1
|
Aydin B, Arol N, Burak N, Usta A, Ceylan M. Investigation of Chitosan-Based Hydrogels and Polycaprolactone-Based Electrospun Fibers as Wound Dressing Materials Based on Mechanical, Physical, and Chemical Characterization. Gels 2025; 11:39. [PMID: 39852010 PMCID: PMC11764951 DOI: 10.3390/gels11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The aim of this project is to fabricate fiber mats and hydrogel materials that constitute the two main components of a wound dressing material. The contributions of boric acid (BA) and zinc oxide (ZnO) to the physical and mechanical properties of polycaprolactone (PCL) is investigated. These materials are chosen for their antimicrobial and antifungal effects. Additionally, since chitosan forms brittle hydrogels, it is reinforced with polyvinyl alcohol (PVA) to improve ductility and water uptake properties. For these purposes, PCL, BA, ZnO, PVA, and chitosan are used in different ratios to fabricate nanofiber mats and hydrogels. Mechanical, physical, and chemical characteristics are examined. The highest elastic modulus and tensile strength are obtained from samples with 6% BA and 10% ZnO concentrations. ZnO-decorated fibers exhibit a higher elastic modulus than those with BA, though BA-containing fibers exhibit greater elongation before breakage. All fibers exhibit hydrophobic properties, which help to prevent biofilm formation. In compression tests, CS12 demonstrates the highest strength. Increasing the PVA content enhances ductility, while a higher concentration of chitosan results in a denser structure. This outcome is confirmed by FTIR and swelling tests. These findings highlight the optimal combinations of nanofibrous mats and hydrogels, offering guidance for future wound dressing designs that balance mechanical strength, water absorption, and antimicrobial properties. By stacking these nanofibrous mats and hydrogels in different orders, it is expected to achieve a wound care material that is suitable for various applications. The authors encourage experimentation with different configurations of these nanofiber and hydrogel stackings to observe their mechanical behavior under real-life conditions in future studies.
Collapse
Affiliation(s)
- Barkin Aydin
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nihat Arol
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nimet Burak
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Aybala Usta
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Muhammet Ceylan
- Department of Mechatronics Engineering, Engineering Faculty, Istanbul Ticaret University, 34854 Istanbul, Türkiye;
| |
Collapse
|
2
|
Hu Y, Hu L, Zhang L, Chen J, Xiao H, Yu B, Pi Y. Novel electro-spun fabrication of blended polymeric nanofibrous wound closure materials loaded with catechin to improve wound healing potential and microbial inhibition for the care of diabetic wound. Heliyon 2024; 10:e26940. [PMID: 38509943 PMCID: PMC10950831 DOI: 10.1016/j.heliyon.2024.e26940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic wound infections caused by the multiplication of infectious pathogens and their antibiotic resistance. Wound infection evident by bacterial colonization and other factors, such as the virulence and host immune factors. In this context, we need discover appropriate treatment and effective antibiotics for wound infection control. Considering this, we synthesized catechin-loaded polyvinyl alcohol/Chitosan (PVA/CS) based nanofiber for multifunctional wound healing. The physicochemical and biological properties of fabricated nanofiber, were systematically evaluated by various spectroscopy and microscopy techniques. The CA@PVA/CS nanofiber exhibited a high level of antibacterial and antioxidant effects. The nanofibers showed effective control in gram-positive and negative wound infectious bacterial multiplication at the lowest concentration. Based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability study CA@PVA/CS nanofiber shows excellent biocompatibility against L929 cells. In wound, scratch assay results revealed that the CA@PVA/CS treated group shows enhanced cell migration and cell proliferation within 48 h. The synthesis of antioxidant, antibacterial, and biocompatible nanofiber exposes their potential for effective wound healing. Current research hypothesized catechin loaded PVA/CS nanofiber could be a multifunctional and low-cost material for diabetic wound care application. Fabricated nanofiber would be improved skin tissue regeneration and public health hygiene.
Collapse
Affiliation(s)
- Yunting Hu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Li Hu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Li Zhang
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Juan Chen
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Huiyu Xiao
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Bin Yu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Yinzhen Pi
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| |
Collapse
|
3
|
Martínez-García K, Zertuche-Arias T, Bernáldez-Sarabia J, Iñiguez E, Kretzchmar T, Camacho-Villegas TA, Lugo-Fabres PH, Licea Navarro AF, Bravo-Madrigal J, Castro-Ceseña AB. Radical Scavenging, Hemocompatibility, and Antibacterial Activity against MDR Acinetobacter baumannii in Alginate-Based Aerogels Containing Lipoic Acid-Capped Silver Nanoparticles. ACS OMEGA 2024; 9:2350-2361. [PMID: 38250422 PMCID: PMC10795026 DOI: 10.1021/acsomega.3c06114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Retaining the hemocompatibility, supporting cell growth, and exhibiting anti-inflammatory and antioxidant properties, while having antimicrobial activity, particularly against multidrug-resistant bacteria (MDR), remain a challenge when designing aerogels for biomedical applications. Here, we report that our synthesized alginate-based aerogels containing either 7.5 or 11.25 μg of lipoic acid-capped silver nanoparticles (AgNPs) showed improved hemocompatibility properties while retaining their antimicrobial effect against MDR Acinetobacter baumannii and the reference strain Escherichia coli, relative to a commercial dressing and polymyxin B, used as a reference. The differences in terms of the microstructure and nature of the silver, used as the bioactive agent, between our synthesized aerogels and the commercial dressing used as a reference allowed us to improve several biological properties in our aerogels with respect to the reference commercial material. Our aerogels showed significantly higher antioxidant capacity, in terms of nmol of Trolox equivalent antioxidant capacity per mg of aerogel, than the commercial dressing. All our synthesized aerogels showed anti-inflammatory activity, expressed as nmol of indomethacin equivalent anti-inflammatory activity per mg of aerogel, while this property was not found in the commercial dressing material. Finally, our aerogels were highly hemocompatible (less than 1% hemolysis ratio); however, the commercial material showed a 20% hemolysis rate. Therefore, our alginate-based aerogels with lipoic acid-capped AgNPs hold promise for biomedical applications.
Collapse
Affiliation(s)
- Kevin
D. Martínez-García
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tonatzin Zertuche-Arias
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Johanna Bernáldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Enrique Iñiguez
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT—Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Thomas Kretzchmar
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tanya Amanda Camacho-Villegas
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Pavel H. Lugo-Fabres
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Alexei F. Licea Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Jorge Bravo-Madrigal
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Ana B. Castro-Ceseña
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT-Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
4
|
Stoyanova N, Nachev N, Spasova M. Innovative Bioactive Nanofibrous Materials Combining Medicinal and Aromatic Plant Extracts and Electrospinning Method. MEMBRANES 2023; 13:840. [PMID: 37888012 PMCID: PMC10608671 DOI: 10.3390/membranes13100840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology's progress and innovations enable the production of novel materials with enhanced properties for a broad range of applications. Electrospinning is a cutting-edge, flexible and economical technique that allows the creation of continuous nano- and microfibrous membranes with tunable structure, characteristics and functionalities. Electrospun fibrous materials are used in drug delivery, tissue engineering, wound healing, cosmetics, food packaging, agriculture and other fields due to their useful properties such as a large surface area to volume ratio and high porosity with small pore size. By encapsulating plant extracts in a suitable polymer matrix, electrospinning can increase the medicinal potential of these extracts, thus improving their bioavailability and maintaining the required concentration of bioactive compounds at the target site. Moreover, the created hybrid fibrous materials could possess antimicrobial, antifungal, antitumor, anti-inflammatory and antioxidant properties that make the obtained structures attractive for biomedical and pharmaceutical applications. This review summarizes the known approaches that have been applied to fabricate fibrous materials loaded with diverse plant extracts by electrospinning. Some potential applications of the extract-containing micro- and nanofibers such as wound dressings, drug delivery systems, scaffolds for tissue engineering and active food packaging systems are discussed.
Collapse
Affiliation(s)
| | | | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.N.)
| |
Collapse
|
5
|
Ravasi E, Melocchi A, Arrigoni A, Chiappa A, Gennari CGM, Uboldi M, Bertarelli C, Zema L, Briatico Vangosa F. Electrospinning of pullulan-based orodispersible films containing sildenafil. Int J Pharm 2023; 643:123258. [PMID: 37479102 DOI: 10.1016/j.ijpharm.2023.123258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Feasibility of electrospinning in the manufacturing of sildenafil-containing orodispersible films (ODFs) intended to enhance oxygenation and to reduce pulmonary arterial pressure in pediatric patients was evaluated. Given the targeted subjects, the simplest and safest formulation was chosen, using water as the only solvent and pullulan, a natural polymer, as the sole fiber-forming agent. A systematic characterization in terms of shear and extensional viscosity as well as surface tension of solutions containing different amounts of pullulan and sildenafil was carried out. Accordingly, electrospinning parameters enabling the continuous production, at the highest possible rate, of defect-free fibers with uniform diameter in the nanometer range were assessed. Morphology, microstructure, drug content and relevant solid state as well as ability of the resulting non-woven films to interact with aqueous fluids were evaluated. To better define the role of the fibrous nanostructure on the performance of ODFs, analogous films were produced by spin- and blade-coating and tested. Interestingly, the disintegration process of electrospun products turned out to be the fastest (i.e. occurring within few s) and compliant with Ph. Eur. and USP limits, making relevant ODFs particularly promising for increasing sildenafil bioavailability, thus lowering its dosages.
Collapse
Affiliation(s)
- Elisabetta Ravasi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alessia Arrigoni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Grazia Milena Gennari
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy.
| | - Francesco Briatico Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
6
|
Schoeller J, Wuertz-Kozak K, Ferguson SJ, Rottmar M, Avaro J, Elbs-Glatz Y, Chung M, Rossi RM. Ibuprofen-loaded electrospun poly(ethylene- co-vinyl alcohol) nanofibers for wound dressing applications. NANOSCALE ADVANCES 2023; 5:2261-2270. [PMID: 37056625 PMCID: PMC10089083 DOI: 10.1039/d3na00102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
- ETH Zürich, Institute for Biomechanics 8093 Zürich Switzerland
| | - Karin Wuertz-Kozak
- Rochester Institute of Technology (RIT), Department of Biomedical Engineering Rochester NY 14623 USA
| | | | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces 9014 St. Gallen Switzerland
| | - Jonathan Avaro
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics 8600 Dübendorf Switzerland
| | - Yvonne Elbs-Glatz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics 8600 Dübendorf Switzerland
| | - Michael Chung
- School of Engineering, The University of Edinburgh King's Buildings EH9 3JL Edinburgh UK
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
| |
Collapse
|
7
|
Osanloo M, Noori F, Tavassoli A, Ataollahi MR, Davoodi A, Seifalah-Zade M, Taghinezhad A, Fereydouni N, Goodarzi A. Effect of PCL nanofiber mats coated with chitosan microcapsules containing cinnamon essential oil for wound healing. BMC Complement Med Ther 2023; 23:84. [PMID: 36934283 PMCID: PMC10024394 DOI: 10.1186/s12906-023-03905-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
INTRODUCTION Cinnamon is one of the most common spices that has been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil in wound healing. MATERIAL AND METHODS For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of Control, µCS-CiZ, PCL, and PCL + µCS-CiZ and were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). RESULTS The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33 ± 1.27 μm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (P < 0.001). The PCL + µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (P < 0.05) and PCL groups (P < 0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue and appearance of moderate to marked fibrotic tissue in PCL + µCS-CiZ group compared with the other groups. CONCLUSION The results of the study showed that the combined use of PCL + µCS-CiZ indicates a synergistic effect on improving wound healing.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Reza Ataollahi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Davoodi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Seifalah-Zade
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Taghinezhad
- Noncommunicable Diseases Research Center (NCDRC), Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Noncommunicable Diseases Research Center (NCDRC), Fasa University of Medical Sciences, Fasa, Iran.
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
8
|
Alipour H, Najafi H, Rastegarian A, Dortaj H, Ghasemian S, Zeraatpisheh Z, Nemati MM, Alizadeh A, Alavi O. Anti-melanogenic activity of vanadium incorporated PVA chitosan electrospun fibers: An in vitro model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Hussain Z, Jamal Ahmed D, Mohammed Alkabra R, Thu HE, Khan S, Sohail M, Sarfraz RM, Ramli NA. Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dalya Jamal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Ranim Mohammed Alkabra
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Hnin Ei Thu
- Innoscience Ressearch Sdn, Subang Jaya, Malaysia
- Research and Innovation Department, Lincoln University College, Petaling Jaya, Malaysia
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, TX, USA
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Nor Amlizan Ramli
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
11
|
|
12
|
Spasova M, Stoyanova N, Manolova N, Rashkov I, Taneva S, Momchilova S, Georgieva A. Facile preparation of novel antioxidant fibrous material based on natural plant extract from
Portulaca oleracea
and polylactide by electrospinning for biomedical applications. POLYM INT 2021. [DOI: 10.1002/pi.6322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Sabina Taneva
- Department of Lipid Chemistry Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Svetlana Momchilova
- Department of Lipid Chemistry Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
13
|
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications. Polymers (Basel) 2021; 13:polym13223870. [PMID: 34833169 PMCID: PMC8624944 DOI: 10.3390/polym13223870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Collapse
|
14
|
Liu Y, Chen X, Yu DG, Liu H, Liu Y, Liu P. Electrospun PVP-Core/PHBV-Shell Fibers to Eliminate Tailing Off for an Improved Sustained Release of Curcumin. Mol Pharm 2021; 18:4170-4178. [PMID: 34582196 DOI: 10.1021/acs.molpharmaceut.1c00559] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tailing off release in the sustained release of water-insoluble curcumin (Cur) is a significant challenge in the drug delivery system. As a novel solution, core-shell nanodrug containers have aroused many interests due to their potential improvement in drug-sustained release. In this work, a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and hydrophilic polyvinylpyrrolidone (PVP) were exploited as drug delivery carriers by coaxial electrospinning, and the core-shell drug-loaded fibers exhibited improved sustained release of Cur. A cylindrical morphology and a clear core-shell structure were observed by scanning and transmission electron microscopies. The X-ray diffraction pattern and infrared spectroscopy revealed that Cur existed in amorphous form due to its good compatibility with PHBV and PVP. The in vitro drug release curves confirmed that the core-shell container manipulated Cur in a faster drug release process than that in the traditional PHBV monolithic container. The combination of the material and structure forms a novel nanodrug container with a better sustained release of water-insoluble Cur. This strategy is beneficial for exploiting more functional biomedical materials to improve the drug release behavior.
Collapse
Affiliation(s)
- Yubo Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Xiaohong Chen
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Hang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Yuyang Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Liu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
15
|
Hadjianfar M, Semnani D, Varshosaz J, Mohammadi S, Rezazadeh Tehrani SP. 5FU-loaded PCL/Chitosan/Fe 3O 4 Core-Shell Nanofibers Structure: An Approach to Multi-Mode Anticancer System. Adv Pharm Bull 2021; 12:568-582. [PMID: 35935046 PMCID: PMC9348528 DOI: 10.34172/apb.2022.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/16/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose: 5FU and Fe3O4 nanoparticles were encapsulated in core-shell Polycaprolactone/Chitosan nanofibers as a multi-mode anticancer system to study drug release sustainability. The structure of the core-shell drug delivery system was also optimized according to drug release behavior by artificial intelligence. Methods: The core-shell nanofibers were electrospun by a coaxial syringe. ANN was used for function approximation to estimate release parameters. A genetic algorithm was then used for optimizing the structure. Chemical assay of the optimized sample was performed by FTIR, XRD, and EDX. VSM test was conducted to measure the real amount of loaded magnetic nanoparticles. HepG2 cell cytotoxicity was studied and the results for the optimized samples with and without Fe3O4 after 72hrs were reported. Results: Feeding ratio of sheath to core and the amount of CS, Fe3O4, and 5FU had a statistical effect on nanofibers diameters, which were 300-450nm. The drug loading efficiency of these nanofibers was 65-86%. ANN estimated the release parameters with an error of 10%. The temperature increased about 5.6°C in the AMF of 216kA.m-1~300kHz and 4.8°C in the AMF of 154kA.m-1~400kHz after 20min. HepG2 cell cytotoxicity for the optimized samples with and without Fe3O4 after 72hrs were 39.7% and 38.8%, respectively. Conclusion: Since this core-shell drug release system was more sustainable compared to the blend structure despite the low half-life of 5FU, it is suggested to utilize it as post-surgical implants for various cancer treatments such as liver or colorectal cancer in the future. This system is capable of providing chemotherapy and hyperthermia simultaneously.
Collapse
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Dariush Semnani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
16
|
Nonwoven Releasing Propolis as a Potential New Wound Healing Method-A Review. Molecules 2021; 26:molecules26185701. [PMID: 34577172 PMCID: PMC8471897 DOI: 10.3390/molecules26185701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/22/2023] Open
Abstract
Wound healing poses a serious therapeutic problem. Methods which accelerate tissue regeneration and minimize or eliminate complications are constantly being sought. This paper is aimed at evaluation of the potential use of biodegradable polymer nonwovens releasing propolis as wound healing dressings, based on the literature data. Propolis is honeybee product with antioxidant, antibacterial, antifungal, anticancer, anti-inflammatory, analgesic, and regenerative properties. Controlled release of this substance throughout the healing should promote healing process, reduce the risk of wound infection, and improve aesthetic effect. The use of biodegradable aliphatic polyesters and polyester carbonates as a propolis carrier eliminates the problem of local drug administration and dressing changes. Well-known degradation processes and kinetics of the active substance release allows the selection of the material composition appropriate to the therapy. The electrospinning method allows the production of nonwovens that protect the wound against mechanical damage. Moreover, this processing technique enables adjusting product properties by modifying the production parameters. It can be concluded that biodegradable polymer dressings, releasing a propolis, may find potential application in the treatment of complicated wounds, as they may increase the effectiveness of treatment, as well as improve the patient’s life quality.
Collapse
|
17
|
Ignatova M, Manolova N, Rashkov I, Markova N, Kukeva R, Stoyanova R, Georgieva A, Toshkova R. 8-Hydroxyquinoline-5-Sulfonic Acid-Containing Poly(Vinyl Alcohol)/Chitosan Electrospun Materials and Their Cu 2+ and Fe 3+ Complexes: Preparation, Antibacterial, Antifungal and Antitumor Activities. Polymers (Basel) 2021; 13:2690. [PMID: 34451230 PMCID: PMC8400372 DOI: 10.3390/polym13162690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Novel poly(vinyl alcohol) (PVA)/chitosan (Ch)-based fibrous materials containing an ionizable model drug, 8-hydroxyquinoline-5-sulfonic acid (SQ), were successfully fabricated by electrospinning. Complexes between the components of the crosslinked PVA/Ch/SQ mats and Cu2+ and Fe3+ ions were formed. The coordination of these ions in the mats was examined by electron paramagnetic resonance spectroscopy (EPR). The microbiological screening against S. aureus and C. albicans revealed that both the incorporation of SQ in the mats and the complexation with Cu2+ and Fe3+ imparted to these materials antibacterial and antifungal activities. Moreover, the SQ-containing mats and their complexes displayed good cytotoxicity against human cervical HeLa tumor cells. The most prominent was the cytotoxicity of the Cu2+ complex of the mats. The combined antibacterial, antifungal and in vitro antitumor activities render these novel materials promising candidates for wound dressing applications and for application in the local treatment of cervical tumors.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 103A, BG-1113 Sofia, Bulgaria;
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 103A, BG-1113 Sofia, Bulgaria;
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 103A, BG-1113 Sofia, Bulgaria;
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 26, BG-1113 Sofia, Bulgaria;
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 11, BG-1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 11, BG-1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Bl. 25, BG-1113 Sofia, Bulgaria; (A.G.); (R.T.)
| |
Collapse
|
18
|
Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, Pishavar E, Kalalinia F, Movaffagh J. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol 2020; 162:645-656. [DOI: 10.1016/j.ijbiomac.2020.06.195] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023]
|
19
|
Mwiiri FK, Daniels R. Influence of PVA Molecular Weight and Concentration on Electrospinnability of Birch Bark Extract-Loaded Nanofibrous Scaffolds Intended for Enhanced Wound Healing. Molecules 2020; 25:molecules25204799. [PMID: 33086645 PMCID: PMC7587550 DOI: 10.3390/molecules25204799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Triterpenes from the outer bark of birch (TE) are known for various pharmacological effects including enhanced wound healing. Apart from an already authorized oleogel, electrospun nanofiber mats containing these triterpenes in a polyvinyl alcohol (PVA) matrix appear to be an advantageous application form. The effects of PVA molecular weight and concentration on the fiber morphology have been investigated. Three different molecular weights of PVA ranging from 67 to 186 kDa were used. The concentration of PVA was varied from 5 to 20 wt%. Polymer solutions were blended with colloidal dispersions of birch bark extract at a weight ratio of 60:40 (wt.%). The estimated viscosity of polymer solutions was directly linked to their concentration and molecular weight. In addition, both pure and blended solutions showed viscoelastic properties with a dominant viscous response in the bulk. Fiber morphology was confirmed using scanning electron microscopy (SEM). Both polymer concentration and molecular weight were found to be significant factors affecting the diameter of the fibers. Fiber diameter increased with a higher molecular weight and polymer concentration as more uniform fibers were obtained using PVA of higher molecular weight (146-186 kDa). In vitro drug release and ex vivo permeation studies indicated a faster drug release of betulin from electrospun scaffolds with lower PVA molecular weight. Our research suggests that the fabricated TE-loaded PVA electrospun dressings represent potential delivery systems of TE for wound care applications.
Collapse
Affiliation(s)
| | - Rolf Daniels
- Correspondence: ; Tel.: +49-7071-297-2462; Fax: +49-7071-295-531
| |
Collapse
|
20
|
Stojko M, Włodarczyk J, Sobota M, Karpeta-Jarząbek P, Pastusiak M, Janeczek H, Dobrzyński P, Starczynowska G, Orchel A, Stojko J, Batoryna O, Olczyk P, Komosińska-Vassev K, Olczyk K, Kasperczyk J. Biodegradable Electrospun Nonwovens Releasing Propolis as a Promising Dressing Material for Burn Wound Treatment. Pharmaceutics 2020; 12:pharmaceutics12090883. [PMID: 32957509 PMCID: PMC7558515 DOI: 10.3390/pharmaceutics12090883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
The selection of dressing is crucial for the wound healing process. Traditional dressings protect against contamination and mechanical damage of an injured tissue. Alternatives for standard dressings are regenerating systems containing a polymer with an incorporated active compound. The aim of this research was to obtain a biodegradable wound dressing releasing propolis in a controlled manner throughout the healing process. Dressings were obtained by electrospinning a poly(lactide-co-glycolide) copolymer (PLGA) and propolis solution. The experiment consisted of in vitro drug release studies and in vivo macroscopic treatment evaluation. In in vitro studies released active compounds, the morphology of nonwovens, chemical composition changes of polymeric material during degradation process, weight loss and water absorption were determined. For in vivo research, four domestic pigs, were used. The 21-day experiment consisted of observation of healing third-degree burn wounds supplied with PLGA 85/15 nonwovens without active compound, with 5 wt % and 10 wt % of propolis, and wounds rinsed with NaCl. The in vitro experiment showed that controlling the molar ratio of lactidyl to glycolidyl units in the PLGA copolymer gives the opportunity to change the release profile of propolis from the nonwoven. The in vivo research showed that PLGA nonwovens with propolis may be a promising dressing material in the treatment of severe burn wounds.
Collapse
Affiliation(s)
- Mateusz Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (G.S.); (A.O.)
- Correspondence:
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Paulina Karpeta-Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
| | - Gabriela Starczynowska
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (G.S.); (A.O.)
| | - Arkadiusz Orchel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (G.S.); (A.O.)
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Olgierd Batoryna
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 2, 41-205 Sosnowiec, Poland; (O.B.); (P.O.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 2, 41-205 Sosnowiec, Poland; (O.B.); (P.O.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-V.); (K.O.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-V.); (K.O.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (J.W.); (M.S.); (P.K.-J.); (M.P.); (H.J.); (P.D.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (G.S.); (A.O.)
| |
Collapse
|
21
|
Mwiiri FK, Brandner JM, Daniels R. Electrospun Bioactive Wound Dressing Containing Colloidal Dispersions of Birch Bark Dry Extract. Pharmaceutics 2020; 12:pharmaceutics12080770. [PMID: 32823875 PMCID: PMC7463733 DOI: 10.3390/pharmaceutics12080770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Novel birch bark dry extract (TE)-loaded polyvinyl alcohol (PVA) fiber mats intended for wound therapy were developed through an electrospinning process. Colloidal dispersions containing TE as the active substance were prepared by the high-pressure homogenization (HPH) technique using hydrogenated phospholipids as stabilizer. Subsequently, the colloidal dispersions were blended with aqueous PVA solutions in the ratio of 60:40 (wt.%) and electrospun to form the nanofiber mats. Fiber morphology examined using scanning electron microscopy (SEM) indicated that fibers were uniform and achieved diameters in the size range of 300–1586 nm. Confocal Raman spectral imaging gave good evidence that triterpenes were encapsulated within the electrospun mats. In vitro drug release and ex vivo permeation studies indicated that the electrospun nanofibers showed a sustained release of betulin, the main component of birch bark dry extract, making the examined dressings highly applicable for several wound care applications. Ex vivo wound healing studies proved that electrospun fiber mats containing TE accelerated wound healing significantly more than TE oleogel, which was comparable to an authorized product that consists of TE and sunflower oil and has proved to enhance wound healing. Therefore, our results conclude that the developed TE-PVA-based dressings show promising potential for wound therapy, an area where effective remedy is needed.
Collapse
Affiliation(s)
- Francis Kamau Mwiiri
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany;
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany;
- Correspondence: ; Tel.: +49-7071-297-2462; Fax: +49-7071-295-531
| |
Collapse
|
22
|
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S, Khorasani AC. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int J Biol Macromol 2020; 155:119-130. [DOI: 10.1016/j.ijbiomac.2020.03.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/30/2022]
|
23
|
Rao GSNK, Kurakula M, Yadav KS. Application of Electrospun Materials in Gene Delivery. ELECTROSPUN MATERIALS AND THEIR ALLIED APPLICATIONS 2020:265-306. [DOI: 10.1002/9781119655039.ch10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Yakub G, Toncheva A, Kussovski V, Toshkova R, Georgieva A, Nikolova E, Manolova N, Rashkov I. Curcumin-PVP Loaded Electrospun Membranes with Conferred Antibacterial and Antitumoral Activities. FIBERS AND POLYMERS 2020. [PMCID: PMC7224099 DOI: 10.1007/s12221-020-9473-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electrospun membranes containing curcumin were prepared from poly(L-co-D,L-lactic) acid and polyvinylpyrrolidone. The effect of curcumin concentration on the solution viscosity and the morphology of fiber was studied. Curcumin solubility in aqueous solutions was enhanced by the formation of curcumin/polyvinylpyrrolidone water-soluble complex. Curcumin physico-chemical and therapeutic properties within the membranes were preserved upon UV-Vis light irradiation, as a part of the membranes sterilization. The biomaterials showed antibacterial activity against pathogenic microorganisms such as Staphylococcus aureus and Candida albicans. In-vitro experiments against HeLa and Graffi tumor cells and white blood cells (peritoneal macrophages and spleen lymphocytes) revealed potential biomedical application of the membranes.
Collapse
Affiliation(s)
- Gyuldzhan Yakub
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Antoniya Toncheva
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Veselin Kussovski
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Elena Nikolova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, 1113 Bulgaria
| |
Collapse
|
25
|
Oh JS, Lee EJ. Engineered dressing of hybrid chitosan-silica for effective delivery of keratin growth factor and acceleration of wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109815. [DOI: 10.1016/j.msec.2019.109815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 01/15/2023]
|
26
|
Monteserín C, Blanco M, Murillo N, Pérez-Márquez A, Maudes J, Gayoso J, Laza JM, Hernáez E, Aranzabe E, Vilas JL. Novel Antibacterial and Toughened Carbon-Fibre/Epoxy Composites by the Incorporation of TiO 2 Nanoparticles Modified Electrospun Nanofibre Veils. Polymers (Basel) 2019; 11:E1524. [PMID: 31546862 PMCID: PMC6780269 DOI: 10.3390/polym11091524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/23/2022] Open
Abstract
The inclusion of electrospun nanofiber veils was revealed as an effective method for enhancing the mechanical properties of fiber-reinforced epoxy resin composites. These veils will eventually allow the incorporation of nanomaterials not only for mechanical reinforcement but also in multifunctional applications. Therefore, this paper investigates the effect of electrospun nanofibrous veils made of polyamide 6 modified with TiO2 nanoparticles on the mechanical properties of a carbon-fiber/epoxy composite. The nanofibers were included in the carbon-fiber/epoxy composite as a single structure. The effect of positioning these veils in different composite positions was investigated. Compared to the reference, the use of unmodified and TiO2 modified veils increased the flexural stress at failure and the fracture toughness of composites. When TiO2 modified veils were incorporated, new antibacterial properties were achieved due to the photocatalytic properties of the veils, widening the application area of these composites.
Collapse
Affiliation(s)
- Cristina Monteserín
- Unidad de Química de superficies y Nanotecnología, Fundación Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain.
| | - Miren Blanco
- Unidad de Química de superficies y Nanotecnología, Fundación Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain.
| | - Nieves Murillo
- Division Industria y Transporte, TECNALIA, P Mikeletegi 7, E-20009 Donostia-San Sebastian, Spain.
| | - Ana Pérez-Márquez
- Division Industria y Transporte, TECNALIA, P Mikeletegi 7, E-20009 Donostia-San Sebastian, Spain.
| | - Jon Maudes
- Division Industria y Transporte, TECNALIA, P Mikeletegi 7, E-20009 Donostia-San Sebastian, Spain.
| | - Jorge Gayoso
- Division Industria y Transporte, TECNALIA, P Mikeletegi 7, E-20009 Donostia-San Sebastian, Spain.
| | - Jose Manuel Laza
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
| | - Estíbaliz Hernáez
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
| | - Estíbaliz Aranzabe
- Unidad de Química de superficies y Nanotecnología, Fundación Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain.
| | - Jose Luis Vilas
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
27
|
Monfared M, Taghizadeh S, Zare-Hoseinabadi A, Mousavi SM, Hashemi SA, Ranjbar S, Amani AM. Emerging frontiers in drug release control by core-shell nanofibers: a review. Drug Metab Rev 2019; 51:589-611. [PMID: 31296075 DOI: 10.1080/03602532.2019.1642912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, core-shell (CS) nanofiber has widely been used as a carrier for controlled drug release. This outstanding attention toward CS nanofiber is mainly due to its tremendous significance in controllable drug release in specific locations. The major advantage of CS nanofibers is forming a highly porous mesh, boosting its performance for many applications, due to its large surface-to-volume ratio. This inherently high ratio has prompted electrospun fibers to be considered one of the best drug-delivery-systems available, with the capacity to enhance properties such as cell attachment, drug loading, and mass transfer. Using electrospun fibers as CS nanofibers to incorporate different cargos such as antibiotics, anticancer agents, proteins, DNA, RNA, living cells, and diverse growth factors would considerably satisfy the need for a universal carrier in the field of nanotechnology. In addition to their high surface area, other benefit included in these nanofibers is the ability to trap drugs, easily controlled morphology, and their biomimetic characteristics. In this review, by taking the best advantages of the preparation and uses of CS nanofibers, a novel work in the domain of the controlled drug delivery by nanofiber-based scaffolds is presented.
Collapse
Affiliation(s)
- Mohammad Monfared
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Ranjbar
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Hadjianfar M, Semnani D, Varshosaz J. An investigation on polycaprolactone/chitosan/Fe
3
O
4
nanofibrous composite used for hyperthermia. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Dariush Semnani
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research CenterIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
29
|
Rabiee T, Yeganeh H, Gharibi R. Antimicrobial wound dressings with high mechanical conformability prepared through thiol-yne click photopolymerization reaction. ACTA ACUST UNITED AC 2019; 14:045007. [PMID: 30952142 DOI: 10.1088/1748-605x/ab16b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radical mediated photochemical thiol-yne click polymerization of thiol-terminated polyurethane prepolymers, with poly(ethylene glycol) soft segment at two different molecular weights, a propargyl terminated urethane crosslinker and silver salt was utilized to prepare versatile wound dressings containing well-dispersed Ag° nanoparticles produced via in situ reduction of Ag+ ions. The dressings with optimized chemical structure showed desirable fluid handling capacity (up to 4.84 g/10 cm2 d-1) to provide moist environment over damaged tissue. They were permeable to oxygen and carbon dioxide, therefore, the processes related to tissue regeneration of wound bed could be continued without problem. Their appropriate tensile strength (up to 3.87 MPa) and suitable conformability (less than 0.1% permanent set) enabled protection of damaged skin tissue from external physical forces during the healing process, even for wounds present at organs with a high degree of freedom. The proper cytocompatibility of the prepared dressings and their ability to support growth and proliferation of fibroblast cells as determined by wound scratch healing assay showed the potential utility of the dressings to motivate wound healing progression by migration of cells to the damaged area. In addition, these dressings with in situ formed silver nanoparticles exhibited promising antimicrobial activity against different bacterial and fungal strains, and consequently could encourage wound healing process by prevention from infection in the wound site.
Collapse
Affiliation(s)
- Tina Rabiee
- Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran
| | | | | |
Collapse
|
30
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
|
32
|
Polydopamine-based Implantable Multifunctional Nanocarpet for Highly Efficient Photothermal-chemo Therapy. Sci Rep 2019; 9:2943. [PMID: 30814589 PMCID: PMC6393577 DOI: 10.1038/s41598-019-39457-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/21/2019] [Indexed: 01/14/2023] Open
Abstract
We report a design and fabricate multifunctional localized platform for cancer therapy. Multiple stimuli-responsive polydopamine (PDA) was used for surface modification of electrospun doxorubicin hydrochloride (DOX) loaded polycaprolactone (PCL) fibers to make a designated platform. Photothermal properties such as photothermal performance and stability of the resulting composite mats were studied under the irradiation of the near-infrared (NIR) laser of 808 nm. With the incorporation of PDA into the fiber, a remarkable increase of local temperature was recorded under NIR illumination in a concentration-dependent manner with excellent stability. Drug released assay results revealed PDA coated PCL-DOX mats showed pH and NIR dual responsive behavior thereby exhibiting improved drug release in an acidic medium compared to physiological pH condition (pH 7.4) which is further increased by NIR exposure. The cancer activity in vitro of the mats was evaluated using cell counting (CCK) and live and dead cell assays. The combined effect of NIR mediated hyperthermia and chemo release resulting improved cells death has been reported. In summary, this study presents a major step forward towards a therapeutic model to cancer treatment utilizing pH and NIR dual responsive property from PDA alone in a fibrous mat.
Collapse
|
33
|
Kadavil H, Zagho M, Elzatahry A, Altahtamouni T. Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E77. [PMID: 30626067 PMCID: PMC6359597 DOI: 10.3390/nano9010077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing, and tissue engineering applications. In this review, the synthesis of polymer-based fiber composites using an electrospinning technique is discussed. Formerly, metal particles were then deposited on the surface of electrospun fibers using sputtering technology. Key nanometals for biomedical applications including silver and copper nanoparticles are discussed throughout this review. The formulated scaffolds were found to be suitable candidates for biomedical uses such as antibacterial coatings, surface modification for improving biocompatibility, and tissue engineering. This review briefly mentions the characteristics of the nanostructures while focusing on how nanostructures hold potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Hana Kadavil
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Moustafa Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Talal Altahtamouni
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
34
|
Mehraz L, Nouri M, Namazi H. Electrospun silk fibroin/β-cyclodextrin citrate nanofibers as a novel biomaterial for application in controlled drug release. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1552865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leila Mehraz
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Mahdi Nouri
- Department of Textile Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Hassan Namazi
- Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
35
|
Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2018; 11:E5. [PMID: 30586852 PMCID: PMC6358861 DOI: 10.3390/pharmaceutics11010005] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
The electrospinning process has gained popularity due to its ease of use, simplicity and diverse applications. The properties of electrospun fibers can be controlled by modifying either process variables (e.g., applied voltage, solution flow rate, and distance between charged capillary and collector) or polymeric solution properties (e.g., concentration, molecular weight, viscosity, surface tension, solvent volatility, conductivity, and surface charge density). However, many variables affecting electrospinning are interdependent. An optimized electrospinning process is one in which these parameters remain constant and continuously produce nanofibers consistent in physicochemical properties. In addition, nozzle configurations, such as single nozzle, coaxial, multi-jet electrospinning, have an impact on the fiber characteristics. The polymeric solution could be aqueous, a polymeric melt or an emulsion, which in turn leads to different types of nanofiber formation. Nanofiber properties can also be modified by polarity inversion and by varying the collector design. The active moiety is incorporated into polymeric fibers by blending, surface modification or emulsion formation. The nanofibers can be further modified to deliver multiple drugs, and multilayer polymer coating allows sustained release of the incorporated active moiety. Electrospun nanofibers prepared from polymers are used to deliver antibiotic and anticancer agents, DNA, RNA, proteins and growth factors. This review provides a compilation of studies involving the use of electrospun fibers in biomedical applications with emphasis on nanoparticle-impregnated nanofibers.
Collapse
Affiliation(s)
- Rajan Sharma Bhattarai
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Rinda Devi Bachu
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 2758, UAE.
| | - Sarit Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43614, USA.
- Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
36
|
Hadjianfar M, Semnani D, Varshosaz J. Polycaprolactone/chitosan blend nanofibers loaded by 5-fluorouracil: An approach to anticancer drug delivery system. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4417] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Dariush Semnani
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| |
Collapse
|
37
|
Amariei G, Kokol V, Boltes K, Letón P, Rosal R. Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Adv 2018; 8:28013-28023. [PMID: 35542741 PMCID: PMC9083935 DOI: 10.1039/c8ra03861a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of this work was to immobilize antimicrobial peptides onto a fibrous scaffold to create functional wound dressings. The scaffold was produced by electrospinning from a mixture of the water soluble polymers poly(acrylic acid) and poly(vinyl alcohol) and subsequently heat cured at 140 °C to produce a stable material with fibre diameter below micron size. The peptides were incorporated into the negatively charged scaffold by electrostatic interaction. The best results were obtained for lysozyme impregnated at pH 7, which rendered a loading of up to 3.0 × 10-4 mmol mg-1. The dressings were characterized using SEM, ATR-FTIR, elemental analysis, ζ-potential and confocal microscopy using fluorescamine as an amine-reactive probe. The dressings preserved their fibrous structure after impregnation and peptides were distributed homogeneously throughout the fibrous network. The antibacterial activity was assessed by solid agar diffusion tests and growth inhibition in liquid cultures using Staphylococcus aureus, a pathogenic strain generally found in infected wounds. The antibacterial activity caused clear halo inhibition zones for lysozyme-loaded dressings and a 4-fold decrease in S. aureus viable colonies after two weeks of contact of dressings with bacterial liquid cultures. The release profile in different media showed sustained release in acidic environments, and a rapid discharge at high pH values. The incorporation of lysozyme resulted in dressing surfaces essentially free of microbial growth after 14 days of contact with bacteria at pH 7.4 attributed to the peptide that remained attached to the dressing surface.
Collapse
Affiliation(s)
- Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá E-28871 Alcalá de Henares Madrid Spain +34 918855088 +34 918856395
| | - Vanja Kokol
- Institute of Engineering Materials and Design, University of Maribor SI-2000 Maribor Slovenia
| | - Karina Boltes
- Department of Chemical Engineering, University of Alcalá E-28871 Alcalá de Henares Madrid Spain +34 918855088 +34 918856395
| | - Pedro Letón
- Department of Chemical Engineering, University of Alcalá E-28871 Alcalá de Henares Madrid Spain +34 918855088 +34 918856395
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá E-28871 Alcalá de Henares Madrid Spain +34 918855088 +34 918856395
| |
Collapse
|
38
|
Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf B Biointerfaces 2018; 169:60-71. [PMID: 29747031 DOI: 10.1016/j.colsurfb.2018.05.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Skin wounds have significant morbidity and mortality rates associated. This is explained by the limited effectiveness of the currently available treatments, which in some cases do not allow the reestablishment of the structure and functions of the damaged skin, leading to wound infection and dehydration. These drawbacks may have an impact on the healing process and ultimately prompt patients' death. For this reason, researchers are currently developing new wound dressings that enhance skin regeneration. Among them, electrospun polymeric nanofibres have been regarded as promising tools for improving skin regeneration due to their structural similarity with the extracellular matrix of normal skin, capacity to promote cell growth and proliferation and bactericidal activity as well as suitability to deliver bioactive molecules to the wound site. In this review, an overview of the recent studies concerning the production and evaluation of electrospun polymeric nanofibrous membranes for skin regenerative purposes is provided. Moreover, the current challenges and future perspectives of electrospun nanofibrous membranes suitable for this biomedical application are highlighted.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Daniela R Figueira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Déborah Simões
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|
39
|
Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:99-107. [DOI: 10.1016/j.msec.2017.11.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
|
40
|
Yuan Y, Choi K, Choi SO, Kim J. Early stage release control of an anticancer drug by drug-polymer miscibility in a hydrophobic fiber-based drug delivery system. RSC Adv 2018; 8:19791-19803. [PMID: 35540999 PMCID: PMC9080684 DOI: 10.1039/c8ra01467a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
The drug release profiles of doxorubicin-loaded electrospun fiber mats were investigated with regard to drug-polymer miscibility, fiber wettability and degradability. Doxorubicin in hydrophilic form (Dox-HCl) and hydrophobic free base form (Dox-base) was employed as model drugs, and an aliphatic polyester, poly(lactic acid) (PLA), was used as a drug-carrier matrix. When hydrophilic Dox-HCl was directly mixed with PLA solution, drug molecules formed large aggregates on the fiber surface or in the fiber core, due to poor drug-polymer compatibility. Drug aggregates on the fiber surface contributed to the rapid initial release. The hydrophobic form of Dox-base was dispersed better with PLA matrix compared to Dox-HCl. When dimethyl sulfoxide (DMSO) was used as the solvent for Dox-HCl, the miscibility of drug in the polymer matrix was significantly improved, forming a quasi-monolithic solution scheme. The drug release from this monolithic matrix was slowest, and this slow release led to a lower toxicity to hepatocellular carcinoma. When an enzyme was used to promote PLA degradation, the release rates were closely correlated with degradation rates, demonstrating degradation was the dominant release mechanism. The possible drug release mechanisms were speculated based on the release kinetics. The results suggest that manipulation of drug-polymer miscibility and polymer degradability can be an effective means of designing drug release profiles. The drug release profiles of doxorubicin-loaded electrospun fiber mats were investigated with regard to drug-polymer miscibility, fiber wettability and degradability.![]()
Collapse
Affiliation(s)
- Yue Yuan
- Department of Textile Engineering, Chemistry and Science
- North Carolina State University
- Raleigh
- USA
| | - Kyoungju Choi
- Department of Anatomy and Physiology
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State
| | - Seong-O Choi
- Department of Anatomy and Physiology
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design
- Seoul National University
- Seoul 08826
- Republic of Korea
- Research Institute of Human Ecology
| |
Collapse
|
41
|
Naseri-Nosar M, Salehi M, Farzamfar S, Azami M. The single and synergistic effects of montmorillonite and curcumin-loaded chitosan microparticles incorporated onto poly(lactic acid) electrospun film on wound-healing. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517724809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri-Nosar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahrud, Iran
| | - Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Chen Y, Boyd JG, Naraghi M. Porous fibres with encapsulated functional materials and tunable release. J Microencapsul 2017; 34:383-394. [DOI: 10.1080/02652048.2017.1341562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yijun Chen
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA
| | - James G. Boyd
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA
| | - Mohammad Naraghi
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
43
|
Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym 2017; 165:322-333. [DOI: 10.1016/j.carbpol.2017.02.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
|
44
|
Shams E, Yeganeh H, Naderi-Manesh H, Gharibi R, Mohammad Hassan Z. Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:75. [PMID: 28386852 DOI: 10.1007/s10856-017-5881-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/08/2017] [Indexed: 05/20/2023]
Abstract
Preserving wounds from bacterial and fungal infections and retaining optimum moist environment over damaged tissue are major challenges in wound care management. Application of wound dressings with antimicrobial activity and appropriate wound exudates handling ability is of particular significance for promoting wound healing. To this end, preparation and evaluation of novel wound dres1sings made from polyurethane/siloxane network containing graphene oxide (GO) nanoplatelets are described. The particular sol-gel hydrolysis/condensation procedure applied for the preparation of dressings leads to an appropriate distribution of GO nanoplatelets in the dressing membranes. The crosslinked siloxane domains and the presence of GO nanoplatelets within polymeric chains offered necessary mechanical strength for dressings. Meanwhile, a combination of hydrophilic and hydrophobic moieties in dressing backbone enabled suitable wound exudate management. Therefore, both of physical protection from external forces and preservation of moist environment over wound were attained by using the designed dressings. Widespread antimicrobial activity against gram-positive, gram-negative and fungal strains was recorded for the dressing with the optimum amount of GO, meanwhile, very good cytocompatibility against fibroblast cells was noted for these dressings. In vivo assay of the GO containing dressing on rat animal model reveals that the dressing can promote wound healing by complete re-epithelization, enhanced vascularization and collagen deposition on healed tissue.
Collapse
Affiliation(s)
- Elias Shams
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, PO Box 14115-154, Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and petrochemical Institute, PO Box 14965/115, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, PO Box 14115-154, Tehran, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, School of Medical Science, Tarbiat Modares University, PO Box 14115-331, Tehran, Iran
| |
Collapse
|
45
|
Tsekova PB, Spasova MG, Manolova NE, Markova ND, Rashkov IB. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:206-214. [DOI: 10.1016/j.msec.2016.12.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/25/2016] [Accepted: 12/17/2016] [Indexed: 01/04/2023]
|
46
|
Paskiabi FA, Bonakdar S, Shokrgozar MA, Imani M, Jahanshiri Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Terbinafine-loaded wound dressing for chronic superficial fungal infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:130-136. [DOI: 10.1016/j.msec.2016.12.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
|
47
|
Hassiba AJ, El Zowalaty ME, Webster TJ, Abdullah AM, Nasrallah GK, Khalil KA, Luyt AS, Elzatahry AA. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int J Nanomedicine 2017; 12:2205-2213. [PMID: 28356737 PMCID: PMC5367563 DOI: 10.2147/ijn.s123417] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravimetric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications.
Collapse
Affiliation(s)
- Alaa J Hassiba
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Thomas J Webster
- Department of Chemical Engineering; Department of Bioengineering, Northeastern University, Boston, MA, USA; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar
| | - Khalil Abdelrazek Khalil
- Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
48
|
Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi M. Nanofibrous and nanoparticle materials as drug-delivery systems. NANOSTRUCTURES FOR DRUG DELIVERY 2017:239-270. [DOI: 10.1016/b978-0-323-46143-6.00007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Ignatova M, Manolova N, Rashkov I, Markova N. Quaternized chitosan/κ-carrageenan/caffeic acid–coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity. Int J Pharm 2016; 513:528-537. [DOI: 10.1016/j.ijpharm.2016.09.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
|
50
|
Development of a nanofibrous wound dressing with an antifibrogenic propertiesin vitroandin vivomodel. J Biomed Mater Res A 2016; 104:2334-44. [DOI: 10.1002/jbm.a.35770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022]
|