1
|
Alan Y, Keskin AO, Sönmez M. Probiotic and functional characterization of newly isolated Lactiplantibacillus plantarum strains from human breast milk and proliferative inhibition potential of metabolites. Enzyme Microb Technol 2024; 182:110545. [PMID: 39546820 DOI: 10.1016/j.enzmictec.2024.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Four Lactiplantibacillus plantarum strains newly isolated and identified from human breast milk in Türkiye, have probiotic, functional and proliferative inhibition potential of metabolites against colon cancer cell lines were evaluated. In simulated gastric and intestinal media, all strains exhibited strong probiotic character by showing resistance, although decreasing with time and concentration. The strains were sensitive to penicillin G, rifampin and chloramphenicol and showed antibacterial effect on all pathogenic bacteria. Citric acid, malic acid, tartaric acid, pyruvic acid and fumaric acid were not detected in the strains, while the highest amount of acetic acid was detected. The quantitative-qualitative analysis and structural characterization of exopolysaccharide (EPS) was confirmed and it was determined that the strains synthesized similar amounts. Compared to standard antioxidants, the strains showed less DPPH activity and similar ABTS activity. High amounts of metabolites of the strains showed good antiproliferative effect on Caco-2, while lower amounts showed good antiproliferative effect on the HT-29 cell line. When all the data were considered, it was determined that the strains were close to each other, but the YAAS 23 strain showed slightly better properties. In conclusion, breast milk is a unique environment harboring beneficial bacteria such as L. plantarum for human health.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, Türkiye.
| | - Ali-Osman Keskin
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| | - Mehmet Sönmez
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| |
Collapse
|
2
|
Ingram K, Gregg C, Tegge A, Elison JT, Lin W, Howell BR. Metagenomic assessment of the bacterial breastfeeding microbiome in mature milk across lactation. Front Pediatr 2024; 11:1275436. [PMID: 39092171 PMCID: PMC11292495 DOI: 10.3389/fped.2023.1275436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 08/04/2024] Open
Abstract
Introduction Research has illustrated the presence of a diverse range of microbiota in human milk. The composition of the milk microbiome varies across different stages of lactation, emphasizing the need to consider the lactation stage when studying its composition. Additionally, the transfer of both milk and skin microbiota during breastfeeding is crucial for understanding their collective impact on infant health and development. Further exploration of the complete breastfeeding microbiome is necessary to unravel the role these organisms play in infant development. We aim to longitudinally assess the bacterial breastfeeding microbiome across stages of lactation. This includes all the bacteria that infants are exposed to during breastfeeding, such as bacteria found within human milk and any bacteria found on the breast and nipple. Methods Forty-six human milk samples were collected from 15 women at 1, 4, 7, and 10 months postpartum. Metagenomic analysis of the bacterial microbiome for these samples was performed by CosmosID (Rockville, MD) via deep sequencing. Results Staphylococcus epidermidis and Propionibacteriaceae species are the most abundant bacterial species from these samples. Samples collected at 10 months showed higher abundances of Proteobacteria, Streptococcaceae, Lactobacillales, Streptococcus, and Neisseria mucosa compared to other timepoints. Alpha diversity varied greatly between participants but did not change significantly over time. Discussion As the bacterial breastfeeding microbiome continues to be studied, bacterial contributions could be used to predict and reduce health risks, optimize infant outcomes, and design effective management strategies, such as altering the maternal flora, to mitigate adverse health concerns.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Collin Gregg
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Allison Tegge
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Jed T. Elison
- Institute for Child Development, University of Minnesota, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota, St. Paul, MN, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany R. Howell
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Saraluck A, Techarang T, Bunyapipat P, Boonchuwong K, Pullaput Y, Mordmuang A. Detection of Microplastics in Human Breast Milk and Its Association with Changes in Human Milk Bacterial Microbiota. J Clin Med 2024; 13:4029. [PMID: 39064070 PMCID: PMC11277308 DOI: 10.3390/jcm13144029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Presently, there is increasing public consciousness regarding the contamination and detection of microplastics (MPs) within the human body, and studies on the detection and characterization of MPs in human breast milk are limited. Objectives: This study aims to investigate the prevalence and characteristics of MPs found in human breast milk and examine the relationship between maternal hygiene practices, complications that may arise during breastfeeding, and the composition of the bacterial microbiota. Methods: Postpartum breast milk was analyzed for MPs using Raman micro-spectroscopy. The relationship between MP detection, maternal hygiene, breastfeeding complications, and bacterial microbiota was examined. In order to identify correlations and differences between groups that had detected and non-detected MPs, statistical analyses were performed, which involved demographic comparisons and correlation network analysis. Results: The mean age of the 59 postpartum women was 28.13 years. We found MPs in 38.98% of breast milk samples (23 of 59), exhibiting diverse morphological and chemical characteristics. Most MP polymers were polypropylene, polyethylene, polystyrene, and polyvinyl chloride. Maternal hygiene and breastfeeding complications differed between the MPs-detected and non-detected groups. Maternal behaviors may influence the presence of microplastics in breast milk, which were associated with these differences. Bacterial microbiota analysis revealed significant taxonomic differences between the MPs-detected and non-detected groups. Staphylococcus and Streptococcus dominated the MPs-detected group, while Enterobacter, Escherichia, Pseudomonas, and Acinetobacter dominated the non-detected group. The MPs-detected group had a more even bacterial distribution, especially Bacteroides. Conclusions: This study found MPs in 38.98% of breast milk samples using Raman micro-spectrometry, with PP, PE, and PVC being the most common. Significant differences in maternal hygiene and breastfeeding complications were found between the groups with and without MPs. Breast milk microbiota may be linked to MP detection. Further study should be conducted to identify the possible maternal-child health.
Collapse
Affiliation(s)
- Apisith Saraluck
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Phattarika Bunyapipat
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Khununya Boonchuwong
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupparase Pullaput
- The Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Auemphon Mordmuang
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
4
|
Long L, Bi H, Zeng S, Wang S, Zhang Z, Yao J, Wang Z. Breastfeeding premature infants affects the microbiota composition of breast milk. Am J Transl Res 2024; 16:2474-2482. [PMID: 39006271 PMCID: PMC11236625 DOI: 10.62347/ijms4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/18/2024] [Indexed: 07/16/2024]
Abstract
AIM To determine whether and how breast feeding of premature infants influences the human milk (HM) bacterial communities. METHODS HM samples before and after breastfeeding were collected from 40 preterm infant mothers at 24-366/7 weeks of gestational age in the neonatal intensive care unit of our hospital. Of these 40 babies, 11 at 24-276/7 weeks of gestational age and 12 at 28-316/7 weeks were grouped into an extremely premature (EPM) group and a very premature (VPM) group, respectively. In addition, 11 with a birth weight (BWT) of 1000 g ≤ BWT < 1500 g were classified as a very low birth weight (VLBW) group and 12 with BWT < 1000 g an extremely low birth weight (ELBW) group. Breast feeding and kangaroo mother care were given once a day for 7 days, from 14 to 21 days of age. The bacterial composition of HM was analyzed using high-throughput sequencing before and after feeding. RESULTS Linear discriminant analysis effect size of HM samples before and after feeding showed that Bacillus, Prevotella and Fusobacterium were significantly enriched in HM before breastfeeding (P < 0.05). Post-feeding HM for the EPM group showed significant enrichment in Lactobacillales, Streptococcus, Desulfuromonadales, Ruminococcus, Geobacteraceae, Geobacter and Elizabethkingia_meningoseptica (P < 0.05). Bacillus was significantly enriched in the HM for EPM group before feeding (P < 0.05). For mothers with VLBW infants, Bacillus was enriched before feeding, while Lactobacillales was predominant after feeding (P < 0.05). There was a moderate correlation between the diversity of HM bacteria and infant development and immune outcomes. CONCLUSION Breastfeeding of preterm infants can significantly affect the bacterial diversity in HM.
Collapse
Affiliation(s)
- Lijuan Long
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Hongjuan Bi
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
- Graduate School, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Shangjuan Zeng
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Shuangjie Wang
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen Zhang
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Jiayan Yao
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiping Wang
- Department of Neonatology, Guangxi Zhuang Autonomous Region Maternal and Child Health HospitalNanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Endika MF, Barnett DJM, Klostermann CE, Kok N, Schols HA, Nauta A, Arts ICW, Penders J, Venema K, Smidt H. Seeding and feeding milestones: the role of human milk microbes and oligosaccharides in the temporal development of infant gut microbiota. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e7. [PMID: 39776540 PMCID: PMC11706684 DOI: 10.1017/gmb.2024.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 01/11/2025]
Abstract
Breastfeeding represents a strong selective factor for shaping the infant gut microbiota. Besides providing nutritional requirements for the infant, human milk is a key source of oligosaccharides, human milk oligosaccharides (HMOs), and diverse microbes in early life. This study aimed to evaluate the influence of human milk microbiota and oligosaccharides on the composition of infant faecal microbiota at one, three, and nine months postpartum. We profiled milk microbiota, HMOs, and infant faecal microbiota from 23 mother-infant pairs at these time points. The predominant genera in milk samples were Streptococcus, Staphylococcus, and an unclassified Enterobacteriaceae genus-level taxon (Enterobacteriaceae uncl.), whereas the infant faecal microbiota was predominated by Bifidobacterium, Bacteroides, and Enterobacteriaceae uncl. Mother-infant dyads frequently shared bacterial amplicon sequence variants (ASVs) belonging to the genera Bifidobacterium, Streptococcus, Enterobacteriaceae uncl., Veillonella, Bacteroides, and Haemophilus. The individual HMO concentrations in the milk showed either no change or decreased over the lactation period, except for 3-fucosyllactose (3-FL), which increased. Neither maternal secretor status nor HMO concentrations were significantly associated with microbiota composition at the different ages or the bacterial ASVs of maternal milk and infant faeces. This study suggests an age-dependent role of milk microbes in shaping the gut microbiota, while variations in HMO concentrations show limited influence.
Collapse
Affiliation(s)
- Martha F. Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - David J. M. Barnett
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cynthia E. Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Noortje Kok
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Ilja C. W. Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University – campus Venlo, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Dombrowska-Pali A, Wiktorczyk-Kapischke N, Chrustek A, Olszewska-Słonina D, Gospodarek-Komkowska E, Socha MW. Human Milk Microbiome-A Review of Scientific Reports. Nutrients 2024; 16:1420. [PMID: 38794658 PMCID: PMC11124344 DOI: 10.3390/nu16101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most important bioactive components of breast milk are free breast milk oligosaccharides, which are a source of energy for commensal intestinal microorganisms, stimulating the growth of Bifidobacterium, Lactobacillus, and Bacteroides in a child's digestive tract. There is some evidence that maternal, perinatal, and environmental-cultural factors influence the modulation of the breast milk microbiome. This review summarizes research that has examined the composition of the breast milk microbiome and the factors that may influence it. The manuscript highlights the potential importance of the breast milk microbiome for the future development and health of children. The origin of bacteria in breast milk is thought to include the mother's digestive tract (entero-mammary tract), bacterial exposure to the breast during breastfeeding, and the retrograde flow of breast milk from the infant's mouth to the woman's milk ducts. Unfortunately, despite increasingly more precise methods for assessing microorganisms in human milk, the topic of the human milk microbiome is still quite limited and requires scientific research that takes into account various conditions.
Collapse
Affiliation(s)
- Agnieszka Dombrowska-Pali
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (N.W.-K.); (E.G.-K.)
| | - Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.C.); (D.O.-S.)
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.C.); (D.O.-S.)
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (N.W.-K.); (E.G.-K.)
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalberts’s Hospital in Gdańsk, Copernicus Healthcare Entity LLC, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
7
|
Yoshida H, Yamamoto N, Kurahara LH, Izumori K, Yoshihara A. X-ray structure and characterization of a probiotic Lactobacillus rhamnosus Probio-M9 L-rhamnose isomerase. Appl Microbiol Biotechnol 2024; 108:249. [PMID: 38430263 PMCID: PMC10908623 DOI: 10.1007/s00253-024-13075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
A recombinant L-rhamnose isomerase (L-RhI) from probiotic Lactobacillus rhamnosus Probio-M9 (L. rhamnosus Probio-M9) was expressed. L. rhamnosus Probio-M9 was isolated from human colostrum and identified as a probiotic lactic acid bacterium, which can grow using L-rhamnose. L-RhI is one of the enzymes involved in L-rhamnose metabolism and catalyzes the reversible isomerization between L-rhamnose and L-rhamnulose. Some L-RhIs were reported to catalyze isomerization not only between L-rhamnose and L-rhamnulose but also between D-allulose and D-allose, which are known as rare sugars. Those L-RhIs are attractive enzymes for rare sugar production and have the potential to be further improved by enzyme engineering; however, the known crystal structures of L-RhIs recognizing rare sugars are limited. In addition, the optimum pH levels of most reported L-RhIs are basic rather than neutral, and such a basic condition causes non-enzymatic aldose-ketose isomerization, resulting in unexpected by-products. Herein, we report the crystal structures of L. rhamnosus Probio-M9 L-RhI (LrL-RhI) in complexes with L-rhamnose, D-allulose, and D-allose, which show enzyme activity toward L-rhamnose, D-allulose, and D-allose in acidic conditions, though the activity toward D-allose was low. In the complex with L-rhamnose, L-rhamnopyranose was found in the catalytic site, showing favorable recognition for catalysis. In the complex with D-allulose, D-allulofuranose and ring-opened D-allulose were observed in the catalytic site. However, bound D-allose in the pyranose form was found in the catalytic site of the complex with D-allose, which was unfavorable for recognition, like an inhibition mode. The structure of the complex may explain the low activity toward D-allose. KEY POINTS: • Crystal structures of LrL-RhI in complexes with substrates were determined. • LrL-RhI exhibits enzyme activity toward L-rhamnose, D-allulose, and D-allose. • The LrL-RhI is active in acidic conditions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan.
| | - Naho Yamamoto
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
8
|
Wang F, Yu L, Ren Y, Zhang Q, He S, Zhao M, He Z, Gao Q, Chen J. An optimized culturomics strategy for isolation of human milk microbiota. Front Microbiol 2024; 15:1272062. [PMID: 38495514 PMCID: PMC10940525 DOI: 10.3389/fmicb.2024.1272062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024] Open
Abstract
Viable microorganisms and a diverse microbial ecosystem found in human milk play a crucial role in promoting healthy immune system and shaping the microbial community in the infant's gut. Culturomics is a method to obtain a comprehensive repertoire of human milk microbiota. However, culturomics is an onerous procedure, and needs expertise, making it difficult to be widely implemented. Currently, there is no efficient and feasible culturomics method specifically designed for human milk microbiota yet. Therefore, the aim of this study was to develop a more efficient and feasible culturomics method specifically designed for human milk microbiota. We obtained fresh samples of human milk from healthy Chinese mothers and conducted a 27-day enrichment process using blood culture bottles. Bacterial isolates were harvested at different time intervals and cultured on four different types of media. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we identified a total of 6601 colonies and successfully obtained 865 strains, representing 4 phyla, 21 genera, and 54 species. By combining CBA and MRS media, we were able to cultivate over 94.4% of bacterial species with high diversity, including species-specific microorganisms. Prolonged pre-incubation in blood culture bottles significantly increased the number of bacterial species by about 33% and improved the isolation efficiency of beneficial bacteria with low abundance in human milk. After optimization, we reduced the pre-incubation time in blood culture bottles and selected optimal picking time-points (0, 3, and 6 days) at 37°C. By testing 6601 colonies using MALDI-TOF MS, we estimated that this new protocol could obtain more than 90% of bacterial species, reducing the workload by 57.0%. In conclusion, our new culturomics strategy, which involves the combination of CBA and MRS media, extended pre-incubation enrichment, and optimized picking time-points, is a feasible method for studying the human milk microbiota. This protocol significantly improves the efficiency of culturomics and allows for the establishment of a comprehensive repertoire of bacterial species and strains in human milk.
Collapse
Affiliation(s)
- Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Lingmin Yu
- YingTan City people’s Hospital, Yingtan, China
| | - Yuting Ren
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Qianwen Zhang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Shanshan He
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Minlei Zhao
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Zhili He
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotechnology Inc., Beijing, China
| | - Jianguo Chen
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| |
Collapse
|
9
|
Yi EJ, Nguyen TTM, Jin X, Bellere AD, Kim MJ, Yi TH. Human Milk-Derived Enterococcus faecalis HM20: A Potential Alternative Agent of Antimicrobial Effect against Methicillin-Resistant Staphylococcus aureus (MRSA). Microorganisms 2024; 12:306. [PMID: 38399710 PMCID: PMC10892211 DOI: 10.3390/microorganisms12020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The increasing global impact of skin diseases, fueled by methicillin-resistant Staphylococcus aureus (MRSA), emphasizes the necessity for alternative therapies with lower toxicity, such as lactic acid bacteria (LAB). This study aims to isolate potential LAB from human milk and evaluate their efficacy against MRSA using various methods, including well diffusion, microdilution, crystal violet assay, enzymatic characterization, SDS-PAGE, and scanning electron microscopy (SEM). Among the 26 LAB screened, the human milk-derived strain HM20 exhibited significant antimicrobial activity against S. aureus CCARM 3089 (MRSA), which is a highly resistant skin pathogen. Through 16S rRNA sequencing, strain HM20 was identified as closely related to Enterococcus faecalis ATCC 19433T, which was subsequently designated as Enterococcus faecalis HM20. The minimum inhibitory concentration (MIC) of the cell-free supernatant (CFS) of HM20 against S. aureus KCTC 3881 and S. aureus CCARM 3089 was determined to be 6.25% and 12.5%, respectively. Furthermore, the effective inhibition of biofilm formation in S. aureus KCTC 3881 and S. aureus CCARM 3089 was observed at concentrations of 12.5% and 25% or higher, respectively. The antibacterial effect of the CFS was attributed to the presence of organic acids, hydrogen peroxide, and bacteriocins. Additionally, the antimicrobial peptides produced by HM20 were found to be stable under heat treatment and analyzed to have a size below 5 kDa. SEM image observations confirmed that the CFS of HM20 caused damage to the cell wall, forming pores and wrinkles on S. aureus KCTC 3881 and S. aureus CCARM 3089. This comprehensive investigation on strain HM20 conducted in this study provides foundational data for potential developments in functional materials aimed at addressing skin infections and antibiotic-resistant strains in the future.
Collapse
Affiliation(s)
- Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dong-daemun, Seoul 02447, Republic of Korea;
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| | - Mi-Ju Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (E.-J.Y.); (T.T.M.N.); (A.D.B.)
| |
Collapse
|
10
|
Jin X, Xiao J, Lu C, Ma W, Fan Y, Xue X, Xia Y, Chen N, Liu J, Pei X. Breastmilk microbiome changes associated with lactational mastitis and treatment with dandelion extract. Front Microbiol 2023; 14:1247868. [PMID: 38029215 PMCID: PMC10679338 DOI: 10.3389/fmicb.2023.1247868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Dandelion (Pugongying) is one of the most frequently used Chinese herbs for treating lactational mastitis (LM). Pugongying granules, a patented medication primarily comprised of dandelion extract, have been approved by CFDA for LM treatment in China. The aims of this study were to investigate the etiology of LM and the mechanism by which Pugongying granules decrease LM symptoms, with a particular focus on the microbial communities found in breastmilk. Methods Participants were recruited from a previously performed randomized controlled trial (Identifier: NCT03756324, ClinicalTrials.gov). Between 2019 and 2020, women diagnosed with unilateral LM at the Beijing University of Chinese Medicine Third Affiliated Hospital were enrolled. In total, 42 paired breastmilk samples from the healthy and affected breasts of the participants were collected. Additionally, 37 paired pre- and post-treatment breastmilk samples from the affected breast were collected from women who received a 3-day course of either Pugongying granules (20 women) or cefdinir (17 women). Clinical outcomes [e.g., body temperature, visual analogue scale (VAS) score for breast pain, the percentage of neutrophils (NE%)] were analyzed pre- and post-treatment, and the breastmilk samples were subjected to 16S rRNA gene sequencing to analyze the alpha and beta diversities and identify significant bacteria. Finally, the relationship between microorganisms and clinical outcomes was analyzed. Results There was no significant difference in fever and pain between the Pugongying group and cefdinir group. The most prevalent bacterial genera in breastmilk were Streptococcus and Staphylococcus. Compared to healthy breastmilk, microbial diversity was reduced in affected breastmilk, and there was a higher relative abundance of Streptococcus. After Pugongying treatment, there was an increase in microbial diversity with significantly higher abundance of Corynebacterium. A negative correlation was found between Corynebacterium, VAS score, and NE%. Treatment with cefdinir did not affect microbial diversity. Taken together, our results show a correlation between LM and reduced microbial diversity, as well as an increased abundance of Streptococcus in affected breastmilk. Conclusion Pugongying granules enhanced microbial diversity in breastmilk samples. Given the substantial variation in individual microbiomes, identifying specific species of Streptococcus and Corynebacterium associated with LM may provide additional insight into LM pathogenesis and treatment.
Collapse
Affiliation(s)
- Xinyan Jin
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Affiliated Xiamen Hospital, Xiamen, China
| | - Jinhe Xiao
- Department of Prevention and Treatment of Breast Disease, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Chunli Lu
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenxin Ma
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingyi Fan
- Department of Breast Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xue Xue
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Yaru Xia
- Department of Breast Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Nana Chen
- Department of Breast Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jianping Liu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohua Pei
- Beijing University of Chinese Medicine Affiliated Xiamen Hospital, Xiamen, China
| |
Collapse
|
11
|
Londoño-Sierra DC, Mesa V, Guzmán NC, Bolívar Parra L, Montoya-Campuzano OI, Restrepo-Mesa SL. Maternal Diet May Modulate Breast Milk Microbiota-A Case Study in a Group of Colombian Women. Microorganisms 2023; 11:1812. [PMID: 37512984 PMCID: PMC10384792 DOI: 10.3390/microorganisms11071812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
There is increasing evidence that the diet and nutritional status of women during pregnancy and lactation can modulate the microbiota of their milk and, therefore, the microbiota of the infant. An observational, descriptive, and cross-sectional study was carried out in a group of lactating women. Dietary intake during gestation and the first trimester of lactation was evaluated, and the microbiota was analyzed by 16S ribosomal RNA (rRNA) sequencing using the Illumina platform. Globally, Streptococcus spp. (32%), Staphylococcus spp. (17.3%), Corynebacterium spp. (5.1%) and Veillonella spp. (3.1%) were the predominant bacterial genera. The consumption of simple carbohydrates in gestation (rho = 0.55, p ≤ 0.01) and lactation (rho = 0.50, p ≤ 0.01) were positively correlated with Enterobacter spp. In lactation, a negative correlation was observed between the intake of simple carbohydrates and the genus Bifidobacterium spp. (rho = -0.51 p ≤ 0.01); furthermore, a positive correlation was identified between the intake of folic acid and Akkermansia spp. (rho = 0.47, p ≤ 0.01). Amplicon sequence variants (ASVs) associated with the delivery mode, employment relationship, the baby's gender, birth weight, the Body Mass Index (BMI) of the breastfeeding woman, and gestational weight gain were recovered as covariates in a linear mixed model. The results of this research showed that the maternal nutritional status and diet of women during gestation and lactation could modulate the microbiota of breast milk.
Collapse
Affiliation(s)
- Diana C Londoño-Sierra
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| | - Victoria Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
- Physiopathologie et Pharmacotoxicologie Placentaire Humaine Microbiote Pré & Postnatal (3PHM), INSERM, UMR-S 1139, Université Paris Cité, 75006 Paris, France
| | - Nathalia Correa Guzmán
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| | - Laura Bolívar Parra
- Probiotics and Bioprospecting Research Group, Faculty of Sciences, National University of Colombia, Medellín 050034, Colombia
| | - Olga I Montoya-Campuzano
- Probiotics and Bioprospecting Research Group, Faculty of Sciences, National University of Colombia, Medellín 050034, Colombia
| | - Sandra L Restrepo-Mesa
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Antioquia University, Medellín 050010, Colombia
| |
Collapse
|
12
|
Melekoglu E, Yılmaz B, Çevik A, Gökyıldız Sürücü Ş, Avcıbay Vurgeç B, Gözüyeşil E, Sharma H, Boyan N, Ozogul F. The Impact of the Human Milk Microbiota in the Prevention of Disease and Infant Health. Breastfeed Med 2023. [PMID: 37140562 DOI: 10.1089/bfm.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Human milk is recognized as an ideal food for newborns and infants owing to the presence of various nutritive factors, including healthy bacteria. Aim/Objective: This review aimed to understand the effects of human milk microbiota in both the prevention of disease and the health of infants. Methods: Data were obtained from PubMed, Scopus, Web of Science, clinical trial registries, Dergipark, and Türk Atıf Dizini up to February 2023 without language restrictions. Results: It is considered that the first human milk microbiota ingested by the newborn creates the initial microbiome of the gut system, which in turn influences the development and maturation of immunity. Bacteria present in human milk modulate the anti-inflammatory response by releasing certain cytokines, protecting the newborn against certain infections. Therefore, certain bacterial strains isolated from human milk could serve as potential probiotics for various therapeutic applications. Conclusions: In this review, the origin and significance of human milk bacteria have been highlighted along with certain factors influencing the composition of human milk microbiota. In addition, it also summarizes the health benefits of human milk as a protective agent against certain diseases and ailments.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Ayseren Çevik
- Department of Midwifery, Cukurova University, Adana, Turkey
| | | | | | - Ebru Gözüyeşil
- Department of Midwifery, Cukurova University, Adana, Turkey
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Neslihan Boyan
- Department of Anatomy, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
13
|
Baumgartel K, Stevens M, Vijayakumar N, Saint Fleur A, Prescott S, Groer M. The Human Milk Metabolome: A Scoping Literature Review. J Hum Lact 2023; 39:255-277. [PMID: 36924445 DOI: 10.1177/08903344231156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human milk is a complex source of nutrition and other bioactives that protects infants from disease, holding a lifetime of beneficial effects. The field of metabolomics provides a robust platform through which we can better understand human milk at a level rarely examined. RESEARCH AIM To Identify, describe, synthesize, and critically analyze the literature within the past 5 years related to the human milk metabolome. METHODS We conducted a scoping literature review and quality analysis of the recent science reflecting untargeted metabolomic approaches to examining human milk. We searched six databases using the terms "breast milk," "metabolome," "metabolite," and "human milk," Out of more than 1,069 abstracts, we screened and identified 22 articles that met our inclusion criteria. RESULTS We extracted data related to the study author, geographic location, research design, analyses, platform used, and results. We also extracted data related to human milk research activities, including collection protocol, infant/maternal considerations, and time. Selected studies focused on a variety of phenotypes, including maternal and infant disease. Investigators used varying approaches to evaluate the metabolome, and differing milk collection protocols were observed. CONCLUSION The human milk metabolome is informed by many factors-which may contribute to infant health outcomes-that have resulted in disparate milk metabolomic profiles. Standardized milk collection and storage procedures should be implemented to minimize degradation. Investigators may use our findings to develop research questions that test a targeted metabolomic approach.
Collapse
Affiliation(s)
| | - Monica Stevens
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nisha Vijayakumar
- School of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
14
|
Alemán-Duarte MI, Aguilar-Uscanga BR, García-Robles G, Ramírez-Salazar FDJ, Benítez-García I, Balcázar-López E, Solís-Pacheco JR. Improvement and Validation of a Genomic DNA Extraction Method for Human Breastmilk. Methods Protoc 2023; 6:mps6020034. [PMID: 37104016 PMCID: PMC10144544 DOI: 10.3390/mps6020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The human milk microbiota (HMM) of healthy women can vary substantially, as demonstrated by recent advances in DNA sequencing technology. However, the method used to extract genomic DNA (gDNA) from these samples may impact the observed variations and potentially bias the microbiological reconstruction. Therefore, it is important to use a DNA extraction method that is able to effectively isolate gDNA from a diverse range of microorganisms. In this study, we improved and compared a DNA extraction method for gDNA isolation from human milk (HM) samples to commercial and standard protocols. We evaluated the extracted gDNA using spectrophotometric measurements, gel electrophoresis, and PCR amplifications to assess its quantity, quality, and amplifiability. Additionally, we tested the improved method’s ability to isolate amplifiable gDNA from fungi, Gram-positive and Gram-negative bacteria to validate its potential for reconstructing microbiological profiles. The improved DNA extraction method resulted in a higher quality and quantity of the extracted gDNA compared to the commercial and standard protocols and allowed for polymerase chain reaction (PCR) amplification of the V3–V4 regions of the 16S ribosomal gene in all the samples and the ITS-1 region of the fungal 18S ribosomal gene in 95% of the samples. These results suggest that the improved DNA extraction method demonstrates better performance for gDNA extraction from complex samples such as HM.
Collapse
Affiliation(s)
- Mario Iván Alemán-Duarte
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Blanca Rosa Aguilar-Uscanga
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Guadalupe García-Robles
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Felipe de Jesús Ramírez-Salazar
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
| | - Israel Benítez-García
- Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa (UPSIN), Carretera Municipal Libre Mazatlán Higueras Km 3 Col. Genaro Estrada, Mazatlán 82199, Mexico
| | - Edgar Balcázar-López
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
- Correspondence: (E.B.-L.); (J.R.S.-P.); Tel.: +52-(33)-1378-59000 (ext. 27648) (J.R.S.-P.)
| | - Josué Raymundo Solís-Pacheco
- Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd, Gral, Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Mexico
- Correspondence: (E.B.-L.); (J.R.S.-P.); Tel.: +52-(33)-1378-59000 (ext. 27648) (J.R.S.-P.)
| |
Collapse
|
15
|
Taylor R, Keane D, Borrego P, Arcaro K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023; 15:1420. [PMID: 36986148 PMCID: PMC10051234 DOI: 10.3390/nu15061420] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
While it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant's gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.
Collapse
Affiliation(s)
- Rachel Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Deirdre Keane
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Paulina Borrego
- Science & Engineering Library, University of Massachusetts, Lederle Grad Research Ctr Low-Rise, 740 N Pleasant St Rm A273, Amherst, MA 01003, USA
| | - Kathleen Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Olga L, van Diepen JA, Chichlowski M, Petry CJ, Vervoort J, Dunger DB, Kortman GAM, Gross G, Ong KK. Butyrate in Human Milk: Associations with Milk Microbiota, Milk Intake Volume, and Infant Growth. Nutrients 2023; 15:916. [PMID: 36839274 PMCID: PMC9963357 DOI: 10.3390/nu15040916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Butyrate in human milk (HM) has been suggested to reduce excessive weight and adipo-sity gains during infancy. However, HM butyrate's origins, determinants, and its influencing mechanism on weight gain are not completely understood. These were studied in the prospective longitudinal Cambridge Baby Growth and Breastfeeding Study (CBGS-BF), in which infants (n = 59) were exclusively breastfed for at least 6 weeks. Infant growth (birth, 2 weeks, 6 weeks, 3 months, 6 months, and 12 months) and HM butyrate concentrations (2 weeks, 6 weeks, 3 months, and 6 months) were measured. At age 6 weeks, HM intake volume was measured by deuterium-labelled water technique and HM microbiota by 16S sequencing. Cross-sectionally at 6 weeks, HM butyrate was associated with HM microbiota composition (p = 0.036) although no association with the abundance of typical butyrate producers was detected. In longitudinal analyses across all time points, HM butyrate concentrations were overall negatively associated with infant weight and adiposity, and associations were stronger at younger infant ages. HM butyrate concentration was also inversely correlated with HM intake volume, supporting a possible mechanism whereby butyrate might reduce infant growth via appetite regulation and modulation of HM intake.
Collapse
Affiliation(s)
- Laurentya Olga
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Janna A van Diepen
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47721, USA
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47721, USA
| | - Clive J Petry
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacques Vervoort
- Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0SL, UK
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47721, USA
| | - Ken K Ong
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0SL, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
17
|
Freidl R, Garib V, Linhart B, Haberl EM, Mader I, Szépfalusi Z, Schmidthaler K, Douladiris N, Pampura A, Varlamov E, Lepeshkova T, Beltyukov E, Naumova V, Taka S, Nosova D, Guliashko O, Kundi M, Kiyamova A, Katsamaki S, Valenta R. Extensively Hydrolyzed Hypoallergenic Infant Formula with Retained T Cell Reactivity. Nutrients 2022; 15:nu15010111. [PMID: 36615769 PMCID: PMC9824366 DOI: 10.3390/nu15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) can be life-threatening and affects up to 3% of children. Hypoallergenic infant formulas based on hydrolyzed cow's milk protein are increasingly considered for therapy and prevention of cow's milk allergy. The aim of this study was to investigate the allergenic activity and ability to induce T cell and cytokine responses of an infant formula based on extensively hydrolyzed cow's milk protein (whey) (eHF, extensively hydrolyzed formula) supplemented with Galactooligosaccharides (GOS) and Limosilactobacillus fermentum CECT5716 (LF) to determine its suitability for treatment and prevention of CMA. METHODS eHF and standard protein formula based on intact cow's milk proteins (iPF) with or without Galactooligosaccharide (GOS) and Limosilactobacillus fermentum CECT5716 (LF) were investigated with allergen-specific antibodies and tested for IgE reactivity and allergenic activity in basophil degranulation assays with sera from cow's milk (CM)-allergic infants/children. Their ability to stimulate T cell proliferation and cytokine secretion in cultured peripheral blood mononuclear cells (PBMC) from CM-allergic infants and children was studied with a FACS-based carboxyfluorescein diacetate succinimidyl ester (CFSE) dilution assay and xMAP Luminex fluorescent bead-based technology, respectively. RESULTS An eHF supplemented with GOS and LF exhibiting almost no IgE reactivity and allergenic activity was identified. This eHF induced significantly lower inflammatory cytokine secretion as compared to an intact protein-based infant formula but retained T cell reactivity. CONCLUSIONS Due to strongly reduced allergenic activity and induction of inflammatory cytokine secretion but retained T cell reactivity, the identified eHF may be used for treatment and prevention of CMA by induction of specific T cell tolerance.
Collapse
Affiliation(s)
- Raphaela Freidl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Garib
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Birgit Linhart
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Isabelle Mader
- HiPP GmbH & Co. Vertrieb KG, 85276 Pfaffenhofen, Germany
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Comprehensive Center of Pediatrics, Medical University Vienna, A-1090 Vienna, Austria
| | - Klara Schmidthaler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergy and Endocrinology, Comprehensive Center of Pediatrics, Medical University Vienna, A-1090 Vienna, Austria
| | - Nikos Douladiris
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Pampura
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Evgeniy Varlamov
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Tatiana Lepeshkova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Evgeny Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Veronika Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620014 Ekaterinburg, Russia
| | - Styliani Taka
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dina Nosova
- Allergy Department, UNIMED Laboratories, 119049 Moscow, Russia
| | - Olga Guliashko
- Allergy Department, UNIMED Laboratories, 119049 Moscow, Russia
| | - Michael Kundi
- Department for Environmental Heath, Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria
| | - Alina Kiyamova
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Stefani Katsamaki
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 119049 Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119049 Moscow, Russia
- Karl Landsteiner University for Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +43-1-40400-50420
| |
Collapse
|
18
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
19
|
Liu B, Zhao J, Liu Y, Qiao W, Jiang T, Chen L. Diversity and temporal dynamics of breast milk microbiome and its influencing factors in Chinese women during the first 6 months postpartum. Front Microbiol 2022; 13:1016759. [DOI: 10.3389/fmicb.2022.1016759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human breast milk (HBM) plays an important role in providing nutrients, beneficial microorganisms and bioactive components for infants, helping maturation of their immune system and gastrointestinal development. Here, we present a study aiming to investigate the diversity and temporal dynamics of the milk microbiome across the first 6 month postpartum in Chinese healthy breastfeeding women, and to investigate to what extent other variables (e.g., sampling location, infant sex, and mode of delivery) might also be related to variations in the human milk microbiome, and the association with maternal diet and nutrients. Fifty-three healthy pregnant women from four cities were recruited from a China Maternal and Infant Health Cohort Study and breast milk samples were collected and analyzed using 16S rRNA metagenomic sequencing. We illustrated the diversity and temporal dynamics during lactation (Adonis p-value = 3e–04). Firmicutes and Proteobacteria were the most abundant phyla, and Streptococcus, Staphylococcus, Serratia, and Corynebacterium were the core genera. Partitioning around medoids clustering identified two major internal clusters of breast milk microbiota. Cluster 1 was dominated by Acinetobacter and Pseudomonas, while Cluster 2 was dominated by Streptococcus and Staphylococcus. Among other environmental variables, sampling location showed significant influence on breast milk microbiome (Adonis p-value = 4e–04), while infant sex (Adonis p-value = 0.33) and mode of delivery (Adonis p-value = 0.19) were less related to variations in the human milk microbiome. Maternal diet such as tuber was significantly correlated with the relative abundance of Neisseria (rho = 0.34, adjusted p-value = 0.01) and Cutibacterium (rho = −0.35, adjusted p-value = 0.01), and nutrients such as carbohydrates were significantly correlated with the relative abundance of Aquabacterium (rho = −0.39, adjusted p-value = 0.0027), and vitamin B12 was significantly correlated with the relative abundance of Coprococcus (rho = 0.40, adjusted p-value = 0.0018), etc. These results illustrated the dynamic changes of composition and diversity during the lactation phases of the Chinese breast milk microbiome and addressed the importance of geographic location on milk microbiota, and associations with maternal diet consumption, which have potential benefits on the establishment and future health of breastfeeding infants.
Collapse
|
20
|
Du Y, Qiu Q, Cheng J, Huang Z, Xie R, Wang L, Wang X, Han Z, Jin G. Comparative study on the microbiota of colostrum and nipple skin from lactating mothers separated from their newborn at birth in China. Front Microbiol 2022; 13:932495. [PMID: 36262322 PMCID: PMC9574262 DOI: 10.3389/fmicb.2022.932495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing studies have found breast milk (BM) contains its own microbiota. However, the route through which microbes enter the BM is still unclear. In order to verify the entero-mammary pathway of BM, we designed a rigorous study that prevented oral bacteria from contaminating the breast and nipple skin (NS) during baby nursing. Thirty-one healthy, postpartum mothers living in southern China who were immediately separated from their newborn after delivery were enrolled in this study. Using an aseptic protocol for sampling, sterile water was used to wash the NS and was then collected. Then the first drop of BM was discarded and colostrum was collected manually. Amplicon sequencing was performed targeting the V3–V4 region of the bacterial 16S rRNA gene, and the differences between the microbiota of the colostrum and NS were analyzed. Additionally, the effects of environmental factors, such as the delivery mode and intrapartum antibiotic exposure, on the diversity of the colostrum microbiota were also analyzed. We found significant differences in the α diversity and richness between the BM and NS as evidenced by richness, Chao1, and Simpson indices. There were 170 operational taxonomic units (OTUs) shared by colostrum and NS, while 111 and 87 OTUs were unique, respectively, as well as a clear distinction in OTUs was observed by unifrac binary analysis between them. Linear discriminant analysis effect size analysis found that anaerobes, such as Bifidobacterium and Pantoea at the genus level and enterobacteria including Enterobacteriaceae at the family level, were predominant in the colostrum, while the predominant bacteria on the NS were Bacteroides, Staphylococcus, and Parabacteroides at the genus level. BM is colonized by bacteria prior to baby suckling, and the diversity of the colostrum microbiota differs from that of the NS. The predominant microbiota taxa in BM indicated that they were likely to be transferred to the breast through the intestinal tract. Our study provides direct evidence for the revolutionary active migration hypothesis. Additionally, factors like intrapartum antibiotic exposure did not significantly affect the diversity of the microbiota in the BM. Therefore, it is suggested that mothers continue to provide BM for their newborns during separation.
Collapse
Affiliation(s)
- Yanli Du
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Qing Qiu
- Department of Women Health Care, Shenzhen Luohu Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Jing Cheng
- Department of Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhili Huang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Ruixia Xie
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Lu Wang
- Delivery Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xiangyu Wang
- Shenzhen Second People’s Hospital, Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Xiangyu Wang,
| | - Zongli Han
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Zongli Han,
| | - Gang Jin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
- Gang Jin,
| |
Collapse
|
21
|
Lopez Leyva L, Gonzalez E, Solomons NW, Koski KG. Human milk microbiome is shaped by breastfeeding practices. Front Microbiol 2022; 13:885588. [PMID: 36160202 PMCID: PMC9493375 DOI: 10.3389/fmicb.2022.885588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
There is evidence that breastfeeding practices may impact the milk microbiota diversity and differential abundance at the genera level; however, the possibility that distinct feeding practices, such as exclusive (EBF) and non-exclusive breastfeeding (non-EBF), might alter the milk microbiome at the species level has not been explored. This cross-sectional study analyzed the milk microbiome of 64 Mam-Mayan indigenous mothers from San Juan Ostuncalco in Guatemala. Two breastfeeding practices [exclusive (EBF) vs non-exclusive (non-EBF)] were analyzed at two stages of lactation [early (5–46 days post-partum) vs late (109–184 days post-partum)]. EBF was defined as offering only human milk and non-EBF was defined as feeding the infant herbal teas (agüitas) and/or complementary foods while continuing to breastfeed. Results identified four clusters with distinct microbial communities that segregated bacterial species by both breastfeeding practices and stage of lactation. Comparison among these clusters identified several notable patterns. First, during EBF, the microbiome differed by stage of lactation where there was a shift in differential abundance from Actinobacteria and Firmicutes in early to Bacteroidetes and Proteobacteria species in late lactation. Second, a similar comparison between non-EBF mothers by stage of lactation also identified a higher differential abundance of Actinobacteria and Firmicutes species in early lactation, but only Proteobacteria and not Bacteroidetes in late lactation, indicating a further shift in the milk microbial ecosystem with fewer oral bacteria present in late lactation. Third, comparisons between EBF and non-EBF mothers at both early and late lactation showed that mothers who exclusively breastfed had more differentially abundant species in early (11 vs 1) and late (13 vs 2) lactation. Fourth, EBF at early and late lactation had more commensal and lactic acid bacteria, including Lactobacillus gasseri, Granulicatella elegans, Streptococcus mitis, and Streptococcus parasanguinis, compared to those who did not exclusively breastfeed. Collectively, these results show that EBF has more differentially abundant bacteria, including commensal and lactic acid bacteria, and that the addition of agüitas (herbal teas) and/or complementary foods modify the milk microbiome composition by reducing the oral bacteria and introducing more environmentally sourced bacteria to the ecosystem.
Collapse
Affiliation(s)
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Kristine G. Koski
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Kristine G. Koski,
| |
Collapse
|
22
|
Ding M, Zheng Y, Liu F, Tian F, Ross RP, Stanton C, Yu R, Zhao J, Zhang H, Yang B, Chen W. Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk. Benef Microbes 2022; 13:319-330. [PMID: 35979712 DOI: 10.3920/bm2021.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human breast milk is a source of microorganisms for infants that play an important role in building infant gut health and immunity. The bacterial composition in human breast milk is influenced by lactation time. This study aimed to investigate the influence of lactation time on bacteria in breast milk at the genus level and the species levels of Bifidobacterium and Lactobacillus on days 2-4, 8, 14, and 30. Eighteen individuals were recruited and 60 milk samples were collected. The 16S rRNA gene, and the bifidobacterial groEL and lactobacilli groEL genes were used for amplicon sequencing. The results revealed that the alpha diversities of colostrum and transition 1 (day 8) milk were lower than that of transition 2 (day 14) and mature milk. PCoA analysis showed that bacterial composition in colostrum and transition 1 milk differed from transition 2 and mature milk. A lower relative abundance of Blautia was found in colostrum and transition 1 milk compared with mature milk and lower abundances of Ruminococcus, Dorea, and Escherichia-Shigella were found in transition 1 compared with mature milk. Bifidobacterium ruminantium, Limosilactobacillus mucosae, and Ligilactobacillus ruminis were the predominant species across all four lactation stages, while Bifidobacterium bifidum was lower in transition 1, and Bifidobacterium pseudocatenulatum and Bifidobacterium pseudolongum were higher in transition 1 milk. This study indicated that the bacterial composition in colostrum was more similar to that of transition 1 milk, whereas the bacterial community in transition 2 milk was similar to that of mature milk which suggests that bacterial composition in human breast milk shows stage-specific signatures even within a short period at both genus level and Bifidobacterium and Lactobacillus species levels, providing insights into probiotic supplementation for the nursing mother.
Collapse
Affiliation(s)
- M Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - Y Zheng
- H&H Global Research and Technology Center, Guangzhou, China P.R
| | - F Liu
- H&H Global Research and Technology Center, Guangzhou, China P.R
| | - F Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - R P Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China P.R.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - C Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China P.R.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - R Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University,48 Huaishu Alley, Liangxi District, Wuxi, 214002, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China P.R
| | - B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,H&H Global Research and Technology Center, Guangzhou, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China P.R
| |
Collapse
|
23
|
Xie W, Zhang H, Ni Y, Peng Y. Contrasting Diversity and Composition of Human Colostrum Microbiota in a Maternal Cohort With Different Ethnic Origins but Shared Physical Geography (Island Scale). Front Microbiol 2022; 13:934232. [PMID: 35903466 PMCID: PMC9315263 DOI: 10.3389/fmicb.2022.934232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Colostrum represents an important source for the transfer of important commensal bacteria from mother to newborn and has a strong impact on the newborn’s health after birth. However, the composition of the colostrum microbiome is highly heterogeneous due to geographic factors and ethnicity (maternal, cultural, and subsistence factors). By analyzing the colostrum 16S rRNA gene full-length sequencing dataset in 97 healthy mothers (60 from Han, 37 from Li) from the Hainan island of China, we showed that the ethnic differences of the colostrum microbiome in a maternal cohort with different ethnic origins shared physical geography. Results indicated that the richness of microbial community in colostrum of Han women was higher than that of Li women, but there was no significant difference in Shannon index and invsimpson index between the two groups. Visualization analysis based on the distance showed an obvious ethnicity-associated structural segregation of colostrum microbiota. The relative abundance of Firmicutes was higher in the microbiota of the Han group than in Li’s, while Proteobacteria was on the contrary. At the genus level, the most dominant members of the Han and Li ethnic groups were Acinetobacter and Cupriavidus, two common environmental bacteria, respectively, although skin-derived Staphylococcus and Streptococcus were still subdominant taxa. Cupriavidus lacunae was the most dominant species in the Li group, accounting for 26.10% of the total bacterial community, but only 3.43% for the Han group with the most dominant Staphylococcus petrasii (25.54%), indicating that human colostrum microbiome was more susceptible to local living environmental factors. Hence, the ethnic origin of individuals may be an important factor to consider in human milk microbiome research and its potential clinical significance during the perinatal period in ethnic-diverse societies, even within a small geographic scale.
Collapse
Affiliation(s)
- Wanying Xie
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Xinjiang, China
- *Correspondence: Yongqing Ni,
| | - Yunhua Peng
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Yunhua Peng,
| |
Collapse
|
24
|
Turner S, McGann B, Brockway M’M. A review of the disruption of breastfeeding supports in response to the COVID-19 pandemic in five Western countries and applications for clinical practice. Int Breastfeed J 2022; 17:38. [PMID: 35570307 PMCID: PMC9107585 DOI: 10.1186/s13006-022-00478-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background The COVID-19 pandemic has significantly altered how breastfeeding support is provided, resulting in mixed breastfeeding outcomes and experiences for mothers. The World Health Organization has consistently supported breastfeeding from the beginning of the pandemic. However, recommendations from obstetrical and gynaecological societies within individual countries have varied in their alignment with this guidance, resulting in inconsistent recommendations. It is unknown how breastfeeding guidelines, maternal breastfeeding experiences, and breastfeeding initiation and duration compared across five Western countries. The current study is comprised of two parts, each with a different objective. Part One objective: to review pandemic-related changes in professional society guidelines on breastfeeding support in Australia, New Zealand, Canada, the United Kingdom, and the United States; and Part Two objective: to conduct a narrative review to summarize the evidence of how the pandemic has changed breastfeeding initiation, duration, and mothers’ breastfeeding experiences during the pandemic in these five countries and provide recommendations for clinical lactation support. Methods We searched for indicators that are impactful on breastfeeding outcomes: skin-to-skin contact, rooming in, direct breastfeeding and breast washing, in the five countries mentioned above and compared these to the recommendations from the World Health Organization. Next, we conducted a narrative review of the literature from these five countries to explore how the pandemic altered breastfeeding outcomes and used this information to provide suggestions for clinical practice moving forward. Results Recommendations on the four practices above differed by country and were not always in alignment with the World Health Organization recommendations. Mother-infant separation after birth in the United States was associated with a lower prevalence of breastfeeding initiation and duration. While some mothers reported positive breastfeeding experiences during the pandemic, many mothers indicated negative experiences related to decreased social and professional support. Conclusions The pandemic can inform practice recommendations and can be viewed as an opportunity to permanently modify existing methods to support breastfeeding families. The use of virtual care increased during the pandemic and should continue with specific considerations for prioritizing in-person care. This will help to provide more timely and accessible support for breastfeeding mothers.
Collapse
|
25
|
Liu F, He S, Yan J, Yan S, Chen J, Lu Z, Zhang B, Lane J. Longitudinal changes of human milk oligosaccharides, breastmilk microbiome and infant gut microbiome are associated with maternal characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Feitong Liu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Shiting He
- H&H Group Global Research and Technology Center Guangzhou 510700 China
- College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shuyuan Yan
- Child Health Care Center Changsha Hospital for Maternal and Child Care Changsha 410007 China
| | - Juchun Chen
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Zerong Lu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Bin Zhang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jonathan Lane
- H&H Group Global Research and Technology Center Cork P61 C996 Ireland
| |
Collapse
|
26
|
Lyons KE, Shea CAO, Grimaud G, Ryan CA, Dempsey E, Kelly AL, Ross RP, Stanton C. The human milk microbiome aligns with lactation stage and not birth mode. Sci Rep 2022; 12:5598. [PMID: 35379843 PMCID: PMC8979980 DOI: 10.1038/s41598-022-09009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
We analysed the human milk microbiome in a cohort of 80 lactating women and followed the dynamics in taxa over the course of lactation from birth to 6 months. Two hundred and thirty one milk samples were collected from full-term lactating women at 1, 4, 8 and 24 weeks following birth and analysed for microbiota composition using 16S rRNA sequencing. A significant decrease in milk microbiota diversity was observed throughout the first 6 months of lactation, with the greatest difference seen between week 8 and week 24. Nine genera predominated in milk over lactation from week 1 to week 24, comprising of Staphylococcus, Streptococcus, Pseudomonas, Acinetobacter, Bifidobacterium, Mesorhizobium, Brevundimonas, Flavobacterium, and Rhodococcus; however, fluctuations in these core genera were apparent over time. There was a significant effect of stage of lactation on the microbiome, while no effect of birth mode, infant sex and maternal BMI was observed throughout lactation. Streptococcus had the highest mean relative abundance at week 1 and 24 (17.3% and 24% respectively), whereas Pseudomonas predominated at week 4 (22%) and week 8 (19%). Bifidobacterium and Lactobacillus had the highest mean relative abundance at week 4 (5% and 1.4% respectively), and occurred at a relative abundance of ≤ 1% at all other time points. A decrease in milk microbiota diversity throughout lactation was also observed. This study concluded that lactation stage was the primary driving factor in milk microbiota compositional changes over lactation from birth to 6 months, while mode of delivery was not a factor driving compositional changes throughout human lactation.
Collapse
|
27
|
The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. Eur J Pediatr 2022; 181:1811-1820. [PMID: 35124754 PMCID: PMC9056486 DOI: 10.1007/s00431-022-04383-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Although traditionally considered sterile, human milk is currently recognized as an alive ecosystem that harbors not only bacteria, but also viruses, fungi and yeasts, and minor genera, collectively known as the human milk microbiome (HMM). The seeding of HMM is a complex phenomenon whose dynamics are still a matter of research. Many factors contribute to its determination, both maternal, neonatal, environmental, and related to human milk itself. The transmission of microorganisms to the infant through breastfeeding may impact its present and future health, mainly shaping the GI tract microbiome and immune system. The existence and persistence of HMM as a conserved feature among different species may also have an evolutionary meaning, which will become apparent only in evolutionary times. CONCLUSION The complexities of HMM warrant further research in order to deepen our knowledge on its origin, determinants, and impact on infants' health. The practical and translational implications of research on HMM (e.g., reconstitution of donor human milk through inoculation of infant's own mother milk, modulation of HMM through maternal dietary supplementation) should not be overlooked. WHAT IS KNOWN • Human milk harbors a wide variety of microorganisms, ranging from bacteria to viruses, fungi and yeasts, and minor genera. • Human milk microbiome is shaped over time by many factors: maternal, neonatal, environmental, and related to human milk itself. • The transmission of microorganisms through breastfeeding may impact the infant's present and future health. WHAT IS NEW • We provide an overview on human milk microbiome, hopefully encouraging physicians to consider it among the other better-known breastfeeding benefits. • Further studies, with standardized and rigorous study designs to enhance accuracy and reproducibility of the results, are needed to deepen our knowledge of the human milk microbiota and its role in newborn and infant's health.
Collapse
|
28
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
29
|
The Maternal Milk Microbiome in Mammals of Different Types and Its Potential Role in the Neonatal Gut Microbiota Composition. Animals (Basel) 2021; 11:ani11123349. [PMID: 34944125 PMCID: PMC8698027 DOI: 10.3390/ani11123349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal milk, a main source of nutrition for neonates in early life, has attracted attention. An increasing number of studies have found that maternal milk has a high microbial diversity, as well as factors that might influence this diversity. However, there is a lack of knowledge regarding the effects of host diet and phylogeny on maternal milk microbes and the contribution of the maternal milk microbiota to the neonatal gut microbiota. Here, we analyzed the maternal milk and fecal microbiota of nine species (lion, dog, panda, human, mouse, rhesus macaque, cow, goat, and rabbit) of mammals of three type groups (herbivore, omnivore, and carnivore) using 16S rRNA amplicon sequencing. Our study provided evidence of host diet and phylogeny on the maternal milk microbiota. Moreover, functional prediction revealed that the carnivores had a significantly higher percentage of base excision repair, glycerolipid metabolism, taurine and hypotaurine metabolism, inorganic ion transport and metabolism, and nucleotide metabolism; while arginine and proline metabolism showed enrichment in the herbivore group. Source-tracking analysis showed that the contributions of bacteria from maternal milk to the microbiota of neonates of different mammals were different at day 3 after neonatal birth. Overall, our findings provided a theoretical basis for the maternal milk microbiota to affect neonatal fecal microbiota at day 3 after neonatal birth.
Collapse
|
30
|
Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int J Mol Sci 2021; 22:ijms222111866. [PMID: 34769296 PMCID: PMC8584477 DOI: 10.3390/ijms222111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.
Collapse
|
31
|
Mallardi D, Tabasso C, Piemontese P, Morandi S, Silvetti T, Biscarini F, Cremonesi P, Castiglioni B, Pica V, Stuknyte M, De Noni I, Amato O, Liotto N, Mosca F, Roggero P. Inoculation of mother's own milk could personalize pasteurized donor human milk used for feeding preterm infants. J Transl Med 2021; 19:420. [PMID: 34627277 PMCID: PMC8502300 DOI: 10.1186/s12967-021-03096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human milk is a vehicle for bioactive compounds and beneficial bacteria which promote the establishment of a healthy gut microbiome of newborns, especially of preterm infants. Pasteurized donor human milk (PDHM) is the second-best option when preterm mother's own milk is unavailable. Since pasteurization affect the microbiological quality of donor milk, PDHM was inoculated with different preterm milk samples and then incubated, in order to evaluate the effect in terms of bacterial growth, human milk microbiome and proteolytic phenomena. METHODS In an in-vitro study PDHM was inoculated at 10% v/v using ten preterm milk samples. Microbiological, metataxonomic and peptidomic analyses, on preterm milk samples at the baseline (T0), on PDHM and on inoculated milk (IM) samples at T0, after 2 h (T1) and 4 h (T2) of incubation at 37 °C, were conducted. RESULTS IM samples at T2 showed a Total Bacterial Count not significantly different (p > 0.01) compared to preterm milk samples. At T2 lactic acid bacteria level was restored in all IM. After inoculation, metataxonomic analysis in IM samples showed that Proteobacteria remained the predominant phylum while Firmicutes moved from 3% at T1 to 9.4% at T2. Peptidomic profile of IM resembled that of PDHM, incubated for the same time, in terms of number and type of peptides. CONCLUSION The study demonstrated that inoculation of PDHM with mother's own milk could restore bacterial growth and personalize human milk microbiome in PDHM. This effect could be beneficial because of the presence of maternal probiotic bacteria which make PDHM more similar to mother's own milk.
Collapse
Affiliation(s)
- D Mallardi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy.
| | - C Tabasso
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
| | - P Piemontese
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
| | - S Morandi
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy
| | - T Silvetti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy
| | - F Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), U.O.S. Di Lodi, Via Einstein, 26900, Lodi, Italy
| | - P Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), U.O.S. Di Lodi, Via Einstein, 26900, Lodi, Italy
| | - B Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), U.O.S. Di Lodi, Via Einstein, 26900, Lodi, Italy
| | - V Pica
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - M Stuknyte
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - I De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - O Amato
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
| | - N Liotto
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
| | - F Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - P Roggero
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 12, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Abstract
Mother's own milk provides personalized nutrition and immune protection to the developing infant. The presence of healthy microbes plays an important role in the infant's gut by programming the microbiota and excluding potential pathogens. This review describes the important components in mother's own milk that contribute to its superiority for infant nutrition and suggest potential strategies to replicate these factors in alternative feedings when sufficient milk is unavailable. Current strategies to supplement, substitute and replicate mother's own milk including microbial restoration, use of unpasteurized donor human milk, probiotics and fortification are discussed. Critical work remains to be done in understanding the human milk microbiome and metabolome and in improving lactation support for mothers of preterm infants. Increasing delivery of mother's own milk and milk components to infants would likely positively impact infant mortality and health worldwide.
Collapse
Affiliation(s)
- Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road Rm 307, Gainesville, FL 32610 USA.
| | - Marion M Bendixen
- College of Nursing, University of Florida, PO Box 100197, Gainesville, FL 32610-0197 USA.
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road Rm 307, Gainesville, FL 32610 USA.
| | - Leslie Ann Parker
- College of Nursing, University of Florida, PO Box 100197, Gainesville, FL 32610-0197 USA.
| |
Collapse
|
33
|
Selma-Royo M, Calvo Lerma J, Cortés-Macías E, Collado MC. Human milk microbiome: From actual knowledge to future perspective. Semin Perinatol 2021; 45:151450. [PMID: 34274151 DOI: 10.1016/j.semperi.2021.151450] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is the gold standard for infant nutrition during the first months of life since it is perfectly adapted to the neonatal nutritional requirements and supports infant growth and development. Human milk contains a complex nutritional and bioactive composition including microorganisms and oligosaccharides which would also contribute to the gut and immune system maturation. Despite the growing evidence, the factors contributing to milk microbes' variations and the potential functions on the infant's gut are still uncovered. This short-review provides a general overview of milk microbiota, potential factors shaping its composition, contribution to the infant microbiota and immune system development, including the suggested biological relevance for infant health as well as the description of tools and strategies aimed to restore and module microbes in milk.
Collapse
Affiliation(s)
- Marta Selma-Royo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia (Spain).
| | - Joaquim Calvo Lerma
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia (Spain)
| | - Erika Cortés-Macías
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia (Spain)
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia (Spain).
| |
Collapse
|
34
|
Sanjulián L, Lamas A, Barreiro R, Cepeda A, Fente CA, Regal P. Bacterial Diversity of Breast Milk in Healthy Spanish Women: Evolution from Birth to Five Years Postpartum. Nutrients 2021; 13:2414. [PMID: 34371924 PMCID: PMC8308733 DOI: 10.3390/nu13072414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The objective of this work was to characterize the microbiota of breast milk in healthy Spanish mothers and to investigate the effects of lactation time on its diversity. A total of ninety-nine human milk samples were collected from healthy Spanish women and were assessed by means of next-generation sequencing of 16S rRNA amplicons and by qPCR. Firmicutes was the most abundant phylum, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. Accordingly, Streptococcus was the most abundant genus. Lactation time showed a strong influence in milk microbiota, positively correlating with Actinobacteria and Bacteroidetes, while Firmicutes was relatively constant over lactation. 16S rRNA amplicon sequencing showed that the highest alpha-diversity was found in samples of prolonged lactation, along with wider differences between individuals. As for milk nutrients, calcium, magnesium, and selenium levels were potentially associated with Streptococcus and Staphylococcus abundance. Additionally, Proteobacteria was positively correlated with docosahexaenoic acid (DHA) levels in breast milk, and Staphylococcus with conjugated linoleic acid. Conversely, Streptococcus and trans-palmitoleic acid showed a negative association. Other factors such as maternal body mass index or diet also showed an influence on the structure of these microbial communities. Overall, human milk in Spanish mothers appeared to be a complex niche shaped by host factors and by its own nutrients, increasing in diversity over time.
Collapse
Affiliation(s)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| | | | | | | | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| |
Collapse
|
35
|
Thum C, Wall CR, Weiss GA, Wang W, Szeto IMY, Day L. Changes in HMO Concentrations throughout Lactation: Influencing Factors, Health Effects and Opportunities. Nutrients 2021; 13:2272. [PMID: 34209241 PMCID: PMC8308359 DOI: 10.3390/nu13072272] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are important functional biomolecules in human breast milk. Understanding the factors influencing differences in HMO composition and changes in their concentration over lactation can help to design feeding strategies that are well-adapted to infant's needs. This review summarises the total and individual concentration of HMOs from data published from 1999 to 2019. Studies show that the HMO concentrations are highest in colostrum (average 9-22 g/L), followed by slightly lower concentrations in transitional milk (average 8-19 g/L), with a gradual decline in mature milk as lactation progresses, from 6-15 g/L in breast milk collected within one month of birth, to 4-6 g/L after 6 months. Significant differences in HMO composition have been described between countries. Different HMOs were shown to be predominant over the course of lactation, e.g., 3-fucosyllactose increased over lactation, whereas 2'-fucosyllactose decreased. Recent clinical studies on infant formula supplemented with 2'-fucosyllactose in combination with other oligosaccharides showed its limited beneficial effect on infant health.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand;
| | - Clare Rosemary Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | | | - Wendan Wang
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd., Fengtai District, Beijing 100071, China; (W.W.); (I.M.-Y.S.)
| | - Ignatius Man-Yau Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd., Fengtai District, Beijing 100071, China; (W.W.); (I.M.-Y.S.)
| | - Li Day
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand;
| |
Collapse
|
36
|
Yan W, Luo B, Zhang X, Ni Y, Tian F. Association and Occurrence of Bifidobacterial Phylotypes Between Breast Milk and Fecal Microbiomes in Mother-Infant Dyads During the First 2 Years of Life. Front Microbiol 2021; 12:669442. [PMID: 34163448 PMCID: PMC8215152 DOI: 10.3389/fmicb.2021.669442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
Breast milk acts as an intermediary for the transfer of functionally important commensal bacteria from mother to infant, especially for Bifidobacterium that can colonize the infant gut. However, the vast majority of rRNA amplicon-based studies reported the conspicuous intercohort and interindividual variation for the prevalence of Bifidobacterium in breast milk. In order to elucidate whether Bifidobacterium phylotypes persistently co-occured at the species or strain level in mother–breast milk–infant triads, we analyzed collectively the next-generation sequencing (NGS) datasets of bacterial 16S rRNA gene and the Bifidobacterium-specific groEL gene from maternal feces, breast milk, and infant feces in a small yet very homogeneous cohort of 25 healthy Uyghur mother–infant pairs (lactation for 7–720 days) in Kashgar, Xinjiang, China. Overall, 16S rRNA gene analysis showed that microbiome in the newborn gut was closer to that of breast milk in the first 4 months of lactation, and subsequently showed an obvious trend of adulthood at 6–12 months. Based on the BLAST accurate taxonomic result of the representative sequences of all ASVs (amplicon sequencing variants), only three sets of ASVs could be clearly assigned into Bifidobacterium species, whereas the remaining eight sets of ASVs corresponded to four indefinite Bifidobacterium species group. By contrast, the groEL gene dataset was partitioned into 376 ASVs, at least belonging to 13 well-known Bifidobacterium species or subspecies, of which 15 ASVs, annotated to seven well-known Bifidobacterium species or subspecies, showed triadic synchronism in most 23 mother–infant pairs tested. However, several other rare bifidobacterial phylotypes, which were frequently encountered in animals, were found to display no correspondence of the presence between the three ecosystems of mother–infant pairs. Our test results were obviously to support the hypothesis that breast milk acts as an intermediary for the transfer of probiotic commensal bacteria from mother to infant, especially for endosymbiotic Bifidobacterium that can colonize the infant gut. Some oxygen-insensitive exogenous Bifidobacterium phylotypes with a cosmopolitan lifestyle may be indirectly transferred to breast milk and the infant’s intestinal tract through environmental contamination. Thus, the groEL gene proved to be a very effective target for the depth resolution of Bifidobacterium community by high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Wenli Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xuyao Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
de Cena JA, Zhang J, Deng D, Damé-Teixeira N, Do T. Low-Abundant Microorganisms: The Human Microbiome's Dark Matter, a Scoping Review. Front Cell Infect Microbiol 2021; 11:689197. [PMID: 34136418 PMCID: PMC8201079 DOI: 10.3389/fcimb.2021.689197] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Research on the human microbiome has mainly been restricted to the identification of most abundant microbiota associated with health or disease. Their abundance may reflect their capacity to exploit their niche, however, metabolic functions exerted by low-abundant microrganisms can impact the dysbiotic signature of local microbial habitats. This scoping review aims to map the literature regarding the management of low-abundant microorganisms in studies investigating human microbiome samples. A systematic literature search was performed in 5 electronic databases, as well as grey literature. We selected clinical microbiome studies targeting human participants of any age, from any body site. We also included studies with secondary data which originated from human biofilm samples. All of the papers used next-generation sequencing (NGS) techniques in their methodology. A total of 826 manuscripts were retrieved, of which 42 were included in this review and 22 reported low-abundant bacteria (LB) in samples taken from 7 body sites (breast, gut, oral cavity, skin, stomach, upper respiratory tract (URT), and vagina). Four studies reported microbes at abundance levels between 5 and 20%, 8 studies reported between 1 and 5%, and 18 studies reported below 1%. Fifteen papers mentioned fungi and/or archaea, and from those only 4 (fungi) and 2 (archaea) produced data regarding the abundance of these domains. While most studies were directed towards describing the taxonomy, diversity and abundance of the highly abundant species, low-abundant species have largely been overlooked. Indeed, most studies select a cut-off value at <1% for low-abundant organisms to be excluded in their analyses. This practice may compromise the true diversity and influence of all members of the human microbiota. Despite their low abundance and signature in biofilms, they may generate important markers contributing to dysbiosis, in a sort of 'butterfly effect'. A detailed snapshot of the physiological, biological mechanisms at play, including virulence determinants in the context of a dysbiotic community, may help better understand the health-disease transition.
Collapse
Affiliation(s)
- Jéssica Alves de Cena
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasilia, Brazil
| | - Jianying Zhang
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
- Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Dongmei Deng
- Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Nailê Damé-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasilia, Brazil
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
38
|
Lopez Leyva L, Gonzalez E, Li C, Ajeeb T, Solomons NW, Agellon LB, Scott ME, Koski KG. Human Milk Microbiota in an Indigenous Population Is Associated with Maternal Factors, Stage of Lactation, and Breastfeeding Practices. Curr Dev Nutr 2021; 5:nzab013. [PMID: 33898919 PMCID: PMC8053399 DOI: 10.1093/cdn/nzab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Human milk contains a diverse community of bacteria that are modified by maternal factors, but whether these or other factors are similar in developing countries has not been explored. Our objective was to determine whether the milk microbiota was modified by maternal age, BMI, parity, lactation stage, subclinical mastitis (SCM), and breastfeeding practices in the first 6 mo of lactation in an indigenous population from Guatemala. METHODS For this cross-sectional study, Mam-Mayan indigenous mothers nursing infants aged <6 mo were recruited. Unilateral human milk samples were collected (n = 86) and processed for 16S rRNA sequencing at the genus level. Microbial diversity and relative abundance were compared with maternal factors [age, BMI, parity, stage of lactation, SCM, and 3 breastfeeding practices (exclusive, predominant, mixed)] obtained through questionnaires. RESULTS Streptococcus was the most abundant genus (33.8%), followed by Pseudomonas (18.7%) and Sphingobium (10.7%) but relative abundance was associated with maternal factors. First, Lactobacillus and Streptococcus were more abundant in early lactation whereas the common oral (Leptotrichia) and environmental (Comamonas) bacteria were more abundant in established lactation. Second, Streptococcus,Lactobacillus,Lactococcus,Leuconostoc, and Micrococcus had a higher abundance in multiparous mothers compared with primiparous mothers. Third, a more diverse microbiota characterized by a higher abundance of lactic acid bacteria (Lactobacillus,Leuconostoc, and Lactococcus), Leucobacter, and Micrococcus was found in mothers with a healthy BMI. Finally, distinct microbial communities differed by stage of lactation and by exclusive, predominant, or mixed breastfeeding practices. CONCLUSION Milk bacterial communities in an indigenous community were associated with maternal factors. Higher microbial diversity was supported by having a healthy BMI, the absence of SCM, and by breastfeeding. Interestingly, breastfeeding practices when assessed by lactation stage were associated with distinct microbiota profiles.
Collapse
Affiliation(s)
- Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Chen Li
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Tamara Ajeeb
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
39
|
Cortes-Macías E, Selma-Royo M, García-Mantrana I, Calatayud M, González S, Martínez-Costa C, Collado MC. Maternal Diet Shapes the Breast Milk Microbiota Composition and Diversity: Impact of Mode of Delivery and Antibiotic Exposure. J Nutr 2021; 151:330-340. [PMID: 33188413 PMCID: PMC7850106 DOI: 10.1093/jn/nxaa310] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast milk is a complex biofluid that provides nutrients and bioactive agents, including bacteria, for the development of the infant gut microbiota. However, the impact of maternal diet and other factors, such as mode of delivery and antibiotic exposure, on the breast milk microbiota has yet to be understood. OBJECTIVES This study aimed to examine the association between maternal diet and breast milk microbiota and to ascertain the potential role of mode of delivery and antibiotic exposure. METHODS In a cross-sectional study of the MAMI cohort, breast milk microbiota profiling was assessed in 120 samples from healthy mothers by 16S rRNA gene sequencing. Maternal dietary information was recorded through an FFQ, and clinical characteristics, including mode of delivery, antibiotic exposure, and exclusive breastfeeding, were collected. RESULTS Maternal diet was grouped into 2 clusters: Cluster I (high intake of plant protein, fiber, and carbohydrates), and Cluster II (high intake of animal protein and lipids). Breast milk microbiota was shaped by maternal dietary clusters. Staphylococcus and Bifidobacterium were associated with carbohydrate intake whereas the Streptococcus genus was associated with intakes of the n-3 PUFAs [EPA and docosapentaenoic acid (22:5ω-3)]. Mode of delivery and antibiotic exposure influenced breast milk microbiota in a diet cluster-dependent manner. Differences between/among the maternal dietary clusters were found in the milk microbiota of the cesarean-section (C-section)/antibiotic group, whereas no differences were observed in vaginal births. Lower abundances of Lactobacillus, Bacteroides, and Sediminibacterium genera were observed in Cluster II/C-section/antibiotic exposure compared with the other groups. CONCLUSIONS Maternal diet shapes the composition and diversity of breast milk microbiota, with the most important contributions coming from dietary fiber and both plant and animal protein intakes. The relation between the maternal diet and the milk microbiota needs further research because it has a key impact on infant microbiota development and contributes to infant health outcomes in the short and long term.This trial was registered at clinicaltrials.gov as NCT03552939.
Collapse
Affiliation(s)
- Erika Cortes-Macías
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Izaskun García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Marta Calatayud
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| | - Sonia González
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), Oviedo, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Valencia, Spain
| |
Collapse
|
40
|
The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J Clin Med 2021; 10:jcm10030459. [PMID: 33504109 PMCID: PMC7865818 DOI: 10.3390/jcm10030459] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.
Collapse
|
41
|
Moossavi S, Fontes ME, Rossi L, Fusch G, Surette MG, Azad MB. Capturing the diversity of the human milk microbiota through culture-enriched molecular profiling: a feasibility study. FEMS Microbiol Lett 2021; 368:6070652. [PMID: 33417698 DOI: 10.1093/femsle/fnab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Previous human milk studies have confirmed the existence of a highly diverse bacterial community using culture-independent and targeted culture-dependent techniques. However, culture-enriched molecular profiling of milk microbiota has not been done. Additionally, the impact of storage conditions and milk fractionation on microbiota composition is not understood. In this feasibility study, we optimized and applied culture-enriched molecular profiling to study culturable milk microbiota in eight milk samples collected from mothers of infants admitted to a neonatal intensive care unit. Fresh samples were immediately plated or stored at -80°C for 2 weeks (short-term frozen). Long-term samples were stored at -20°C for >6 months. Samples were cultured using 10 different culture media and incubated both aerobically and anaerobically. We successfully isolated major milk bacteria, including Streptococcus, Staphylococcus and Bifidobacterium, from fresh milk samples, but were unable to culture any bacteria from the long-term frozen samples. Short-term freezing shifted the composition of viable milk bacteria from the original composition in fresh samples. Nevertheless, the inter-individual variability of milk microbiota composition was observed even after short-term storage. There was no major difference in the overall milk microbiota composition between milk fractions in this feasibility study. This is among the first studies on culture-enriched molecular profiling of the milk microbiota demonstrating the effect of storage and fractionation on milk microbiota composition.
Collapse
Affiliation(s)
- Shirin Moossavi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.,Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran.,Microbiome and Microbial Ecology Interest Group (MMEIG), Universal Scientific Education and Research Network (USERN), Calgary, AB T2N 4Z1, Canada
| | - Michelle E Fontes
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura Rossi
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gerhard Fusch
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael G Surette
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| |
Collapse
|
42
|
Zhang X, Mushajiang S, Luo B, Tian F, Ni Y, Yan W. The Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Front Microbiol 2020; 11:597911. [PMID: 33408705 PMCID: PMC7779531 DOI: 10.3389/fmicb.2020.597911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
The maternal gut is the principal source of commensal bacteria in the infant gut during the lactation stage, where breast milk acts as an intermediary for the transfer of potential probiotic bacteria consortia, including Lactobacillus. This study aimed to characterize the bacterial communities in human milk, maternal, and infant feces in a small yet very homogeneous cohort of 25 healthy mother–infant pairs in northwestern China (n = 25, infant age from 7 days to 2 years), with special emphasis on the cooccurrence and vertical transfer of Lactobacillus phylotypes at the species or strain level in mother-breast milk-infant triads. Accurate sequencing analysis revealed that among 73 Lactobacillus zero-radius operational classification units (ZOTUs) identified, 58 belonging to 18 recognized species or species groups were distributed in all three types of samples. Lactobacillus ruminis, L. mucosae and L. gasseri-johnsonii as true residents were the most represented in all three ecosystems, whereas the content of Lactobacillus phylotypes commonly developed as probiotics was not dominant. While the numbers of Lactobacillus species in breast milk and infant feces were greater than that in maternal feces, principal coordinates analysis (PCoA) based on beta diversity, coupled with the frequency of isolates determined by culture methods, showed that the Lactobacillus community in the infant gut was more similar to that in the maternal gut than to that in breast milk, suggesting that the gut is niche selective for Lactobacillus populations. In addition, identical strains of L. ruminis, L. paracasei, L. mucosae and L. salivarius were isolated from multiple mother–infant pairs, supporting the hypothesis that vertical transfer of bacteria via breastfeeding contributes to the initial establishment of the microbiota in the developing infant intestine.
Collapse
Affiliation(s)
- Xuyao Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | | | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Wenli Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
43
|
Vertical transmission of gut microbiota: Points of action of environmental factors influencing brain development. Neurosci Res 2020; 168:83-94. [PMID: 33309866 DOI: 10.1016/j.neures.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Environmental factors in early life interact with genetics to exert a long-lasting and broad influence on health and disease. There has been a marked growth in the number of environmental factors studied in association with neurodevelopmental disorders. Colonization of the gut microbiota in the offspring uses the maternal resident flora as a primary source of bacteria during perinatal periods. Several lines of evidence have shown that various environmental factors including the mode of delivery, exposure to antibiotics, infection, stress, diet, quality of breast milk, and type of infant-feeding during the perinatal periods can perturb the gut microbiota colonization in the offspring, finally leading to disturbances in brain development. This study proposes that the gut microbiota seeded primarily by maternal microbiota, and the postnatal colonization of the microbiota in the offspring can be critical action points of environmental factors when deciphering the mechanisms of actions of environmental factors in brain development. This research reviews the inheritance and colonization of the microbiota during early life and the potential actions of the environmental factors influencing brain development in the offspring by modulating the vertical transmission of gut microbiota.
Collapse
|
44
|
Łubiech K, Twarużek M. Lactobacillus Bacteria in Breast Milk. Nutrients 2020; 12:E3783. [PMID: 33321792 PMCID: PMC7764098 DOI: 10.3390/nu12123783] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Breast milk is an optimal food for infants and toddlers. The composition of breast milk adapts to the needs of the developing organism, satisfying nutritional needs at an early stage of growth and development. The results of research to date have shown that breast milk is the best food for a child, containing not only nutrients but also biologically active substances that aid in the optimal, proper growth and development of infants. Among the many components of breast milk, an important element is the probiotic microflora, including bacteria of the genus Lactobacillus spp. These organisms exert a multidirectional, health-promoting effect on the body of children who consume breast milk. The number of lactic acid bacteria, including Lactobacillus, colonizing the breast milk environment and their species diversity varies and depends on many factors, both maternal and environmental. Breast milk, as a recommended food for infants, is an important source of probiotic microflora. The aim of this study was to present the current understanding of probiotic bacteria of the genus Lactobacillus present in breast milk.
Collapse
Affiliation(s)
- Katarzyna Łubiech
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland;
| | | |
Collapse
|
45
|
Lopez Leyva L, Brereton NJ, Koski KG. Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. Comput Struct Biotechnol J 2020; 19:121-133. [PMID: 33425245 PMCID: PMC7770459 DOI: 10.1016/j.csbj.2020.11.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk is the ideal food for infants due to its unique nutritional and immune properties, and more recently human milk has also been recognized as an important source of bacteria for infants. However, a substantial amount of fundamental human milk microbiome information remains unclear, such as the origin, composition and function of the community and its members. There is emerging evidence to suggest that the diversity and composition of the milk microbiome might differ between lactation stages, due to maternal factors and diet, agrarian and urban lifestyles, and geographical location. The evolution of the methods used for studying milk microbiota, transitioning from culture dependent-approaches to include culture-independent approaches, has had an impact on findings and, in particular, primer selection within 16S rRNA gene barcoding studies have led to discrepancies in observed microbiota communities. Here, the current state-of-the-art is reviewed and emerging frontiers essential to improving our understanding of the human milk microbiome are considered.
Collapse
Affiliation(s)
- Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Macdonald Stewart Building, 21111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
| | - Nicholas J.B. Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Kristine G. Koski
- School of Human Nutrition, McGill University, Macdonald Stewart Building, 21111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
46
|
Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol 2020; 10:586667. [PMID: 33330129 PMCID: PMC7718026 DOI: 10.3389/fcimb.2020.586667] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.
Collapse
Affiliation(s)
- Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pia S. Pannaraj
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine and Children’s Hospital, Los Angeles, CA, United States
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
47
|
Asbury MR, Butcher J, Copeland JK, Unger S, Bando N, Comelli EM, Forte V, Kiss A, LeMay-Nedjelski L, Sherman PM, Stintzi A, Tomlinson C, Wang PW, O'Connor DL. Mothers of Preterm Infants Have Individualized Breast Milk Microbiota that Changes Temporally Based on Maternal Characteristics. Cell Host Microbe 2020; 28:669-682.e4. [PMID: 32888417 DOI: 10.1016/j.chom.2020.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Mother's milk contains complex microbial communities thought to be important for colonizing a preterm infant's gastrointestinal tract. However, little is known about the microbiota in the preterm mother's milk and factors influencing its composition. We characterized the temporal dynamics of microbial communities in 490 breast milk samples from 86 mothers of preterm infants (born <1,250g) over the first 8 weeks postpartum. Highly individualized microbial communities were identified in each mother's milk that changed temporally with notable alterations in predicted microbial functions. However, pre-pregnancy BMI, delivery mode, and antibiotics were associated with changes in these microbial dynamics. Individual classes of antibiotics and their duration of exposure during prenatal and postpartum periods showed unique relationships with microbial taxa abundance and diversity in mother's milk. These results highlight the temporal complexity of the preterm mother's milk microbiota and its relationship with maternal characteristics as well as the importance of discussing antibiotic stewardship for mothers.
Collapse
Affiliation(s)
- Michelle R Asbury
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Rogers Hixon Ontario Human Milk Bank and the Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Nicole Bando
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Victoria Forte
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Kiss
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada; Evaluative and Clinical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Lauren LeMay-Nedjelski
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip M Sherman
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christopher Tomlinson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Rogers Hixon Ontario Human Milk Bank and the Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
48
|
Quin C, Gibson DL. Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. Gut Microbes 2020; 11:1143-1171. [PMID: 32249675 PMCID: PMC7524360 DOI: 10.1080/19490976.2020.1736973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gastrointestinal tract with microorganisms during infancy represents a critical control point for shaping life-long immune-mediated disease susceptibility. Abnormal colonization or an imbalance of microbes, termed dysbiosis, is implicated in several diseases. Consequently, recent research has aimed at understanding ways to manipulate a dysbiotic microbiome during infancy to resemble a normal, healthy microbiome. However, one of the fundamental issues in microbiome research is characterizing what a "normal" infant microbiome is based on geography, ethnicity and cultural variations. This review provides a comprehensive account of what is currently known about the infant microbiome from a global context. In general, this review shows that the influence of cultural variations in feeding practices, delivery modes and hygiene are the biggest contributors to microbial variability. Despite geography or race, all humans have similar microbial succession during infancy.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada,Department of Medicine, University of British Columbia, Kelowna, Canada,CONTACT Deanna L. Gibson Department of Biology, University of British Columbia, Okanagan Campus, ASC 386, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| |
Collapse
|
49
|
Abstract
Human milk harbors its own microbiota, but whether the microbes seed the infant gut and are modified by breastfeeding practices is unresolved. In this issue, Fehr et al. (2020) sequence breastmilk and infant stool samples from mother-infant dyads to investigate the co-occurrence of milk-gut bacteria and the impact of breastfeeding practices.
Collapse
Affiliation(s)
- Moira K Differding
- Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument Street, Baltimore, MD 21205, USA
| | - Noel T Mueller
- Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument Street, Baltimore, MD 21205, USA.
| |
Collapse
|
50
|
Corona-Cervantes K, García-González I, Villalobos-Flores LE, Hernández-Quiroz F, Piña-Escobedo A, Hoyo-Vadillo C, Rangel-Calvillo MN, García-Mena J. Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. PeerJ 2020; 8:e9205. [PMID: 32509465 PMCID: PMC7247532 DOI: 10.7717/peerj.9205] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human milk microbiota plays a role in the bacterial colonization of the neonatal gut, which has important consequences in the health and development of the newborn. However, there are few studies about the vertical transfer of bacteria from mother to infant in Latin American populations. METHODS We performed a cross-sectional study characterizing the bacterial diversity of 67 human milk-neonatal stool pairs by high-throughput sequencing of V3-16S rDNA libraries, to assess the effect of the human milk microbiota on the bacterial composition of the neonate's gut at early days. RESULTS Human milk showed higher microbial diversity as compared to the neonatal stool. Members of the Staphylococcaceae and Sphingomonadaceae families were more prevalent in human milk, whereas the Pseudomonadaceae family, Clostridium and Bifidobacterium genera were in the neonatal stool. The delivery mode showed association with the neonatal gut microbiota diversity, but not with the human milk microbiota diversity; for instance, neonates born by C-section showed greater richness and diversity in stool microbiota than those born vaginally. We found 25 bacterial taxa shared by both ecosystems and 67.7% of bacteria found in neonate stool were predicted to originate from human milk. This study contributes to the knowledge of human milk and neonatal stool microbiota in healthy Mexican population and supports the idea of vertical mother-neonate transmission through exclusive breastfeeding.
Collapse
Affiliation(s)
- Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Igrid García-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| | - Martín Noé Rangel-Calvillo
- Hospital General “Dr. José María Rodríguez”, Instituto de Salud del Estado de México, Ecatepec de Morelos, Estado de Mexico, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, CDMX, Mexico
| |
Collapse
|