1
|
Heffer A, Lee C, Mayernik JP, Holt JC, Kiernan AE. Notch1 is Required to Maintain Supporting Cell Identity and Vestibular Function during Maturation of the Mammalian Balance Organs. J Neurosci 2025; 45:e1365242024. [PMID: 39779370 PMCID: PMC11867012 DOI: 10.1523/jneurosci.1365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that Notch1 is required for maintaining supporting cell survival during cochlear maturation. To understand the role of Notch during vestibular maturation, we deleted Notch1 from the vestibular organs of both male and female mice at birth. Histological analyses showed a reduction of supporting cells accompanied by an increase in type II hair cells, indicating a conversion of supporting cells to hair cells. Analysis of mature sensory organs indicate the converted hair cells survive, despite a severe reduction of supporting cells. Vestibular sensory evoked potentials (VsEPs), thought to be generated within the striola regions of the maculae, were absent, indicating that NOTCH1 is critical for striolar function. Specialized type I hair cells in the striola failed to develop the complex calyces typical of these cells. Notch1 mutants did not exhibit vestibular behaviors such as circling and head shaking but showed difficulties with tests of balance and swimming. These results indicate that, unlike the cochlea, supporting cells in balance organs retain the plasticity to convert to hair cells which can survive into adulthood. Despite hair cell survival, vestibular function is compromised likely due to the loss of supporting cells and altered innervation.
Collapse
MESH Headings
- Animals
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Receptor, Notch1/deficiency
- Receptor, Notch1/metabolism
- Mice
- Female
- Male
- Postural Balance/physiology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/physiology
- Vestibule, Labyrinth/cytology
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/physiology
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| | - Choongheon Lee
- Departments of Otolaryngology, University of Rochester, Rochester, New York 14642
- Mechanical Engineering, University of Rochester, Rochester, New York 14642
| | - Joseph P Mayernik
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| | - Joseph C Holt
- Departments of Otolaryngology, University of Rochester, Rochester, New York 14642
- Neuroscience, University of Rochester, Rochester, New York 14642
| | - Amy E Kiernan
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
2
|
Heffer A, Lee C, Holt JC, Kiernan AE. Notch1 is required to maintain supporting cell identity and vestibular function during maturation of the mammalian balance organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600098. [PMID: 38948821 PMCID: PMC11212955 DOI: 10.1101/2024.06.21.600098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The inner ear houses two sensory modalities: the hearing organ, located in the cochlea, and the balance organs, located throughout the vestibular regions of the ear. Both hearing and vestibular sensory regions are composed of similar cell types, including hair cells and associated supporting cells. Recently, we showed that Notch1 is required for maintaining supporting cell survival postnatally during cochlear maturation. However, it is not known whether Notch1 plays a similar role in the balance organs of the inner ear. To characterize the role of Notch during vestibular maturation, we conditionally deleted Notch1 from Sox2-expressing cells of the vestibular organs in the mouse at P0/P1. Histological analyses showed a dramatic loss of supporting cells accompanied by an increase in type II hair cells without cell death, indicating the supporting cells are converting to hair cells in the maturing vestibular regions. Analysis of 6-week old animals indicate that the converted hair cells survive, despite the reduction of supporting cells. Interestingly, measurements of vestibular sensory evoked potentials (VsEPs), known to be generated in the striolar regions of the vestibular afferents in the maculae, failed to show a response, indicating that NOTCH1 expression is critical for striolar function postnatally. Consistent with this, we find that the specialized type I hair cells in the striola fail to develop the complex calyces typical of these cells. These defects are likely due to the reduction in supporting cells, which have previously been shown to express factors critical for the striolar region. Similar to other mutants that lack proper striolar development, Notch1 mutants do not exhibit typical vestibular behaviors such as circling and head shaking, but do show difficulties in some vestibular tests, including the balance beam and forced swim test. These results indicate that, unlike the hearing organ in which the supporting cells undergo cell death, supporting cells in the balance regions retain the ability to convert to hair cells during maturation, which survive into adulthood despite the reduction in supporting cells.
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
- Dept. of Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Amy E. Kiernan
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| |
Collapse
|
3
|
Żak M, Støle TP, Plagnol V, Daudet N. Regulation of otic neurosensory specification by Notch and Wnt signalling: insights from RNA-seq screenings in the embryonic chicken inner ear. Front Cell Dev Biol 2023; 11:1245330. [PMID: 37900277 PMCID: PMC10600479 DOI: 10.3389/fcell.2023.1245330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
The Notch and Wnt signalling pathways play key roles in the formation of inner ear sensory organs, but little is known about their transcriptional effectors and targets in this context. Here, we perturbed Notch and Wnt activities in the embryonic chicken otic vesicle using pharmacological treatment or in ovo electroporation of plasmid DNA, and used RNA-Seq to analyse the resulting changes in gene expression. Compared to pharmacological treatments, in ovo electroporation changed the expression of fewer genes, a likely consequence of the variability and mosaicism of transfection. The pharmacological inhibition of Notch activity induced a rapid change in the expression of known effectors of this pathway and genes associated with neurogenesis, consistent with a switch towards an otic neurosensory fate. The Wnt datasets contained many genes associated with a neurosensory biological function, confirming the importance of this pathway for neurosensory specification in the otocyst. Finally, the results of a preliminary gain-of-function screening of selected transcription factors and Wnt signalling components suggest that the endogenous programs of otic neurosensory specification are very robust, and in general unaffected by the overexpression of a single factor. Altogether this work provides new insights into the effectors and candidate targets of the Notch and Wnt pathways in the early developing inner ear and could serve as a useful reference for future functional genomics experiments in the embryonic avian inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Thea P. Støle
- UCL Ear Institute, University College London, London, United Kingdom
| | - Vincent Plagnol
- Genetics Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
4
|
Mercurio S. SOX2-Sensing: Insights into the Role of SOX2 in the Generation of Sensory Cell Types in Vertebrates. Int J Mol Sci 2023; 24:ijms24087637. [PMID: 37108798 PMCID: PMC10141063 DOI: 10.3390/ijms24087637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The SOX2 transcription factor is a key regulator of nervous system development, and its mutation in humans leads to a rare disease characterized by severe eye defects, cognitive defects, hearing defects, abnormalities of the CNS and motor control problems. SOX2 has an essential role in neural stem cell maintenance in specific regions of the brain, and it is one of the master genes required for the generation of induced pluripotent stem cells. Sox2 is expressed in sensory organs, and this review will illustrate how it regulates the differentiation of sensory cell types required for hearing, touching, tasting and smelling in vertebrates and, in particular, in mice.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
5
|
Deletion of Notch1 during Cochlear Maturation Leads to Rapid Supporting Cell Death and Profound Deafness. J Neurosci 2023; 43:199-210. [PMID: 36418183 PMCID: PMC9838715 DOI: 10.1523/jneurosci.1090-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The sensory region of the mammalian hearing organ contains two main cell types-hair cells and supporting cells. During development, Notch signaling plays an important role in whether a cell becomes either a hair cell or supporting cell by mediating lateral inhibition. However, once the cell fate decisions have been determined, little is understood about the role Notch plays in cochlear maturation. Here, we report that deletion of Notch1 from the early postnatal mouse cochlea in both male and female animals resulted in profound deafness at 6 weeks of age. Histologic analyses at 6 weeks revealed significant hair cell and supporting cell loss throughout the Notch1-deficient cochlea. Early analyses revealed a reduction in supporting cells in the outer hair cell region between postnatal day (P) 2 and P6, without a comparable increase in outer hair cell number, suggesting a mechanism other than lateral inhibition. Consistent with this, we found apoptotic cells in the outer supporting cell region of the cochlea at P1 and P2, indicating that Notch1 is required for outer supporting cell survival during early cochlear maturation. Interestingly, inner supporting cell types were not lost after Notch1 deletion. Surprisingly, we do not detect outer hair cell loss in Notch1 mutants until after the onset of hearing, around P14, suggesting that hair cell loss is caused by loss of the supporting cells. Together, these results demonstrate that Notch1 is required for supporting cell survival during early maturation and that loss of these cells causes later loss of the hair cells and cochlear dysfunction.SIGNIFICANCE STATEMENT During development, Notch signaling has been shown to be critical in regulating the cell fate choices between hair cells and supporting cells. However, little is known about how Notch functions after those cell fate choices are made. Here, we examine the role of Notch1 in the maturing cochlea. We demonstrate that deletion of Notch1 results in profound deafness by 6 weeks of age. Histologic analyses revealed rapid supporting cell death shortly after Notch1 deletion, followed by eventual loss of the hair cells. These results reveal an unexpected role for Notch in supporting cell survival during cochlear maturation.
Collapse
|
6
|
Yagishita Y, Joshi T, Kensler TW, Wakabayashi N. Transcriptional Regulation of Math1 by Aryl Hydrocarbon Receptor: Effect on Math1 + Progenitor Cells in Mouse Small Intestine. Mol Cell Biol 2023; 43:43-63. [PMID: 36720468 PMCID: PMC9937019 DOI: 10.1080/10985549.2022.2160610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 01/28/2023] Open
Abstract
The physiological roles of aryl hydrocarbon receptor (AhR) in the small intestine have been revealed as immunomodulatory and barrier functions. However, its contributions to cell fate regulation are incompletely understood. The Notch-activated signaling cascade is a central component of intestinal cell fate determinations. The lateral inhibitory mechanism governed by Notch directs cell fates toward distinct cell lineages (i.e., absorptive and secretory cell lineages) through its downstream effector, mouse atonal homolog 1 (MATH1). An investigation employing cell lines and intestinal crypt cells revealed that AhR regulates Math1 expression in a xenobiotic response element (XRE)-dependent manner. The AhR-Math1 axis was further addressed using intestinal organoids, where AhR-Math1 and HES1-Math1 axes appeared to coexist within the underlying Math1 transcriptional machinery. When the HES1-Math1 axis was pharmacologically suppressed, β-naphthoflavone-mediated AhR activation increased the number of goblet and Math1+ progenitor cells in the organoids. The same pharmacological dissection of the AhR-Math1 axis was applied in vivo, demonstrating an enhanced number of Math1+ progenitor cells in the small intestine following AhR activation. We report here that AhR-Math1 is a direct transcriptional axis with effects on Math1+ progenitor cells in the small intestine, highlighting a novel molecular basis for fine-tuning Notch-mediated cell fate regulation.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Sánchez-Iranzo H, Halavatyi A, Diz-Muñoz A. Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord. eLife 2022; 11:75429. [PMID: 35658971 PMCID: PMC9170247 DOI: 10.7554/elife.75429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Development of multicellular organisms requires the generation of gene expression patterns that determines cell fate and organ shape. Groups of genetic interactions known as Gene Regulatory Networks (GRNs) play a key role in the generation of such patterns. However, how the topology and parameters of GRNs determine patterning in vivo remains unclear due to the complexity of most experimental systems. To address this, we use the zebrafish notochord, an organ where coin-shaped precursor cells are initially arranged in a simple unidimensional geometry. These cells then differentiate into vacuolated and sheath cells. Using newly developed transgenic tools together with in vivo imaging, we identify jag1a and her6/her9 as the main components of a Notch GRN that generates a lateral inhibition pattern and determines cell fate. Making use of this experimental system and mathematical modeling we show that lateral inhibition patterning is promoted when ligand-receptor interactions are stronger within the same cell than in neighboring cells. Altogether, we establish the zebrafish notochord as an experimental system to study pattern generation, and identify and characterize how the properties of GRNs determine self-organization of gene patterning and cell fate.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Kurihara S, Fujioka M, Hirabayashi M, Yoshida T, Hosoya M, Nagase M, Kato F, Ogawa K, Okano H, Kojima H, Okano HJ. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:282-296. [PMID: 35356976 PMCID: PMC8968745 DOI: 10.1093/stcltm/szab023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
The spiral ganglion of the cochlea is essential for hearing and contains primary bipolar neurons that relay action potentials generated by mechanosensory hair cells. Injury to spiral ganglion neurons (SGNs) causes permanent hearing loss because these cells have limited regenerative capacity. Establishment of human cell-derived inner ear tissue in vitro could facilitate the development of treatments for hearing loss. Here, we report a stepwise protocol for differentiating human-induced pluripotent stem cells (hiPSCs) into otic organoids that contain SGN-like cells and demonstrate that otic organoids have potential for use as an experimental model of drug-induced neuropathy. Otic progenitor cells (OPCs) were created by 2D culture of hiPSCs for 9 days. Otic spheroids were formed after 2D culture of OPCs for 2 days in a hypoxic environment. Otic organoids were generated by 3D culture of otic spheroids under hypoxic conditions for 5 days and normoxic conditions for a further 30 days or more. The protein expression profile, morphological characteristics, and electrophysiological properties of SGN-like cells in otic organoids were similar to those of primary SGNs. Live-cell imaging of AAV-syn-EGFP-labeled neurons demonstrated temporal changes in cell morphology and revealed the toxic effects of ouabain (which causes SGN-specific damage in animal experiments) and cisplatin (a chemotherapeutic drug with ototoxic adverse effects). Furthermore, a cyclin-dependent kinase-2 inhibitor suppressed the toxic actions of cisplatin on SGN-like cells in otic organoids. The otic organoid described here is a candidate novel drug screening system and could be used to identify drugs for the prevention of cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Sho Kurihara
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, Japan
| | - Motoki Hirabayashi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Tomohiko Yoshida
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, Japan
| | - Masashi Nagase
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, Japan
- Corresponding author: Hirotaka James Okano, MD, PhD, Division of Regenerative Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi Minato-ku, Tokyo 105-8471, Japan. Tel: +81-3-3433-1111; Fax: +81-3-3578-9208;
| |
Collapse
|
9
|
Rai V, Tu S, Frank JR, Zuo J. Molecular Pathways Modulating Sensory Hair Cell Regeneration in Adult Mammalian Cochleae: Progress and Perspectives. Int J Mol Sci 2021; 23:ijms23010066. [PMID: 35008497 PMCID: PMC8745006 DOI: 10.3390/ijms23010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Noise-induced, drug-related, and age-related disabling hearing loss is a major public health problem and affect approximately 466 million people worldwide. In non-mammalian vertebrates, the death of sensory hair cells (HCs) induces the proliferation and transdifferentiation of adjacent supporting cells into new HCs; however, this capacity is lost in juvenile and adult mammalian cochleae leading to permanent hearing loss. At present, cochlear implants and hearing devices are the only available treatments and can help patients to a certain extent; however, no biological approach or FDA-approved drug is effective to treat disabling hearing loss and restore hearing. Recently, regeneration of mammalian cochlear HCs by modulating molecular pathways or transcription factors has offered some promising results, although the immaturity of the regenerated HCs remains the biggest concern. Furthermore, most of the research done is in neonates and not in adults. This review focuses on critically summarizing the studies done in adult mammalian cochleae and discusses various strategies to elucidate novel transcription factors for better therapeutics.
Collapse
Affiliation(s)
| | | | | | - Jian Zuo
- Correspondence: ; Tel.: +1-(402)-280-2916
| |
Collapse
|
10
|
Promotion of In Vitro Hair Cell-like Cell Differentiation from Human Embryonic Stem Cells through the Regulation of Notch Signaling. Metabolites 2021; 11:metabo11120873. [PMID: 34940631 PMCID: PMC8709284 DOI: 10.3390/metabo11120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
The Notch signaling pathway plays an important role in otic neurogenesis by regulating the differentiation of inner ear hair cells and supporting cells. Notch-regulated differentiation is required for the regeneration of hair cells in the inner ear. The temporal expression pattern of Notch ligands and receptors during in vitro hair cell-like cell differentiation from human embryonic stem cells (hESCs) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Subsequently, pAJ-U6-shRNA-CMV-Puro/GFP recombinant lentiviral vectors encoding short hairpin RNAs were used to silence JAG-1, JAG-2, and DLL-1, according to the temporal expression pattern of Notch ligands. Then, the effect of each ligand on the in vitro differentiation of hair cells was examined by RT-PCR, immunofluorescence, and scanning electron microscopy (SEM). The results showed that the individual deletion of JAG-2 or DLL-1 had no significant effect on the differentiation of hair cell-like cells. However, the simultaneous inhibition of both DLL-1 and JAG-2 increased the number of hair cell-like cells and decreased the number of supporting cells. JAG-2 and DLL-1 may have a synergistic role in in vitro hair cell differentiation.
Collapse
|
11
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Żak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 2021; 10:59540. [PMID: 33704062 PMCID: PMC7993990 DOI: 10.7554/elife.59540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory and vestibular organs of the inner ear and the neurons that innervate them originate from Sox2-positive and Notch-active neurosensory domains specified at early stages of otic development. Sox2 is initially present throughout the otic placode and otocyst, and then it becomes progressively restricted to a ventro-medial domain. Using gain- and loss-of-function approaches in the chicken otocyst, we show that these early changes in Sox2 expression are regulated in a dose-dependent manner by Wnt/beta-catenin signalling. Both high and very low levels of Wnt activity repress Sox2 and neurosensory competence. However, intermediate levels allow the maintenance of Sox2 expression and sensory organ formation. We propose that a dorso-ventral (high-to-low) gradient and wave of Wnt activity initiated at the dorsal rim of the otic placode progressively restricts Sox2 and Notch activity to the ventral half of the otocyst, thereby positioning the neurosensory competent domains in the inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
13
|
The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen's Cells in the Mouse Cochlea. J Neurosci 2020; 40:9401-9413. [PMID: 33127852 DOI: 10.1523/jneurosci.1192-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2 CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.
Collapse
|
14
|
Evsen L, Li X, Zhang S, Razin S, Doetzlhofer A. let-7 miRNAs inhibit CHD7 expression and control auditory-sensory progenitor cell behavior in the developing inner ear. Development 2020; 147:147/15/dev183384. [PMID: 32816902 DOI: 10.1242/dev.183384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The evolutionarily conserved lethal-7 (let-7) microRNAs (miRNAs) are well-known activators of proliferative quiescence and terminal differentiation. However, in the murine auditory organ, let-7g overexpression delays the differentiation of mechano-sensory hair cells (HCs). To address whether the role of let-7 in auditory-sensory differentiation is conserved among vertebrates, we manipulated let-7 levels within the chicken auditory organ: the basilar papilla. Using a let-7 sponge construct to sequester let-7 miRNAs, we found that endogenous let-7 miRNAs are essential for limiting the self-renewal of HC progenitor cells. Furthermore, let-7b overexpression experiments revealed that, similar to mice, higher than normal let-7 levels slow/delay HC differentiation. Finally, we identify CHD7, a chromatin remodeler, as a candidate for mediating the repressive function of let-7 in HC differentiation and inner ear morphogenesis. Our analysis uncovered an evolutionarily conserved let-7-5p-binding site within the chicken Chd7 gene and its human and murine homologs, and we show that let-7g overexpression in mice limits CHD7 expression in the developing inner ear, retina and brain. Haploinsufficiency of CHD7 in humans causes CHARGE syndrome and attenuation of let-7 function may be an effective method for treating CHD7 deficiency.
Collapse
Affiliation(s)
- Lale Evsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaojun Li
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuran Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharjil Razin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Huang J, Zuo N, Wu C, Chen P, Ma J, Wang C, Li W, Liu S. Role of the periotic mesenchyme in the development of sensory cells in early mouse cochlea. J Otol 2020; 15:138-143. [PMID: 33293914 PMCID: PMC7691837 DOI: 10.1016/j.joto.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the role of the periotic mesenchyme (POM) in the development of sensory cells of developing auditory epithelium. Methods Developing auditory epithelium with or without periotic mesenchyme was isolated from mice at embryonic days 11.5 (E11.5), E12.5 and E13.5, respectively, and cultured in vitro to an equivalent of E18.5’s epithelium in vivo. Then, the explants were co-stained with antibodies targeting myosin VIIA, Sox2 and BrdU. Results More hair cells in E11.5 + 7 DIV, E12.5 + 6 DIV and E13.5 + 5 DIV auditory epithelia were found upon culture with POM (225.90 ± 62.44, 476.94 ± 100.81, and 1386.60 ± 202.38, respectively) compared with the non-POM group (68.17 ± 23.74, 205.00 ± 44.23, and 1266.80 ± 38.84, respectively). Moreover, regardless of developmental stage, the mesenchymal tissue increased the amount of cochlear sensory cells as well as the ratio of differentiated hair cells to total sensory cells. Conclusions The periotic mesenchyme promotes the development of cochlear sensory cells, and its effect depends on the developmental stage of the auditory epithelium.
Collapse
Affiliation(s)
- Jingjiang Huang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Peipei Chen
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of NHFPC, Shanghai, 200031, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| |
Collapse
|
16
|
Nichols DH, Bouma JE, Kopecky BJ, Jahan I, Beisel KW, He DZZ, Liu H, Fritzsch B. Interaction with ectopic cochlear crista sensory epithelium disrupts basal cochlear sensory epithelium development in Lmx1a mutant mice. Cell Tissue Res 2020; 380:435-448. [PMID: 31932950 PMCID: PMC7393901 DOI: 10.1007/s00441-019-03163-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a shows a dynamic expression in the developing mouse ear that stabilizes in the non-sensory epithelium. Previous work showed that Lmx1a functional null mutants have an additional sensory hair cell patch in the posterior wall of a cochlear duct and have a mix of vestibular and cochlear hair cells in the basal cochlear sensory epithelium. In E13.5 mutants, Sox2-expressing posterior canal crista is continuous with an ectopic "crista sensory epithelium" located in the outer spiral sulcus of the basal cochlear duct. The medial margin of cochlear crista is in contact with the adjacent Sox2-expressing basal cochlear sensory epithelium. By E17.5, this contact has been interrupted by the formation of an intervening non-sensory epithelium, and Atoh1 is expressed in the hair cells of both the cochlear crista and the basal cochlear sensory epithelium. Where cochlear crista was formerly associated with the basal cochlear sensory epithelium, the basal cochlear sensory epithelium lacks an outer hair cell band, and gaps are present in its associated Bmp4 expression. Further apically, where cochlear crista was never present, the cochlear sensory epithelium forms a poorly ordered but complete organ of Corti. We propose that the core prosensory posterior crista is enlarged in the mutant when the absence of Lmx1a expression allows JAG1-NOTCH signaling to propagate into the adjacent epithelium and down the posterior wall of the cochlear duct. We suggest that the cochlear crista propagates in the mutant outer spiral sulcus because it expresses Lmo4 in the absence of Lmx1a.
Collapse
Affiliation(s)
- David H Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Judith E Bouma
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Benjamin J Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
17
|
Pouraghaei S, Moztarzadeh F, Chen C, Ansari S, Moshaverinia A. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater Sci Eng 2020; 6:2263-2273. [PMID: 33455314 DOI: 10.1021/acsbiomaterials.9b01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.
Collapse
Affiliation(s)
- Sevda Pouraghaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
| | - Fathollah Moztarzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sahar Ansari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
18
|
Notch-mediated lateral induction is necessary to maintain vestibular prosensory identity during inner ear development. Dev Biol 2020; 462:74-84. [PMID: 32147304 DOI: 10.1016/j.ydbio.2020.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/24/2023]
Abstract
The five vestibular organs of the inner ear derive from patches of prosensory cells that express the transcription factor SOX2 and the Notch ligand JAG1. Previous work suggests that JAG1-mediated Notch signaling is both necessary and sufficient for prosensory formation and that the separation of developing prosensory patches is regulated by LMX1a, which antagonizes Notch signaling. We used an inner ear-specific deletion of the Rbpjκ gene in which Notch signaling is progressively lost from the inner ear to show that Notch signaling, is continuously required for the maintenance of prosensory fate. Loss of Notch signaling in prosensory patches causes them to shrink and ultimately disappear. We show this loss of prosensory fate is not due to cell death, but rather to the conversion of prosensory tissue into non-sensory tissue that expresses LMX1a. Notch signaling is therefore likely to stabilize, rather than induce prosensory fate.
Collapse
|
19
|
Brown R, Groves AK. Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules 2020; 10:biom10030370. [PMID: 32121147 PMCID: PMC7175228 DOI: 10.3390/biom10030370] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
The vertebrate inner ear is responsible for detecting sound, gravity, and head motion. These mechanical forces are detected by mechanosensitive hair cells, arranged in a series of sensory patches in the vestibular and cochlear regions of the ear. Hair cells form synapses with neurons of the VIIIth cranial ganglion, which convey sound and balance information to the brain. They are surrounded by supporting cells, which nourish and protect the hair cells, and which can serve as a source of stem cells to regenerate hair cells after damage in non-mammalian vertebrates. The Notch signaling pathway plays many roles in the development of the inner ear, from the earliest formation of future inner ear ectoderm on the side of the embryonic head, to regulating the production of supporting cells, hair cells, and the neurons that innervate them. Notch signaling is re-deployed in non-mammalian vertebrates during hair cell regeneration, and attempts have been made to manipulate the Notch pathway to promote hair cell regeneration in mammals. In this review, we summarize the different modes of Notch signaling in inner ear development and regeneration, and describe how they interact with other signaling pathways to orchestrate the fine-grained cellular patterns of the ear.
Collapse
Affiliation(s)
- Rogers Brown
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andrew K. Groves
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Neuroscience; Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-8743
| |
Collapse
|
20
|
Blackwood CA, Bailetti A, Nandi S, Gridley T, Hébert JM. Notch Dosage : Jagged1 Haploinsufficiency Is Associated With Reduced Neuronal Division and Disruption of Periglomerular Interneurons in Mice. Front Cell Dev Biol 2020; 8:113. [PMID: 32161758 PMCID: PMC7054221 DOI: 10.3389/fcell.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells in the lateral ganglionic eminence (LGE) generate progenitors that migrate through the rostral migratory stream (RMS) to repopulate olfactory bulb (OB) interneurons, but the regulation of this process is poorly defined. The evolutionarily conserved Notch pathway is essential for neural development and maintenance of neural stem cells. Jagged1, a Notch ligand, is required for stem cell maintenance. In humans, heterozygous mutations in JAGGED1 cause Alagille syndrome, a genetic disorder characterized by complications such as cognitive impairment and reduced number of bile ducts in the liver, suggesting the presence of a JAGGED1 haploinsufficient phenotype. Here, we examine the role of Jagged1 using a conditional loss-of-function allele in the nervous system. We show that heterozygous Jagged1 mice possess a haploinsufficient phenotype that is associated with a reduction in size of the LGE, a reduced proliferative state, and fewer progenitor cells in the LGE and RMS. Moreover, loss of Jagged1 leads to deficits in periglomerular interneurons in the OB. Our results support a dose-dependent role for Jagged1 in maintaining progenitor division within the LGE and RMS.
Collapse
Affiliation(s)
- Christopher A. Blackwood
- Molecular Neuropsychiatry Research Branch, National Institutes of Health/National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Alessandro Bailetti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Sayan Nandi
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Thomas Gridley
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Jean M. Hébert
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
21
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Munnamalai V, Fekete DM. The acquisition of positional information across the radial axis of the cochlea. Dev Dyn 2019; 249:281-297. [PMID: 31566832 DOI: 10.1002/dvdy.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory Bar Harbor Maine
- Graduate Program of Biomedical Sciences and EngineeringUniversity of Maine Orono Maine
- The Neuroscience ProgramSackler School of Biomedical Sciences, Tufts University Boston Massachusetts
| | - Donna M. Fekete
- Department of Biological SciencesPurdue University West Lafayette Indiana
- Purdue Institute for Integrative Neuroscience West Lafayette Indiana
- Purdue Center for Cancer Research West Lafayette Indiana
| |
Collapse
|
23
|
Steevens AR, Glatzer JC, Kellogg CC, Low WC, Santi PA, Kiernan AE. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development 2019; 146:dev.170522. [PMID: 31152002 DOI: 10.1242/dev.170522] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The transcription factor sex determining region Y-box 2 (SOX2) is required for the formation of hair cells and supporting cells in the inner ear and is a widely used sensory marker. Paradoxically, we demonstrate via fate mapping that, initially, SOX2 primarily marks nonsensory progenitors in the mouse cochlea, and is not specific to all sensory regions until late otic vesicle stages. SOX2 fate mapping reveals an apical-to-basal gradient of SOX2 expression in the sensory region of the cochlea, reflecting the pattern of cell cycle exit. To understand SOX2 function, we undertook a timed-deletion approach, revealing that early loss of SOX2 severely impaired morphological development of the ear, whereas later deletions resulted in sensory disruptions. During otocyst stages, SOX2 shifted dramatically from a lateral to medial domain over 24-48 h, reflecting the nonsensory-to-sensory switch observed by fate mapping. Early loss or gain of SOX2 function led to changes in otic epithelial volume and progenitor proliferation, impacting growth and morphological development of the ear. Our study demonstrates a novel role for SOX2 in early otic morphological development, and provides insights into the temporal and spatial patterns of sensory specification in the inner ear.
Collapse
Affiliation(s)
- Aleta R Steevens
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jenna C Glatzer
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Courtney C Kellogg
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter A Santi
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy E Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Durruthy-Durruthy R, Sperry ED, Bowen ME, Attardi LD, Heller S, Martin DM. Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Front Genet 2018; 9:473. [PMID: 30459807 PMCID: PMC6232929 DOI: 10.3389/fgene.2018.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeling protein CHD7 is critical for proper formation of the mammalian inner ear. Humans with heterozygous pathogenic variants in CHD7 exhibit CHARGE syndrome, characterized by hearing loss and inner ear dysplasia, including abnormalities of the semicircular canals and Mondini malformations. Chd7Gt/+ heterozygous null mutant mice also exhibit dysplastic semicircular canals and hearing loss. Prior studies have demonstrated that reduced Chd7 dosage in the ear disrupts expression of genes involved in morphogenesis and neurogenesis, yet the relationships between these changes in gene expression and otic patterning are not well understood. Here, we sought to define roles for CHD7 in global regulation of gene expression and patterning in the developing mouse ear. Using single-cell multiplex qRT-PCR, we analyzed expression of 192 genes in FAC sorted cells from Pax2Cre;mT/mGFP wild type and Chd7Gt/+ mutant microdissected mouse otocysts. We found that Chd7 haploinsufficient otocysts exhibit a relative enrichment of cells adopting a neuroblast (vs. otic) transcriptional identity compared with wild type. Additionally, we uncovered disruptions in pro-sensory and pro-neurogenic gene expression with Chd7 loss, including genes encoding proteins that function in Notch signaling. Our results suggest that Chd7 is required for early cell fate decisions in the developing ear that involve highly specific aspects of otic patterning and differentiation.
Collapse
Affiliation(s)
- Robert Durruthy-Durruthy
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Ethan D Sperry
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Stefan Heller
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Donna M Martin
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Than-Trong E, Ortica-Gatti S, Mella S, Nepal C, Alunni A, Bally-Cuif L. Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signalling cascade in the vertebrate adult brain. Development 2018; 145:dev161034. [PMID: 29695612 PMCID: PMC6001379 DOI: 10.1242/dev.161034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
Neural stem cells (NSCs) in the adult vertebrate brain are found in a quiescent state and can preserve long-lasting progenitor potential (stemness). Whether and how these two properties are linked, and to what extent they can be independently controlled by NSC maintenance pathways, is unresolved. We have previously identified Notch3 signalling as a major quiescence-promoting pathway in adult NSCs of the zebrafish pallium. We now show that Notch3 also controls NSC stemness. Using parallel transcriptomic characterizations of notch3 mutant NSCs and adult NSC physiological states, we demonstrate that a set of potentially direct Notch3 target genes distinguishes quiescence and stemness control. As a proof of principle, we focus on one 'stemness' target, encoding the bHLH transcription factor Hey1, that has not yet been analysed in adult NSCs. We show that abrogation of Hey1 function in adult pallial NSCs in vivo, including quiescent NSCs, leads to their differentiation without affecting their proliferation state. These results demonstrate that quiescence and stemness are molecularly distinct outputs of Notch3 signalling, and identify Hey1 as a major Notch3 effector controlling NSC stemness in the vertebrate adult brain.
Collapse
Affiliation(s)
- Emmanuel Than-Trong
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sara Ortica-Gatti
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Sébastien Mella
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Unit Stem Cells and Development, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
| | - Chirag Nepal
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alessandro Alunni
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, 25 rue du Dr Roux, 75015 Paris, France
- CNRS, UMR3738, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
26
|
Cheng D, Yan X, Qiu G, Zhang J, Wang H, Feng T, Tian Y, Xu H, Wang M, He W, Wu P, Widelitz RB, Chuong CM, Yue Z. Contraction of basal filopodia controls periodic feather branching via Notch and FGF signaling. Nat Commun 2018; 9:1345. [PMID: 29632339 PMCID: PMC5890251 DOI: 10.1038/s41467-018-03801-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
Branching morphogenesis is a general mechanism that increases the surface area of an organ. In chicken feathers, the flat epithelial sheath at the base of the follicle is transformed into periodic branches. How exactly the keratinocytes are organized into this pattern remains unclear. Here we show that in the feather follicle, the pre-branch basal keratinocytes have extensive filopodia, which contract and smooth out after branching. Manipulating the filopodia via small GTPases RhoA/Cdc42 also regulates branch formation. These basal filopodia help interpret the proximal-distal FGF gradient in the follicle. Furthermore, the topological arrangement of cell adhesion via E-Cadherin re-distribution controls the branching process. Periodic activation of Notch signaling drives the differential cell adhesion and contraction of basal filopodia, which occurs only below an FGF signaling threshold. Our results suggest a coordinated adjustment of cell shape and adhesion orchestrates feather branching, which is regulated by Notch and FGF signaling. Keratinocytes are organised into a periodic pattern in feather branching, but how this is regulated is unclear. Here, the authors show that there is a coordinated change in cell shape and adherence, mediated by Notch, FGF signalling and Rho GTPases, which in turn regulates feather branching.
Collapse
Affiliation(s)
- Dongyang Cheng
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xiaoli Yan
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Guofu Qiu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Juan Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hanwei Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tingting Feng
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yarong Tian
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Haiping Xu
- Department of Mathematics, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Meiqing Wang
- Department of Mathematics, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wanzhong He
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhicao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
27
|
Atkinson PJ, Dong Y, Gu S, Liu W, Najarro EH, Udagawa T, Cheng AG. Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 2018; 128:1641-1656. [PMID: 29553487 DOI: 10.1172/jci97248] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via β-catenin stabilization (β-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, β-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yaodong Dong
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA.,Department of Otology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuping Gu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Wenwen Liu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Tomokatsu Udagawa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
28
|
Gou Y, Vemaraju S, Sweet EM, Kwon HJ, Riley BB. sox2 and sox3 Play unique roles in development of hair cells and neurons in the zebrafish inner ear. Dev Biol 2018; 435:73-83. [PMID: 29355523 DOI: 10.1016/j.ydbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
Formation of neural and sensory progenitors in the inner ear requires Sox2 in mammals, and in other species is thought to rely on both Sox2 and Sox3. How Sox2 and/or Sox3 promote different fates is poorly understood. Our mutant analysis in zebrafish showed that sox2 is uniquely required for sensory development while sox3 is uniquely required for neurogenesis. Moderate misexpression of sox2 during placodal stages led to development of otic vesicles with expanded sensory and reduced neurogenic domains. However, high-level misexpression of sox2 or sox3 expanded both sensory and neurogenic domains to fill the medial and lateral halves of the otic vesicle, respectively. Disruption of medial factor pax2a eliminated the ability of sox2/3 misexpression to expand sensory but not neurogenic domains. Additionally, mild misexpression of fgf8 during placodal development was sufficient to specifically expand the zone of prosensory competence. Later, cross-repression between atoh1a and neurog1 helps maintain the sensory-neural boundary, but unlike mouse this does not require Notch activity. Together, these data show that sox2 and sox3 exhibit intrinsic differences in promoting sensory vs. neural competence, but at high levels these factors can mimic each other to enhance both states. Regional cofactors like pax2a and fgf8 also modify sox2/3 functions.
Collapse
Affiliation(s)
- Yunzi Gou
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Shruti Vemaraju
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Elly M Sweet
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Hye-Joo Kwon
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Bruce B Riley
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
29
|
Panaliappan TK, Wittmann W, Jidigam VK, Mercurio S, Bertolini JA, Sghari S, Bose R, Patthey C, Nicolis SK, Gunhaga L. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 2018; 145:145/2/dev153791. [PMID: 29352015 PMCID: PMC5825848 DOI: 10.1242/dev.153791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.
Collapse
Affiliation(s)
| | - Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jessica A Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Raj Bose
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
30
|
Luna-Escalante JC, Formosa-Jordan P, Ibañes M. Redundancy and cooperation in Notch intercellular signaling. Development 2018; 145:dev.154807. [PMID: 29242285 DOI: 10.1242/dev.154807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, whereas antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.
Collapse
Affiliation(s)
- Juan C Luna-Escalante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pau Formosa-Jordan
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain .,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
31
|
Nasal and otic placode specific regulation of Sox2 involves both activation by Sox-Sall4 synergism and multiple repression mechanisms. Dev Biol 2018; 433:61-74. [DOI: 10.1016/j.ydbio.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
|
32
|
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017; 6:e33323. [PMID: 29199954 PMCID: PMC5724992 DOI: 10.7554/elife.33323] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.
Collapse
Affiliation(s)
- Zoe F Mann
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Héctor Gálvez
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - David Pedreno
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Ziqi Chen
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Magdalena Żak
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Miso Kang
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Nicolas Daudet
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
33
|
Fukusumi T, Guo TW, Sakai A, Ando M, Ren S, Haft S, Liu C, Amornphimoltham P, Gutkind JS, Califano JA. The NOTCH4- HEY1 Pathway Induces Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2017; 24:619-633. [PMID: 29146722 DOI: 10.1158/1078-0432.ccr-17-1366] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022]
Abstract
Purpose: Recently, several comprehensive genomic analyses demonstrated NOTCH1 and NOTCH3 mutations in head and neck squamous cell carcinoma (HNSCC) in approximately 20% of cases. Similar to other types of cancers, these studies also indicate that the NOTCH pathway is closely related to HNSCC progression. However, the role of NOTCH4 in HNSCC is less well understood.Experimental Design: We analyzed NOTCH4 pathway and downstream gene expression in the TCGA data set. To explore the functional role of NOTCH4, we performed in vitro proliferation, cisplatin viability, apoptosis, and cell-cycle assays. We also compared the relationships among NOTCH4, HEY1, and epithelial-mesenchymal transition (EMT)-related genes using the TCGA data set and in vitro assays.Results:HEY1 is specifically upregulated in HNSCC compared with normal tissues in the TCGA data set. NOTCH4 is more significantly related to HEY1 activation in HNSCC in comparison with other NOTCH receptors. NOTCH4 promotes cell proliferation, cisplatin resistance, inhibition of apoptosis, and cell-cycle dysregulation. Furthermore, NOTCH4 and HEY1 upregulation resulted in decreased E-cadherin expression and increased Vimentin, Fibronectin, TWIST1, and SOX2 expression. NOTCH4 and HEY1 expression was associated with an EMT phenotype as well as increased invasion and cell migration.Conclusions: In HNSCC, the NOTCH4-HEY1 pathway is specifically upregulated, induces proliferation and cisplatin resistance, and promotes EMT. Clin Cancer Res; 24(3); 619-33. ©2017 AACR.
Collapse
Affiliation(s)
- Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Theresa W Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sunny Haft
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Chao Liu
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
34
|
Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Dev Biol 2017; 431:48-58. [PMID: 28818669 PMCID: PMC5650464 DOI: 10.1016/j.ydbio.2017.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
The lateral line system is a useful model for studying the embryonic and evolutionary diversification of different organs and cell types. In jawed vertebrates, this ancestrally comprises lines of mechanosensory neuromasts over the head and trunk, flanked on the head by fields of electrosensory ampullary organs, all innervated by lateral line neurons in cranial lateral line ganglia. Both types of sense organs, and their afferent neurons, develop from cranial lateral line placodes. Current research primarily focuses on the posterior lateral line primordium in zebrafish, which migrates as a cell collective along the trunk; epithelial rosettes form in the trailing zone and are deposited as a line of neuromasts, within which hair cells and supporting cells differentiate. However, in at least some other teleosts (e.g. catfishes) and all non-teleosts, lines of cranial neuromasts are formed by placodes that elongate to form a sensory ridge, which subsequently fragments, with neuromasts differentiating in a line along the crest of the ridge. Furthermore, in many non-teleost species, electrosensory ampullary organs develop from the flanks of the sensory ridge. It is unknown to what extent the molecular mechanisms underlying neuromast formation from the zebrafish migrating posterior lateral line primordium are conserved with the as-yet unexplored molecular mechanisms underlying neuromast and ampullary organ formation from elongating lateral line placodes. Here, we report experiments in an electroreceptive non-teleost ray-finned fish, the Mississippi paddlefish Polyodon spathula, that suggest a conserved role for Notch signaling in regulating lateral line organ receptor cell number, but potentially divergent roles for the fibroblast growth factor signaling pathway, both between neuromasts and ampullary organs, and between paddlefish and zebrafish. Notch and Fgf pathway genes are expressed during paddlefish lateral line development. Fgf ligand genes are differentially expressed in neuromasts and ampullary organs. DAPT treatment results in irregular organ spacing and supernumerary receptor cells. SU5402 treatment yields fewer neuromasts, but ampullary organs form precociously. SU5402 treatment also results in supernumerary receptor cells.
Collapse
|
35
|
Gálvez H, Tena JJ, Giraldez F, Abelló G. The Repression of Atoh1 by Neurogenin1 during Inner Ear Development. Front Mol Neurosci 2017; 10:321. [PMID: 29104531 PMCID: PMC5655970 DOI: 10.3389/fnmol.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Atonal homolog 1 (Atoh1) and Neurogenin1 (Neurog1) are basic Helix-Loop-Helix (bHLH) transcription factors crucial for the generation of hair cells (HCs) and neurons in the inner ear. Both genes are induced early in development, but the expression of Atoh1 is counteracted by Neurog1. As a result, HC development is prevented during neurogenesis. This work aimed at understanding the molecular basis of this interaction. Atoh1 regulation depends on a 3'Atoh1-enhancer that is the site for Atoh1 autoregulation. Reporter assays on chick embryos and P19 cells show that Neurog1 hampers the autoactivation of Atoh1, the effect being cell autonomous and independent on Notch activity. Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) analysis shows that the region B of the 3'Atoh1-enhancer is accessible during development and sufficient for both activation and repression. Neurog1 requires the regions flanking the class A E-box to show its repressor effect, however, it does not require binding to DNA for Atoh1 repression. This depends on the dimerization domains Helix-1 and Helix-2 and the reduction of Atoh1 protein levels. The results point towards the acceleration of Atoh1 mRNA degradation as the potential mechanism for the reduction of Atoh1 levels. Such a mechanism dissociates the prevention of Atoh1 expression in neurosensory progenitors from the unfolding of the neurogenic program.
Collapse
Affiliation(s)
- Héctor Gálvez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Fernando Giraldez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
36
|
Macchiarulo S, Morrow BE. Tbx1 and Jag1 act in concert to modulate the fate of neurosensory cells of the mouse otic vesicle. Biol Open 2017; 6:1472-1482. [PMID: 28838968 PMCID: PMC5665468 DOI: 10.1242/bio.027359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The domain within the otic vesicle (OV) known as the neurosensory domain (NSD), contains cells that will give rise to the hair and support cells of the otic sensory organs, as well as the neurons that form the cochleovestibular ganglion (CVG). The molecular dynamics that occur at the NSD boundary relative to adjacent OV cells is not well defined. The Tbx1 transcription factor gene expression pattern is complementary to the NSD, and inactivation results in expansion of the NSD and expression of the Notch ligand, Jag1 mapping, in part of the NSD. To shed light on the role of Jag1 in NSD development, as well as to test whether Tbx1 and Jag1 might genetically interact to regulate this process, we inactivated Jag1 within the Tbx1 expression domain using a knock-in Tbx1Cre allele. We observed an enlarged neurogenic domain marked by a synergistic increase in expression of NeuroD and other proneural transcription factor genes in double Tbx1 and Jag1 conditional loss-of-function embryos. We noted that neuroblasts preferentially expanded across the medial-lateral axis and that an increase in cell proliferation could not account for this expansion, suggesting that there was a change in cell fate. We also found that inactivation of Jag1 with Tbx1Cre resulted in failed development of the cristae and semicircular canals, as well as notably fewer hair cells in the ventral epithelium of the inner ear rudiment when inactivated on a Tbx1 null background, compared to Tbx1Cre/− mutant embryos. We propose that loss of expression of Tbx1 and Jag1 within the Tbx1 expression domain tips the balance of cell fates in the NSD, resulting in an overproduction of neuroblasts at the expense of non-neural cells within the OV. Summary: Normal dosages of Tbx1 and Jag1 are required to maintain a proper balance of cell types within the neurosensory domain of the otic vesicle to form the inner ear.
Collapse
Affiliation(s)
- Stephania Macchiarulo
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA .,Departments of Obstetrics and Gynecology and Pediatrics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Zhang T, Xu J, Maire P, Xu PX. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium. PLoS Genet 2017; 13:e1006967. [PMID: 28892484 PMCID: PMC5593176 DOI: 10.1371/journal.pgen.1006967] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022] Open
Abstract
The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Roy S, Yun D, Madahian B, Berry MW, Deng LY, Goldowitz D, Homayouni R. Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts. Front Bioeng Biotechnol 2017; 5:48. [PMID: 28894735 PMCID: PMC5581332 DOI: 10.3389/fbioe.2017.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs.
Collapse
Affiliation(s)
- Sujoy Roy
- Bioinformatics Program, University of Memphis, Memphis, TN, United States.,Center for Translational Informatics, University of Memphis, Memphis, TN, United States
| | - Daqing Yun
- Computer and Information Sciences Program, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Behrouz Madahian
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, United States
| | - Michael W Berry
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, United States
| | - Lih-Yuan Deng
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, United States
| | - Daniel Goldowitz
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ramin Homayouni
- Bioinformatics Program, University of Memphis, Memphis, TN, United States.,Center for Translational Informatics, University of Memphis, Memphis, TN, United States.,Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| |
Collapse
|
39
|
Cerqueira DM, Bodnar AJ, Phua YL, Freer R, Hemker SL, Walensky LD, Hukriede NA, Ho J. Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development. FASEB J 2017; 31:3540-3554. [PMID: 28446592 PMCID: PMC5503708 DOI: 10.1096/fj.201700010r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Low nephron endowment at birth has been associated with an increased risk for developing hypertension and chronic kidney disease. We demonstrated in an earlier study that conditional deletion of the microRNA (miRNA)-processing enzyme Dicer from nephron progenitors results in premature depletion of the progenitors and increased expression of the proapoptotic protein Bim (also known as Bcl-2L11). In this study, we generated a compound mouse model with conditional deletion of both Dicer and Bim, to determine the biologic significance of increased Bim expression in Dicer-deficient nephron progenitors. The loss of Bim partially restored the number of nephron progenitors and improved nephron formation. The number of progenitors undergoing apoptosis was significantly reduced in kidneys with loss of a single allele, or both alleles, of Bim compared to mutant kidneys. Furthermore, 2 miRNAs expressed in nephron progenitors (miR-17 and miR-106b) regulated Bim levels in vitro and in vivo Together, these data suggest that miRNA-mediated regulation of Bim controls nephron progenitor survival during nephrogenesis, as one potential means of regulating nephron endowment.-Cerqueira, D. M., Bodnar, A. J., Phua, Y. L., Freer, R., Hemker, S. L., Walensky, L. D., Hukriede, N. A., Ho, J. Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachel Freer
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shelby L Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
40
|
Abstract
Neurons of the cochleovestibular ganglion (CVG) transmit hearing and balance information to the brain. During development, a select population of early otic progenitors express NEUROG1, delaminate from the otocyst, and coalesce to form the neurons that innervate all inner ear sensory regions. At present, the selection process that determines which otic progenitors activate NEUROG1 and adopt a neuroblast fate is incompletely understood. The transcription factor SOX2 has been implicated in otic neurogenesis, but its requirement in the specification of the CVG neurons has not been established. Here we tested SOX2's requirement during inner ear neuronal specification using a conditional deletion paradigm in the mouse. SOX2 deficiency at otocyst stages caused a near-absence of NEUROG1-expressing neuroblasts, increased cell death in the neurosensory epithelium, and significantly reduced the CVG volume. Interestingly, a milder decrease in neurogenesis was observed in heterozygotes, indicating SOX2 levels are important. Moreover, fate-mapping experiments revealed that the timing of SOX2 expression did not parallel the established vestibular-then-auditory sequence. These results demonstrate that SOX2 is required for the initial events in otic neuronal specification including expression of NEUROG1, although fate-mapping results suggest SOX2 may be required as a competence factor rather than a direct initiator of the neural fate.
Collapse
Affiliation(s)
- Aleta R Steevens
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenna C Glatzer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy E Kiernan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
41
|
Teng CS, Yen HY, Barske L, Smith B, Llamas J, Segil N, Go J, Sanchez-Lara PA, Maxson RE, Crump JG. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep 2017; 7:2497. [PMID: 28566723 PMCID: PMC5451394 DOI: 10.1038/s41598-017-02574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
Collapse
Affiliation(s)
- Camilla S Teng
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hai-Yun Yen
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Fulgent Diagnostics, Temple City, CA, 91780, USA
| | - Lindsey Barske
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bea Smith
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Juan Llamas
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Neil Segil
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John Go
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pedro A Sanchez-Lara
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Robert E Maxson
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - J Gage Crump
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
42
|
Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 2017; 356:science.aai7407. [PMID: 28386027 DOI: 10.1126/science.aai7407] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/20/2017] [Indexed: 12/26/2022]
Abstract
The emergence of spatial patterns in developing multicellular organisms relies on positional cues and cell-cell communication. Drosophila sensory organs have informed a paradigm in which these operate in two distinct steps: Prepattern factors drive localized proneural activity, then Notch-mediated lateral inhibition singles out neural precursors. Here we show that self-organization through Notch signaling also establishes the proneural stripes that resolve into rows of sensory bristles on the fly thorax. Patterning, initiated by a gradient of Delta ligand expression, progresses through inhibitory signaling between and within stripes. Thus, Notch signaling can support self-organized tissue patterning as a prepattern is transduced by cell-cell interactions into a refined arrangement of cellular fates.
Collapse
Affiliation(s)
- Francis Corson
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France.
| | - Lydie Couturier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Hervé Rouault
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France. .,CNRS, UMR3738, 75015 Paris, France
| |
Collapse
|
43
|
Gálvez H, Abelló G, Giraldez F. Signaling and Transcription Factors during Inner Ear Development: The Generation of Hair Cells and Otic Neurons. Front Cell Dev Biol 2017; 5:21. [PMID: 28393066 PMCID: PMC5364141 DOI: 10.3389/fcell.2017.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Integration between cell signals and bHLH transcription factors plays a prominent role during the development of hair cells of the inner ear. Hair cells are the sensory receptors of the inner ear, responsible for the mechano-transduction of sound waves into electrical signals. They derive from multipotent progenitors that reside in the otic placode. Progenitor commitment is the result of cell signaling from the surrounding tissues that result in the restricted expression of SoxB1 transcription factors, Sox2 and Sox3. In turn, they induce the expression of Neurog1 and Atoh1, two bHLH factors that specify neuronal and hair cell fates, respectively. Neuronal and hair cell development, however, do not occur simultaneously. Hair cell development is prevented during neurogenesis and prosensory stages, resulting in the delay of hair cell development with respect to neuron production. Negative interactions between Neurog1 and Atoh1, and of Atoh1 with other bHLH factors driven by Notch signaling, like Hey1 and Hes5, account for this delay. In summary, the regulation of Atoh1 and hair cell development relies on interactions between cell signaling and bHLH transcription factors that dictate cell fate and timing decisions during development. Interestingly, these mechanisms operate as well during hair cell regeneration after damage and during stem cell directed differentiation, making developmental studies instrumental for improving therapies for hearing impairment.
Collapse
Affiliation(s)
- Héctor Gálvez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Gina Abelló
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
44
|
Basch ML, Brown RM, Jen HI, Semerci F, Depreux F, Edlund RK, Zhang H, Norton CR, Gridley T, Cole SE, Doetzlhofer A, Maletic-Savatic M, Segil N, Groves AK. Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates. eLife 2016; 5:19921. [PMID: 27966429 PMCID: PMC5215100 DOI: 10.7554/elife.19921] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
The signals that induce the organ of Corti and define its boundaries in the cochlea are poorly understood. We show that two Notch modifiers, Lfng and Mfng, are transiently expressed precisely at the neural boundary of the organ of Corti. Cre-Lox fate mapping shows this region gives rise to inner hair cells and their associated inner phalangeal cells. Mutation of Lfng and Mfng disrupts this boundary, producing unexpected duplications of inner hair cells and inner phalangeal cells. This phenotype is mimicked by other mouse mutants or pharmacological treatments that lower but not abolish Notch signaling. However, strong disruption of Notch signaling causes a very different result, generating many ectopic hair cells at the expense of inner phalangeal cells. Our results show that Notch signaling is finely calibrated in the cochlea to produce precisely tuned levels of signaling that first set the boundary of the organ of Corti and later regulate hair cell development. DOI:http://dx.doi.org/10.7554/eLife.19921.001
Collapse
Affiliation(s)
- Martin L Basch
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Rogers M Brown
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Hsin-I Jen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Frederic Depreux
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States
| | - Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Thomas Gridley
- Maine Medical Center Research Institute, Scarborough, United States
| | - Susan E Cole
- Department of Molecular Genetics, The Ohio State University, Columbus, United States
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, United States
| | - Mirjana Maletic-Savatic
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
45
|
Ray P, Hughes AJ, Sharif M, Chapman SC. Lectins selectively label cartilage condensations and the otic neuroepithelium within the embryonic chicken head. J Anat 2016; 230:424-434. [PMID: 27861854 DOI: 10.1111/joa.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Cartilage morphogenesis during endochondral ossification follows a progression of conserved developmental events. Cells are specified towards a prechondrogenic fate and subsequently undergo condensation followed by overt differentiation. Currently available molecular markers of prechondrogenic and condensing mesenchyme rely on common regulators of the chondrogenic program that are not specific to the tissue type or location. Therefore tissue-specific condensations cannot be distinguished based on known molecular markers. Here, using the chick embryo model, we utilized lectin labeling on serial sections, demonstrating that differential labeling by peanut agglutinin (PNA) and Sambucus nigra agglutinin (SNA) successfully separates adjacently located condensations in the proximal second pharyngeal arch. PNA selectively labels chick middle ear columella and basal plate condensation, whereas SNA specifically marks extracolumella and the ventro-lateral part of the otic capsule. We further extended our study to examine lectin-binding properties of the different parts of the inner ear epithelium, neural tube and notochord. Our results show that SNA labels the auditory and vestibular hair cells of the inner ear, whereas PNA specifically recognizes the statoacoustic ganglion. PNA is also highly specific for the floor plate of the neural tube. Additionally, wheat germ agglutinin (WGA) labels the basement membrane of the notochord and is a marker of the apical-basal polarity of the cochlear duct. Overall, this study indicates that selective lectin labeling is a promising approach to differentiate between contiguously located mesenchymal condensations and subregions of epithelia globally during development.
Collapse
Affiliation(s)
- Poulomi Ray
- Biological Sciences, Clemson University, Clemson, SC, USA
| | - Ami J Hughes
- Biological Sciences, Clemson University, Clemson, SC, USA
| | - Misha Sharif
- Biological Sciences, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
46
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
47
|
Chen JY, Li CF, Chu PY, Lai YS, Chen CH, Jiang SS, Hou MF, Hung WC. Lysine demethylase 2A promotes stemness and angiogenesis of breast cancer by upregulating Jagged1. Oncotarget 2016; 7:27689-27710. [PMID: 27029061 PMCID: PMC5053681 DOI: 10.18632/oncotarget.8381] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Alterations of histone methylation dynamically regulated by methyltransferases and demethylases are frequently found in human cancers. Here, we showed that expression of lysine demethylase 2A (KDM2A) is markedly increased in human breast cancer and its overexpression is associated with tumor progression and poor prognosis. Knockdown of KDM2A in breast cancer cells reduced proliferation but not viability. Gene set enrichment analysis revealed that inhibition of KDM2A down-regulates angiogenic genes with concurrent reduction of Jagged1 (JAG1), NOTCH1 and HEY1 in the NOTCH signaling. Chromatin immunoprecipitation- quantitative polymerase chain reaction (ChIP-qPCR) demonstrated the binding of KDM2A to the JAG1 promoter and the increase of methylation of Lys-36 of histone H3 (H3K36) in KDM2A-depleted MDA-MB-231 cells. Tumorsphere formation was significantly reduced in KDM2A-depleted cells which could be reversed by ectopic expression of JAG1. A selective KDM2A inhibitor daminozide also decreased the number of tumorsphere and the number of CD24-/CD44hi cells. In addition, daminozide acted synergistically with cisplatin in cell killing. We identified SOX2 as a direct transcriptional target of KDM2A to promote cancer stemness. Depletion of KDM2A in MDA-MB-231 cells attenuated NOTCH activation and tube formation in co-cultured endothelial cells. Two pro-angiogenic factors JAG1 and PDGFA are key mediators for KDM2A to enhance angiogenesis. Finally, inhibition of KDM2A significantly decreased tumor growth and angiogenesis in orthotopic animal experiments. Collectively, we conclude that KDM2A functions as an oncogene in breast cancer by upregulating JAG1 to promote stemness, chemoresistance and angiogenesis.
Collapse
Affiliation(s)
- Jing-Yi Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, Tainan 710, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
48
|
Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Dev Biol 2016; 414:72-84. [PMID: 27090805 DOI: 10.1016/j.ydbio.2016.03.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/09/2016] [Accepted: 03/26/2016] [Indexed: 11/22/2022]
Abstract
The transcription factor Sox2 is both necessary and sufficient for the generation of sensory regions of the inner ear. It regulates expression of the Notch ligand Jag1 in prosensory progenitors, which signal to neighboring cells to up-regulate Sox2 and sustain prosensory identity. However, the expression pattern of Sox2 in the early inner ear is very broad, suggesting that Sox2-expressing progenitors form a wide variety of cell types in addition to generating the sensory regions of the ear. We used Sox2-CreER mice to follow the fates of Sox2-expressing cells at different stages in ear development. We find that Sox2-expressing cells in the early otocyst give rise to large numbers of non-sensory structures throughout the inner ear, and that Sox2 only becomes a truly prosensory marker at embryonic day (E)11.5. Our fate map reveals the organ of Corti derives from a central domain on the medial side of the otocyst and shows that a significant amount of the organ of Corti derives from a Sox2-negative population in this region.
Collapse
|
49
|
Jiang L, Jin R, Xu J, Ji Y, Zhang M, Zhang X, Zhang X, Han Z, Zeng S. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens. Hear Res 2016; 332:17-28. [DOI: 10.1016/j.heares.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022]
|
50
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|