1
|
Jung SH, Olsen LK, Jones KA, Moore RJ, Harshman SW, Hatcher-Solis CN. VNS paired with training enhances recognition memory: mechanistic insights from proteomic analysis of the hippocampal synapse. Front Mol Neurosci 2024; 17:1452327. [PMID: 39741691 PMCID: PMC11685747 DOI: 10.3389/fnmol.2024.1452327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recognition memory, an essential component of cognitive health, can suffer from biological limitations of stress, aging, or neurodegenerative disease. Vagus nerve stimulation (VNS) is a neuromodulation therapy with the potential to improve cognitive function. This study investigated the effectiveness of multiple sessions of VNS to enhance recognition memory in healthy rodents and the underlying cognitive benefits of VNS by proteomic analysis of the synaptosome. Methods Rats demonstrated VNS-induced recognition memory improvements using a novel object recognition (NOR) task. Using the LC-MS/MS method, roughly 3,000 proteins in the synaptosome of the hippocampus were analyzed. Results Protein-protein interaction (PPI) enrichment analysis found differentially expressed proteins related to synaptic signaling and neurotransmitter pathways. PPI network analysis identified six unique protein clusters, including a cluster of synaptic signaling related pathways. Using ingenuity pathway analysis (IPA), rapamycin-insensitive companion of mTOR was identified as an upstream regulator of synaptosome changes due to VNS-paired training. Discussion Based on these results, it is proposed that VNS may mediate cognitive enhancement via increases in glutamatergic signaling and early LTP during the consolidation period, followed by sustained synaptic plasticity via modified post-synaptic receptor expression and dendritic outgrowth. Further investigation is required to determine if VNS is a good candidate to ameliorate cognitive impairment.
Collapse
Affiliation(s)
- Seung H. Jung
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- DCS Infoscitex, Dayton, OH, United States
| | - Laura K. Olsen
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Krysten A. Jones
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Integrative Health & Performance Sciences, UES, Inc., Blue Halo, Dayton, OH, United States
| | - Raquel J. Moore
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- DCS Infoscitex, Dayton, OH, United States
| | - Sean W. Harshman
- Analytical Chemistry, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Candice N. Hatcher-Solis
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| |
Collapse
|
2
|
Liu Y, Dai H, Bamu A, Lin X. Peroxisome biogenesis factor PEX14 is crucial for survival and fecundity of female brown planthopper, Nilaparvata lugens (Stål). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104139. [PMID: 38815735 DOI: 10.1016/j.ibmb.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Peroxisomes are ubiquitous cellular organelles participating in a variety of critical metabolic reactions. PEX14 is an essential peroxin responsible for peroxisome biogenesis. In this study, we identified the human PEX14 homolog in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). N. lugens PEX14 (NlPEX14) showed significant topological similarity to its human counterpart. It is expressed throughout all developmental stages, with the highest expression observed in adult insects. Down-regulation of NlPEX14 through injection of NlPEX14-specific double-strand RNA impaired nymphal development. Moreover, females subjected to dsNlPEX14 treatment exhibited a significantly reduced lifespan. Additionally, we found abnormal ovarian development and a significant decrease in the number of eggs laid in NlPEX14-downregulated females. Further experiments support that the shortening of lifespan and the decrease in female fecundity can be attributed, at least partially, to the accumulation of fatty acids and reduced expression of vitellogenin. Together, our study reveals an indispensable function of NlPEX14 for insect reproduction and establishes a causal connection between the phenotypes and peroxisome biogenesis, shedding light on the importance of peroxisomes in female fecundity.
Collapse
Affiliation(s)
- Yuqiong Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huan Dai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anfu Bamu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinda Lin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Gaussmann S, Peschel R, Ott J, Zak KM, Sastre J, Delhommel F, Popowicz GM, Boekhoven J, Schliebs W, Erdmann R, Sattler M. Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif. Nat Commun 2024; 15:3317. [PMID: 38632234 PMCID: PMC11024197 DOI: 10.1038/s41467-024-47605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.
Collapse
Affiliation(s)
- Stefan Gaussmann
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rebecca Peschel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Julia Ott
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Krzysztof M Zak
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Judit Sastre
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Florent Delhommel
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstr. 4, 85747, Garching, Germany.
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
4
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
5
|
Svensson CM, Reglinski K, Schliebs W, Erdmann R, Eggeling C, Figge MT. Quantitative analysis of peroxisome tracks using a Hidden Markov Model. Sci Rep 2023; 13:19694. [PMID: 37951993 PMCID: PMC10640649 DOI: 10.1038/s41598-023-46812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Diffusion and mobility are essential for cellular functions, as molecules are usually distributed throughout the cell and have to meet to interact and perform their function. This also involves the cytosolic migration of cellular organelles. However, observing such diffusion and interaction dynamics is challenging due to the high spatial and temporal resolution required and the accurate analysis of the diffusional tracks. The latter is especially important when identifying anomalous diffusion events, such as directed motions, which are often rare. Here, we investigate the migration modes of peroxisome organelles in the cytosol of living cells. Peroxisomes predominantly migrate randomly, but occasionally they bind to the cell's microtubular network and perform directed migration, which is difficult to quantify, and so far, accurate analysis of switching between these migration modes is missing. We set out to solve this limitation by experiments and analysis with high statistical accuracy. Specifically, we collect temporal diffusion tracks of thousands of individual peroxisomes in the HEK 293 cell line using two-dimensional spinning disc fluorescence microscopy at a high acquisition rate of 10 frames/s. We use a Hidden Markov Model with two hidden states to (1) automatically identify directed migration segments of the tracks and (2) quantify the migration properties for comparison between states and between different experimental conditions. Comparing different cellular conditions, we show that the knockout of the peroxisomal membrane protein PEX14 leads to a decrease in the directed movement due to a lowered binding probability to the microtubule. However, it does not eradicate binding, highlighting further microtubule-binding mechanisms of peroxisomes than via PEX14. In contrast, structural changes of the microtubular network explain perceived eradication of directed movement by disassembly of microtubules by Nocodazole-treatment.
Collapse
Affiliation(s)
- Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Katharina Reglinski
- Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- University Hospital Jena, Jena, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Systems Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Christian Eggeling
- Leibniz-Institute of Photonic Technologies, Jena, Germany.
- Institute of Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Jena Center for Soft Matter (JCSM), Jena, Germany.
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena, Germany.
| |
Collapse
|
6
|
Rojas‐Gómez A, Dosil SG, Chichón FJ, Fernández‐Gallego N, Ferrarini A, Calvo E, Calzada‐Fraile D, Requena S, Otón J, Serrano A, Tarifa R, Arroyo M, Sorrentino A, Pereiro E, Vázquez J, Valpuesta JM, Sánchez‐Madrid F, Martín‐Cófreces NB. Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics. J Extracell Vesicles 2023; 12:e12333. [PMID: 37328936 PMCID: PMC10276179 DOI: 10.1002/jev2.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.
Collapse
Affiliation(s)
- Amelia Rojas‐Gómez
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Sara G. Dosil
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Francisco J. Chichón
- Cryoelectron Microscopy UnitCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Nieves Fernández‐Gallego
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Alessia Ferrarini
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Enrique Calvo
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Diego Calzada‐Fraile
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Silvia Requena
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Joaquin Otón
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- ALBA Synchrotron Light SourceBarcelonaSpain
| | - Alvaro Serrano
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Rocio Tarifa
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Montserrat Arroyo
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
| | | | | | - Jesus Vázquez
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - José M. Valpuesta
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Noa B. Martín‐Cófreces
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
7
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Gopalswamy M, Zheng C, Gaussmann S, Kooshapur H, Hambruch E, Schliebs W, Erdmann R, Antes I, Sattler M. Distinct conformational and energetic features define the specific recognition of (di)aromatic peptide motifs by PEX14. Biol Chem 2023; 404:179-194. [PMID: 36437542 DOI: 10.1515/hsz-2022-0177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.
Collapse
Affiliation(s)
- Mohanraj Gopalswamy
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Chen Zheng
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Stefan Gaussmann
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hamed Kooshapur
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eva Hambruch
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Iris Antes
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Michael Sattler
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
9
|
Rüttermann M, Gatsogiannis C. Good things come to those who bait: the peroxisomal docking complex. Biol Chem 2023; 404:107-119. [PMID: 36117327 DOI: 10.1515/hsz-2022-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
10
|
Ghosh M, Denkert N, Reuter M, Klümper J, Reglinski K, Peschel R, Schliebs W, Erdmann R, Meinecke M. Dynamics of the translocation pore of the human peroxisomal protein import machinery. Biol Chem 2023; 404:169-178. [PMID: 35977096 DOI: 10.1515/hsz-2022-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and imported in a posttranslational manner. Intricate protein import machineries have evolved that catalyze the different stages of translocation. In humans, PEX5L was found to be an essential component of the peroxisomal translocon. PEX5L is the main receptor for substrate proteins carrying a peroxisomal targeting signal (PTS). Substrates are bound by soluble PEX5L in the cytosol after which the cargo-receptor complex is recruited to peroxisomal membranes. Here, PEX5L interacts with the docking protein PEX14 and becomes part of an integral membrane protein complex that facilitates substrate translocation into the peroxisomal lumen in a still unknown process. In this study, we show that PEX5L containing complexes purified from human peroxisomal membranes constitute water-filled pores when reconstituted into planar-lipid membranes. Channel characteristics were highly dynamic in terms of conductance states, selectivity and voltage- and substrate-sensitivity. Our results show that a PEX5L associated pore exists in human peroxisomes, which can be activated by receptor-cargo complexes.
Collapse
Affiliation(s)
- Mausumi Ghosh
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany.,Institute for Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Niels Denkert
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany.,Institute for Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Maren Reuter
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Jessica Klümper
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Katharina Reglinski
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Rebecca Peschel
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Michael Meinecke
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany.,Institute for Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
11
|
Galiani S, Eggeling C, Reglinski K. Super-resolution microscopy and studies of peroxisomes. Biol Chem 2023; 404:87-106. [PMID: 36698322 DOI: 10.1515/hsz-2022-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
Fluorescence microscopy is an important tool for studying cellular structures such as organelles. Unfortunately, many details in the corresponding images are hidden due to the resolution limit of conventional lens-based far-field microscopy. An example is the study of peroxisomes, where important processes such as molecular organization during protein important can simply not be studied with conventional far-field microscopy methods. A remedy is super-resolution fluorescence microscopy, which is nowadays a well-established technique for the investigation of inner-cellular structures but has so far to a lesser extent been applied to the study of peroxisomes. To help advancing the latter, we here give an overview over the different super-resolution microscopy approaches and their potentials and challenges in cell-biological research, including labelling issues and a focus on studies on peroxisomes. Here, we also highlight experiments beyond simple imaging such as observations of diffusion dynamics of peroxisomal proteins.
Collapse
Affiliation(s)
- Silvia Galiani
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,Jena Center for Soft Matter, Philosophenweg 7, D-07743 Jena, Germany
| | - Katharina Reglinski
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein Strasse 9, D-07745 Jena, Germany, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany.,University Clinics Jena, Bachstraße 18, D-07743 Jena, Germany
| |
Collapse
|
12
|
Peschel R, Schmidt N, Schliebs W, Erdmann R. Affinity Purification of Soluble and Membrane-Bound Protein Complexes by a FlpIn Strategy. Methods Mol Biol 2023; 2643:373-382. [PMID: 36952199 DOI: 10.1007/978-1-0716-3048-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
For a long time, the isolation of native protein complexes from human cells was accomplished by immunoprecipitation experiments. However, success depends on the quality of the antibodies and the method consumes valuable antibodies, which can hinder subsequent analysis of the isolated complexes. Here, we demonstrate an alternative approach based on affinity purification. It utilizes human Flp-InTM cells, which genomically express a Protein A-tagged version of the human peroxisomal import receptor PEX5L. Native soluble and membrane-bound complexes containing PEX5L can thereby be isolated via a well-known affinity-based strategy.
Collapse
Affiliation(s)
- Rebecca Peschel
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Nadine Schmidt
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Wolfgang Schliebs
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Bochum, Germany
- Institut für Biochemie und Pathobiochemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
13
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Li N, Hua B, Chen Q, Teng F, Ruan M, Zhu M, Zhang L, Huo Y, Liu H, Zhuang M, Shen H, Zhu H. A sphingolipid-mTORC1 nutrient-sensing pathway regulates animal development by an intestinal peroxisome relocation-based gut-brain crosstalk. Cell Rep 2022; 40:111140. [PMID: 35905721 DOI: 10.1016/j.celrep.2022.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The mTOR-dependent nutrient-sensing and response machinery is the central hub for animals to regulate their cellular and developmental programs. However, equivalently pivotal nutrient and metabolite signals upstream of mTOR and developmental-regulatory signals downstream of mTOR are not clear, especially at the organism level. We previously showed glucosylceramide (GlcCer) acts as a critical nutrient and metabolite signal for overall amino acid levels to promote development by activating the intestinal mTORC1 signaling pathway. Here, through a large-scale genetic screen, we find that the intestinal peroxisome is critical for antagonizing the GlcCer-mTORC1-mediated nutrient signal. Mechanistically, GlcCer deficiency, inactive mTORC1, or prolonged starvation relocates intestinal peroxisomes closer to the apical region in a kinesin- and microtubule-dependent manner. Those apical accumulated peroxisomes further release peroxisomal-β-oxidation-derived glycolipid hormones that target chemosensory neurons and downstream nuclear hormone receptor DAF-12 to arrest the animal development. Our data illustrate a sophisticated gut-brain axis that predominantly orchestrates nutrient-sensing-dependent development in animals.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Beilei Hua
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinbo Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Shen
- Institutes of Biomedical Sciences, Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
15
|
The MFN1 and MFN2 mitofusins promote clustering between mitochondria and peroxisomes. Commun Biol 2022; 5:423. [PMID: 35523862 PMCID: PMC9076876 DOI: 10.1038/s42003-022-03377-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mitochondria and peroxisomes are two types of functionally close-related organelles, and both play essential roles in lipid and ROS metabolism. However, how they physically interact with each other is not well understood. In this study, we apply the proximity labeling method with peroxisomal proteins and report that mitochondrial protein mitofusins (MFNs) are in proximity to peroxisomes. Overexpression of MFNs induces not only the mitochondria clustering but also the co-clustering of peroxisomes. We also report the enrichment of MFNs at the mitochondria-peroxisome interface. Induced mitofusin expression gives rise to more mitochondria-peroxisome contacting sites. Furthermore, the tethering of peroxisomes to mitochondria can be inhibited by the expression of a truncated MFN2, which lacks the transmembrane region. Collectively, our study suggests MFNs as regulators for mitochondria-peroxisome contacts. Our findings are essential for future studies of inter-organelle metabolism regulation and signaling, and may help understand the pathogenesis of mitofusin dysfunction-related disease.
Collapse
|
16
|
Ueda K, Anderson-Baron MN, Haskins J, Hughes SC, Simmonds AJ. Recruitment of Peroxin14 to lipid droplets affects lipid storage in Drosophila. J Cell Sci 2022; 135:275042. [PMID: 35274690 DOI: 10.1242/jcs.259092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/20/2022] [Indexed: 10/18/2022] Open
Abstract
Both peroxisomes and lipid droplets regulate cellular lipid homeostasis. Direct inter-organellar contacts as well as novel roles for proteins associated with peroxisome or lipid droplets occur when cells are induced to liberate fatty acids from lipid droplets. We have shown a non-canonical role for as subset of peroxisome-assembly (Peroxin) proteins in this process. Transmembrane proteins Peroxin3, Peroxin13 and Peroxin14 surround newly formed lipid droplets. Trafficking of Peroxin14 to lipid droplets was enhanced by loss of Peroxin19, which directs insertion of transmembrane proteins like Peroxin14 into the peroxisome bilayer membrane. Accumulation of Peroxin14 around lipid droplets did not induce changes to peroxisome size or number, nor was co-recruitment of the remaining Peroxins needed to assemble peroxisomes observed. Increasing the relative level of Peroxin14 surrounding lipid droplets affected recruitment of Hsl lipase. Fat-body specific reduction of these lipid droplet-associated Peroxins causes a unique effect on larval fat body development and affected their survival on lipid-enriched or minimal diets.
Collapse
Affiliation(s)
- Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada
| | - Matthew N Anderson-Baron
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada.,Future Fields, 11130 105 Ave NW, Edmonton, AB T5H 0L5, Canada
| | - Julie Haskins
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada
| | - Sarah C Hughes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta. Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
17
|
Reuter M, Kooshapur H, Suda JG, Gaussmann S, Neuhaus A, Brühl L, Bharti P, Jung M, Schliebs W, Sattler M, Erdmann R. Competitive Microtubule Binding of PEX14 Coordinates Peroxisomal Protein Import and Motility. J Mol Biol 2021; 433:166765. [PMID: 33484719 DOI: 10.1016/j.jmb.2020.166765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 10/24/2022]
Abstract
Human PEX14 plays a dual role as docking protein in peroxisomal protein import and as peroxisomal anchor for microtubules (MT), which relates to peroxisome motility. For docking, the conserved N-terminal domain of PEX14 (PEX14-NTD) binds amphipathic alpha-helical ligands, typically comprising one or two aromatic residues, of which human PEX5 possesses eight. Here, we show that the PEX14-NTD also binds to microtubular filaments in vitro with a dissociation constant in nanomolar range. PEX14 interacts with two motifs in the C-terminal region of human ß-tubulin. At least one of the binding motifs is in spatial proximity to the binding site of microtubules (MT) for kinesin. Both PEX14 and kinesin can bind to MT simultaneously. Notably, binding of PEX14 to tubulin can be prevented by its association with PEX5. The data suggest that PEX5 competes peroxisome anchoring to MT by occupying the ß-tubulin-binding site of PEX14. The competitive correlation of matrix protein import and motility may facilitate the homogeneous dispersion of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Maren Reuter
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Hamed Kooshapur
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jeff-Gordian Suda
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Stefan Gaussmann
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Alexander Neuhaus
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Lena Brühl
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Pratima Bharti
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | - Wolfgang Schliebs
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany.
| | - Michael Sattler
- Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Ralf Erdmann
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
18
|
Hitching a ride to the top: peroxisomes fuel cilium with cholesterol. SCIENCE CHINA-LIFE SCIENCES 2021; 64:478-481. [PMID: 33420924 DOI: 10.1007/s11427-020-1866-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
19
|
Azadi AS, Carmichael RE, Kovacs WJ, Koster J, Kors S, Waterham HR, Schrader M. A Functional SMAD2/3 Binding Site in the PEX11β Promoter Identifies a Role for TGFβ in Peroxisome Proliferation in Humans. Front Cell Dev Biol 2020; 8:577637. [PMID: 33195217 PMCID: PMC7644849 DOI: 10.3389/fcell.2020.577637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signaling and viral defense which are essential to the viability of the organism. Molecular cues triggered by changes in the cellular environment induce a dynamic response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal morphology. How the regulation of this process is integrated into the cell's response to different stimuli, including the signaling pathways and factors involved, remains unclear. Here, a cell-based peroxisome proliferation assay has been applied to investigate the ability of different stimuli to induce peroxisome proliferation. We determined that serum stimulation, long-chain fatty acid supplementation and TGFβ application all increase peroxisome elongation, a prerequisite for proliferation. Time-resolved mRNA expression during the peroxisome proliferation cycle revealed a number of peroxins whose expression correlated with peroxisome elongation, including the β isoform of PEX11, but not the α or γ isoforms. An initial map of putative regulatory motif sites in the respective promoters showed a difference between binding sites in PEX11α and PEX11β, suggesting that these genes may be regulated by distinct pathways. A functional SMAD2/3 binding site in PEX11β points to the involvement of the TGFβ signaling pathway in expression of this gene and thus peroxisome proliferation/dynamics in humans.
Collapse
Affiliation(s)
- Afsoon S Azadi
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ruth E Carmichael
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zurich, Switzerland
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Suzan Kors
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Schrader
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
21
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
22
|
Mahalingam SS, Shukla N, Farré JC, Zientara-Rytter K, Subramani S. Balancing the Opposing Principles That Govern Peroxisome Homeostasis. Trends Biochem Sci 2020; 46:200-212. [PMID: 33046344 DOI: 10.1016/j.tibs.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Despite major advances in our understanding of players and mechanisms involved in peroxisome biogenesis and peroxisome degradation, very few studies have focused on unraveling the multi-layered connections between, and the coordination of, these two opposing processes that regulate peroxisome homeostasis. The intersection between these processes also provides exciting avenues for future research. This review highlights the links between peroxisome biogenesis and degradation, incorporating an integrative approach that is critical not only for a mechanistic understanding, but also for manipulating the balance between these processes in relevant disease models.
Collapse
Affiliation(s)
- Shanmuga S Mahalingam
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Nandini Shukla
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
23
|
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci 2020; 29:1269-1284. [PMID: 32056317 PMCID: PMC7255519 DOI: 10.1002/pro.3839] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.
Collapse
Affiliation(s)
- Emily L. Eberhardt
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMichigan
| | - Anthony V. Ludlam
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Zhenyu Tan
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Biophysics ProgramUniversity of MichiganAnn ArborMichigan
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
24
|
Passmore JB, Carmichael RE, Schrader TA, Godinho LF, Ferdinandusse S, Lismont C, Wang Y, Hacker C, Islinger M, Fransen M, Richards DM, Freisinger P, Schrader M. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118709. [PMID: 32224193 PMCID: PMC7262603 DOI: 10.1016/j.bbamcr.2020.118709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are highly dynamic subcellular compartments with important functions in lipid and ROS metabolism. Impaired peroxisomal function can lead to severe metabolic disorders with developmental defects and neurological abnormalities. Recently, a new group of disorders has been identified, characterised by defects in the membrane dynamics and division of peroxisomes rather than by loss of metabolic functions. However, the contribution of impaired peroxisome plasticity to the pathophysiology of those disorders is not well understood. Mitochondrial fission factor (MFF) is a key component of both the peroxisomal and mitochondrial division machinery. Patients with MFF deficiency present with developmental and neurological abnormalities. Peroxisomes (and mitochondria) in patient fibroblasts are highly elongated as a result of impaired organelle division. The majority of studies into MFF-deficiency have focused on mitochondrial dysfunction, but the contribution of peroxisomal alterations to the pathophysiology is largely unknown. Here, we show that MFF deficiency does not cause alterations to overall peroxisomal biochemical function. However, loss of MFF results in reduced import-competency of the peroxisomal compartment and leads to the accumulation of pre-peroxisomal membrane structures. We show that peroxisomes in MFF-deficient cells display alterations in peroxisomal redox state and intra-peroxisomal pH. Removal of elongated peroxisomes through induction of autophagic processes is not impaired. A mathematical model describing key processes involved in peroxisome dynamics sheds further light into the physical processes disturbed in MFF-deficient cells. The consequences of our findings for the pathophysiology of MFF-deficiency and related disorders with impaired peroxisome plasticity are discussed. Peroxisomes are highly elongated in cells from patients lacking fission factor MFF. Peroxisomal proteins are not uniformly distributed in highly elongated peroxisomes. Peroxisomal metabolism is unaltered in MFF-deficient patients. Peroxisomal elongations are stabilised through interaction with microtubules. Highly elongated peroxisomes are not spared from degradation.
Collapse
Affiliation(s)
| | | | | | | | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, the Netherlands
| | - Celien Lismont
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yunhong Wang
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | | | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, Mannheim, Germany
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Peter Freisinger
- Department of Pediatrics, Kreiskliniken Reutlingen, Reutlingen, Germany
| | | |
Collapse
|
25
|
Li S, Wang Z, Tong H, Li S, Yan Y. TCP11L2 promotes bovine skeletal muscle-derived satellite cell migration and differentiation via FMNL2. J Cell Physiol 2020; 235:7183-7193. [PMID: 32017087 DOI: 10.1002/jcp.29617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
T-complex 11 like 2 (TCP11L2) is a protein containing a serine-rich region in its N-terminal region. However, the function of TCP11L2 is unclear. Here, we showed that TCP11L2 expression gradually increased during muscle-derived satellite cell (MDSC) differentiation in vitro, reaching a peak on Day 3, which is the migration and fusion stage of MDSCs. Using CRISPR/dCas9 gene-editing technology to elevate or repress the expression of TCP11L2, we also showed that TCP11L2 promoted MDSC differentiation. Moreover, wound-healing assays showed that TCP11L2 promoted the migration of MDSCs during differentiation. Additionally, immunofluorescence analyses showed that TCP11L2 was mainly distributed around the microfilament and microtubules. Furthermore, the expression of TCP11L2 affected the expression of actin-related protein 2/3 (ARP2/3) complex. Co-immunoprecipitation assays and immunofluorescence analysis showed that TCP11L2 interacted with formin-like 2 (FMNL2). This protein promoted migration of bovine MDSCs by affecting the expression of ARP2/3. Finally, the activities of TCP11L2 during MDSC differentiation and migration were blocked when FMNL2 was inhibited. Taken together, our data established that TCP11L2 interacted with FMNL2 to promote MDSC migration and differentiation.
Collapse
Affiliation(s)
- Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China.,College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang, China
| | - Zhiqi Wang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking. Biophys J 2020; 118:1357-1369. [PMID: 32061275 DOI: 10.1016/j.bpj.2020.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular "cargos" navigate the cytoplasm by hitchhiking on motor-driven "carrier" organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.
Collapse
|
27
|
Covill-Cooke C, Toncheva VS, Drew J, Birsa N, López-Doménech G, Kittler JT. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep 2020; 21:e49865. [PMID: 31894645 PMCID: PMC7001505 DOI: 10.15252/embr.201949865] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
Peroxisomes are essential for a number of cellular functions, including reactive oxygen species metabolism, fatty acid β‐oxidation and lipid synthesis. To ensure optimal functionality, peroxisomal size, shape and number must be dynamically maintained; however, many aspects of how this is regulated remain poorly characterised. Here, we show that the localisation of Miro1 and Miro2—outer mitochondrial membrane proteins essential for mitochondrial trafficking—to peroxisomes is not required for basal peroxisomal distribution and long‐range trafficking, but rather for the maintenance of peroxisomal size and morphology through peroxisomal fission. Mechanistically, this is achieved by Miro negatively regulating Drp1‐dependent fission, a function that is shared with the mitochondria. We further find that the peroxisomal localisation of Miro is regulated by its first GTPase domain and is mediated by an interaction through its transmembrane domain with the peroxisomal‐membrane protein chaperone, Pex19. Our work highlights a shared regulatory role of Miro in maintaining the morphology of both peroxisomes and mitochondria, supporting a crosstalk between peroxisomal and mitochondrial biology.
Collapse
Affiliation(s)
- Christian Covill-Cooke
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - Viktoriya S Toncheva
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - James Drew
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - Nicol Birsa
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | | | - Josef T Kittler
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| |
Collapse
|
28
|
Castro IG, Richards DM, Metz J, Costello JL, Passmore JB, Schrader TA, Gouveia A, Ribeiro D, Schrader M. A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic 2018; 19:229-242. [PMID: 29364559 PMCID: PMC5888202 DOI: 10.1111/tra.12549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/09/2023]
Abstract
Peroxisomes are dynamic organelles which fulfil essential roles in lipid and ROS metabolism. Peroxisome movement and positioning allows interaction with other organelles and is crucial for their cellular function. In mammalian cells, such movement is microtubule-dependent and mediated by kinesin and dynein motors. The mechanisms of motor recruitment to peroxisomes are largely unknown, as well as the role this plays in peroxisome membrane dynamics and proliferation. Here, using a combination of microscopy, live-cell imaging analysis and mathematical modelling, we identify a role for Mitochondrial Rho GTPase 1 (MIRO1) as an adaptor for microtubule-dependent peroxisome motility in mammalian cells. We show that MIRO1 is targeted to peroxisomes and alters their distribution and motility. Using a peroxisome-targeted MIRO1 fusion protein, we demonstrate that MIRO1-mediated pulling forces contribute to peroxisome membrane elongation and proliferation in cellular models of peroxisome disease. Our findings reveal a molecular mechanism for establishing peroxisome-motor protein associations in mammalian cells and provide new insights into peroxisome membrane dynamics in health and disease.
Collapse
Affiliation(s)
| | | | - Jeremy Metz
- Biosciences, University of Exeter, Exeter, UK
| | | | | | | | - Ana Gouveia
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
29
|
Using Pull Down Strategies to Analyze the Interactome of Peroxisomal Membrane Proteins in Human Cells. Subcell Biochem 2018; 89:261-285. [PMID: 30378027 DOI: 10.1007/978-981-13-2233-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Different pull-down strategies were successfully applied to gain novel insight into the interactome of human membrane-associated proteins. Here, we compare the outcome, efficiency and potential of pull-down strategies applied to human peroxisomal membrane proteins. Stable membrane-bound protein complexes can be affinity-purified from genetically engineered human cells or subfractions thereof after detergent solubilization, followed by size exclusion chromatography and analysis by mass spectrometry (MS). As exemplified for Protein A-tagged human PEX14, one of the central constituents of the peroxisomal matrix protein import machinery, MS analyses of the affinity-purified complexes revealed an unexpected association of PEX14 with other protein assemblies like the microtubular network or the insertion apparatus for peroxisomal membrane proteins comprising PEX3, PEX16 and PEX19. The latter association was recently supported by using a different pull-down strategy following in vivo proximity labeling with biotin, named BioID, which enabled the identification of various membrane proteins in close proximity of PEX16 in living cells.
Collapse
|
30
|
Okumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J Cell Biol 2017; 217:619-633. [PMID: 29222186 PMCID: PMC5800816 DOI: 10.1083/jcb.201708122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The mechanisms underlying microtubule-dependent long-distance movement of peroxisomes in mammalian cells are unclear. Okumoto et al. identify splicing variants of human mitochondrial Rho GTPase-1 (Miro1) that localize to peroxisomes and that link these organelles to microtubule-dependent transport complexes including TRAK2. Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuaki Ono
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Toyama
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Shimomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Nagata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Asare A, Levorse J, Fuchs E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 2017; 355:355/6324/eaah4701. [PMID: 28154022 DOI: 10.1126/science.aah4701] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Balancing growth and differentiation is essential to tissue morphogenesis and homeostasis. How imbalances arise in disease states is poorly understood. To address this issue, we identified transcripts differentially expressed in mouse basal epidermal progenitors versus their differentiating progeny and those altered in cancers. We used an in vivo RNA interference screen to unveil candidates that altered the equilibrium between the basal proliferative layer and suprabasal differentiating layers forming the skin barrier. We found that epidermal progenitors deficient in the peroxisome-associated protein Pex11b failed to segregate peroxisomes properly and entered a mitotic delay that perturbed polarized divisions and skewed daughter fates. Together, our findings unveil a role for organelle inheritance in mitosis, spindle alignment, and the choice of daughter progenitors to differentiate or remain stem-like.
Collapse
Affiliation(s)
- Amma Asare
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - John Levorse
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
32
|
Chan A, Schummer A, Fischer S, Schröter T, Cruz-Zaragoza LD, Bender J, Drepper F, Oeljeklaus S, Kunau WH, Girzalsky W, Warscheid B, Erdmann R. Pex17p-dependent assembly of Pex14p/Dyn2p-subcomplexes of the peroxisomal protein import machinery. Eur J Cell Biol 2016; 95:585-597. [PMID: 27823812 DOI: 10.1016/j.ejcb.2016.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023] Open
Abstract
Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by peroxisomal targeting sequences (PTS). In the following, the assembled receptor-cargo complex is targeted to the peroxisomal membrane where it docks to the docking-complex as part of the peroxisomal translocation machinery. The docking-complex is composed of Pex13p, Pex14p and in yeast also Pex17p, whose function is still elusive. In order to characterize the function of Pex17p, we compared the composition and size of peroxisomal receptor-docking complexes from wild-type and pex17Δ cells. Our data demonstrate that the deficiency of Pex17p affects the stoichiometry of the constituents of an isolated 600kDa complex and that pex17Δ cells lack a high molecular weight complex (>900kDa) of unknown function. We identified the dynein light chain protein Dyn2p as an additional core component of the Pex14p/Pex17p-complex. Both, Pex14p and Pex17p interact directly with Dyn2p, but in vivo, Pex17p turned out to be prerequisite for an association of Dyn2p with Pex14p. Finally, like pex17Δ also dyn2Δ cells lack the high molecular weight complex. As dyn2Δ cells also display reduced peroxisomal function, our data indicate that Dyn2p-dependent formation of the high molecular weight Pex14p-complex is required to maintain peroxisomal function on wild-type level.
Collapse
Affiliation(s)
- Anna Chan
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Schummer
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sven Fischer
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Schröter
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Luis Daniel Cruz-Zaragoza
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Julian Bender
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolf-H Kunau
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Girzalsky
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
34
|
Galiani S, Waithe D, Reglinski K, Cruz-Zaragoza LD, Garcia E, Clausen MP, Schliebs W, Erdmann R, Eggeling C. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins. J Biol Chem 2016; 291:16948-62. [PMID: 27311714 PMCID: PMC5016101 DOI: 10.1074/jbc.m116.734038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.
Collapse
Affiliation(s)
- Silvia Galiani
- From the Medical Research Council Human Immunology Unit and
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | | | - Luis Daniel Cruz-Zaragoza
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Esther Garcia
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- From the Medical Research Council Human Immunology Unit and MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Wolfgang Schliebs
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Ralf Erdmann
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Christian Eggeling
- From the Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom,
| |
Collapse
|
35
|
Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:804-13. [DOI: 10.1016/j.bbamcr.2015.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
|
36
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
37
|
Liu Y, Yagita Y, Fujiki Y. Assembly of Peroxisomal Membrane Proteins via the Direct Pex19p-Pex3p Pathway. Traffic 2016; 17:433-55. [PMID: 26777132 DOI: 10.1111/tra.12376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 02/03/2023]
Abstract
Correct targeting of peroxisomal membrane proteins (PMPs) is essential for the formation and maintenance of functional peroxisomes. Activities of Pex19p to interact with PMPs on one hand and Pex3p on the other, including formation of ternary complexes between Pex19p, PMP and Pex3p, strongly support posttranslational translocation of PMPs via the Pex19p- and Pex3p-dependent direct pathway, termed the class I pathway. However, it remains elusive whether Pex19p-PMP complexes are indeed capable of being imported into peroxisomal membranes through the interaction between Pex19p and Pex3p. We resolve this issue by investigating the targeting process of several topologically distinct PMPs, including multimembrane spanning PMPs. We show here that Pex19p forms cytosolic complexes with PMPs and directly translocates them to peroxisomes. Using a semi-intact mammalian cell-based import assay system, we prove that PMPs in the cytosolic complexes are imported into peroxisomes via the interaction between cargo-loaded Pex19p and Pex3p. Furthermore, we demonstrate for the first time that peroxisomal targeting of ATAD1, an N-terminally signal-anchored protein that resides on both mitochondria and peroxisomes, is also achieved through the Pex19p- and Pex3p-dependent class I pathway. Together, our results suggest that translocation of PMPs via the class I pathway is a common event in mammalian cells.
Collapse
Affiliation(s)
- Yuqiong Liu
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuichi Yagita
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Present address: Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
38
|
Salogiannis J, Egan MJ, Reck-Peterson SL. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 2016; 212:289-96. [PMID: 26811422 PMCID: PMC4748578 DOI: 10.1083/jcb.201512020] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic cells use microtubule-based intracellular transport for the delivery of many subcellular cargos, including organelles. The canonical view of organelle transport is that organelles directly recruit molecular motors via cargo-specific adaptors. In contrast with this view, we show here that peroxisomes move by hitchhiking on early endosomes, an organelle that directly recruits the transport machinery. Using the filamentous fungus Aspergillus nidulans we found that hitchhiking is mediated by a novel endosome-associated linker protein, PxdA. PxdA is required for normal distribution and long-range movement of peroxisomes, but not early endosomes or nuclei. Using simultaneous time-lapse imaging, we find that early endosome-associated PxdA localizes to the leading edge of moving peroxisomes. We identify a coiled-coil region within PxdA that is necessary and sufficient for early endosome localization and peroxisome distribution and motility. These results present a new mechanism of microtubule-based organelle transport in which peroxisomes hitchhike on early endosomes and identify PxdA as the novel linker protein required for this coupling.
Collapse
Affiliation(s)
- John Salogiannis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Martin J Egan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Samara L Reck-Peterson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
39
|
Oeljeklaus S, Schummer A, Mastalski T, Platta HW, Warscheid B. Regulation of peroxisome dynamics by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1027-37. [PMID: 26775584 DOI: 10.1016/j.bbamcr.2015.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies.
Collapse
Affiliation(s)
- Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Schummer
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Mastalski
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Small GTPases in peroxisome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1006-13. [PMID: 26775587 DOI: 10.1016/j.bbamcr.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment.
Collapse
|
41
|
Reglinski K, Keil M, Altendorf S, Waithe D, Eggeling C, Schliebs W, Erdmann R. Peroxisomal Import Reduces the Proapoptotic Activity of Deubiquitinating Enzyme USP2. PLoS One 2015; 10:e0140685. [PMID: 26484888 PMCID: PMC4617714 DOI: 10.1371/journal.pone.0140685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
The human deubiquitinating enzyme ubiquitin-specific protease 2 (USP2) regulates multiple cellular pathways, including cell proliferation and apoptosis. As a result of alternative splicing four USP2 isoenzymes are expressed in human cells of which all contain a weak peroxisome targeting signal of type 1 (PTS1) at their C-termini. Here, we systematically analyzed apoptotic effects induced by overexpression and intracellular localization for each isoform. All isoforms exhibit proapoptotic activity and are post-translationally imported into the matrix of peroxisomes in a PEX5-dependent manner. However, a significant fraction of the USP2 pool resides in the cytosol due to a weaker PTS1 and thus low affinity to the PTS receptor PEX5. Blocking of peroxisomal import did not interfere with the proapoptotic activity of USP2, suggesting that the enzyme performs its critical function outside of this compartment. Instead, increase of the efficiency of USP2 import into peroxisomes either by optimization of its peroxisomal targeting signal or by overexpression of the PTS1 receptor did result in a reduction of the apoptotic rate of transfected cells. Our studies suggest that peroxisomal import of USP2 provides additional control over the proapoptotic activity of cytosolic USP2 by spatial separation of the deubiquitinating enzymes from their interaction partners in the cytosol and nucleus.
Collapse
Affiliation(s)
- Katharina Reglinski
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Marina Keil
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sabrina Altendorf
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Christian Eggeling
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Wolfgang Schliebs
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- * E-mail:
| |
Collapse
|
42
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
43
|
Lanyon-Hogg T, Hooper J, Gunn S, Warriner SL, Baker A. PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor. FEBS Lett 2014; 588:2223-9. [PMID: 24879895 PMCID: PMC4065332 DOI: 10.1016/j.febslet.2014.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/16/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
Abstract
The interaction between Arabidopsis PEX5 and PEX14N is independent of cargo binding. The affinity of a PTS1 peptide for PEX5 is unaffected by PEX14N binding. Arabidopsis PEX5 complexes PTS1 and PTS2 cargoes. PEX5 and 7 co-isolate with PEX14N, but the PTS2 cargo thiolase does not. PEX14N does not unload canonical PTS1 cargo peptide in vitro but may play a role in PTS2 release.
PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N) has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex containing both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role for PEX14 in the unloading of PTS2 cargos. pMDH1physically interacts with PEX5 by pull down (View interaction) PEX5Cbinds to PEX14N by filter binding (View interaction) PEX14Nbinds to PEX5C by pull down (View interaction) PEX14Nphysically interacts with PEX7 by pull down (View interaction) PEX5physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with PEX5 by pull down (View interaction) PEX5physically interacts with thiolase PTS2-cargo by pull down (View interaction) pMDH1physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with thiolase PTS2-cargo by pull down (View interaction) DCI1physically interacts with PEX7 by pull down (View interaction) PEX14Nphysically interacts with PEX5 by pull down (View interaction)
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Jacob Hooper
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Gunn
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alison Baker
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
44
|
The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc Natl Acad Sci U S A 2014; 111:8019-24. [PMID: 24821790 DOI: 10.1073/pnas.1405755111] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accuracy of tail-anchored (TA) protein targeting to the endoplasmic reticulum (ER) depends on the Guided Entry of Tail-Anchored (Get) protein targeting machinery. The fate of TA proteins that become inappropriately inserted into other organelles, such as mitochondria, is unknown. Here, we identify Msp1, a conserved, membrane-anchored AAA-ATPase (ATPase associated with a variety of cellular activities) that localizes to mitochondria and peroxisomes, as a critical factor in a quality control pathway that senses and degrades TA proteins mistargeted to the outer mitochondrial membrane (OMM). Pex15 is normally targeted by the Get pathway to the ER, from where it travels to peroxisomes. Loss of Msp1 or loss of the Get pathway results in the redistribution of Pex15 to mitochondria. Cells lacking both a functional Get pathway and Msp1 accumulate increased amounts of Pex15 on the OMM and display severely dysfunctional mitochondrial morphology. In addition, Msp1 binds and promotes the turnover of a Pex15 mutant that is misdirected to the OMM. Our data suggest that Msp1 functions in local organelle surveillance by extracting mistargeted proteins, ensuring the fidelity of organelle specific-localization of TA proteins.
Collapse
|
45
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
46
|
Hamada T, Nagasaki-Takeuchi N, Kato T, Fujiwara M, Sonobe S, Fukao Y, Hashimoto T. Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. PLANT PHYSIOLOGY 2013; 163:1804-16. [PMID: 24134884 PMCID: PMC3850192 DOI: 10.1104/pp.113.225607] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant microtubules (MTs) play essential roles in cell division, anisotropic cell expansion, and overall organ morphology. Microtubule-associated proteins (MAPs) bind to MTs and regulate their dynamics, stability, and organization. Identifying the full set of MAPs in plants would greatly enhance our understanding of how diverse MT arrays are formed and function; however, few proteomics studies have characterized plant MAPs. Using liquid chromatography-tandem mass spectrometry, we identified hundreds of proteins from MAP-enriched preparations derived from cell suspension cultures of Arabidopsis (Arabidopsis thaliana). Previously reported MAPs, MT regulators, kinesins, dynamins, peroxisome-resident enzymes, and proteins implicated in replication, transcription, and translation were highly enriched. Dozens of proteins of unknown function were identified, among which 12 were tagged with green fluorescent protein (GFP) and examined for their ability to colocalize with MTs when transiently expressed in plant cells. Six proteins did indeed colocalize with cortical MTs in planta. We further characterized one of these MAPs, designated as BASIC PROLINE-RICH PROTEIN1 (BPP1), which belongs to a seven-member family in Arabidopsis. BPP1-GFP decorated interphase and mitotic MT arrays in transgenic Arabidopsis plants. A highly basic, conserved region was responsible for the in vivo MT association. Overexpression of BPP1-GFP stabilized MTs, caused right-handed helical growth in rapidly elongating tissues, promoted the formation of transverse MT arrays, and resulted in the outgrowth of epidermal cells in light-grown hypocotyls. Our high-quality proteome database of Arabidopsis MAP-enriched preparations is a useful resource for identifying novel MT regulators and evaluating potential MT associations of proteins known to have other cellular functions.
Collapse
|
47
|
Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 2013; 289:437-48. [PMID: 24235149 DOI: 10.1074/jbc.m113.499707] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.
Collapse
Affiliation(s)
- Alexander Neuhaus
- From the Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Deng Y, Qu Z, Naqvi NI. The role of snx41-based pexophagy in magnaporthe development. PLoS One 2013; 8:e79128. [PMID: 24302988 PMCID: PMC3841179 DOI: 10.1371/journal.pone.0079128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Pexophagy, the degradation of peroxisomes via selective autophagy, depends on Atg20/Snx42 function in Saccharomyces cerevisiae. Besides its role in selective autophagy, Atg20/Snx42 is also involved in an autophagy-independent endosomal retrieval trafficking, in cooperation with two other sorting nexins, Snx41 and Snx4. Recently, we reported that the sorting nexin MoSnx41, which showed high sequence similarity to yeast Snx41 and Snx42/Atg20 proteins, regulates the gamma-glutamyl cycle and GSH production and is essential for conidiation and pathogenicity in Magnaporthe oryzae. Pexophagy was also found to be defective in Mosnx41Δ mutant. These findings indicate that MoSnx41 likely serves combined functions of Snx42/Atg20 and Snx41 in M. oryzae.. In this study, we performed complementation analyses and demonstrate that MoSnx41 alone serves the dual function of protein sorting (ScSnx41) and pexophagy (ScSnx42/Atg20). To study the potential biological function of pexophagy in fungal pathogenic life cycle, we created deletion mutants of potential pexophagy-specific genes, and characterized them in terms of pexophagy, conidiation and pathogenesis. We identified Pex14 as an essential protein for pexophagy in M. oryzae. Overall, our results show that pexophagy per se is not essential for asexual development or virulence in M. oryzae.
Collapse
Affiliation(s)
- Yizhen Deng
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (YD); (NN)
| | - Ziwei Qu
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (YD); (NN)
| |
Collapse
|
49
|
Chang J, Tower RJ, Lancaster DL, Rachubinski RA. Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast. J Cell Sci 2013; 126:4698-706. [PMID: 23943868 DOI: 10.1242/jcs.129056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynein is a large macromolecular motor complex that moves cargo along microtubules. A motor-independent role for the light chain of dynein, Dyn2p, in peroxisome biology in Saccharomyces cerevisiae was suggested from its interaction with Pex14p, a component of the peroxisomal matrix protein import docking complex. Here we show that cells of the yeast Yarrowia lipolytica deleted for the gene encoding the homologue of Dyn2p are impaired in peroxisome function and biogenesis. These cells exhibit compromised growth on medium containing oleic acid as the carbon source, the metabolism of which requires functional peroxisomes. Their peroxisomes have abnormal morphology, atypical matrix protein localization, and an absence of proteolytic processing of the matrix enzyme thiolase, which normally occurs upon its import into the peroxisome. We also show physical and genetic interactions between Dyn2p and members of the docking complex, particularly Pex17p. Together, our results demonstrate a role for Dyn2p in the assembly of functional peroxisomes and provide evidence that Dyn2p acts in cooperation with the peroxisomal matrix protein import docking complex to effect optimal matrix protein import.
Collapse
Affiliation(s)
- Jinlan Chang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
50
|
Dietrich D, Seiler F, Essmann F, Dodt G. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3013-3024. [PMID: 23954441 DOI: 10.1016/j.bbamcr.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/25/2023]
Abstract
The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.
Collapse
Affiliation(s)
- Denise Dietrich
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Florian Seiler
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Frank Essmann
- Interfaculty Institute of Biochemistry, Molecular Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Gabriele Dodt
- Interfaculty Institute of Biochemistry, Cell Biochemistry, University of Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|