1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Barzegar S, Kakies CFM, Ciupercӑ D, Wischnewski M. Transcranial alternating current stimulation for investigating complex oscillatory dynamics and interactions. Int J Psychophysiol 2025; 212:112579. [PMID: 40315997 DOI: 10.1016/j.ijpsycho.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neural oscillations play a fundamental role in human cognition and behavior. While electroencephalography (EEG) and related methods provide precise temporal recordings of these oscillations, they are limited in their ability to generate causal conclusions. Transcranial alternating current stimulation (tACS) has emerged as a promising non-invasive neurostimulation technique to modulate neural oscillations, which offers insights into their functional role and relation to human cognition and behavior. Originally, tACS is applied between two or more electrodes at a given frequency. However, recent advances have aimed to apply different current waveforms to target specific oscillatory dynamics. This systematic review evaluates the efficacy of non-standard tACS applications designed to investigate oscillatory patterns beyond simple sinusoidal stimulation. We categorized these approaches into three key domains: (1) phase synchronization techniques, including in-phase, anti-phase, and traveling wave stimulation; (2) non-sinusoidal tACS, which applies alternative waveforms such as composite, broadband or triangular oscillations; and (3) amplitude-modulated tACS and temporal interference stimulation, which allow for concurrent EEG recordings and deeper cortical targeting. While a number of studies provide evidence for the added value of these non-standard tACS procedures, other studies show opposing or null findings. Crucially, the number of studies for most applications is currently low, and as such, the goal of this review is to highlight both the promise and current limitations of these techniques, providing a foundation for future research in neurostimulation.
Collapse
Affiliation(s)
- Samira Barzegar
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Carolina F M Kakies
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Dorina Ciupercӑ
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Matta R, Reato D, Lombardini A, Moreau D, O’Connor RP. Inkjet-printed transparent electrodes: Design, characterization, and initial in vivo evaluation for brain stimulation. PLoS One 2025; 20:e0320376. [PMID: 40168427 PMCID: PMC11960977 DOI: 10.1371/journal.pone.0320376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Electrical stimulation is a powerful tool for investigating and modulating brain activity, as well as for treating neurological disorders. However, understanding the precise effects of electrical stimulation on neural activity has been hindered by limitations in recording neuronal responses near the stimulating electrode, such as stimulation artifacts in electrophysiology or obstruction of the field of view in imaging. In this study, we introduce a novel stimulation device fabricated from conductive polymers that is transparent and therefore compatible with optical imaging techniques. The device is manufactured using a combination of microfabrication and inkjet printing techniques and is flexible, allowing better adherence to the brain's natural curvature. We characterized the electrical and optical properties of the electrodes, focusing on the trade-off between the maximum current that can be delivered and optical transmittance. We found that a 1 mm diameter, 350 nm thick PEDOT:PSS electrode could be used to apply a maximum current of 130 μA while maintaining 84% transmittance (approximately 50% under 2-photon imaging conditions). We then evaluated the electrode performance in the brain of an anesthetized mouse by measuring the electric field with a nearby recording electrode and found values up to 30 V/m. Finally, we combined experimental data with a finite-element model of the in vivo experimental setup to estimate the distribution of the electric field underneath the electrode in the mouse brain. Our findings indicate that the device can generate an electric field as high as 300 V/m directly beneath the electrode, demonstrating its potential for studying and manipulating neural activity using a range of electrical stimulation techniques relevant to human applications. Overall, this work presents a promising approach for developing versatile new tools to apply and study electrical brain stimulation.
Collapse
Affiliation(s)
- Rita Matta
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Davide Reato
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - Alberto Lombardini
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Rodney P. O’Connor
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| |
Collapse
|
5
|
Lin HC, Wu YH, Ker MD. Modulation of Local Field Potentials in the Deep Brain of Minipigs Through Transcranial Temporal Interference Stimulation. Neuromodulation 2025; 28:434-443. [PMID: 39520456 DOI: 10.1016/j.neurom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Transcranial temporal interference stimulation (tTIS) is a novel, noninvasive neuromodulation technique to modulate deep brain neural activity. Despite its potential, direct electrophysiological evidence of tTIS effects remains limited. This study investigates the impact of tTIS on local field potentials (LFPs) in the deep brain using minipigs implanted with deep brain electrodes. MATERIALS AND METHODS Three minipigs were implanted with electrodes in the subthalamic nucleus, and tTIS was applied using patch electrode pairs positioned on both sides of the scalp. Stimulation was delivered in sinewave voltage mode with intensities ≤2V. We evaluated the stimulus-response relationship, effects of different carrier frequencies, the range of entrained envelope oscillations, and changes resulting from adjusting the left-right stimulation intensity ratio. RESULTS The results indicated that tTIS modulates deep-brain LFPs in an intensity-dependent manner. Carrier frequencies of 1 or 2 kHz were most effective in influencing LFP. Envelope oscillations <200 Hz were effectively entrained into deep-brain LFPs. Adjustments to the stimulation intensity ratio between the left and right sides yielded inconsistent responses, with right-sided stimulation playing a dominant role. CONCLUSION These findings indicate that tTIS can regulate LFP changes in the deep brain, highlighting its potential as a promising tool for future noninvasive neuromodulation applications.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Hui Wu
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Dou Ker
- Biomedical Electronics Translational Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Chen Y, Xia J, Qu Y, Zhang H, Mei T, Zhu X, Xu G, Li D, Wang L, Liu Q, Xiao K. Ephaptic Coupling in Ultralow-Power Ion-Gel Nanofiber Artificial Synapses for Enhanced Working Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419013. [PMID: 40059495 DOI: 10.1002/adma.202419013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Indexed: 04/24/2025]
Abstract
Neuromorphic devices are designed to replicate the energy-efficient information processing advantages found in biological neural networks by emulating the working mechanisms of neurons and synapses. However, most existing neuromorphic devices focus primarily on functionally mimicking biological synapses, with insufficient emphasis on ion transport mechanisms. This limitation makes it challenging to achieve the complexity and connectivity inherent in biological systems, such as ephaptic coupling. Here, an ionic biomimetic synaptic device based on a flexible ion-gel nanofiber network is proposed, which transmits information and enables ephaptic coupling through capacitance formation by ion transport with an extremely low energy consumption of just 6 femtojoules. The hysteretic ion transport behavior endows the device with synaptic-like memory effects, significantly enhancing the performance of the reservoir computing system for classifying the MNIST handwritten digit dataset and demonstrating high efficiency in edge learning. More importantly, the devices in an array establish communication connections, exhibiting global oscillatory behaviors similar to ephaptic coupling in biological neural networks. This connectivity enables the array to perform working memory tasks, paving the way for developing brain-like systems characterized by high complexity and vast connectivity.
Collapse
Affiliation(s)
- Yuanxia Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Junfeng Xia
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Youzhi Qu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Xinyi Zhu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Dongyang Li
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Quanying Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| |
Collapse
|
7
|
Sveva V, Guerra A, Mangone M, Agostini F, Bernetti A, Berardelli A, Paoloni M, Bologna M. Effects of cerebellar transcranial alternating current stimulation on balance and gait in healthy subjects. Clin Neurophysiol 2025:S1388-2457(25)00453-5. [PMID: 40180842 DOI: 10.1016/j.clinph.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Transcranial Alternating Current Stimulation (tACS) is a non-invasive brain stimulation technique that modulates cortical oscillations and influences behavior. OBJECTIVES This study aimed to explore the effects of cerebellar theta (5 Hz) and gamma (50 Hz) tACS on human balance and gait through kinematic analysis. MATERIALS AND METHODS Nineteen right-handed healthy subjects participated in three randomized motor tasks: postural standing (PS), gait initiation (GI), and gait cycle (GC). Participants underwent theta-, gamma-, or sham-tACS over the cerebellum while kinematic data were collected using a force platform and an 8-camera optoelectronic system. RESULTS Theta-tACS significantly influenced motor behavior during PS and GC, but not GI. Specifically, it reduced the Maximum Radius, Total Trace Length, Longitudinal Range, and Area during PS, and decreased Stride Width during GC. In contrast, cerebellar gamma-tACS had no significant effect on any kinematic parameters across the tasks. CONCLUSIONS Cerebellar theta-tACS may enhance postural stability and gait control in healthy individuals. We hypothesize that theta-tACS may entrain theta-resonant neurons in the cerebellar cortex, affecting motor control networks involved in balance and gait. SIGNIFICANCE This study highlights tACS's potential as a non-invasive treatment for balance and gait disorders associated with cerebellar dysfunction.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128 Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Via Giuseppe Orus, 2, 35131 Padua, Italy
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Bernetti
- Department of Science and Biological and Ambient Technologies, University of Salento, Via Lecce-Monteroni, 73100 Lecce, LE, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
8
|
Mathiopoulou V, Habets J, Feldmann LK, Busch JL, Roediger J, Behnke JK, Schneider GH, Faust K, Kühn AA. Gamma entrainment induced by deep brain stimulation as a biomarker for motor improvement with neuromodulation. Nat Commun 2025; 16:2956. [PMID: 40140380 PMCID: PMC11947250 DOI: 10.1038/s41467-025-58132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Finely tuned gamma (FTG) oscillations from the subthalamic nucleus (STN) and cortex in Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) are often associated with dyskinesia. Recently it was shown that DBS entrains gamma activity at 1:2 of the stimulation frequency; however, the functional role of this signal is not yet fully understood. We recorded local field potentials from the STN in 19 chronically implanted PD patients on dopaminergic medication during DBS, at rest, and during repetitive movements. Here we show that high-frequency DBS induced 1:2 gamma entrainment in 15/19 patients. Spontaneous FTG was present in 8 patients; in five of these patients dyskinesia occurred or were enhanced with entrained gamma activity during stimulation. Further, there was a significant increase in the power of 1:2 entrained gamma activity during movement in comparison to rest, while patients with entrainment had faster movements compared to those without. These findings argue for a functional relevance of the stimulation-induced 1:2 gamma entrainment in PD patients as a prokinetic activity that, however, is not necessarily promoting dyskinesia. DBS-induced entrainment can be a promising neurophysiological biomarker for identifying the optimal amplitude during closed-loop DBS.
Collapse
Affiliation(s)
- Varvara Mathiopoulou
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jeroen Habets
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucia K Feldmann
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes L Busch
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Roediger
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer K Behnke
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Charité-Universitätsmedizin Medicine, Berlin, Germany.
- NeuroCure Clinical Research Centre, Charité-Universitätsmedizin, Berlin, Germany.
- DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
9
|
Agboada D, Zhao Z, Wischnewski M. Neuroplastic effects of transcranial alternating current stimulation (tACS): from mechanisms to clinical trials. Front Hum Neurosci 2025; 19:1548478. [PMID: 40144589 PMCID: PMC11936966 DOI: 10.3389/fnhum.2025.1548478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is a promising non-invasive neuromodulation technique with the potential for inducing neuroplasticity and enhancing cognitive and clinical outcomes. A unique feature of tACS, compared to other stimulation modalities, is that it modulates brain activity by entraining neural activity and oscillations to an externally applied alternating current. While many studies have focused on online effects during stimulation, growing evidence suggests that tACS can induce sustained after-effects, which emphasizes the potential to induce long-term neurophysiological changes, essential for therapeutic applications. In the first part of this review, we discuss how tACS after-effects could be mediated by four non-mutually exclusive mechanisms. First, spike-timing-dependent plasticity (STDP), where the timing of pre- and postsynaptic spikes strengthens or weakens synaptic connections. Second, spike-phase coupling and oscillation phase as mediators of plasticity. Third, homeostatic plasticity, emphasizing the importance of neural activity to operate within dynamic physiological ranges. Fourth, state-dependent plasticity, which highlights the importance of the current brain state in modulatory effects of tACS. In the second part of this review, we discuss tACS applications in clinical trials targeting neurological and psychiatric disorders, including major depressive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Evidence suggests that repeated tACS sessions, optimized for individual oscillatory frequencies and combined with behavioral interventions, may result in lasting effects and enhance therapeutic outcomes. However, critical challenges remain, including the need for personalized dosing, improved current modeling, and systematic investigation of long-term effects. In conclusion, this review highlights the mechanisms and translational potential of tACS, emphasizing the importance of bridging basic neuroscience and clinical research to optimize its use as a therapeutic tool.
Collapse
Affiliation(s)
- Desmond Agboada
- Department of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, United States
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Sánchez-Garrido Campos G, Zafra ÁM, Estévez-Rodríguez M, Cordones I, Ruffini G, Márquez-Ruiz J. Preclinical insights into gamma-tACS: foundations for clinical translation in neurodegenerative diseases. Front Neurosci 2025; 19:1549230. [PMID: 40143845 PMCID: PMC11936909 DOI: 10.3389/fnins.2025.1549230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Gamma transcranial alternating current stimulation (gamma-tACS) represents a novel neuromodulation technique with promising therapeutic applications across neurodegenerative diseases. This mini-review consolidates recent preclinical and clinical findings, examining the mechanisms by which gamma-tACS influences neural oscillations, enhances synaptic plasticity, and modulates neuroimmune responses. Preclinical studies have demonstrated the capacity of gamma-tACS to synchronize neuronal firing, support long-term neuroplasticity, and reduce markers of neuroinflammation, suggesting its potential to counteract neurodegenerative processes. Early clinical studies indicate that gamma-tACS may improve cognitive functions and network connectivity, underscoring its ability to restore disrupted oscillatory patterns central to cognitive performance. Given the intricate and multifactorial nature of gamma oscillations, the development of tailored, optimized tACS protocols informed by extensive animal research is crucial. Overall, gamma-tACS presents a promising avenue for advancing treatments that support cognitive resilience in a range of neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Ángela M. Zafra
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Marta Estévez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
11
|
Sasaki R. Modulating Cortico-cortical Networks with Transcranial Alternating Current Stimulation: A Minireview. Phys Ther Res 2025; 28:1-8. [PMID: 40321689 PMCID: PMC12047044 DOI: 10.1298/ptr.r0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/14/2025] [Indexed: 05/08/2025]
Abstract
Advancements in brain imaging and analytical methods have demonstrated that behavior arises from the coordinated activity of multiple brain regions within cortico-cortical networks. Transcranial alternating current stimulation (tACS), a noninvasive brain stimulation (NIBS) technique, applies weak sinusoidal alternating currents to specific brain regions using scalp-mounted electrodes. Traditionally, tACS has been used to target single brain regions to enhance functions such as motor, sensory, and cognitive abilities. However, recent findings indicate its potential for simultaneously stimulating 2 brain regions, thereby modulating cortico-cortical network strength through neural entrainment-where brain oscillations synchronize with external rhythmic stimuli. Despite this potential, tACS applications remain primarily focused on individual brain regions. Given that behavior stems from dynamic interactions within cortico-cortical networks rather than isolated regions, this minireview explores the role of these networks in shaping behavior through functional connectivity as identified by neuroimaging. It also provides an in-depth analysis of tACS as a tool for modifying cortico-cortical networks via neural entrainment, offering promising applications in neurorehabilitation for brain disorders linked to network dysfunction. This highlights tACS as a novel approach for targeted modulation of cortico-cortical networks, distinguishing it from traditional NIBS techniques.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Japan
| |
Collapse
|
12
|
Gaugain G, Al Harrach M, Yochum M, Wendling F, Bikson M, Modolo J, Nikolayev D. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. J Neural Eng 2025; 22:016028. [PMID: 39569929 DOI: 10.1088/1741-2552/ad9526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.Approach. We used both detailed (anatomical multicompartments) and simplified (three compartments) single-cell modeling approaches based on the Hodgkin-Huxley formalism to study neocortical excitatory and inhibitory cells under various tACS intensities and frequencies within the 5-50 Hz range at rest and during basal 10 Hz activity.Main results. L5 pyramidal cells (PCs) exhibited the highest polarizability at direct current, ranging from 0.21 to 0.25 mm and decaying exponentially with frequency. Inhibitory neurons displayed membrane resonance in the 5-15 Hz range with lower polarizability, although bipolar cells had higher polarizability. Layer 5 PC demonstrated the highest entrainment close to 10 Hz, which decayed with frequency. In contrast, inhibitory neurons entrainment increased with frequency, reaching levels akin to PC. Results from simplified models could replicate phase preferences, while amplitudes tended to follow opposite trends in PC.Significance. tACS-induced membrane polarization is frequency-dependent, revealing observable resonance behavior. Whilst optimal phase entrainment of sustained activity is achieved in PC when tACS frequency matches endogenous activity, inhibitory neurons tend to be entrained at higher frequencies. Consequently, our results highlight the potential for precise, cell-specific targeting for tACS.
Collapse
Affiliation(s)
- Gabriel Gaugain
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| | - Mariam Al Harrach
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Maxime Yochum
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Fabrice Wendling
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Marom Bikson
- The City College of New York, New York, NY 11238, United States of America
| | - Julien Modolo
- Laboratoire Traitement du Signal et de l'Image (LTSI UMR 1099), INSERM / University of Rennes, 35000 Rennes, France
| | - Denys Nikolayev
- Institut d'électronique et des technologies du numérique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| |
Collapse
|
13
|
Cassarà AM, Newton TH, Zhuang K, Regel SJ, Achermann P, Pascual‐Leone A, Kuster N, Neufeld E. Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part I: Principles of Electrical Neuromodulation and Adverse Effects. Bioelectromagnetics 2025; 46:e22542. [PMID: 39921360 PMCID: PMC11806287 DOI: 10.1002/bem.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. In order to inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. Part I of this effort, described here, comprises a summary of the current knowledge pertaining to the safety of TIS and related techniques. Specifically, we provide: i) a broad overview of the electrophysiological impacts neurostimulation, ii) a review of the (bio-)physical principles underlying the mechanisms of action of transcranial alternating/direct stimulation (tACS/tDCS), deep brain stimulation (DBS), and TIS, and iii) a comprehensive survey of the adverse effects (AEs) associated with each technique as reported in the scientific literature and regulatory and clinical databases. In Part II, we perform an in silico study to determine field exposure metrics for tDCS/tACS and DBS under normal (safe) operating conditions and infer frequency-dependent current thresholds for TIS that result in equivalent levels of exposure.
Collapse
Affiliation(s)
- Antonino M. Cassarà
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Taylor H. Newton
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Katie Zhuang
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | | | - Peter Achermann
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Alvaro Pascual‐Leone
- TI Solutions AGZurichSwitzerland
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLifeBostonMassachusettsUSA
| | - Niels Kuster
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
- Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
| |
Collapse
|
14
|
Sanchez-Romero R, Akyuz S, Krekelberg B. EFMouse: a Matlab toolbox to model stimulation-induced electric fields in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.605227. [PMID: 39091807 PMCID: PMC11291114 DOI: 10.1101/2024.07.25.605227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcome experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of non-invasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here, we introduce EFMouse, a toolbox that extends previous approaches to model intracranial electric fields and is optimized to generate predictions that can be tested with in-vivo intracranial recordings in mice. Although the EFMouse toolbox has general applicability and could be used to predict intracranial fields for any electrical stimulation study using mice, we illustrate its usage by comparing fields in a tES high-density multi-electrode montage with a more traditional two-electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability. The EFMouse toolbox is publicly available at https://github.com/klabhub/EFMouse.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Sibel Akyuz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
15
|
Griffin S, Khanna P, Choi H, Thiesen K, Novik L, Morecraft RJ, Ganguly K. Ensemble reactivations during brief rest drive fast learning of sequences. Nature 2025; 638:1034-1042. [PMID: 39814880 DOI: 10.1038/s41586-024-08414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days1-6, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes7-10. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood. Here we recorded neural ensemble activity in the motor cortex of macaques while they performed a visuomotor sequence learning task interspersed with brief breaks. We found that task-related neural cofiring patterns were reactivated during brief breaks. The rate and content of reactivations predicted the magnitude and pattern of subsequent performance gains. Of note, we found that performance gains and reactivations were positively correlated with cortical ripples (80-120 Hz oscillations) but anti-correlated with β bursts (13-30 Hz oscillations), which ultimately dominated breaks after the fast learning phase plateaued. We then applied 20 Hz epidural alternating current stimulation (ACS) to motor cortex, which reduced reactivation rates in a phase-specific and dose-dependent manner. Notably, 20 Hz ACS also eliminated performance gains. Overall, our results indicate that the reactivations of task ensembles during brief breaks are causal drivers of subsequent performance gains. β bursts compete with this process, possibly to support stable performance.
Collapse
Affiliation(s)
- Sandon Griffin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Hoseok Choi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Katherina Thiesen
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
16
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Weiss SA, Sperling MR, Engel J, Liu A, Fried I, Wu C, Doyle W, Mikell C, Mofakham S, Salamon N, Sim MS, Bragin A, Staba R. Simulated resections and responsive neurostimulator placement can optimize postoperative seizure outcomes when guided by fast ripple networks. Brain Commun 2024; 6:fcae367. [PMID: 39464217 PMCID: PMC11503960 DOI: 10.1093/braincomms/fcae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure-onset zone and incorporation of neuroimaging findings from MRI, PET, single-photon emission CT and magnetoencephalography modalities. Resecting cortical tissue generating high-frequency oscillations has been investigated as a more efficacious alternative to targeting the seizure-onset zone. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio, a spatial FR network measure and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure-free labels of 18 patients with medically refractory focal epilepsy. Leave-one-out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were of highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients who were seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (P < 0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system and virtually targeted the responsive neurostimulator system stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated seizure-onset zone and stimulated FR metrics would trend towards those patients with a better seizure outcome. Our results suggest the following: (i) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; (ii) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; (iii) when FR metrics predict the standard-of-care resection will fail, amending the boundaries of the planned resection with certain FR-generating sites may improve outcome and (iv) more work is required to determine whether targeting responsive neurostimulator system stimulation contact proximal to FR generating sites will improve seizure outcome.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anli Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Charles Mikell
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Sima Mofakham
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Noriko Salamon
- Department of Neuroradiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Myung Shin Sim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Tang Y, Xing Y, Sun L, Wang Z, Wang C, Yang K, Zhu W, Shi X, Xie B, Yin Y, Mi Y, Wei T, Tong R, Qiao Y, Yan S, Wei P, Yang Y, Shan Y, Zhang X, Jia J, Teipel SJ, Howard R, Lu J, Li C, Zhao G. TRanscranial AlterNating current stimulation FOR patients with mild Alzheimer's Disease (TRANSFORM-AD): a randomized controlled clinical trial. Alzheimers Res Ther 2024; 16:203. [PMID: 39267112 PMCID: PMC11395938 DOI: 10.1186/s13195-024-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Collapse
Affiliation(s)
- Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liwei Sun
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhibin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- The National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Xinrui Shi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Beijia Xie
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yingxin Mi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuchen Qiao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianping Jia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock & Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Wang L, Du J, Liu Q, Wang D, Wang W, Lei M, Li K, Li Y, Hao A, Sang Y, Yi F, Zhou W, Liu H, Mao C, Qiu J. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy. Nat Commun 2024; 15:7223. [PMID: 39174514 PMCID: PMC11341554 DOI: 10.1038/s41467-024-51098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Electrical stimulation holds promise for enhancing neuronal differentiation of neural stem cells to treat traumatic brain injury. However, once the stem cells leave the stimulating material and migrate post transplantation, electrical stimulation on them is diminished. Here, we wrap the stem cells with wireless electrical nanopatches, the conductive graphene nanosheets. Under electromagnetic induction, electrical stimulation can thus be applied in-situ to individual nanopatch-wrapped stem cells on demand, stimulating their neuronal differentiation through a MAPK/ERK signaling pathway. Consequently, 41% of the nanopatch-wrapped stem cells differentiate into functional neurons in 5 days, as opposed to only 16.3% of the unwrapped ones. The brain injury male mice implanted with the nanopatch-wrapped stem cells and exposed to a rotating magnetic field 30 min/day exhibit significant recovery of brain tissues, behaviors, and cognitions, within 28 days. This study opens up an avenue to individualized electrical stimulation of transplanted stem cells for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qilu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ming Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Keyi Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yiwei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
21
|
Weiss SA, Sperling MR, Engel J, Liu A, Fried I, Wu C, Doyle W, Mikell C, Mofakham S, Salamon N, Sim MS, Bragin A, Staba R. Simulated resections and RNS placement can optimize post-operative seizure outcomes when guided by fast ripple networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.26.24304802. [PMID: 38585730 PMCID: PMC10996761 DOI: 10.1101/2024.03.26.24304802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure onset zone (SOZ) and incorporation of neuroimaging findings from MRI, PET, SPECT, and MEG modalities. Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to targeting the SOZ. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio (RR), a spatial FR network measure, and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure free labels of 18 patients with medically refractory focal epilepsy. Leave one out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (p<0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system (RNS) and virtually targeted the RNS stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated SOZ and stimulated FR metrics would trend toward those patients with a better seizure outcome. Our results suggest: 1) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; 2) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; 3) when FR metrics predict the standard of care resection will fail, amending the boundaries of the planned resection with certain FR generating sites may improve outcome; and 4) more work is required to determine if targeting RNS stimulation contact proximal to FR generating sites will improve seizure outcome.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York 11203, USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York 11203, USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, 11203 USA
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anli Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, 10016 USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016 USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Chengyuan Wu
- Dept. of Neuroradiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016 USA
| | - Charles Mikell
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, New York 11790, USA
| | - Sima Mofakham
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, New York 11790, USA
| | - Noriko Salamon
- Dept. of Neuroradiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Myung Shin Sim
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Richard Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Vieira PG, Krause MR, Pack CC. Temporal interference stimulation disrupts spike timing in the primate brain. Nat Commun 2024; 15:4558. [PMID: 38811618 PMCID: PMC11137077 DOI: 10.1038/s41467-024-48962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Electrical stimulation can regulate brain activity, producing clear clinical benefits, but focal and effective neuromodulation often requires surgically implanted electrodes. Recent studies argue that temporal interference (TI) stimulation may provide similar outcomes non-invasively. During TI, scalp electrodes generate multiple electrical fields in the brain, modulating neural activity only at their intersection. Despite considerable enthusiasm for this approach, little empirical evidence demonstrates its effectiveness, especially under conditions suitable for human use. Here, using single-neuron recordings in non-human primates, we establish that TI reliably alters the timing, but not the rate, of spiking activity. However, we show that TI requires strategies-high carrier frequencies, multiple electrodes, and amplitude-modulated waveforms-that also limit its effectiveness. Combined, these factors make TI 80 % weaker than other forms of non-invasive brain stimulation. Although unlikely to cause widespread neuronal entrainment, TI may be ideal for disrupting pathological oscillatory activity, a hallmark of many neurological disorders.
Collapse
Affiliation(s)
- Pedro G Vieira
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Farahani F, Khadka N, Parra LC, Bikson M, Vöröslakos M. Transcranial electric stimulation modulates firing rate at clinically relevant intensities. Brain Stimul 2024; 17:561-571. [PMID: 38631548 PMCID: PMC466978 DOI: 10.1016/j.brs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Notwithstanding advances with low-intensity transcranial electrical stimulation (tES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. OBJECTIVE To measure electric fields magnitude and their effects on neuronal firing rate of hippocampal neurons in freely moving rats, and to establish calibrated computational models of current flow. METHODS Current flow models were calibrated on electric field measures in the motor cortex (n = 2 anesthetized rats) and hippocampus. A Neuropixels 2.0 probe with 384 channels was used in an in-vivo rat model of tES (n = 4 freely moving and 2 urethane anesthetized rats) to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 μA of applied skull currents). RESULTS Electric fields of as low as 0.35 V/m (0.25-0.47) acutely modulated average firing rate in the hippocampus. At these intensities, firing rate effects increased monotonically with electric field intensity at a rate of 11.5 % per V/m (7.2-18.3). For the majority of excitatory neurons, firing increased for soma-depolarizing stimulation and diminished for soma-hyperpolarizing stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. CONCLUSION In awake animals, electric fields modulate spiking rate above levels previously observed in vitro. Firing rate effects are likely mediated by somatic polarization of pyramidal neurons. We recommend that all future rodent experiments directly measure electric fields to insure rigor and reproducibility.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mihály Vöröslakos
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
24
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
26
|
Vöröslakos M, Yaghmazadeh O, Alon L, Sodickson DK, Buzsáki G. Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks. Bioelectromagnetics 2024; 45:139-155. [PMID: 37876116 PMCID: PMC10947979 DOI: 10.1002/bem.22489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Omid Yaghmazadeh
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Leeor Alon
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
27
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Omae E, Shima A, Tanaka K, Yamada M, Cao Y, Nakamura T, Hoshiai H, Chiba Y, Irisawa H, Mizushima T, Mima T, Koganemaru S. Case report: An N-of-1 study using amplitude modulated transcranial alternating current stimulation between Broca's area and the right homotopic area to improve post-stroke aphasia with increased inter-regional synchrony. Front Hum Neurosci 2024; 18:1297683. [PMID: 38454909 PMCID: PMC10917932 DOI: 10.3389/fnhum.2024.1297683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Over one-third of stroke survivors develop aphasia, and language dysfunction persists for the remainder of their lives. Brain language network changes in patients with aphasia. Recently, it has been reported that phase synchrony within a low beta-band (14-19 Hz) frequency between Broca's area and the homotopic region of the right hemisphere is positively correlated with language function in patients with subacute post-stroke aphasia, suggesting that synchrony is important for language recovery. Here, we employed amplitude-modulated transcranial alternating current stimulation (AM-tACS) to enhance synchrony within the low beta band frequency between Broca's area and the right homotopic area, and to improve language function in a case of chronic post-stroke aphasia. According to an N-of-1 study design, the patient underwent short-term intervention with a one-time intervention of 15 Hz-AM-tACS with Broca's and the right homotopic areas (real condition), sham stimulation (sham condition), and 15 Hz-AM-tACS with Broca's and the left parietal areas (control condition) and long-term intervention with sham and real conditions (10 sessions in total, each). In the short-term intervention, the reaction time and accuracy rate of the naming task improved after real condition, not after sham and control conditions. The synchrony between the stimulated areas evaluated by coherence largely increased after the real condition. In the long-term intervention, naming ability, verbal fluency and overall language function improved, with the increase in the synchrony, and those improvements were sustained for more than a month after real condition. This suggests that AM-tACS on Broca's area and the right homotopic areas may be a promising therapeutic approach for patients with poststroke aphasia.
Collapse
Affiliation(s)
- Erika Omae
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurobiology and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Tanaka
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Yamada
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yedi Cao
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nakamura
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hajime Hoshiai
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yumi Chiba
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
29
|
Guerra A, Paparella G, Passaretti M, Costa D, Birreci D, De Biase A, Colella D, Angelini L, Cannavacciuolo A, Berardelli A, Bologna M. Theta-tACS modulates cerebellar-related motor functions and cerebellar-cortical connectivity. Clin Neurophysiol 2024; 158:159-169. [PMID: 38219405 DOI: 10.1016/j.clinph.2023.12.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE To evaluate the effects of cerebellar transcranial alternating current stimulation (tACS) delivered at cerebellar-resonant frequencies, i.e., theta (θ) and gamma (γ), on upper limb motor performance and cerebellum-primary motor cortex (M1) connectivity, as assessed by cerebellar-brain inhibition (CBI), in healthy subjects. METHODS Participants underwent cerebellar-tACS while performing three cerebellar-dependent motor tasks: (i) rhythmic finger-tapping, (ii) arm reaching-to-grasp ('grasping') and (iii) arm reaching-to-point ('pointing') an object. Also, we evaluated possible changes in CBI during cerebellar-tACS. RESULTS θ-tACS decreased movement regularity during the tapping task and increased the duration of the pointing task compared to sham- and γ-tACS. Additionally, θ-tACS increased the CBI effectiveness (greater inhibition). The effect of θ-tACS on movement rhythm correlated with CBI changes and less tapping regularity corresponded to greater CBI. CONCLUSIONS Cerebellar-tACS delivered at the θ frequency modulates cerebellar-related motor behavior and this effect is, at least in part, mediated by changes in the cerebellar inhibitory output onto M1. The effects of θ-tACS may be due to the modulation of cerebellar neurons that resonate to the θ rhythm. SIGNIFICANCE These findings contribute to a better understanding of the physiological mechanisms of motor control and provide new evidence on cerebellar non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Giulia Paparella
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro De Biase
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
30
|
Luff CE, Dzialecka P, Acerbo E, Williamson A, Grossman N. Pulse-width modulated temporal interference (PWM-TI) brain stimulation. Brain Stimul 2024; 17:92-103. [PMID: 38145754 DOI: 10.1016/j.brs.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Electrical stimulation involving temporal interference of two different kHz frequency sinusoidal electric fields (temporal interference (TI)) enables non-invasive deep brain stimulation, by creating an electric field that is amplitude modulated at the slow difference frequency (within the neural range), at the target brain region. OBJECTIVE Here, we investigate temporal interference neural stimulation using square, rather than sinusoidal, electric fields that create an electric field that is pulse-width, but not amplitude, modulated at the difference frequency (pulse-width modulated temporal interference, (PWM-TI)). METHODS/RESULTS We show, using ex-vivo single-cell recordings and in-vivo calcium imaging, that PWM-TI effectively stimulates neural activity at the difference frequency at a similar efficiency to traditional TI. We then demonstrate, using computational modelling, that the PWM stimulation waveform induces amplitude-modulated membrane potential depolarization due to the membrane's intrinsic low-pass filtering property. CONCLUSIONS PWM-TI can effectively drive neural activity at the difference frequency. The PWM-TI mechanism involves converting an envelope amplitude-fixed PWM field to an amplitude-modulated membrane potential via the low-pass filtering of the passive neural membrane. Unveiling the biophysics underpinning the neural response to complex electric fields may facilitate the development of new brain stimulation strategies with improved precision and efficiency.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France; International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, United Kingdom.
| |
Collapse
|
31
|
Corominas-Teruel X, Bracco M, Fibla M, Segundo RMS, Villalobos-Llaó M, Gallea C, Beranger B, Toba M, Valero-Cabré A, Colomina MT. High-density transcranial direct current stimulation to improve upper limb motor function following stroke: study protocol for a double-blind randomized clinical trial targeting prefrontal and/or cerebellar cognitive contributions to voluntary motion. Trials 2023; 24:783. [PMID: 38049806 PMCID: PMC10694989 DOI: 10.1186/s13063-023-07680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Focal brain lesions following a stroke of the middle cerebral artery induce large-scale network disarray with a potential to impact multiple cognitive and behavioral domains. Over the last 20 years, non-invasive brain neuromodulation via electrical (tCS) stimulation has shown promise to modulate motor deficits and contribute to recovery. However, weak, inconsistent, or at times heterogeneous outcomes using these techniques have also highlighted the need for novel strategies and the assessment of their efficacy in ad hoc controlled clinical trials. METHODS We here present a double-blind, sham-controlled, single-center, randomized pilot clinical trial involving participants having suffered a unilateral middle cerebral artery (MCA) stroke resulting in motor paralysis of the contralateral upper limb. Patients will undergo a 10-day regime (5 days a week for 2 consecutive weeks) of a newly designed high-definition transcranial direct current stimulation (HD-tDCS) protocol. Clinical evaluations (e.g., Fugl Meyer, NIHSS), computer-based cognitive assessments (visuo-motor adaptation and AX-CPT attention tasks), and electroencephalography (resting-state and task-evoked EEG) will be carried out at 3 time points: (I) Baseline, (II) Post-tDCS, and (III) Follow-up. The study consists of a four-arm trial comparing the impact on motor recovery of three active anodal tDCS conditions: ipsilesional DLPFC tDCS, contralesional cerebellar tDCS or combined DLPFC + contralesional cerebellar tDCS, and a sham tDCS intervention. The Fugl-Meyer Assessment for the upper extremity (FMA-UE) is selected as the primary outcome measure to quantify motor recovery. In every stimulation session, participants will receive 20 min of high-density tDCS stimulation (HD-tDCS) (up to 0.63 mA/[Formula: see text]) with [Formula: see text] electrodes. Electrode scalp positioning relative to the cortical surface (anodes and cathodes) and intensities are based on a biophysical optimization model of current distribution ensuring a 0.25 V/m impact at each of the chosen targets. DISCUSSION Our trial will gauge the therapeutic potential of accumulative sessions of HD-tDCS to improve upper limb motor and cognitive dysfunctions presented by middle cerebral artery stroke patients. In parallel, we aim at characterizing changes in electroencephalographic (EEG) activity as biomarkers of clinical effects and at identifying potential interactions between tDCS impact and motor performance outcomes. Our work will enrich our mechanistic understanding on prefrontal and cerebellar contributions to motor function and its rehabilitation following brain damage. TRIAL REGISTRATION ClinicalTrials.gov NCT05329818. April 15, 2022.
Collapse
Affiliation(s)
- Xavier Corominas-Teruel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Groupe de Dynamiques Cérébrales, Plasticité Et Rééducation, FRONTLAB Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
- Department of Psychology and Research Center for Behaviour Assessment (CRAMC), Universitat Rovira I Virgili, Neurobehaviour and Health Research Group, NEUROLAB, Tarragona, Spain
| | - Martina Bracco
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Groupe de Dynamiques Cérébrales, Plasticité Et Rééducation, FRONTLAB Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Movement Investigation and Therapeutics Team, MOVIT Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Montserrat Fibla
- Rehabilitation and Physical Medicine Department, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Rosa Maria San Segundo
- Rehabilitation and Physical Medicine Department, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Marc Villalobos-Llaó
- Department of Psychology and Research Center for Behaviour Assessment (CRAMC), Universitat Rovira I Virgili, Neurobehaviour and Health Research Group, NEUROLAB, Tarragona, Spain
| | - Cecile Gallea
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Movement Investigation and Therapeutics Team, MOVIT Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Benoit Beranger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Centre de Neuro-Imagerie de Recherche, CENIR, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Monica Toba
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Groupe de Dynamiques Cérébrales, Plasticité Et Rééducation, FRONTLAB Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Groupe de Dynamiques Cérébrales, Plasticité Et Rééducation, FRONTLAB Team, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France.
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Centre de Neuro-Imagerie de Recherche, CENIR, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, Paris, France.
- Dept. Anatomy and Neurobiology, Lab of Cerebral Dynamics, Boston University School of Medicine, Boston, USA.
- Cognitive Neuroscience and Information Tech. Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behaviour Assessment (CRAMC), Universitat Rovira I Virgili, Neurobehaviour and Health Research Group, NEUROLAB, Tarragona, Spain.
| |
Collapse
|
32
|
Ladenbauer J, Khakimova L, Malinowski R, Obst D, Tönnies E, Antonenko D, Obermayer K, Hanna J, Flöel A. Towards Optimization of Oscillatory Stimulation During Sleep. Neuromodulation 2023; 26:1592-1601. [PMID: 35981956 DOI: 10.1016/j.neurom.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species. In this study, we aimed to determine how precisely the frequency of stimulation must match the naturally occurring SO frequency in individuals to best improve SO-spindle coupling. Moreover, we systematically tested stimulation durations necessary to induce changes. MATERIALS AND METHODS We addressed these questions by comparing so-tDCS with individualized frequency to standardized frequency of 0.75 Hz in a within-subject design with 28 older participants during napping while stimulation train durations were systematically varied between 30 seconds, 2 minutes, and 5 minutes. RESULTS Stimulation trains as short as 30 seconds were sufficient to modulate the coupling between SOs and spindle activity. Contrary to our expectations, so-tDCS with standardized frequency indicated stronger aftereffects regarding SO-spindle coupling than individualized frequency. Angle and variance of spindle maxima occurrence during the SO cycle were similarly modulated. CONCLUSIONS In sum, short stimulation trains were sufficient to induce significant changes in sleep physiology, allowing for more trains of stimulation, which provides methodological advantages and possibly even larger behavioral effects in future studies. Regarding individualized stimulation frequency, further options of optimization need to be investigated, such as closed-loop stimulation, to calibrate stimulation frequency to the SO frequency at the time of stimulation onset. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT04714879.
Collapse
Affiliation(s)
- Julia Ladenbauer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Liliia Khakimova
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Robert Malinowski
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Daniela Obst
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Eric Tönnies
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Klaus Obermayer
- Fakultät IV and Bernstein Center for Computational Neuroscience, Technische Universität Berlin, Berlin, Germany
| | - Jeff Hanna
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany.
| |
Collapse
|
33
|
Farahani F, Khadka N, Parra LC, Bikson M, Vöröslakos M. Transcranial electric stimulation modulates firing rate at clinically relevant intensities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568618. [PMID: 38045400 PMCID: PMC10690262 DOI: 10.1101/2023.11.24.568618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Notwithstanding advances with low-intensity transcranial electrical stimulation (TES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. We used Neuropixels 2.0 probe with 384 channels in an in-vivo rat model of TES to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 μA of applied skull currents). We demonstrate that electric fields below 0.5 V/m acutely modulate firing rate in 5% of neurons recorded in the hippocampus. At these intensities, average firing rate effects increased monotonically with electric field intensity at a rate of 7 % per V/m. For the majority of excitatory neurons, firing increased for cathodal stimulation and diminished for anodal stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. Our results indicate that responses to TES at clinically relevant intensities are driven by a fraction of high-responder excitatory neurons, with polarity-specific effects. We conclude that transcranial electric stimulation is an effective neuromodulator at clinically realistic intensities.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Lucas C. Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mihály Vöröslakos
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
34
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
36
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. Intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541493. [PMID: 37293105 PMCID: PMC10245793 DOI: 10.1101/2023.05.19.541493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity, and thereby cause changes in local neural oscillatory power. Despite an increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood. Here, we develop a computational neuronal network model of two-compartment pyramidal neurons and inhibitory interneurons which mimic the local cortical circuits. We model tACS with electric field strengths that are achievable in human applications. We then simulate intrinsic network activity and measure neural entrainment to investigate how tACS modulates ongoing endogenous oscillations. First, we show that intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV/mm), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV/mm), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that entrainment of ongoing cortical oscillations also depends on frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS induced entrainment via excitation-inhibition balance. Our model shows that pyramidal neurons are directly entrained by the exogenous electric field and drive the inhibitory neurons. Our findings can thus provide a mechanistic framework for understanding the intensity- and frequency- specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameters selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
37
|
He Y, Liu S, Chen L, Ke Y, Ming D. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci 2023; 17:1091925. [PMID: 37090788 PMCID: PMC10117687 DOI: 10.3389/fnins.2023.1091925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Neuronal oscillations are the primary basis for precise temporal coordination of neuronal processing and are linked to different brain functions. Transcranial alternating current stimulation (tACS) has demonstrated promising potential in improving cognition by entraining neural oscillations. Despite positive findings in recent decades, the results obtained are sometimes rife with variance and replicability problems, and the findings translation to humans is quite challenging. A thorough understanding of the mechanisms underlying tACS is necessitated for accurate interpretation of experimental results. Animal models are useful for understanding tACS mechanisms, optimizing parameter administration, and improving rational design for broad horizons of tACS. Here, we review recent electrophysiological advances in tACS from animal models, as well as discuss some critical issues for results coordination and translation. We hope to provide an overview of neurophysiological mechanisms and recommendations for future consideration to improve its validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| |
Collapse
|
38
|
Calvert GHM, Carson RG. Induction of interhemispheric facilitation by short bursts of transcranial alternating current stimulation. Neurosci Lett 2023; 803:137190. [PMID: 36921664 DOI: 10.1016/j.neulet.2023.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Interhemispheric facilitation (IHF) describes potentiation of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over primary motor cortex (M1), when they are preceded (3-6 ms) by conditioning TMS below motor threshold (MT) delivered over the opposite M1. This effect is however obtained only when the conditioning stimulation is sufficiently circumscribed. In paired associative protocols, (500 ms) bursts of 140 Hz transcranial alternating current stimulation (tACS) interact with the state of neural circuits in the opposite hemisphere in a similar manner to sub-threshold TMS. We hypothesised that tACS applied over M1 would elevate the amplitudes of MEPs elicited by suprathreshold TMS applied 6 ms later over the opposite M1. Thirty healthy right-handed participants were tested. In a control condition, MEPs were recorded in right flexor carpi radialis (rFCR) following 120% resting MT TMS over left M1. In 11 experimental conditions, 1 mA (peak-to-peak) 140 Hz (30, 100, 500 ms) or 670 Hz (6, 12, 100, 500 ms) tACS, or 100-640 Hz (6, 12, 100, 500 ms) transcranial random noise stimulation (tRNS), was delivered over right M1, 6 ms in advance of the TMS. IHF was obtained by conditioning with 30 ms (but not 100 or 500 ms) 140 Hz tACS. The magnitude of IHF (12% increase; d = 0.56 (0.21-0.98)) was within the range reported for dual-coil TMS studies. Conditioning by 670 Hz tACS or tRNS had no effect. Our findings indicate that short bursts of 140 Hz tACS, applied over M1, have distributed effects similar to those of subthreshold TMS.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
39
|
Carmona-Barrón VG, Fernández del Campo IS, Delgado-García JM, De la Fuente AJ, Lopez IP, Merchán MA. Comparing the effects of transcranial alternating current and temporal interference (tTIS) electric stimulation through whole-brain mapping of c-Fos immunoreactivity. Front Neuroanat 2023; 17:1128193. [PMID: 36992795 PMCID: PMC10040600 DOI: 10.3389/fnana.2023.1128193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The analysis of the topography of brain neuromodulation following transcranial alternating current (AC) stimulation is relevant for defining strategies directed to specific nuclei stimulation in patients. Among the different procedures of AC stimulation, temporal interference (tTIS) is a novel method for non-invasive neuromodulation of specific deep brain targets. However, little information is currently available about its tissue effects and its activation topography in in vivo animal models. After a single session (30 min, 0.12 mA) of transcranial alternate current (2,000 Hz; ES/AC group) or tTIS (2,000/2,010 Hz; Es/tTIS group) stimulation, rat brains were explored by whole-brain mapping analysis of c-Fos immunostained serial sections. For this analysis, we used two mapping methods, namely density-to-color processed channels (independent component analysis (ICA) and graphical representation (MATLAB) of morphometrical and densitometrical values obtained by density threshold segmentation. In addition, to assess tissue effects, alternate serial sections were stained for glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), and Nissl. AC stimulation induced a mild superficial increase in c-Fos immunoreactivity. However, tTIS stimulation globally decreased the number of c-Fos-positive neurons and increased blood brain barrier cell immunoreactivity. tTIS also had a stronger effect around the electrode placement area and preserved neuronal activation better in restricted areas of the deep brain (directional stimulation). The enhanced activation of intramural blood vessels’ cells and perivascular astrocytes suggests that low-frequency interference (10 Hz) may also have a trophic effect.
Collapse
Affiliation(s)
| | | | | | - Antonio J. De la Fuente
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza Lopez
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
| | - Miguel A. Merchán
- Institute of Neuroscience of Castilla y Leon (INCYL), University of Salamanca, Salamanca, Spain
- *Correspondence: Miguel A. Merchán
| |
Collapse
|
40
|
Weiss SA, Eliashiv D, Stern J, Rubinstein D, Fried I, Wu C, Sharan A, Engel J, Staba R, Sperling MR. Stimulation better targets fast-ripple generating networks in super responders to the responsive neurostimulator system. Epilepsia 2023; 64:e48-e55. [PMID: 36906958 DOI: 10.1111/epi.17582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate. We, therefore, examined whether stimulation of FR-generating networks differed in RNS super responders and intermediate responders. In 10 patients, with subsequent RNS placement, we detected FRs from stereo-electroencephalography (SEEG) contacts during pre-surgical evaluation. The normalized coordinates of the SEEG contacts were compared with those of the eight RNS contacts, and RNS-stimulated SEEG contacts were defined as those within 1.5 cm3 of the RNS contacts. We compared the post-RNS placement seizure outcome to (1) the ratio of stimulated SEEG contacts in the seizure-onset zone (SOZ stimulation ratio [SR]); (2) the ratio of FR events on stimulated contacts (FR SR); and (3) the global efficiency of the FR temporal correlational network on stimulated contacts (FR SGe). We found that the SOZ SR (p = .18) and FR SR (p = .06) did not differ in the RNS super responders and intermediate responders, but the FR SGe did (p = .02). In super responders, highly active desynchronous sites of the FR network were stimulated. RNS that better targets FR networks, as compared to the SOZ, may reduce epileptogenicity more.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department Of Neurology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
41
|
Duchet B, Sermon JJ, Weerasinghe G, Denison T, Bogacz R. How to entrain a selected neuronal rhythm but not others: open-loop dithered brain stimulation for selective entrainment. J Neural Eng 2023; 20:10.1088/1741-2552/acbc4a. [PMID: 36880684 PMCID: PMC7614323 DOI: 10.1088/1741-2552/acbc4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Objective.While brain stimulation therapies such as deep brain stimulation for Parkinson's disease (PD) can be effective, they have yet to reach their full potential across neurological disorders. Entraining neuronal rhythms using rhythmic brain stimulation has been suggested as a new therapeutic mechanism to restore neurotypical behaviour in conditions such as chronic pain, depression, and Alzheimer's disease. However, theoretical and experimental evidence indicate that brain stimulation can also entrain neuronal rhythms at sub- and super-harmonics, far from the stimulation frequency. Crucially, these counterintuitive effects could be harmful to patients, for example by triggering debilitating involuntary movements in PD. We therefore seek a principled approach to selectively promote rhythms close to the stimulation frequency, while avoiding potential harmful effects by preventing entrainment at sub- and super-harmonics.Approach.Our open-loop approach to selective entrainment, dithered stimulation, consists in adding white noise to the stimulation period.Main results.We theoretically establish the ability of dithered stimulation to selectively entrain a given brain rhythm, and verify its efficacy in simulations of uncoupled neural oscillators, and networks of coupled neural oscillators. Furthermore, we show that dithered stimulation can be implemented in neurostimulators with limited capabilities by toggling within a finite set of stimulation frequencies.Significance.Likely implementable across a variety of existing brain stimulation devices, dithering-based selective entrainment has potential to enable new brain stimulation therapies, as well as new neuroscientific research exploiting its ability to modulate higher-order entrainment.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - James J Sermon
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Gihan Weerasinghe
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Timothy Denison
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Chen X, Ma R, Zhang W, Zeng GQ, Wu Q, Yimiti A, Xia X, Cui J, Liu Q, Meng X, Bu J, Chen Q, Pan Y, Yu NX, Wang S, Deng ZD, Sack AT, Laughlin MM, Zhang X. Alpha oscillatory activity is causally linked to working memory retention. PLoS Biol 2023; 21:e3001999. [PMID: 36780560 PMCID: PMC9983870 DOI: 10.1371/journal.pbio.3001999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Although previous studies have reported correlations between alpha oscillations and the "retention" subprocess of working memory (WM), causal evidence has been limited in human neuroscience due to the lack of delicate modulation of human brain oscillations. Conventional transcranial alternating current stimulation (tACS) is not suitable for demonstrating the causal evidence for parietal alpha oscillations in WM retention because of its inability to modulate brain oscillations within a short period (i.e., the retention subprocess). Here, we developed an online phase-corrected tACS system capable of precisely correcting for the phase differences between tACS and concurrent endogenous oscillations. This system permits the modulation of brain oscillations at the target stimulation frequency within a short stimulation period and is here applied to empirically demonstrate that parietal alpha oscillations causally relate to WM retention. Our experimental design included both in-phase and anti-phase alpha-tACS applied to participants during the retention subprocess of a modified Sternberg paradigm. Compared to in-phase alpha-tACS, anti-phase alpha-tACS decreased both WM performance and alpha activity. These findings strongly support a causal link between alpha oscillations and WM retention and illustrate the broad application prospects of phase-corrected tACS.
Collapse
Affiliation(s)
- Xueli Chen
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ru Ma
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Wei Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Qianying Wu
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Ajiguli Yimiti
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science & Technology of China, Hefei, China
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science & Technology of China, Hefei, China
- School of Optometry and Vision Science, Cardiff University, Cardiff, United Kingdom
| | - Qiongwei Liu
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xueer Meng
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Junjie Bu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yu Pan
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior, School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Nancy Xiaonan Yu
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- * E-mail:
| |
Collapse
|
43
|
Johnson TD, Keefe KR, Rangel LM. Stimulation-induced entrainment of hippocampal network activity: Identifying optimal input frequencies. Hippocampus 2023; 33:85-95. [PMID: 36624658 PMCID: PMC10068596 DOI: 10.1002/hipo.23490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023]
Abstract
The hippocampus contains rich oscillatory activity, with continuous ebbs and flows of rhythmic currents that constrain its ability to integrate inputs. During associative learning, the hippocampus must integrate inputs from a range of sources carrying information about events and the contexts in which they occur. Under these circumstances, temporal coordination of activity between sender and receiver is likely essential for successful communication. Previously, it has been shown that the coordination of rhythmic activity between the lateral entorhinal cortex (LEC) and the CA1 region of the hippocampus is tightly correlated with the onset of learning in an associative learning task. We aimed to examine whether rhythmic inputs from the LEC in specific frequency ranges were sufficient to enhance the temporal coordination of activity in downstream CA1. In urethane-anesthetized rats, we applied extracellular low-intensity alternating current stimulation across the length of the LEC. Using this method, we aimed to phase-bias ongoing neuronal activity in LEC at a range of different frequencies (from 1.25 to 55 Hz). Rhythmic stimulation of LEC at both 35 and 50 Hz increased the proportion of CA1 neurons significantly entrained to the phase of the applied stimulation current. A subset of stimulation frequencies modified CA1 spiking relationships to the phase of local ongoing CA1 oscillations, with each stimulation frequency exerting a unique influence upon downstream CA1, often in frequency ranges outside the target stimulation frequency. These results suggest there are optimal frequencies for LEC-CA1 communication, and that different profiles of LEC rhythms likely have distinct outcomes upon CA1 processing.
Collapse
Affiliation(s)
- Teryn D Johnson
- Department of Cognitive Science, University of California, San Diego, California, USA
| | | | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, California, USA
| |
Collapse
|
44
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
45
|
Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol 2023; 21:e3001973. [PMID: 36716309 PMCID: PMC9886255 DOI: 10.1371/journal.pbio.3001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| |
Collapse
|
46
|
Effectiveness of Anodal otDCS Following with Anodal tDCS Rather than tDCS Alone for Increasing of Relative Power of Intrinsic Matched EEG Bands in Rat Brains. Brain Sci 2022; 13:brainsci13010072. [PMID: 36672053 PMCID: PMC9856406 DOI: 10.3390/brainsci13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study sought to determine whether (1) evidence is available of interactions between anodal tDCS and oscillated tDCS stimulation patterns to increase the power of endogenous brain oscillations and (2) the frequency matching the applied anodal otDCS's frequency and the brain's dominant intrinsic frequency influence power shifting during stimulation pattern sessions by both anodal DCS and anodal oscillated DCS. METHOD Rats received different anodal tDCS and otDCS stimulation patterns using 8.5 Hz and 13 Hz state-related dominant intrinsic frequencies of anodal otDCS. The rats were divided into groups with specific stimulation patterns: group A: tDCS-otDCS (8.5 Hz)-otDCS (13 Hz); group B: otDCS (8.5 Hz)-tDCS-otDCS (13 Hz); group C: otDCS (13 Hz)-tDCS-otDCS (8.5 Hz). Acute relative power changes (i.e., following 10 min stimulation sessions) in six frequency bands-delta (1.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-12 Hz), beta-1 (12-15 Hz) and beta-2 (15-20 Hz)-were compared using three factors and repeated ANOVA measurement. RESULTS For each stimulation, tDCS increased theta power band and, above bands alpha and beta, a drop in delta power was observed. Anodal otDCS had a mild increasing power effect in both matched intrinsic and delta bands. In group pattern stimulations, increased power of endogenous frequencies matched exogenous otDCS frequencies-8.5 Hz or 13 Hz-with more potent effects in upper bands. The power was markedly more potent with the otDCS-tDCS stimulation pattern than the tDCS-otDCS pattern. SIGNIFICANCE The findings suggest that the otDCS-tDCS pattern stimulation increased the power in matched intrinsic oscillations and, significantly, in the above bands in an ascending order. We provide evidence for the successful corporation between otDCS (as frequency-matched guidance) and tDCS (as a power generator) rather than tDCS alone when stimulating a desired brain intrinsic band (herein, tES specificity).
Collapse
|
47
|
Maiella M, Casula EP, Borghi I, Assogna M, D’Acunto A, Pezzopane V, Mencarelli L, Rocchi L, Pellicciari MC, Koch G. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci Rep 2022; 12:19391. [PMID: 36371451 PMCID: PMC9653481 DOI: 10.1038/s41598-022-23040-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC). We used TMS in combination with electroencephalography (EEG) to evaluate changes in cortical activity on both left/right DLPFC and over the vertex. We found that simultaneous iTBS with γtACS but not with θtACS resulted in an enhancement of spectral gamma power, a trend in shift of individual peak frequency towards faster oscillations and an increase of local connectivity in the gamma band. Furthermore, the response to the neuromodulatory protocol, in terms of gamma oscillations and connectivity, were directly correlated with the initial level of cortical excitability. These results were specific to the DLPFC and confined locally to the site of stimulation, not being detectable in the contralateral DLPFC. We argue that the results described here could promote a new and effective method able to induce long-lasting changes in brain plasticity useful to be clinically applied to several psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Michele Maiella
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Elias Paolo Casula
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.7841.aDepartment of Psychology, La Sapienza University, Rome, Italy
| | - Ilaria Borghi
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.25786.3e0000 0004 1764 2907Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (IIT), Ferrara, Italy
| | - Martina Assogna
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Alessia D’Acunto
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Valentina Pezzopane
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lucia Mencarelli
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lorenzo Rocchi
- grid.7763.50000 0004 1755 3242Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Maria Concetta Pellicciari
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Giacomo Koch
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.8484.00000 0004 1757 2064Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
48
|
Slow-oscillatory tACS does not modulate human motor cortical response to repeated plasticity paradigms. Exp Brain Res 2022; 240:2965-2979. [PMID: 36173425 PMCID: PMC9587974 DOI: 10.1007/s00221-022-06462-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations—without the concomitant requirement of sleep—play a causal role in human synaptic homeostasis. Here, we aimed to answer this question using transcranial alternating current stimulation (tACS) to induce slow-oscillatory activity in awake human participants. tACS was interleaved between two plasticity-inducing interventions: motor learning, and paired associative stimulation (PAS). The hypothesis tested was that slow-oscillatory tACS would prevent homeostatic interference between motor learning and PAS, and facilitate plasticity from these successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings, while a further 38 participants received tACS through a control montage. Motor evoked potentials (MEPs) were recorded throughout the session to quantify plasticity changes after the different interventions, and the data were analysed with Bayesian statistics. As expected, there was converging evidence that motor training led to excitatory plasticity. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans.
Collapse
|
49
|
Arora Y, Dutta A. Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sci 2022; 12:1294. [PMID: 36291228 PMCID: PMC9599464 DOI: 10.3390/brainsci12101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Individual differences in the responsiveness of the brain to transcranial electrical stimulation (tES) are increasingly demonstrated by the large variability in the effects of tES. Anatomically detailed computational brain models have been developed to address this variability; however, static brain models are not “realistic” in accounting for the dynamic state of the brain. Therefore, human-in-the-loop optimization at the point of care is proposed in this perspective article based on systems analysis of the neurovascular effects of tES. First, modal analysis was conducted using a physiologically detailed neurovascular model that found stable modes in the 0 Hz to 0.05 Hz range for the pathway for vessel response through the smooth muscle cells, measured with functional near-infrared spectroscopy (fNIRS). During tES, the transient sensations can have arousal effects on the hemodynamics, so we present a healthy case series for black-box modeling of fNIRS−pupillometry of short-duration tDCS effects. The block exogeneity test rejected the claim that tDCS is not a one-step Granger cause of the fNIRS total hemoglobin changes (HbT) and pupil dilation changes (p < 0.05). Moreover, grey-box modeling using fNIRS of the tDCS effects in chronic stroke showed the HbT response to be significantly different (paired-samples t-test, p < 0.05) between the ipsilesional and contralesional hemispheres for primary motor cortex tDCS and cerebellar tDCS, which was subserved by the smooth muscle cells. Here, our opinion is that various physiological pathways subserving the effects of tES can lead to state−trait variability, which can be challenging for clinical translation. Therefore, we conducted a case study on human-in-the-loop optimization using our reduced-dimensions model and a stochastic, derivative-free covariance matrix adaptation evolution strategy. We conclude from our computational analysis that human-in-the-loop optimization of the effects of tES at the point of care merits investigation in future studies for reducing inter-subject and intra-subject variability in neuromodulation.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation and Simulation-Based Learning (NIRSlearn), University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
50
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|