying cognitive impairment caused by cerebral small vessel disease (CSVD). However, this method lacks mechanistic exploration. We aimed to investigate whether the DMV score is related to CSVD imaging markers and cognitive impairment in patients with CSVD. METHODS This retrospective study included patients with CSVD who completed DMV score and cognition (e.g., MMSE, MoCA) assessments, and underwent MRI scanning (T2-FLAIR for white matter hyperintensities (WMH) volume, T1-weighted MRI for brain parenchymal fractions (BPF) analysis, and SWI for assessment of DMV score). The CSVD imaging markers were quantitatively assessed using the AccuBrain® system. We assessed the diagnostic value of neuroimaging biomarkers for detecting CSVD-related cognitive impairment. In addition, we explored the relationship between the DMV score, CSVD imaging markers, and cognition using mediation analysis. RESULTS Ninety-four patients with CSVD were divided into a cognitive impairment group (n = 39) and a non-cognitive impairment group (n = 55). Higher DMV scores, larger WMH volumes, and smaller BPF were observed in the cognitive impairment group than those in the non-cognitive impairment group. Receiver operating characteristics (ROC) analysis revealed that the discovery value of the integration of patient age, BPF, whole WMH volume, and DMV score for cognitive impairment was 0.742, with a sensitivity and specificity of 79.5 % and 61.5 %, respectively. Mediation analysis showed mediation by WMH and BPF in the relationship between DMV score and cognitive impairment (all P < 0.05). LIMITATIONS This study did not evaluate the DMV score in subregions according to DMV anatomy. CONCLUSIONS The DMV score is significantly associated with cognitive impairment in patients with CSVD, and this association is mediated through WMH and BPF.
Collapse
Affiliation(s)
- Mengshi Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinbiao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Yi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linfang Lan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Fan R, Gan J, Chen F, Le C, Chen Y. Overall cerebral small vessel disease burden is associated with outcome of acute ischemic stroke after mechanical thrombectomy. Interv Neuroradiol 2024; 30:264-270. [PMID: 36352547 PMCID: PMC11095344 DOI: 10.1177/15910199221138140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To investigate the association between the overall cerebral small vessel disease (CSVD) burden and the therapeutic outcome of mechanical thrombectomy (MT) in patients with acute anterior circulation large-vessel occlusion stroke. MATERIALS AND METHODS Data of patients who achieved successful revascularization after MT for acute anterior circulation large-vessel occlusion stroke in the Ningbo Medical Center Lihuili Hospital between April 2017 and January 2022 were retrospectively analyzed. The overall CSVD burden was evaluated by total CSVD score based on MRI images. According to the 90-day modified Rankin Scale (mRS) score, the participants were divided into the Good outcome group (mRS score 0-2) and Poor outcome group (mRS score 3-6). Multivariate Logistic regression was applied to assess the relationship between the overal CSVD burdern and 90-day outcome. RESULTS In total, 145 eligible patients were included and classified into the Good outcome group (n = 77, 62.3% males, mean age: 64.92 ± 13.67 years) and Poor outcome group (n = 68, 50% males, mean age: 69.76 ± 10.88 years). Symptomatic intracranial hemorrhage (OR = 2.788, 95%CI: 1.143-8.745, P = 0.048), poor preoperative collateral status (OR = 3.619, 95%CI: 1.670-7.844, P = 0.001), and high total CSVD score (score 2: OR = 3.800, 95%CI: 1.173 = 12.311, P = 0.026; score 3: OR = 7.529, 95%CI: 1.555-36.460, P = 0.012) were independently prognostic for poor 90-day outcome in patients receiving MT. CONCLUSION This study identified that the overall CSVD burden was independently associated with the prognosis of patients receiving MT for acute anterior circulation large-vessel occlusion stroke.
Collapse
Affiliation(s)
- Rumeng Fan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jiehua Gan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Feng Chen
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chensheng Le
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yong Chen
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
15
|
von Rennenberg R, Nolte CH, Liman TG, Hellwig S, Riegler C, Scheitz JF, Georgakis MK, Fang R, Bode FJ, Petzold GC, Hermann P, Zerr I, Goertler M, Bernkopf K, Wunderlich S, Dichgans M, Endres M. High-Sensitivity Cardiac Troponin T and Cognitive Function Over 12 Months After Stroke-Results of the DEMDAS Study. J Am Heart Assoc 2024; 13:e033439. [PMID: 38456438 PMCID: PMC11010029 DOI: 10.1161/jaha.123.033439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Subclinical myocardial injury in form of hs-cTn (high-sensitivity cardiac troponin) levels has been associated with cognitive impairment and imaging markers of cerebral small vessel disease (SVD) in population-based and cardiovascular cohorts. Whether hs-cTn is associated with domain-specific cognitive decline and SVD burden in patients with stroke remains unknown. METHODS AND RESULTS We analyzed patients with acute stroke without premorbid dementia from the prospective multicenter DEMDAS (DZNE [German Center for Neurodegenerative Disease]-Mechanisms of Dementia after Stroke) study. Patients underwent neuropsychological testing 6 and 12 months after the index event. Test results were classified into 5 cognitive domains (language, memory, executive function, attention, and visuospatial function). SVD markers (lacunes, cerebral microbleeds, white matter hyperintensities, and enlarged perivascular spaces) were assessed on cranial magnetic resonance imaging to constitute a global SVD score. We examined the association between hs-cTnT (hs-cTn T levels) and cognitive domains as well as the global SVD score and individual SVD markers, respectively. Measurement of cognitive and SVD-marker analyses were performed in 385 and 466 patients with available hs-cTnT levels, respectively. In analyses adjusted for demographic characteristics, cardiovascular risk factors, and cognitive status at baseline, higher hs-cTnT was negatively associated with the cognitive domains "attention" up to 12 months of follow-up (beta-coefficient, -0.273 [95% CI, -0.436 to -0.109]) and "executive function" after 12 months. Higher hs-cTnT was associated with the global SVD score (adjusted odds ratio, 1.95 [95% CI, 1.27-3.00]) and the white matter hyperintensities and lacune subscores. CONCLUSIONS In patients with stroke, hs-cTnT is associated with a higher burden of SVD markers and cognitive function in domains linked to vascular cognitive impairment. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01334749.
Collapse
Affiliation(s)
- Regina von Rennenberg
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site BerlinBerlinGermany
| | - Christian H. Nolte
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site BerlinBerlinGermany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz‐Kreislaufforschung), partner site Berlin, Charité‐Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation AcademyBerlinGermany
| | - Thomas G. Liman
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site BerlinBerlinGermany
- Department of Neurology, School of Medicine and Health SciencesCarl von Ossietzky University of OldenburgOldenburgGermany
| | - Simon Hellwig
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation AcademyBerlinGermany
| | - Christoph Riegler
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
| | - Jan F. Scheitz
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz‐Kreislaufforschung), partner site Berlin, Charité‐Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation AcademyBerlinGermany
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site MunichMunichGermany
| | - Rong Fang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site MunichMunichGermany
| | - Felix J. Bode
- Division of Vascular Neurology, Department of NeurologyUniversity Hospital BonnBonnGermany
| | - Gabor C. Petzold
- Division of Vascular Neurology, Department of NeurologyUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site BonnBonnGermany
| | - Peter Hermann
- German Center for Neurodegenerative Diseases (DZNE) GöttingenGöttingenGermany
- Clinical Dementia Center, Department of NeurologyUniversity Medical CenterGöttingenGermany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE) GöttingenGöttingenGermany
- Clinical Dementia Center, Department of NeurologyUniversity Medical CenterGöttingenGermany
| | - Michael Goertler
- Department of NeurologyMagdeburg University Vascular and Stroke CentreMagdeburgGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site MagdeburgMagdeburgGermany
| | - Kathleen Bernkopf
- Department of Neurology, School of MedicineKlinikum rechts der Isar, Technical University of MunichMunichGermany
| | - Silke Wunderlich
- Department of Neurology, School of MedicineKlinikum rechts der Isar, Technical University of MunichMunichGermany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site MunichMunichGermany
| | - Matthias Endres
- Department of Neurology (Klinik und Hochschulambulanz für Neurologie)Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), partner site BerlinBerlinGermany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz‐Kreislaufforschung), partner site Berlin, Charité‐Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation AcademyBerlinGermany
- German Center for Mental Health (DZPG), partner site BerlinBerlinGermany
| |
Collapse
|
16
|
Huang C, Zhang W, Shen Z, Li M, Yin J, Tang Y, Zhou X, Zhu X, Sun Z. The association between alpha diversity of gut microbiota, neuroimaging markers and cognitive function in cerebral small vessel disease. Brain Res 2024; 1827:148757. [PMID: 38215865 DOI: 10.1016/j.brainres.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
There is increasing recognition of gut microbial dysbiosis in cerebral small vessel disease (CSVD). The altered diversity in a single ecosystem - alpha diversity index of gut microbiota has attracted wide attention. Our study aims to determine whether the alpha diversity index differs among healthy control (HC), CSVD with and without cognitive impairment. Moreover, we investigate the correlation between the alpha diversity index, neuroimaging markers, and cognitive function. We recruited 40 HC, 43 CSVD patients without cognitive impairment (CSVD-NCI), and 35 CSVD patients with mild cognitive impairment (CSVD-MCI). Clinical and neuropsychological assessments, MRI scanning, and gut microbiota analysis were performed on all participants. The alpha diversity indexes Chao1 and Shannon were calculated to evaluate community richness and diversity in a sample, respectively. Individual neuroimaging markers of CSVD and the CSVD burden score were also evaluated. A significantly lower level of Chao 1 rather than the Shannon index was observed in the CSVD subgroups than in the HC group. The level of the Chao 1 index was negatively correlated with both CMB counts, a neuroimaging characteristic of CSVD, and CSVD burden score in patients with CSVD. Additionally, the Chao 1 index has been associated with general cognitive function, information processing speed, and language function in patients with CSVD. Remarkably, the increased CSVD burden score mediated the effects of decreased levels of Chao 1 on information processing speed and language function. Hence, the alterations in species richness may be associated with CSVD-related cognitive impairment and mediated by CSVD neuroimaging markers.
Collapse
Affiliation(s)
- Chaojuan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wei Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhu Shen
- Department of Radiology, North District of the First Affiliated Hospital of Anhui Medical University, Hefei 230011, China; Center of Medical Imaging, Anhui Public Health Clinical Center, Hefei 230011, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiabin Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
17
|
Moonen JEF, Haan R, Bos I, Teunissen C, van de Giessen E, Tomassen J, den Braber A, van der Landen SM, de Geus EJC, Legdeur N, van Harten AC, Trieu C, de Boer C, Kroeze L, Barkhof F, Visser PJ, van der Flier WM. Contributions of amyloid beta and cerebral small vessel disease in clinical decline. Alzheimers Dement 2024; 20:1868-1880. [PMID: 38146222 PMCID: PMC10984432 DOI: 10.1002/alz.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION We assessed whether co-morbid small vessel disease (SVD) has clinical predictive value in preclinical or prodromal Alzheimer's disease. METHODS In 1090 non-demented participants (65.4 ± 10.7 years) SVD was assessed with magnetic resonance imaging and amyloid beta (Aβ) with lumbar puncture and/or positron emission tomography scan (mean follow-up for cognitive function 3.1 ± 2.4 years). RESULTS Thirty-nine percent had neither Aβ nor SVD (A-V-), 21% had SVD only (A-V+), 23% Aβ only (A+V-), and 17% had both (A+V+). Pooled cohort linear mixed model analyses demonstrated that compared to A-V- (reference), A+V- had a faster rate of cognitive decline. Co-morbid SVD (A+V+) did not further increase rate of decline. Cox regression showed that dementia risk was modestly increased in A-V+ (hazard ratio [95% confidence interval: 1.8 [1.0-3.2]) and most strongly in A+ groups. Also, mortality risk was increased in A+ groups. DISCUSSION In non-demented persons Aβ was predictive of cognitive decline, dementia, and mortality. SVD modestly predicts dementia in A-, but did not increase deleterious effects in A+. HIGHLIGHTS Amyloid beta (Aβ; A) was predictive for cognitive decline, dementia, and mortality. Small vessel disease (SVD) had no additional deleterious effects in A+. SVD modestly predicted dementia in A-. Aβ should be assessed even when magnetic resonance imaging indicates vascular cognitive impairment.
Collapse
Affiliation(s)
- Justine E. F. Moonen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Renée Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Isabelle Bos
- Nivel, Research Institute for Better CareUtrechtthe Netherlands
| | - Charlotte Teunissen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Elsmarieke van de Giessen
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Sophie M. van der Landen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Eco J. C. de Geus
- Department of Biological PsychologyVU UniversityAmsterdamthe Netherlands
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Argonde C. van Harten
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Calvin Trieu
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Casper de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Lior Kroeze
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Institute of Healthcare Engineering and the Institute of Neurology, University College LondonLondonUK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNS), Maastricht UniversityMaastrichtthe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcAmsterdamthe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamthe Netherlands
| |
Collapse
|
18
|
Xia C, Xie H, Li T, Ding Y, Zhào H, Huang Y. Spatiotemporal gait characteristics during single- and dual-task walking are associated with the burden of cerebral small vessel disease. Front Neurol 2023; 14:1285947. [PMID: 38020659 PMCID: PMC10679325 DOI: 10.3389/fneur.2023.1285947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Gait impairment is a common symptom among individuals with cerebral small vessel disease (CSVD). However, performance differences between single-task walking (STW) and dual-task walking (DTW) among individuals with CSVD remain unclear. Therefore, we aimed to examine differences in gait characteristics during STW and DTW as well as the association between gait performance and neuroimaging markers. Methods We enrolled 126 older individuals with CSVD. The speed, cadence, stride length, stride time, and their dual-task cost (DTC) or variability were measured under the STW, motor-cognitive DTW (cognitive DTW), and motor-motor DTW (motor DTW) conditions. We examined neuroimaging features such as white matter hyperintensities (WMHs), lacunes, microbleeds, and total burden. Further, we analysed the association of neuroimaging markers with gait performance, including gait variability and DTC. Results Almost all spatiotemporal characteristics, as well as their DTCs or variabilities, showed significant among-group differences according to disease severity in the cognitive DTW condition; however, relatively lesser differences were observed in the STW and motor DTW conditions. The total CSVD burden score was moderately correlated with all the spatial parameters, as well as their DTCs or variabilities, in the cognitive DTW condition. Moreover, WMHs showed a correlation with speed, stride time, and cadence, as well as their DTCs, in the cognitive DTW condition. Furthermore, lacunes showed a moderate correlation with speed, stride length, and the DTC of speed, whilst microbleeds were only related to the DTC of stride length in the cognitive DTW condition. Neuroimaging biomarkers were not correlated with spatiotemporal parameters in STW and motor DTW conditions after Bonferroni correction. Moreover, the correlation coefficient between the total CSVD burden score and gait parameters was greater than those of other biomarkers. Discussion Parameters in the cognitive DTW condition are more appropriate than those in the motor DTW condition for the evaluation of gait abnormalities in patients with CSVD. Moreover, the total CSVD burden score might have better predictive utility than any single neuroimaging marker. Patients with CSVD, especially those with moderate-to-severe disease, should concentrate more on their gait patterns and reduce the load of secondary cognitive tasks whilst walking in daily life.
Collapse
Affiliation(s)
- Cuiqiao Xia
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Hongyang Xie
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Tianjiao Li
- Outpatient Department of Haidian No. 58 Retired Cadre Rest Centre of the PLA, Beijing, China
| | - Yu Ding
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Hóngyi Zhào
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
- Department of Neurology, Number 984 Hospital of the PLA, Beijing, China
| | - Yonghua Huang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Li H, Jacob MA, Cai M, Duering M, Chamberland M, Norris DG, Kessels RPC, de Leeuw FE, Marques JP, Tuladhar AM. Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease. Brain 2023; 146:4659-4673. [PMID: 37366338 PMCID: PMC10629800 DOI: 10.1093/brain/awad220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (β = -0.30, Pcorrected < 0.001), lower R1 (β = -0.26, Pcorrected = 0.001), lower R2* (β = -0.32, Pcorrected < 0.001) and lower susceptibility values (β = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (β = 0.20, Pcorrected = 0.030), lower R1 values (β = 0.20, Pcorrected = 0.006), lower R2* values (β = 0.29, Pcorrected = 0.006) and lower susceptibility values (β = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080 Guangzhou, China
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, 4051 Basel, Switzerland
- LMU Munich, University Hospital, Institute for Stroke and Dementia Research (ISD), 81377 Munich, Germany
| | - Maxime Chamberland
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
20
|
Tipton PW, Atik M, Soto-Beasley AI, Day GS, Grewal SS, Chaichana K, Fermo OP, Ball CT, Heckman MG, White LJ, Quicksall ZS, Reddy JS, Ramanan VK, Vemuri P, Elder BD, Ertekin-Taner N, Ross O, Graff-Radford N. CWH43 Variants Are Associated With Disease Risk and Clinical Phenotypic Measures in Patients With Normal Pressure Hydrocephalus. Neurol Genet 2023; 9:e200086. [PMID: 37476022 PMCID: PMC10356132 DOI: 10.1212/nxg.0000000000200086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
Background and Objectives Variants in the CWH43 gene have been associated with normal pressure hydrocephalus (NPH). We aimed to replicate these findings, identify additional CWH43 variants, and further define the clinical phenotype associated with CWH43 variants. Methods We determined the prevalence of CWH43 variants by whole-genome sequencing (WGS) in 94 patients with NPH. The odds of having CWH43 variant carriers develop NPH were determined through comparison with 532 Mayo Clinic Biobank volunteers without a history of NPH. For patients with NPH, we documented the head circumference, prevalence of disproportionate enlargement of subarachnoid hydrocephalus (DESH), microvascular changes on MRI quantified by the Fazekas scale, and ambulatory response to ventriculoperitoneal shunting. Results We identified rare (MAF <0.05) coding CWH43 variants in 15 patients with NPH. Ten patients (Leu533Terfs, n = 8; Lys696Asnfs, n = 2) harbored previously reported predicted loss-of-function variants, and combined burden analysis confirmed risk association with NPH (OR 2.60, 95% CI 1.12-6.03, p = 0.027). Additional missense variations observed included Ile292Thr (n = 2), Ala469Ser (n = 2), and Ala626Val (n = 1). Though not quite statistically significant, in single variable analysis, the odds of having a head circumference above the 75th percentile of normal controls was more than 5 times higher for CWH43 variant carriers compared with that for noncarriers (unadjusted OR 5.67, 95% CI 0.96-108.55, p = 0.057), and this was consistent after adjusting for sex and height (OR 5.42, 95% CI 0.87-106.37, p = 0.073). DESH was present in 56.7% of noncarriers and only 21.4% of carriers (p = 0.016), while sulcal trapping was also more prevalent among noncarriers (67.2% vs 35.7%, p = 0.030). All 8 of the 15 variant carriers who underwent ventriculoperitoneal shunting at our institution experienced ambulatory improvements. Discussion CWH43 variants are frequent in patients with NPH. Predicted loss-of-function mutations were the most common; we identified missense mutations that require further study. Our findings suggest that congenital factors, rather than malabsorption or vascular dysfunction, are primary contributors to the CWH43-related NPH clinical syndrome.
Collapse
Affiliation(s)
- Philip W Tipton
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Merve Atik
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Alexandra I Soto-Beasley
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Gregory S Day
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Sanjeet S Grewal
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Kaisorn Chaichana
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Olga P Fermo
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Colleen T Ball
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Michael G Heckman
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Launia J White
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Zachary S Quicksall
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Joseph S Reddy
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Vijay K Ramanan
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Benjamin D Elder
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Nilufer Ertekin-Taner
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Owen Ross
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Neill Graff-Radford
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Gao Y, Wang S, Xin H, Feng M, Zhang Q, Sui C, Guo L, Liang C, Wen H. Disrupted Gray Matter Networks Associated with Cognitive Dysfunction in Cerebral Small Vessel Disease. Brain Sci 2023; 13:1359. [PMID: 37891728 PMCID: PMC10605932 DOI: 10.3390/brainsci13101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to investigate the disrupted topological organization of gray matter (GM) structural networks in cerebral small vessel disease (CSVD) patients with cerebral microbleeds (CMBs). Subject-wise structural networks were constructed from GM volumetric features of 49 CSVD patients with CMBs (CSVD-c), 121 CSVD patients without CMBs (CSVD-n), and 74 healthy controls. The study used graph theory to analyze the global and regional properties of the network and their correlation with cognitive performance. We found that both the control and CSVD groups exhibited efficient small-world organization in GM networks. However, compared to controls, CSVD-c and CSVD-n patients exhibited increased global and local efficiency (Eglob/Eloc) and decreased shortest path lengths (Lp), indicating increased global integration and local specialization in structural networks. Although there was no significant global topology change, partially reorganized hub distributions were found between CSVD-c and CSVD-n patients. Importantly, regional topology in nonhub regions was significantly altered between CSVD-c and CSVD-n patients, including the bilateral anterior cingulate gyrus, left superior parietal gyrus, dorsolateral superior frontal gyrus, and right MTG, which are involved in the default mode network (DMN) and sensorimotor functional modules. Intriguingly, the global metrics (Eglob, Eloc, and Lp) were significantly correlated with MoCA, AVLT, and SCWT scores in the control group but not in the CSVD-c and CSVD-n groups. In contrast, the global metrics were significantly correlated with the SDMT score in the CSVD-s and CSVD-n groups but not in the control group. Patients with CSVD show a disrupted balance between local specialization and global integration in their GM structural networks. The altered regional topology between CSVD-c and CSVD-n patients may be due to different etiological contributions, which may offer a novel understanding of the neurobiological processes involved in CSVD with CMBs.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Shengpei Wang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100040, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Mengmeng Feng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-Chun St., Xicheng District, Beijing 100054, China; (H.X.); (M.F.)
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York. 407 East 61st Street, New York, NY 10044, USA;
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; (Y.G.); (C.S.)
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-Wu Road No. 324, Jinan 250021, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Bennett J, van Dinther M, Voorter P, Backes W, Barnes J, Barkhof F, Captur G, Hughes AD, Sudre C, Treibel TA. Assessment of Microvascular Disease in Heart and Brain by MRI: Application in Heart Failure with Preserved Ejection Fraction and Cerebral Small Vessel Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1596. [PMID: 37763715 PMCID: PMC10534635 DOI: 10.3390/medicina59091596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
The objective of this review is to investigate the commonalities of microvascular (small vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks to identify potential opportunities to improve the understanding of both HFpEF and CSVD.
Collapse
Affiliation(s)
- Jonathan Bennett
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| | - Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
| | - Paulien Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Walter Backes
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Josephine Barnes
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Frederick Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije University, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- Centre for Inherited Heart Muscle Conditions, Cardiology Department, The Royal Free Hospital, London NW3 2QG, UK
| | - Alun D. Hughes
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
| | - Carole Sudre
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | - Thomas A. Treibel
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| |
Collapse
|
23
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Li R, Harshfield EL, Bell S, Burkhart M, Tuladhar AM, Hilal S, Tozer DJ, Chappell FM, Makin SD, Lo JW, Wardlaw JM, de Leeuw FE, Chen C, Kourtzi Z, Markus HS. Predicting incident dementia in cerebral small vessel disease: comparison of machine learning and traditional statistical models. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100179. [PMID: 37593075 PMCID: PMC10428032 DOI: 10.1016/j.cccb.2023.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Background Cerebral small vessel disease (SVD) contributes to 45% of dementia cases worldwide, yet we lack a reliable model for predicting dementia in SVD. Past attempts largely relied on traditional statistical approaches. Here, we investigated whether machine learning (ML) methods improved prediction of incident dementia in SVD from baseline SVD-related features over traditional statistical methods. Methods We included three cohorts with varying SVD severity (RUN DMC, n = 503; SCANS, n = 121; HARMONISATION, n = 265). Baseline demographics, vascular risk factors, cognitive scores, and magnetic resonance imaging (MRI) features of SVD were used for prediction. We conducted both survival analysis and classification analysis predicting 3-year dementia risk. For each analysis, several ML methods were evaluated against standard Cox or logistic regression. Finally, we compared the feature importance ranked by different models. Results We included 789 participants without missing data in the survival analysis, amongst whom 108 (13.7%) developed dementia during a median follow-up of 5.4 years. Excluding those censored before three years, we included 750 participants in the classification analysis, amongst whom 48 (6.4%) developed dementia by year 3. Comparing statistical and ML models, only regularised Cox/logistic regression outperformed their statistical counterparts overall, but not significantly so in survival analysis. Baseline cognition was highly predictive, and global cognition was the most important feature. Conclusions When using baseline SVD-related features to predict dementia in SVD, the ML survival or classification models we evaluated brought little improvement over traditional statistical approaches. The benefits of ML should be evaluated with caution, especially given limited sample size and features.
Collapse
Affiliation(s)
- Rui Li
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Eric L. Harshfield
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
- Heart and Lung Research Institute, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Steven Bell
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
- Heart and Lung Research Institute, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Michael Burkhart
- Adaptive Brain Lab, Department of Psychology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Anil M. Tuladhar
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Daniel J. Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Francesca M. Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Stephen D.J. Makin
- Centre for Rural Health, Institute of Applied Health Sciences, University of Aberdeen, United Kingdom of Great Britain and Northern Ireland
| | - Jessica W. Lo
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zoe Kourtzi
- Adaptive Brain Lab, Department of Psychology, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
- Heart and Lung Research Institute, University of Cambridge, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
25
|
Zhang X, Liang C, Wang N, Wang Y, Gao Y, Sui C, Xin H, Feng M, Guo L, Wen H. Abnormal whole-brain voxelwise structure-function coupling and its association with cognitive dysfunction in patients with different cerebral small vessel disease burdens. Front Aging Neurosci 2023; 15:1148738. [PMID: 37455935 PMCID: PMC10347527 DOI: 10.3389/fnagi.2023.1148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a universal neurological disorder in older adults that occurs in connection with cognitive dysfunction and is a chief risk factor for dementia and stroke. While whole-brain voxelwise structural and functional abnormalities in CSVD have been heavily explored, the degree of structure-function coupling abnormality possible in patients with different CSVD burdens remains largely unknown. This study included 53 patients with severe CSVD burden (CSVD-s), 108 patients with mild CSVD burden (CSVD-m) and 76 healthy controls. A voxelwise coupling metric of low frequency fluctuations (ALFF) and voxel-based morphometry (VBM) was used to research the important differences in whole-brain structure-function coupling among groups. The correlations between ALFF/VBM decoupling and cognitive parameters in CSVD patients were then investigated. We found that compared with healthy controls, CSVD-s patients presented notably decreased ALFF/VBM coupling in the bilateral caudate nuclei and increased coupling in the right inferior temporal gyrus (ITG). In addition, compared with the CSVD-m group, the CSVD-s group demonstrated significantly decreased coupling in the bilateral caudate nuclei, right putamen and inferior frontal gyrus (IFG) and increased coupling in the left middle frontal gyrus and medial superior frontal gyrus. Notably, the ALFF/VBM decoupling values in the caudate, IFG and ITG not only showed significant correlations with attention and executive functions in CSVD patients but also prominently distinguished CSVD-s patients from CSVD-m patients and healthy controls in receiver operating characteristic curve research. Our discoveries demonstrated that decreased ALFF/VBM coupling in the basal ganglia and increased coupling in the frontotemporal lobes were connected with more severe burden and worse cognitive decline in CSVD patients. ALFF/VBM coupling might serve as a novel effective neuroimaging biomarker of CSVD burden and provide new insights into the pathophysiological mechanisms of the clinical development of CSVD.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- Department of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Yian Gao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Sui C, Wen H, Wang S, Feng M, Xin H, Gao Y, Li J, Guo L, Liang C. Characterization of white matter microstructural abnormalities associated with cognitive dysfunction in cerebral small vessel disease with cerebral microbleeds. J Affect Disord 2023; 324:259-269. [PMID: 36584708 DOI: 10.1016/j.jad.2022.12.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is recommended as a sensitive method to explore white matter (WM) microstructural alterations. Cerebral small vessel disease (CSVD) may be accompanied by extensive WM microstructural deterioration, while cerebral microbleeds (CMBs) are an important factor affecting CSVD. METHODS Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) images from 49 CSVD patients with CMBs (CSVD-c), 114 CSVD patients without CMBs (CSVD-n), and 83 controls were analyzed using DTI-derived tract-based spatial statistics to detect WM diffusion changes among groups. RESULTS Compared with the CSVD-n and control groups, the CSVD-c group showed a significant FA decrease and AD, RD and MD increases mainly in the cognitive and sensorimotor-related WM tracts. There was no significant difference in any diffusion metric between the CSVD-n and control groups. Furthermore, the widespread regional diffusion alterations among groups were significantly correlated with cognitive parameters in both the CSVD-c and CSVD-n groups. Notably, we applied the multiple kernel learning technique in multivariate pattern analysis to combine multiregion and multiparameter diffusion features, yielding an average accuracy >77 % for three binary classifications, which showed a considerable improvement over the single modality approach. LIMITATIONS We only grouped the study according to the presence or absence of CMBs. CONCLUSIONS CSVD patients with CMBs have extensive WM microstructural deterioration. Combining DTI-derived diffusivity and anisotropy metrics can provide complementary information for assessing WM alterations associated with cognitive dysfunction and serve as a potential discriminative pattern to detect CSVD at the individual level.
Collapse
Affiliation(s)
- Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China
| | - Hongwei Wen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Shengpei Wang
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, ZhongGuanCun East Rd. 95(#), Beijing 100190, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan 250021, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan 250021, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xicheng District, Beijing 100050, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China
| |
Collapse
|
27
|
Wu C, Ma YH, Hu H, Zhao B, Tan L. Soluble TREM2, Alzheimer's Disease Pathology, and Risk for Progression of Cerebral Small Vessel Disease: A Longitudinal Study. J Alzheimers Dis 2023; 92:311-322. [PMID: 36744335 DOI: 10.3233/jad-220731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BackgroundUntil recently, studies on associations between neuroinflammation in vivo and cerebral small vessel disease (CSVD) are scarce. Cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2), a candidate biomarker of microglial activation and neuroinflammation, were found elevated in Alzheimer's disease (AD), but they have not been fully explored in CSVD.ObjectiveTo determine whether CSF sTREM2 levels are associated with the increased risk of CSVD progression.MethodsA total of 426 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were included in this study. All participants underwent measurements of CSF sTREM2 and AD pathology (Aβ1-42, P-tau181P). The progression of CSVD burden and imaging markers, including cerebral microbleeds (CMBs), white matter hyperintensities and lacunes, were estimated based on neuroimaging changes. Logistic regression and moderation effect models were applied to explore associations of sTREM2 with CSVD progression and AD pathology.Results Higher CSF sTREM2 levels at baseline were associated with increased CSVD burden (OR = 1.28 [95% CI, 1.01-1.62]) and CMBs counts (OR = 1.32 [95% CI, 1.03-1.68]). Similarly, increased change rates of CSF sTREM2 might predict elevated CMBs counts (OR = 1.44 [95% CI, 1.05-1.98]). Participants with AD pathology (Aβ1-42 and P-tau181P) showed a stronger association between CSF sTREM2 and CSVD progression.ConclusionThis longitudinal study found a positive association between CSF sTREM2 and CSVD progression, suggesting that neuroinflammation might promote CSVD. Furthermore, neuroinflammation could be a shared pathogenesis of CSVD and AD at the early stage. Targeting neuroinflammation to intervene the progression of CSVD and AD warrants further investigation.
Collapse
Affiliation(s)
- Chao Wu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
28
|
Sun Y, Hu HY, Hu H, Huang LY, Tan L, Yu JT. Cerebral Small Vessel Disease Burden Predicts Neurodegeneration and Clinical Progression in Prodromal Alzheimer's Disease. J Alzheimers Dis 2023; 93:283-294. [PMID: 36970905 DOI: 10.3233/jad-221207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) has been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). OBJECTIVE This study aimed to comprehensively investigated the associations of CSVD burden with cognition and AD pathologies. METHODS A total of 546 non-demented participants (mean age, 72.1 years, range, 55-89; 47.4% female) were included. The longitudinal neuropathological and clinical correlates of CSVD burden were assessed using linear mixed-effects and Cox proportional-hazard models. Partial least squares structural equation model (PLS-SEM) was used to assess the direct and indirect effects of CSVD burden on cognition. RESULTS We found that higher CSVD burden was associated with worse cognition (MMSE, β= -0.239, p = 0.006; MoCA, β= -0.493, p = 0.013), lower cerebrospinal fluid (CSF) Aβ level (β= -0.276, p < 0.001) and increased amyloid burden (β= 0.048, p = 0.002). In longitudinal, CSVD burden contributed to accelerated rates of hippocampus atrophy, cognitive decline, and higher risk of AD dementia. Furthermore, as the results of PLS-SEM, we observed both significant direct and indirect impact of advanced age (direct, β= -0.206, p < 0.001; indirect, β= -0.002, p = 0.043) and CSVD burden (direct, β= -0.096, p = 0.018; indirect, β= -0.005, p = 0.040) on cognition by Aβ-p-tau-tau pathway. CONCLUSION CSVD burden could be a prodromal predictor for clinical and pathological progression. Simultaneously, we found that the effects were mediated by the one-direction-only sequence of pathological biomarker changes starting with Aβ, through abnormal p-tau, and neurodegeneration.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Cerebral Small Vessel Diseases and Outcomes for Acute Ischemic Stroke Patients after Endovascular Therapy. J Clin Med 2022; 11:jcm11236883. [PMID: 36498456 PMCID: PMC9736173 DOI: 10.3390/jcm11236883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The correlation between cerebral small vessel disease (CSVD) and the outcomes of acute ischemic stroke (AIS) patients after endovascular therapy (EVT) remains elusive. We aimed to investigate the effect of combined white matter hyperintensities (WMH) and enlarged perivascular spaces (EPVS) as detected in magnetic resonance imaging (MRI) at baseline on clinical outcomes in patients with AIS who underwent EVT. AIS patients that experienced EVT were retrospectively analyzed in this single-center study. Using MRIs taken prior to EVT, we rated WMH and EPVS as the burden of CSVD and dichotomized the population into two groups: absent-to-moderate and severe. Neurological outcome was assessed at day 90 with a modified Rankin Scale (mRS). Symptomatic intracerebral hemorrhage (sICH), early neurological deterioration (END), malignant cerebral edema (MCE), and hospital death were secondary outcomes. Of the 100 patients (64.0% male; mean age 63.71 ± 11.79 years), periventricular WMHs (28%), deep WMHs (41%), EPVS in basal ganglia (53%), and EPVS in centrum semiovale (73%) were observed. In addition, 69% had an absent-to-moderate total CSVD burden and 31.0% had a severe burden. The severe CSVD was not substantially linked to either the primary or secondary outcomes. Patients with AIS who underwent EVT had an elevated risk (OR: 7.89, 95% CI: 1.0, 62.53) of END if they also had EPVS. When considering WMH and EPVS together as a CSVD burden, there seemed to be no correlation between severe CSVD burden and sICH, END, or MCE following EVT for AIS patients. Further studies are warranted to clarify the relationship between CSVD burden and the occurrence, progression, and prognosis of AIS.
Collapse
|
30
|
Markus HS, van Der Flier WM, Smith EE, Bath P, Biessels GJ, Briceno E, Brodtman A, Chabriat H, Chen C, de Leeuw FE, Egle M, Ganesh A, Georgakis MK, Gottesman RF, Kwon S, Launer L, Mok V, O'Brien J, Ottenhoff L, Pendlebury S, Richard E, Sachdev P, Schmidt R, Springer M, Tiedt S, Wardlaw JM, Verdelho A, Webb A, Werring D, Duering M, Levine D, Dichgans M. Framework for Clinical Trials in Cerebral Small Vessel Disease (FINESSE): A Review. JAMA Neurol 2022; 79:1187-1198. [PMID: 35969390 PMCID: PMC11036410 DOI: 10.1001/jamaneurol.2022.2262] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Cerebral small vessel disease (SVD) causes a quarter of strokes and is the most common pathology underlying vascular cognitive impairment and dementia. An important step to developing new treatments is better trial methodology. Disease mechanisms in SVD differ from other stroke etiologies; therefore, treatments need to be evaluated in cohorts in which SVD has been well characterized. Furthermore, SVD itself can be caused by a number of different pathologies, the most common of which are arteriosclerosis and cerebral amyloid angiopathy. To date, there have been few sufficiently powered high-quality randomized clinical trials in SVD, and inconsistent trial methodology has made interpretation of some findings difficult. Observations To address these issues and develop guidelines for optimizing design of clinical trials in SVD, the Framework for Clinical Trials in Cerebral Small Vessel Disease (FINESSE) was created under the auspices of the International Society of Vascular Behavioral and Cognitive Disorders. Experts in relevant aspects of SVD trial methodology were convened, and a structured Delphi consensus process was used to develop recommendations. Areas in which recommendations were developed included optimal choice of study populations, choice of clinical end points, use of brain imaging as a surrogate outcome measure, use of circulating biomarkers for participant selection and as surrogate markers, novel trial designs, and prioritization of therapeutic agents using genetic data via Mendelian randomization. Conclusions and Relevance The FINESSE provides recommendations for trial design in SVD for which there are currently few effective treatments. However, new insights into understanding disease pathogenesis, particularly from recent genetic studies, provide novel pathways that could be therapeutically targeted. In addition, whether other currently available cardiovascular interventions are specifically effective in SVD, as opposed to other subtypes of stroke, remains uncertain. FINESSE provides a framework for design of trials examining such therapeutic approaches.
Collapse
Affiliation(s)
- Hugh S Markus
- Alzheimer Center Amsterdam, Department of Neurology, Epidemiology and Data Science, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van Der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Epidemiology and Data Science, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Philip Bath
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emily Briceno
- Department of Physical Medicine & Rehabilitation, University of Michigan Medical School, Ann Arbor
| | - Amy Brodtman
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | - Hugues Chabriat
- Department of Neurology, FHU NeuroVasc, APHP, University of Paris, Paris, France
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijimegen, the Netherlands
| | - Marco Egle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aravind Ganesh
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rebecca F Gottesman
- Now with National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sun Kwon
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Lenore Launer
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - John O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Lois Ottenhoff
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam and the Netherlands and Brain Research Center Amsterdam, the Netherlands
| | - Sarah Pendlebury
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, NIHR Oxford Biomedical Research Centre, Departments of General (internal) Medicine and Geratology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijimegen, the Netherlands
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, New South Wales, Australia
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | | | - Stefan Tiedt
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Verdelho
- Faculdade de Medicina, Department of Neurosciences and Mental Health, CHULN-Hospital de Santa Maria Instituto de Medicina Molecular (IMM) e Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Alastair Webb
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Medical Image Analysis Center (MIAC AG) and Quantitative Biomedical Imaging Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Deborah Levine
- Departments of Internal Medicine and Neurology, University of Michigan, Ann Arbor
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
31
|
Hazany S, Nguyen KL, Lee M, Zhang A, Mokhtar P, Crossley A, Luthra S, Butani P, Dergalust S, Ellingson B, Hinman JD. Regional Cerebral Small Vessel Disease (rCSVD) Score: A clinical MRI grading system validated in a stroke cohort. J Clin Neurosci 2022; 105:131-136. [PMID: 36183571 PMCID: PMC10163829 DOI: 10.1016/j.jocn.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Current methods for quantitative assessment of cerebral small vessel disease (CSVD) ignore critical aspects of the disease, namely lesion type and regionality. We developed and tested a new scoring system for CSVD, "regional Cerebral Small Vessel Disease" (rCSVD) based on regional assessment of magnetic resonance imaging (MRI) features. METHODS 141 patients were retrospectively included with a derivation cohort of 46 consecutive brain MRI exams and a validation cohort of 95 patients with known cerebrovascular disease. We compared the predictive value of rCSVD against existing scoring methods. We determined the predictive value of rCSVD score for all-cause mortality and recurrent strokes. RESULTS 46 (44 male) veteran patients (age: 66-93 years), were included for derivation of the rCSVD score. A non-overlapping validation cohort consisted of 95 patients (89 male; age: 34-91 years) with known cerebrovascular disease were enrolled. Based on ROC analysis with comparison of AUC (Area Under the Curve), "rCSVD" score performed better compared to "total SVD score" and Fazekas score for predicting all-cause mortality (0.75 vs 0.68 vs 0.69; p = 0.046). "rCSVD" and total SVD scores were predictive of recurrent strokes in our validation cohort (p-values 0.004 and 0.001). At a median of 5.1 years (range 2-17 years) follow-up, Kaplan-Meier survival analysis demonstrated an rCSVD score of 2 to be a significant predictor of all-cause-mortality. CONCLUSION "rCSVD" score can be derived from routine brain MRI, has value in risk stratification of patients at risk of CSVD, and has potential in clinical trials once fully validated in a larger patient cohort.
Collapse
Affiliation(s)
- Saman Hazany
- Department of Radiology, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, USA.
| | - Kim-Lien Nguyen
- Division of Cardiology and Radiology, VA Greater Los Angeles Healthcare System and David, Geffen School of Medicine at UCLA, USA
| | - Martin Lee
- Department of Biostatistics, Fielding School of Public Health at UCLA, USA
| | - Andrew Zhang
- Department of Radiology, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, USA
| | - Parsa Mokhtar
- Department of Psychobiology, University of California Los Angeles, USA
| | - Alexander Crossley
- Department of Neurology, VA Greater Los Angeles Healthcare System and David Geffen, School of Medicine at UCLA, USA
| | - Sakshi Luthra
- College of Letters and Sciences, University of California Los Angeles, USA
| | - Pooja Butani
- Department of Neurology, VA Greater Los Angeles Healthcare System and David Geffen, School of Medicine at UCLA, USA
| | - Sunita Dergalust
- Department of Pharmacy, VA Greater Los Angeles Healthcare System, USA
| | - Benjamin Ellingson
- Department of Radiology and Psychiatry, David Geffen School of Medicine at UCLA, USA
| | - Jason D Hinman
- Department of Neurology, VA Greater Los Angeles Healthcare System and David Geffen, School of Medicine at UCLA, USA
| |
Collapse
|
32
|
Harshfield EL, Sands CJ, Tuladhar AM, de Leeuw FE, Lewis MR, Markus HS. Metabolomic profiling in small vessel disease identifies multiple associations with disease severity. Brain 2022; 145:2461-2471. [PMID: 35254405 PMCID: PMC9337813 DOI: 10.1093/brain/awac041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral small vessel disease is a major cause of vascular cognitive impairment and dementia. There are few treatments, largely reflecting limited understanding of the underlying pathophysiology. Metabolomics can be used to identify novel risk factors to better understand pathogenesis and to predict disease progression and severity. We analysed data from 624 patients with symptomatic cerebral small vessel disease from two prospective cohort studies. Serum samples were collected at baseline and patients underwent MRI scans and cognitive testing at regular intervals with up to 14 years of follow-up. Using ultra-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we obtained metabolic and lipidomic profiles from 369 annotated metabolites and 54 764 unannotated features and examined their association with respect to disease severity, assessed using MRI small vessel disease markers, cognition and future risk of all-cause dementia. Our analysis identified 28 metabolites that were significantly associated with small vessel disease imaging markers and cognition. Decreased levels of multiple glycerophospholipids and sphingolipids were associated with increased small vessel disease load as evidenced by higher white matter hyperintensity volume, lower mean diffusivity normalized peak height, greater brain atrophy and impaired cognition. Higher levels of creatine, FA(18:2(OH)) and SM(d18:2/24:1) were associated with increased lacune count, higher white matter hyperintensity volume and impaired cognition. Lower baseline levels of carnitines and creatinine were associated with higher annualized change in peak width of skeletonized mean diffusivity, and 25 metabolites, including lipoprotein subclasses, amino acids and xenobiotics, were associated with future dementia incidence. Our results show multiple distinct metabolic signatures that are associated with imaging markers of small vessel disease, cognition and conversion to dementia. Further research should assess causality and the use of metabolomic screening to improve the ability to predict future disease severity and dementia risk in small vessel disease. The metabolomic profiles may also provide novel insights into disease pathogenesis and help identify novel treatment approaches.
Collapse
Affiliation(s)
- Eric L Harshfield
- Correspondence to: Dr Eric L. Harshfield Stroke Research Group Department of Clinical Neurosciences University of Cambridge R3, Box 83, Cambridge Biomedical Campus Cambridge CB2 0QQ, UK E-mail:
| | - Caroline J Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Cao QL, Sun Y, Hu H, Wang ZT, Tan L, Yu JT. Association of Cerebral Small Vessel Disease Burden with Neuropsychiatric Symptoms in Non-Demented Elderly: A Longitudinal Study. J Alzheimers Dis 2022; 89:583-592. [PMID: 35912738 DOI: 10.3233/jad-220128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The links between cerebral small vessel disease (CSVD) burden and neuropsychiatric symptoms (NPS) have not been fully studied. OBJECTIVE We aimed to explore the associations of the CSVD burden with Neuropsychiatric Inventory (NPI) total scores and its subsyndromes in the elderly without dementia. METHODS We investigated 630 non-demented participants from the Alzheimer's Disease Neuroimaging Initiative. All of them had NPI assessments and 3 Tesla MRI scans at baseline and 616 had longitudinal NPI assessments during the follow-up. Linear mixed-effects models were used to investigate the cross-sectional and longitudinal associations of CSVD burden with NPI total scores and its subsyndromes. RESULTS Higher CSVD burden longitudinally predicted more serious neuropsychiatric symptoms, including NPS (p = 0.0001), hyperactivity (p = 0.0007), affective symptoms (p = 0.0096), and apathy (p < 0.0001) in the total participants. Lacunar infarcts (LIs), white matter hyperactivities (WMHs), and cerebral microbleeds (CMBs) might play important roles in the occurrence of NPS, since they were longitudinally associated with specific neuropsychiatric subsyndromes. LIs contributed to hyperactivity (p = 0.0094), psychosis (p = 0.0392), affective symptoms (p = 0.0156), and apathy (p < 0.0001). WMHs were associated with hyperactivity (p = 0.0408) and apathy (p = 0.0343). However, CMBs were only related to apathy (p = 0.0148). CONCLUSION CSVD burden was associated with multiple neuropsychiatric symptoms, suggesting the importance of monitoring and controlling vascular risk factors. Different markers of CSVD were associated with specific subsyndromes of NPS, suggesting that different markers tended to occur in different encephalic regions.
Collapse
Affiliation(s)
- Qiao-Ling Cao
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
34
|
Georgakis MK, Fang R, Düring M, Wollenweber FA, Bode FJ, Stösser S, Kindlein C, Hermann P, Liman TG, Nolte CH, Kerti L, Ikenberg B, Bernkopf K, Poppert H, Glanz W, Perosa V, Janowitz D, Wagner M, Neumann K, Speck O, Dobisch L, Düzel E, Gesierich B, Dewenter A, Spottke A, Waegemann K, Görtler M, Wunderlich S, Endres M, Zerr I, Petzold G, Dichgans M. Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study. Alzheimers Dement 2022; 19:1152-1163. [PMID: 35876563 DOI: 10.1002/alz.12744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION It remains unknown whether the global small vessel disease (SVD) burden predicts post-stroke outcomes. METHODS In a prospective multicenter study of 666 ischemic and hemorrhagic stroke patients, we quantified magnetic resonance imaging (MRI)-based SVD markers (lacunes, white matter hyperintensities, microbleeds, perivascular spaces) and explored associations with 6- and 12-month cognitive (battery of 15 neuropsychological tests) and functional (modified Rankin scale) outcomes. RESULTS A global SVD score (range 0-4) was associated with cognitive impairment; worse performance in executive function, attention, language, and visuospatial ability; and worse functional outcome across a 12-month follow-up. Although the global SVD score did not improve prediction, individual SVD markers, assessed across their severity range, improved the calibration, discrimination, and reclassification of predictive models including demographic, clinical, and other imaging factors. DISCUSSION SVD presence and severity are associated with worse cognitive and functional outcomes 12 months after stroke. Assessing SVD severity may aid prognostication for stroke patients. HIGHLIGHTS In a multi-center cohort, we explored associations of small vessel disease (SVD) burden with stroke outcomes. SVD burden associates with post-stroke cognitive and functional outcomes. A currently used score of SVD burden does not improve the prediction of poor outcomes. Assessing the severity of SVD lesions adds predictive value beyond known predictors. To add predictive value in assessing SVD in stroke patients, SVD burden scores should integrate lesion severity.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rong Fang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Marco Düring
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Felix J Bode
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Stösser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine Kindlein
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas G Liman
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christian H Nolte
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Lucia Kerti
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benno Ikenberg
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathleen Bernkopf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Poppert
- Department of Neurology, Helios Klinikum München West, Munich, Germany
| | - Wenzel Glanz
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Valentina Perosa
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Karin Waegemann
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Görtler
- Department of Neurology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabor Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
35
|
Three major global stroke challenges: Intracranial stenosis, atrial fibrillation, and cerebral small vessel disease. Int J Stroke 2022; 17:596-598. [PMID: 35787072 DOI: 10.1177/17474930221107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Chung CP, Lee WJ, Chou KH, Lee PL, Peng LN, Wang PN, Lin CP, Chen LK. Frailty and dementia risks in asymptomatic cerebral small vessel disease: A longitudinal cohort study. Arch Gerontol Geriatr 2022; 102:104754. [PMID: 35728329 DOI: 10.1016/j.archger.2022.104754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Frailty has been shown to predict adverse outcomes in several diseases. We aimed to evaluate the associations between frailty profiles, both severity and subtype, and dementia risk in a community-based population with asymptomatic (without stroke and dementia) cerebral small vessel disease (CSVD). METHODS Individuals with asymptomatic CSVD were recruited from the community-based I-Lan Longitudinal Aging Study between 2011 and 2014 (baseline) and were followed up between 2018 and 2019. All participants underwent CSVD assessment by 3T brain MRI, as well as physical and cognitive assessments at baseline. Univariate and multivariate logistic regression analyses were performed to evaluate the associations between each factor and dementia conversion at follow-up. RESULTS Among 261 participants with asymptomatic CSVD (64.8 [50.0-89.1, 8.4] years; 136 [52.1%] men), 13 (5.0%) developed dementia during a mean follow-up of 5.7 (0.7) years. Dementia converters were less likely to be robust (30.8% vs. 61.5%) and more likely to be pre-frail/frail (69.2% vs. 38.5%) than non-converters (p = 0.040). Meanwhile, there was significantly more frequent mobility frailty (53.8% vs. 19.8%, p = 0.009), but a similar prevalence of non-mobility frailty in dementia converters compared with non-converters. Univariate analyses showed that neither frailty severity nor CSVD burden was associated with a higher risk of dementia; it was the frailty subtype, the mobility frailty, which was significantly associated with dementia conversion in participants with asymptomatic CSVD, with an odds-ratio of 4.8 (95% CI = 1.5-14.8, p = 0.007). The significance remained after adjusting for age, sex, education and baseline cognitive function, respectively. CONCLUSION Mobility frailty was associated with a higher risk of incident dementia in individuals with subclinical CSVD. Mobility frailty might be involved in the pathology of cognitive decline in CSVD and potentially serve as a marker to identify people at risk of cognitive impairment at an early stage of CSVD.
Collapse
Affiliation(s)
- Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City 112, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.
| | - Wei-Ju Lee
- Aging and Health Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yi-Lan, Taiwan
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Li-Ning Peng
- Aging and Health Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City 112, Taiwan; Aging and Health Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
37
|
Cai M, Jacob MA, van Loenen MR, Bergkamp M, Marques J, Norris DG, Duering M, Tuladhar AM, de Leeuw FE. Determinants and Temporal Dynamics of Cerebral Small Vessel Disease: 14-Year Follow-Up. Stroke 2022; 53:2789-2798. [PMID: 35506383 PMCID: PMC9389939 DOI: 10.1161/strokeaha.121.038099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study is to investigate the temporal dynamics of small vessel disease (SVD) and the effect of vascular risk factors and baseline SVD burden on progression of SVD with 4 neuroimaging assessments over 14 years in patients with SVD. METHODS Five hundred three patients with sporadic SVD (50-85 years) from the ongoing prospective cohort study (RUN DMC [Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort]) underwent baseline assessment in 2006 and follow-up in 2011, 2015, and 2020. Vascular risk factors and magnetic resonance imaging markers of SVD were evaluated. Linear mixed-effects model and negative binomial regression model were used to examine the determinants of temporal dynamics of SVD markers. RESULTS A total of 382 SVD patients (mean [SD] 64.1 [8.4]; 219 men and 163 women) who underwent at least 2 serial brain magnetic resonance imaging scans were included, with mean (SD) follow-up of 11.15 (3.32) years. We found a highly variable temporal course of SVD. Mean (SD) WMH progression rate was 0.6 (0.74) mL/y (range, 0.02-4.73 mL/y) and 13.6% of patients had incident lacunes (1.03%/y) over the 14-year follow-up. About 4% showed net WMH regression over 14 years, whereas 38 out of 361 (10.5%), 5 out of 296 (2%), and 61 out of 231 (26%) patients showed WMH regression for the intervals 2006 to 2011, 2011 to 2015, and 2015 to 2020, respectively. Of these, 29 (76%), 5 (100%), and 57 (93%) showed overall progression across the 14-year follow-up, and the net overall WMH change between first and last scan considering all participants was a net average WMH progression over the 14-year period. Older age was a strong predictor for faster WMH progression and incident lacunes. Patients with mild baseline WMH rarely progressed to severe WMH. In addition, both baseline burden of SVD lesions and vascular risk factors independently and synergistically predicted WMH progression, whereas only baseline SVD burden predicted incident lacunes over the 14-year follow-up. CONCLUSIONS SVD shows pronounced progression over time, but mild WMH rarely progresses to clinically severe WMH. WMH regression is noteworthy during some magnetic resonance imaging intervals, although it could be overall compensated by progression over the long follow-up.
Collapse
Affiliation(s)
- Mengfei Cai
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Mina A Jacob
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Mark R van Loenen
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - Mayra Bergkamp
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - José Marques
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - David G Norris
- Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.R.v.L., J.M., D.G.N.)
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Switzerland (M.D.)
| | - Anil M Tuladhar
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour; Nijmegen, the Netherlands. (M.C., M.A.J., M.B., A.M.T., F.-E.d.L.)
| |
Collapse
|
38
|
Chung CP, Peng LN, Lee WJ, Wang PN, Lin CP, Chen LK. Cerebral small vessel disease is associated with concurrent physical and cognitive impairments at preclinical stage. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100144. [PMID: 36324392 PMCID: PMC9616335 DOI: 10.1016/j.cccb.2022.100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Physio-cognitive decline syndrome (PCDS) is a clinical construct of concurrent physical mobility and cognitive impairments in non-demented functional preserved elderly who are at risk of dementia and disable. The present study aimed to evaluate whether cerebral small vessel disease (SVD) is associated with this phenotype of accelerated aging. METHODS We stratified a non-demented non-stroke community-based population aged 50 or older into four groups: robust, isolated cognitive impairment no dementia (CIND), isolated physical mobility impairment no disable (MIND) and PCDS groups. SVD burden (SVD score) was defined by the presence of severe white matter hyperintensities (WMH), lacune(s) and cerebral microbleed (CMB). Univariate and multivariate analyses were performed to evaluate the cross-sectional relationships between SVD and PCDS. RESULTS Seven hundred and nine eligible participants were included. There were 317 (44.7%) classified as robust group, 212 (29.9%) as CIND group, 117 (16.5%) as MIND group and 63 (8.9%) as PCDS group. SVD (SVD score ≥ 2) was significantly associated with PCDS, concurrent mobility physical and cognitive impairments (odds-ratio, OR = 2.3; 95% confidence interval, 95% CI = 1.3-4.0; p = 0.003) but not with MIND or CIND, which was independent of age, sex and vascular risk factors. Among three SVD markers, the presence of severe WMH (OR = 1.9; 95% CI = 1.1-3.2; p = 0.023) and lacune (OR = 2.5; 95% CI = 1.3-4.8; p = 0.005) were significantly and mixed CMB (OR = 2.0; 95% CI = 1.0-4.1; p = 0.058) was borderline-significantly associated with PCDS independent of age, sex and vascular risk factors. CONCLUSION SVD was associated with PCDS, a phenotype with concurrent physical mobility and cognitive impairments in the non-demented non-disable elderly population. The present study revealed the clinical features of SVD at early, preclinical stage and has provided insights into the pathophysiology and future management strategy of accelerated functional declines in the elderly.
Collapse
Affiliation(s)
- Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei, Taiwan
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
| | - Li-Ning Peng
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ju Lee
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yi-Lan, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei, Taiwan
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
39
|
Small vessel disease and collaterals in ischemic stroke patients treated with thrombectomy. J Neurol 2022; 269:4708-4716. [PMID: 35384484 DOI: 10.1007/s00415-022-11099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE To determine the influence of the cerebral small vessel disease (SVD) burden on collateral recruitment in patients treated with mechanical thrombectomy (MT) for anterior circulation acute ischemic stroke (AIS). METHODS Patients with AIS due to large vessel occlusion (LVO) from the Thrombectomie des Artères Cérébrales (THRACE) trial and prospective cohorts from 2 academic comprehensive stroke centers treated with MT were pooled and retrospectively analyzed. Collaterals' adequacy was assessed using the American Society of Interventional and Therapeutic Radiology/Society of Interventional Radiology (ASITN/SIR) score on initial digital subtraction angiography and dichotomized as good (3,4) versus poor (0-2) collaterals. The SVD burden was rated with the global SVD score on MRI. Multivariable logistic regression analyses were used to determine relationships between SVD and ASITN/SIR scores. RESULTS A total of 312 participants were included (53.2% males, mean age 67.8 ± 14.9 years). Two hundred and seven patients had poor collaterals (66.4%), and 133 (42.6%) presented with any SVD signature. In multivariable analysis, patients demonstrated worse leptomeningeal collaterality with increasing SVD burden before and after adjustment for SVD risk factors (adjusted odds ratio [aOR] 0.69; 95%CI [0.52-0.89] and aOR 0.66; 95%CI [0.5-0.88], respectively). Using individual SVD markers, poor collaterals were significantly associated with the presence of lacunes (aOR 0.40, 95% CI [0.20-0.79]). CONCLUSION Our study provides evidence that in patients with AIS due to LVO treated with MT, the burden of SVD assessed by pre-treatment MRI is associated with poorer recruitment of leptomeningeal collaterals.
Collapse
|
40
|
Jansen MG, Griffanti L, Mackay CE, Anatürk M, Melazzini L, Lange AMGD, Filippini N, Zsoldos E, Wiegertjes K, Leeuw FED, Singh-Manoux A, Kivimäki M, Ebmeier KP, Suri S. Association of cerebral small vessel disease burden with brain structure and cognitive and vascular risk trajectories in mid-to-late life. J Cereb Blood Flow Metab 2022; 42:600-612. [PMID: 34610763 PMCID: PMC8943617 DOI: 10.1177/0271678x211048411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We characterize the associations of total cerebral small vessel disease (SVD) burden with brain structure, trajectories of vascular risk factors, and cognitive functions in mid-to-late life. Participants were 623 community-dwelling adults from the Whitehall II Imaging Sub-study with multi-modal MRI (mean age 69.96, SD = 5.18, 79% men). We used linear mixed-effects models to investigate associations of SVD burden with up to 25-year retrospective trajectories of vascular risk and cognitive performance. General linear modelling was used to investigate concurrent associations with grey matter (GM) density and white matter (WM) microstructure, and whether these associations were modified by cognitive status (Montreal Cognitive Asessment [MoCA] scores of < 26 vs. ≥ 26). Severe SVD burden in older age was associated with higher mean arterial pressure throughout midlife (β = 3.36, 95% CI [0.42-6.30]), and faster cognitive decline in letter fluency (β = -0.07, 95% CI [-0.13--0.01]), and verbal reasoning (β = -0.05, 95% CI [-0.11--0.001]). Moreover, SVD burden was related to lower GM volumes in 9.7% of total GM, and widespread WM microstructural decline (FWE-corrected p < 0.05). The latter association was most pronounced in individuals who demonstrated cognitive impairments on MoCA (MoCA < 26; F3,608 = 2.14, p = 0.007). These findings highlight the importance of managing midlife vascular health to preserve brain structure and cognitive function in old age.
Collapse
Affiliation(s)
- Michelle G Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ludovica Griffanti
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging (Oxford Centres for Functional MRI of the Brain & Human Brain Activity) University of Oxford, Oxford, UK
| | - Clare E Mackay
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging (Oxford Centres for Functional MRI of the Brain & Human Brain Activity) University of Oxford, Oxford, UK
| | - Melis Anatürk
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Centre for Medical Image Computing, Department of Computer Science, 4919University College London, University College London, London, UK
| | - Luca Melazzini
- Wellcome Centre for Integrative Neuroimaging (Oxford Centres for Functional MRI of the Brain & Human Brain Activity) University of Oxford, Oxford, UK.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ann-Marie G de Lange
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Department of Psychology, 6305University of Oslo, University of Oslo, Oslo, Norway
| | | | - Enikő Zsoldos
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging (Oxford Centres for Functional MRI of the Brain & Human Brain Activity) University of Oxford, Oxford, UK
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, 4919University College London, University College London, London, UK.,INSERM, Epidemiology of Ageing and Neurogenerative Diseases, Université de Paris, Paris, France
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, 4919University College London, University College London, London, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK
| | - Sana Suri
- Department of Psychiatry, 6396University of Oxford, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging (Oxford Centres for Functional MRI of the Brain & Human Brain Activity) University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Li J, Wen H, Wang S, Che Y, Zhang N, Guo L. Altered Brain Morphometry in Cerebral Small Vessel Disease With Cerebral Microbleeds: An Investigation Combining Univariate and Multivariate Pattern Analyses. Front Neurol 2022; 13:819055. [PMID: 35280297 PMCID: PMC8904567 DOI: 10.3389/fneur.2022.819055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose The objective of this study was to evaluate whether altered gray matter volume (GMV) and white matter volume (WMV) are associated with the presence of cerebral microbleeds (CMBs) in cerebral small vessel disease (CSVD). Materials and Methods In this study, we included 26 CSVD patients with CMBs (CSVD-c), 43 CSVD patients without CMBs (CSVD-n) and 39 healthy controls. All participants underwent cognitive assessment testing. Both univariate analysis and multivariate pattern analysis (MVPA) approaches were applied to investigate differences in brain morphometry among groups. Results In univariate analysis, GMV and WMV differences were compared among groups using voxel-based morphometry (VBM) with diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL). Compared to healthy controls, the CSVD-c group and CSVD-n group showed significantly lower GMV than the control group in similar brain clusters, mainly including the right superior frontal gyrus (medial orbital), left anterior cingulate gyrus, right inferior frontal gyrus (triangular part) and left superior frontal gyrus (medial), while the CSVD-n group also showed significantly lower WMV in the cluster of the left superior frontal gyrus (medial). No significant GMV or WMV differences were found between the CSVD-c group and the CSVD-n group. Specifically, we applied the multiple kernel learning (MKL) technique in MVPA to combine GMV and WMV features, yielding an average of >80% accuracy for three binary classification problems, which was a considerable improvement over the individual modality approach. Consistent with the univariate analysis, the MKL weight maps revealed default mode network and subcortical region damage associated with CSVD compared to controls. On the other hand, when classifying the CSVD-c group and CSVD-n group in the MVPA analysis, we found that some WMVs were highly weighted regions (left olfactory cortex and right middle frontal gyrus), which hinted at the presence of different white matter alterations in the CSVD-c group. Conclusion Our findings not only suggested that the localized alterations in GMV and WMV appeared to be associated with the pathophysiology of CSVD but also indicated that altered brain morphometry could be a potential discriminative pattern to detect CSVD at the individual level.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Shengpei Wang
- Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yena Che
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
42
|
Xin H, Wen H, Feng M, Gao Y, Sui C, Zhang N, Liang C, Guo L. Disrupted topological organization of resting-state functional brain networks in cerebral small vessel disease. Hum Brain Mapp 2022; 43:2607-2620. [PMID: 35166416 PMCID: PMC9057099 DOI: 10.1002/hbm.25808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
We aimed to investigate alterations in functional brain networks and assess the relationship between functional impairment and topological network changes in cerebral small vessel disease (CSVD) patients with and without cerebral microbleeds (CMBs). We constructed individual whole‐brain, region of interest (ROI) level functional connectivity (FC) networks for 24 CSVD patients with CMBs (CSVD‐c), 42 CSVD patients without CMBs (CSVD‐n), and 36 healthy controls (HCs). Then, we used graph theory analysis to investigate the global and nodal topological disruptions between groups and relate network topological alterations to clinical parameters. We found that both the CSVD and control groups showed efficient small‐world organization in FC networks. However, compared to CSVD‐n patients and controls, CSVD‐c patients exhibited a significantly decreased clustering coefficient, global efficiency, and local efficiency and an increased shortest path length, indicating a disrupted balance between local specialization and global integration in FC networks. Although both the CSVD and control groups showed highly similar hub distributions, the CSVD‐c group exhibited significantly altered nodal betweenness centrality (BC), mainly distributed in the default mode network (DMN), attention, and visual functional areas. There were almost no global or regional alterations between CSVD‐n patients and controls. Furthermore, the altered nodal BC of the right anterior/posterior cingulate gyrus and left cuneus were significantly correlated with cognitive parameters in CSVD patients. These results suggest that CSVD patients with and without CMBs had segregated disruptions in the topological organization of the intrinsic functional brain network. This study advances our current understanding of the pathophysiological mechanisms underlying CSVD.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
43
|
Zhu Z, Zeng Q, Zhang R, Luo X, Li K, Xu X, Zhang M, Yang Y, Huang P. White Matter Free Water Outperforms Cerebral Small Vessel Disease Total Score in Predicting Cognitive Decline in Persons with Mild Cognitive Impairment. J Alzheimers Dis 2022; 86:741-751. [PMID: 35124653 DOI: 10.3233/jad-215541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular pathology is an important partner of Alzheimer's disease (AD). Both total cerebral small vessel disease (CSVD) score and white matter free water (FW) are useful markers that could reflect cerebral vascular injury. OBJECTIVE We aim to investigate the efficacy of these two metrics in predicting cognitive declines in patients with mild cognitive impairment (MCI). METHODS We enrolled 126 MCI subjects with 3D T1-weighted images, fluid-attenuated inversion recovery images, T2 * images, diffusion tensor imaging images, cerebrospinal fluid biomarkers and neuropsychological tests from the Alzheimer's Disease Neuroimaging Initiative database. The total CSVD score and FW values were calculated. Simple and multiple linear regression analyses were applied to explore the association between vascular and cognitive impairments. Linear mixed effect models were constructed to investigate the efficacy of total CSVD score and FW on predicting cognitive decline. RESULTS FW was associated with baseline cognition and could predict the decline of executive and language functions in MCI subjects, while no association was found between total CSVD score and cognitive declines. CONCLUSION FW is a promising imaging marker for investigating the effect of CSVD on AD progression.
Collapse
Affiliation(s)
- Zili Zhu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, China
| | | |
Collapse
|
44
|
Huang P, Zhang R, Jiaerken Y, Wang S, Hong H, Yu W, Lian C, Li K, Zeng Q, Luo X, Yu X, Wu X, Xu X, Zhang M. White Matter Free Water is a Composite Marker of Cerebral Small Vessel Degeneration. Transl Stroke Res 2022; 13:56-64. [PMID: 33634379 DOI: 10.1007/s12975-021-00899-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
To investigate the association between white matter free water (FW) and common imaging markers of cerebral small vessel diseases (CSVD) in two groups of subjects with different clinical status. One hundred and forty-four community subjects (mean age 60.5) and 84 CSVD subjects (mean age 61.2) were retrospectively included in the present study. All subjects received multi-modal magnetic resonance imaging and clinical assessments. The association between white matter FW and common CSVD imaging markers, including white matter hyperintensities (WMH), dilated perivascular space (PVS), lacunes, and microbleeds, were assessed using simple and multiple regression analysis. The association between FW and cognitive scores were also investigated. White matter FW was positively associated with WMH volume (β = 0.270, p = 0.001), PVS volume (β = 0.290, p < 0.001), number of microbleeds (β = 0.148, p = 0.043), and age (β = 0.170, p = 0.036) in the community cohort. In the CSVD cohort, FW was positively associated with WMH volume (β = 0.648, p < 0.001), PVS score (β = 0.224, p < 0.001), number of lacunes (β = 0.140, p = 0.046), and sex (β = 0.125, p = 0.036). The associations between FW and cognitive scores were stronger than conventional CSVD markers in both datasets. White matter FW is a potential composite marker that can sensitively detect cerebral small vessel degeneration and also reflect cognitive impairments.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chunfeng Lian
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
45
|
Li J, Nguyen TD, Zhang Q, Guo L, Wang Y. Cerebral Microbleeds Are Associated With Increased Brain Iron and Cognitive Impairment in Patients With Cerebral Small Vessel Disease: A Quantitative Susceptibility Mapping Study. J Magn Reson Imaging 2022; 56:904-914. [PMID: 35099829 DOI: 10.1002/jmri.28092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) have been recognized to play an important role in cognitive impairment of cerebral small vessel disease (CSVD) patients. However, the mechanism of this effect is still unclear. PURPOSE Comparing the susceptibility values in the selected subcortical gray matter structures of CSVD patients without CMBs (CSVD-N) and with CMBs (CSVD-C) as well as healthy controls (HCs). STUDY TYPE Prospective. SUBJECTS Sixty-nine CSVD patients and 28 HCs were included; 24 CSVD patients (34.78%) had CMBs and 45 CSVD patients (65.22%) had no CMBs. FIELD STRENGTH/SEQUENCE All subjects were imaged on a 3.0 T MR scanner. The protocol consisted of a three-dimensional (3D) T1-weighted sequence and a 3D multi-echo gradient echo (mGRE) sequence. Brain QSM maps were computed from mGRE data using the morphology-enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference algorithm (MEDI+0). ASSESSMENT The mean susceptibility value within each region of interest was recorded. All participants underwent the cognitive assessment. Brain iron deposition burden of CMB lesions of every CSVD-C patient was computed. STATISTICAL TESTS One-way analysis of variance test followed by Tukey's honest significance test and Kruskal-Wallis test were used with significance level of 0.05. Stepwise multivariate linear analysis was used to explore the factors influencing cognitive scores. RESULTS Montreal cognitive assessment (MoCA), trail-making test (TMT)-A and TMT-B scores in the three groups were significantly different (all P < 0.05). Stepwise multivariate linear regression analysis revealed that the factors influenced MoCA scores were having CMBs (P < 0.05), white matter hyperintensities (P < 0.05), lacunes (P < 0.05) in brain, and the brain iron deposition burden of CMB lesions (P < 0.05) and for TMT scores (TMT-A + TMT-B), the influencing factors were age (P < 0.05), education years (P < 0.05), and the brain iron deposition burden of CMB lesions (P < 0.05). DATA CONCLUSION The higher iron deposition burden of CMB lesions in brain may be an imaging quantitative marker of cognitive decline in patients with CSVD-C. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, 10050, China
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, 407 East 61st Street, New York, 10044, USA
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, 407 East 61st Street, New York, 10044, USA
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, 407 East 61st Street, New York, 10044, USA
| |
Collapse
|
46
|
Feng M, Wen H, Xin H, Zhang N, Liang C, Guo L. Altered Spontaneous Brain Activity Related to Neurologic Dysfunction in Patients With Cerebral Small Vessel Disease. Front Aging Neurosci 2022; 13:731585. [PMID: 34975450 PMCID: PMC8718906 DOI: 10.3389/fnagi.2021.731585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cerebral small vessel disease (CSVD) encompasses several diseases affecting the small arteries, arterioles, venules, and capillaries of the brain and refers to several pathological processes and etiologies. Neuroimaging is considered the gold standard for detecting CSVD, which can present diverse features on MRI. Cerebral microbleeds (CMBs) in CSVD have been demonstrated to play a synergistic role in both cerebrovascular and neurodegenerative pathology. Considering previous studies on brain structural abnormalities in CSVD, in the present study, we aimed to explore altered spontaneous brain activity among CSVD patients using amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF) and regional homogeneity (ReHo) methods based on resting-state functional MRI. In this study, we recruited 24 CSVD patients with CMBs (CSVD-c), 42 CSVD patients without CMBs (CSVD-n) and 36 healthy controls from outpatient clinics in Shandong Provincial Hospital affiliated to Shandong First Medical University between September 2018 and June 2019. All subjects underwent 3-T MRI, including blood oxygen level-dependent (BOLD) and susceptibility-weighted imaging (SWI). Anatomic structures were segmented, ALFF/fALFF values were calculated, and ReHo maps were generated. Further statistical analysis was applied to study the difference in ALFF/fALFF/ReHo among the three groups and the association between ALFF/fALFF/ReHo changes in different brain regions and clinical characteristics. Twenty-four CSVD-c patients (age: 67.54 ± 6.00 years, 10 females), 42 CSVD-n patients (age: 66.33 ± 5.25 years, 22 females) and 36 healthy subjects (age: 64.14 ± 8.57 years, 19 females) were evaluated. Compared with controls, the CSVD-c group showed significantly increased ALFF values in the right insula, putamen and left precuneus; decreased fALFF values in the right precentral gyrus and postcentral gyrus; and increased ReHo values in the left precuneus, fusiform gyrus, right supplementary motor area (SMA), and superior frontal gyrus. Notably, the mean ALFF values of the right insula and putamen were not only significantly related to all clinical parameters but also demonstrated the best performance in Receiver Operating Characteristic (ROC) curve analysis. These findings reveal CSVD-c patients have dysfunctions in the default mode network, sensorimotor network and frontoparietal network, which may implicate the underlying neurophysiological mechanisms of intrinsic brain activity. The correlation between altered spontaneous neuronal activity and clinical parameters provides early useful diagnostic biomarkers for CSVD.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Radiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Haotian Xin
- Department of Radiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
47
|
Liang C, Wang J, Feng M, Zhang N, Guo L. White matter changes, duration of hypertension, and age are associated with cerebral microbleeds in patients with different stages of hypertension. Quant Imaging Med Surg 2022; 12:119-130. [PMID: 34993065 DOI: 10.21037/qims-21-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND We aimed to investigate risk factors for the presence and number of cerebral microbleeds (CMBs) in patients with different stages of hypertension stages, with an emphasis on the relationship between white matter changes (WMCs) and CMBs. METHODS Since 2016, participants aged 40 years or more have been evaluated for the presence of CMBs using enhanced 3D multiecho GE T2*-weighted angiography (ESWAN) sequences. The Mann-Whitney U test and Pearson χ2 test were used to compare the clinical characteristics between the CMB and no-CMB patient groups. Furthermore, we used Spearman's rank correlation analysis to examine the associations between the degree of CMB severity and other important factors. RESULTS CMBs were detected in 110 (36.7%) of 300 participants. Among patients with stage 2 hypertension, the majority also had CMBs (61.8%, 68/110). CMBs were positively correlated with age, hypertension stage, duration of hypertension, WMCs, and silent cerebral infarction. Patients with grade 3 WMCs were significantly more likely to have CMBs than those without WMCs; this association was true for both patients with stage 1 and those with stage 2 hypertension. In patients with stage 1 or stage 2 hypertension lasting longer than 20 years, the majority had CMBs (69.0%, 29/42; 69.1%, 47/68). The results of binary logistic regression indicated that a more severe hypertension stage, longer duration of hypertension, aging, having silent cerebral infarction and higher values of WMC increase the likelihood of the occurrence of CMBs. CONCLUSIONS CMBs detected in hypertensive patients were more likely to occur in deep structures, and the grade of WMCs and duration of hypertension were more closely associated with the CMB degree than with age.
Collapse
Affiliation(s)
- Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
48
|
Egle M, Hilal S, Tuladhar AM, Pirpamer L, Bell S, Hofer E, Duering M, Wason J, Morris RG, Dichgans M, Schmidt R, Tozer DJ, Barrick TR, Chen C, de Leeuw FE, Markus HS. Determining the OPTIMAL DTI analysis method for application in cerebral small vessel disease. NEUROIMAGE: CLINICAL 2022; 35:103114. [PMID: 35908307 PMCID: PMC9421487 DOI: 10.1016/j.nicl.2022.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
We were not able to identify a single optimal diffusion-weighted imaging analysis strategy across all 6 cohorts. Diffusion tensor imaging measures at baseline predicted dementia conversion in cerebral small vessel disease and mild cognitive impairment. Diffusion tensor imaging measures at baseline may be sensitive to differentiate between later vascular dementia vs Alzheimer’s disease dementia. Diffusion tensor imaging measures significantly changed over time in cohorts with cerebral small vessel disease and cohorts with mild cognitive impairment. Change in diffusion tensor imaging measures were only consistently associated with dementia conversion in severe SVD. The diffusion tensor imaging measures PSMD and DSEG required the lowest minimum sample sizes for a hypothetical clinical trial in patients with sporadic cerebral small vessel disease and mild cognitive impairment.
Background DTI is sensitive to white matter (WM) microstructural damage and has been suggested as a surrogate marker for phase 2 clinical trials in cerebral small vessel disease (SVD). The study’s objective is to establish the best way to analyse the diffusion-weighted imaging data in SVD for this purpose. The ideal method would be sensitive to change and predict dementia conversion, but also straightforward to implement and ideally automated. As part of the OPTIMAL collaboration, we evaluated five different DTI analysis strategies across six different cohorts with differing SVD severity. Methods Those 5 strategies were: (1) conventional mean diffusivity WM histogram measure (MD median), (2) a principal component-derived measure based on conventional WM histogram measures (PC1), (3) peak width skeletonized mean diffusivity (PSMD), (4) diffusion tensor image segmentation θ (DSEG θ) and (5) a WM measure of global network efficiency (Geff). The association between each measure and cognitive function was tested using a linear regression model adjusted by clinical markers. Changes in the imaging measures over time were determined. In three cohort studies, repeated imaging data together with data on incident dementia were available. The association between the baseline measure, change measure and incident dementia conversion was examined using Cox proportional-hazard regression or logistic regression models. Sample size estimates for a hypothetical clinical trial were furthermore computed for each DTI analysis strategy. Results There was a consistent cross-sectional association between the imaging measures and impaired cognitive function across all cohorts. All baseline measures predicted dementia conversion in severe SVD. In mild SVD, PC1, PSMD and Geff predicted dementia conversion. In MCI, all markers except Geff predicted dementia conversion. Baseline DTI was significantly different in patients converting to vascular dementia than to Alzheimer’ s disease. Significant change in all measures was associated with dementia conversion in severe but not in mild SVD. The automatic and semi-automatic measures PSMD and DSEG θ required the lowest minimum sample sizes for a hypothetical clinical trial in single-centre sporadic SVD cohorts. Conclusion DTI parameters obtained from all analysis methods predicted dementia, and there was no clear winner amongst the different analysis strategies. The fully automated analysis provided by PSMD offers advantages particularly for large datasets.
Collapse
Affiliation(s)
- Marco Egle
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore; Memory Ageing and Cognition Center, National University Health System, Singapore
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Steven Bell
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Edith Hofer
- Department of Neurology, Medical University of Graz, Graz, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany; Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - James Wason
- Population Health Sciences Institute, Newcastle University, Baddiley-Clark Building, Newcastle Upon Tyne, United Kingdom
| | - Robin G Morris
- Department of Psychology (R.G.M.), King's College, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Thomas R Barrick
- Neurosciences Research Centre, Institute for Molecular and Clinical Sciences, St George's, University of London, United Kingdom
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore; Memory Ageing and Cognition Center, National University Health System, Singapore
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Egle M, Hilal S, Tuladhar AM, Pirpamer L, Hofer E, Duering M, Wason J, Morris RG, Dichgans M, Schmidt R, Tozer D, Chen C, de Leeuw FE, Markus HS. Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration. J Neurol Neurosurg Psychiatry 2022; 93:14-23. [PMID: 34509999 DOI: 10.1136/jnnp-2021-326571] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/21/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts. METHODS Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined. RESULTS The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures. CONCLUSIONS Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.
Collapse
Affiliation(s)
- Marco Egle
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lim School of Medicine, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System of Singapore, Singapore
| | - A M Tuladhar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Lukas Pirpamer
- Department of Neurology, Medical University Graz, Graz, Austria
| | - Edith Hofer
- Department of Neurology, Medical University Graz, Graz, Austria.,Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - James Wason
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge Institute of Public Health, Cambridge, UK.,Population Health Sciences Institute, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, UK
| | - Robin G Morris
- Department of Psychology (R.G.M), King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Daniel Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lim School of Medicine, National University of Singapore, Singapore
| | - Frank-Erik de Leeuw
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Lin CY, Jhan SR, Lee WJ, Chen PL, Chen JP, Chen HC, Chen TB. Imaging Markers of Subcortical Vascular Dementia in Patients With Multiple-Lobar Cerebral Microbleeds. Front Neurol 2021; 12:747536. [PMID: 34867731 PMCID: PMC8636110 DOI: 10.3389/fneur.2021.747536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose: Small vessel disease (SVD) imaging markers are related to ischemic and hemorrhage stroke and to cognitive dysfunction. This study aimed to clarify the relationship between SVD imaging markers and subcortical vascular dementia in severe SVD burden. Methods: A total of 57 subjects with multiple lobar cerebral microbleeds (CMBs) and four established SVD imaging markers were enrolled from the dementia and stroke registries of a single center. Visual rating scales that are used to semi-quantify SVD imaging changes were analyzed individually and compositely to make correlations with cognitive domains and subcortical vascular dementia. Results: Dementia group had higher subcortical and total white matter hyperintensities (WMHs) and SVD composite scores than non-dementia group. Individual imaging markers correlated differently with one another and had distinct cognitive correlations. After adjusting for demographic factors, multivariate logistic regression indicated associations of subcortical WMHs (odds ratio [OR] 2.03, CI 1.24–3.32), total WMHs (OR 1.43, CI 1.09–1.89), lacunes (OR 1.18, CI 1.02–1.35), cerebral amyloid angiopathy-SVD scores (OR 2.33, CI 1.01–5.40), C1 scores (imaging composite scores of CMB and WMH) (OR 1.41, CI 1.09–1.83), and C2 scores (imaging composite scores of CMB, WMH, perivascular space, and lacune) (OR 1.38, CI 1.08–1.76) with dementia. Conclusions: SVD imaging markers might have differing associations with cognitive domains and dementia. They may provide valuable complementary information in support of personalized treatment planning against cognitive impairment, particularly in patients with a heavy SVD load.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Song-Ru Jhan
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Lin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Cosmetology, Hungkuang University, Taichung, Taiwan
| |
Collapse
|