1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Rosato BE, D'Onofrio V, Marra R, Nostroso A, Esposito FM, Iscaro A, Lasorsa VA, Capasso M, Iolascon A, Russo R, Andolfo I. RAS signaling pathway is essential in regulating PIEZO1-mediated hepatic iron overload in dehydrated hereditary stomatocytosis. Am J Hematol 2025; 100:52-65. [PMID: 39558179 PMCID: PMC11625994 DOI: 10.1002/ajh.27523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
PIEZO1 encodes a mechanoreceptor, a cation channel activated by mechanical stimuli. Gain-of-function (GoF) variants in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS), or xerocytosis, a pleiotropic syndrome characterized by anemia and iron overload. DHS patients develop hepatic iron overload independent of the degree of anemia and transfusion regimen. PIEZO1-GoF variants suppress hepcidin expression in both hepatic cellular model and constitutive/macrophage-specific Piezo1-GoF mice model. Therefore, PIEZO1-GoF variants regulate hepcidin expression by a crosstalk between hepatocytes (HCs) and macrophages with a still unknown mechanism. Transcriptomic and proteomics analysis in the human hepatic Hep3B cells engineered for the PIEZO1-R2456H variant (PIEZO1-KI) revealed alterations in the actin cytoskeleton regulation, MAPK cascade, and RAS signaling. These changes mainly occur through a novel key regulator, RRAS, whose protein and mRNA levels are regulated by PIEZO1 activation and inhibition. This regulation was further confirmed in C57BL/6 mouse primary HCs treated with Yoda-1 and/or GsMTx-4. Indeed, PIEZO1-KI cells exhibited hyper-activated RAS-GTPase activity that is rescued by PIEZO1 inhibition, restoring expression of the hepcidin gene HAMP. A negative correlation between RAS signaling and HAMP regulation was confirmed by inhibiting RAS-GTPase and MEK1-2 activity. Conversely, rescued HAMP gene expression requires downregulation of RRAS, confirming negative feedback between RAS-MAPK and BMP/SMADs pathways in HAMP regulation. We demonstrated that PIEZO1-GoF variants influence the actin cytoskeleton organization by activating the hepatic RAS signaling system. Understanding the role of RAS signaling in regulating iron metabolism could pave the way for new therapeutic strategies in DHS and other conditions characterized by iron overload.
Collapse
Affiliation(s)
- Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vanessa D'Onofrio
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Antonella Nostroso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Federica Maria Esposito
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Anthony Iscaro
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| |
Collapse
|
3
|
Kasahara E, Nakamura A, Morimoto K, Ito S, Hori M, Sekiyama A. Social defeat stress impairs systemic iron metabolism by activating the hepcidin-ferroportin axis. FASEB Bioadv 2024; 6:263-275. [PMID: 39114446 PMCID: PMC11301257 DOI: 10.1096/fba.2024-00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin-ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron-refractory anemia.
Collapse
Affiliation(s)
- Emiko Kasahara
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Ayumi Nakamura
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Kenki Morimoto
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Shiho Ito
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Mika Hori
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Atsuo Sekiyama
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
4
|
Tao H, Dar HY, Tian C, Banerjee S, Glazer ES, Srinivasan S, Zhu L, Pacifici R, He P. Differences in hepatocellular iron metabolism underlie sexual dimorphism in hepatocyte ferroptosis. Redox Biol 2023; 67:102892. [PMID: 37741044 PMCID: PMC10519854 DOI: 10.1016/j.redox.2023.102892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.
Collapse
Affiliation(s)
- Hui Tao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hamid Y Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Somesh Banerjee
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan S Glazer
- Departments of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Decatur, GA, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Paluschinski M, Kordes C, Vucur M, Buettner V, Roderburg C, Xu HC, Shinte PV, Lang PA, Luedde T, Castoldi M. Differential Modulation of miR-122 Transcription by TGFβ1/BMP6: Implications for Nonresolving Inflammation and Hepatocarcinogenesis. Cells 2023; 12:1955. [PMID: 37566034 PMCID: PMC10416984 DOI: 10.3390/cells12151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFβ1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Veronika Buettner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Haifeng C. Xu
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Prashant V. Shinte
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Philipp A. Lang
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| |
Collapse
|
6
|
Tao H, Dar HY, Tian C, Banerjee S, Glazer ES, Srinivasan S, Zhu L, Pacifici R, He P. Differences in Hepatocellular Iron Metabolism Underlie Sexual Dimorphism in Hepatocyte Ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546395. [PMID: 37425728 PMCID: PMC10327041 DOI: 10.1101/2023.06.24.546395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe 2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe 2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.
Collapse
|
7
|
DENND3 p.L708V activating variant is involved in the pathogenesis of hereditary hemochromatosis via the RAB12/TFR2 signaling pathway. Hepatol Int 2023; 17:648-661. [PMID: 36729283 DOI: 10.1007/s12072-022-10474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/24/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Pathogenic variants in HFE and non-HFE genes have been identified in hereditary hemochromatosis (HH) in different patient populations, but there are still a considerable proportion of patients with unexplained primary iron overload. We recently identified in Chinese patients with unexplained primary iron overload a recurrent p.L708V variant in the differentially expressed in normal and neoplastic cells domain 3 (DENND3) gene, functioning as a guanine nucleotide exchange factor for small GTpase Rab12 which down-regulates TfR expression in mice. We aim to investigate the pathogenicity and the underlying mechanism of the DENND3 p.L708V variant in HH patients. METHODS Patients with primary iron overload were analyzed for DENND3 p.L708V. TFR2 and hepcidin expression in livers were examined in HH patients harboring DENND3 p.L708V. The effects of DENND3 p.L708V on RAB12/TFR2 and downstream iron metabolic pathways were investigated in vitro and in vivo. RESULTS Six of 31 patients with HH (19.35%) harbored the DENND3 p.L708V variant. The expression of TFR2 and hepcidin was decreased in the liver of HH patients with DENND3 p.L708V. Cells transfected with the DENND3 p.L708V vector showed up-regulation of RAB12 expression and TFR2 degradation in lysosomes, and down-regulation of the pSMAD1/5 and hepcidin. Mice models infected with adeno-associated virus expressing DENND3 p.L708V variant showed higher total serum iron concentrations and decreased HAMP level, increased amount of iron accumulation and the down-regulated of TFR2 expression in the liver. CONCLUSIONS The DENND3 p.L708V activating variant down-regulates hepcidin expression through the DENND3/RAB12/TFR2 axis, which may represent a potential novel pathogenic factor of HH.
Collapse
|
8
|
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081203. [PMID: 36013382 PMCID: PMC9409945 DOI: 10.3390/life12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) is a common disease that causes significant limitations on the organism's capacity and, in extreme cases, leads to death. Clinically, iron deficiency (ID) plays an essential role in heart failure by deteriorating the patient's condition and is a prognostic marker indicating poor clinical outcomes. Therefore, in HF patients, supplementation of iron is recommended. However, iron treatment may cause adverse effects by increasing iron-related apoptosis and the production of oxygen radicals, which may cause additional heart damage. Furthermore, many knowledge gaps exist regarding the complex interplay between iron deficiency and heart failure. Here, we describe the current, comprehensive knowledge about the role of the proteins involved in iron metabolism. We will focus on the molecular and clinical aspects of iron deficiency in HF. We believe that summarizing the new advances in the translational and clinical research regarding iron deficiency in heart failure should broaden clinicians' awareness of this comorbidity.
Collapse
|
9
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
10
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
12
|
Varga E, Pap R, Jánosa G, Sipos K, Pandur E. IL-6 Regulates Hepcidin Expression Via the BMP/SMAD Pathway by Altering BMP6, TMPRSS6 and TfR2 Expressions at Normal and Inflammatory Conditions in BV2 Microglia. Neurochem Res 2021; 46:1224-1238. [PMID: 33835366 PMCID: PMC8053173 DOI: 10.1007/s11064-021-03322-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The hormone hepcidin plays a central role in controlling iron homeostasis. Iron-mediated hepcidin synthesis is triggered via the BMP/SMAD pathway. At inflammation, mainly IL-6 pro-inflammatory cytokine mediates the regulation of hepcidin via the JAK/STAT signalling pathway. Microglial cells of the central nervous system are able to recognize a broad spectrum of pathogens via toll-like receptors and initiate inflammatory response. Although the regulation of hepcidin synthesis is well described in many tissues, little is known about the inflammation mediated hepcidin regulation in microglia. In this study, we investigated the pathways, which are involved in HAMP regulation in BV2 microglia due to inflammatory mediators and the possible relationships between the iron regulatory pathways. Our results showed that IL-6 produced by resting BV2 cells was crucial in maintaining the basal HAMP expression and hepcidin secretion. It was revealed that IL-6 neutralization decreased both STAT3 and SMAD1/5/9 phosphorylation suggesting that IL-6 proinflammatory cytokine is necessary to maintain SMAD1/5/9 activation. We revealed that IL-6 influences BMP6 and TMPRSS6 protein levels, moreover it modified TfR2 expression, as well. In this study, we revealed that BV2 microglia increased their hepcidin secretion upon IL-6 neutralization although the major regulatory pathways were inhibited. Based on our results it seems that both at inflammation and at normal condition the absence of IL-6 triggered HAMP transcription and hepcidin secretion via the NFκB pathway and possibly by the autocrine effect of TNFα cytokine on BV2 microglia.
Collapse
Affiliation(s)
- Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, Pécs, 7624, Hungary.
| |
Collapse
|
13
|
Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells 2021; 10:cells10020477. [PMID: 33672218 PMCID: PMC7926484 DOI: 10.3390/cells10020477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease that is caused by the progressive occlusion of the distal pulmonary arteries, eventually leading to right heart failure and death. Almost 40% of patients with PAH are iron deficient. Although widely studied, the mechanisms linking between PAH and iron deficiency remain unclear. Here we review the mechanisms regulating iron homeostasis and the preclinical and clinical data available on iron deficiency in PAH. Then we discuss the potential implications of iron deficiency on the development and management of PAH.
Collapse
|
14
|
Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, Li W, Wang JJ, Bao YX, Liu Y, Ke Y, Qian ZM. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol 2021; 40:101865. [PMID: 33493903 PMCID: PMC7823209 DOI: 10.1016/j.redox.2021.101865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
Association of both iron/hepcidin and apolipoprotein E (ApoE) with development of Alzheimer disease (AD) and atherosclerosis led us to hypothesize that ApoE might be required for body iron homeostasis. Here, we demonstrated that ApoE knock-out (KO) induced a progressive accumulation of iron with age in the liver and spleen of mice. Subsequent investigations showed that the increased iron in the liver and spleen was due to phosphorylated extracellular regulated protein kinases (pERK) mediated up-regulation of transferrin receptor 1 (TfR1), and nuclear factor erythroid 2-related factor-2 (Nrf2)-dependent down-regulation of ferroportin 1. Furthermore, replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. The findings imply that ApoE may be essential for body iron homeostasis and also suggest that clinical late-onset diseases with unexplained iron abnormality may partly be related to deficiency or reduced expression of ApoE. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. ApoE−/− induced a progressive accumulation of iron with age in the liver and spleen of mice. The increased iron was due to upregulation of TfR1 and downregulation of Fpn1. Replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. ApoE may be essential for body iron homeostasis.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yong Bao
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Yue Liu
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Jiao-Jiao Wang
- Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China; Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
15
|
Richard C, Verdier F. Transferrin Receptors in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249713. [PMID: 33352721 PMCID: PMC7766611 DOI: 10.3390/ijms21249713] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor—TFR2—associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed.
Collapse
Affiliation(s)
- Cyrielle Richard
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
- Correspondence:
| |
Collapse
|
16
|
Xiao X, Alfaro-Magallanes VM, Babitt JL. Bone morphogenic proteins in iron homeostasis. Bone 2020; 138:115495. [PMID: 32585319 PMCID: PMC7453787 DOI: 10.1016/j.bone.2020.115495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway plays a central role in regulating hepcidin, which is the master hormone governing systemic iron homeostasis. Hepcidin is produced by the liver and acts on the iron exporter ferroportin to control iron absorption from the diet and iron release from body stores, thereby providing adequate iron for red blood cell production, while limiting the toxic effects of excess iron. BMP6 and BMP2 ligands produced by liver endothelial cells bind to BMP receptors and the coreceptor hemojuvelin (HJV) on hepatocytes to activate SMAD1/5/8 signaling, which directly upregulates hepcidin transcription. Most major signals that influence hepcidin production, including iron, erythropoietic drive, and inflammation, intersect with the BMP-SMAD pathway to regulate hepcidin transcription. Mutation or inactivation of BMP ligands, BMP receptors, HJV, SMADs or other proteins that modulate the BMP-SMAD pathway result in hepcidin dysregulation, leading to iron-related disorders, such as hemochromatosis and iron refractory iron deficiency anemia. Pharmacologic modulators of the BMP-SMAD pathway have shown efficacy in pre-clinical models to regulate hepcidin expression and treat iron-related disorders. This review will discuss recent insights into the role of the BMP-SMAD pathway in regulating hepcidin to control systemic iron homeostasis.
Collapse
Affiliation(s)
- Xia Xiao
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Kenawi M, Rouger E, Island ML, Leroyer P, Robin F, Rémy S, Tesson L, Anegon I, Nay K, Derbré F, Brissot P, Ropert M, Cavey T, Loréal O. Ceruloplasmin deficiency does not induce macrophagic iron overload: lessons from a new rat model of hereditary aceruloplasminemia. FASEB J 2019; 33:13492-13502. [DOI: 10.1096/fj.201901106r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Moussa Kenawi
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Emmanuel Rouger
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Marie-Laure Island
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - François Robin
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Séverine Rémy
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064- Centre de Recherches en Transplantation et Immunologie (CRTI), Transgenic Rats ImmunoPhenomic facility, Nantes, France
| | - Kévin Nay
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory Movement, Sport, and Health Sciences (M2S-EA7470), University Rennes 2–Ecole Normale Supérieure (ENS) Rennes, Bruz, France
| | - Pierre Brissot
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Thibault Cavey
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRA, Platform Analyse Elémentaire et Métabolisme des Métaux, UMR 1241 Institut NuMeCan (Nutrition, Metabolism, and Cancer), Centre Hospitalier Universitaire (CHU) Pontchaillou, Rennes, France
| |
Collapse
|
18
|
Tangudu NK, Buth N, Strnad P, Cirstea IC, Spasić MV. Deregulation of Hepatic Mek1/2⁻Erk1/2 Signaling Module in Iron Overload Conditions. Pharmaceuticals (Basel) 2019; 12:ph12020070. [PMID: 31067696 PMCID: PMC6631327 DOI: 10.3390/ph12020070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
The liver, through the production of iron hormone hepcidin, controls body iron levels. High liver iron levels and deregulated hepcidin expression are commonly observed in many liver diseases including highly prevalent genetic iron overload disorders. In spite of a number of breakthrough investigations into the signals that control hepcidin expression, little progress has been made towards investigations into intracellular signaling in the liver under excess of iron. This study examined hepatic signaling pathways underlying acquired and genetic iron overload conditions. Our data demonstrate that hepatic iron overload associates with a decline in the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) kinase (Mek1/2) pathway by selectively affecting the phosphorylation of Erk1/2. We propose that Mek1/2-Erk1/2 signaling is uncoupled from iron-Bmp-Smad-mediated hepcidin induction and that it may contribute to a number of liver pathologies in addition to toxic effects of iron. We believe that our findings will advance the understanding of cellular signaling events in the liver during iron overload of different etiologies.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Nils Buth
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen 52074, Germany;
| | - Ion C. Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany; (N.K.T.); (N.B.); (I.C.C.)
- Correspondence: ; Tel.: +49-731-50-32635
| |
Collapse
|
19
|
Shokrgozar N, Golafshan HA. Molecular perspective of iron uptake, related diseases, and treatments. Blood Res 2019; 54:10-16. [PMID: 30956958 PMCID: PMC6439303 DOI: 10.5045/br.2019.54.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia and anemia of chronic disorders are the most common types of anemia. Disorders of iron metabolism lead to different clinical scenarios such as iron deficiency anemia, iron overload, iron overload with cataract and neurocognitive disorders. Regulation of iron in the body is a complex process and different regulatory proteins are involved in iron absorption and release from macrophages into hematopoietic tissues. Mutation in these regulatory genes is the most important cause of iron refractory iron deficiency anemia (IRIDA). This review provides a glance into the iron regulation process, diseases related to iron metabolism, and appropriate treatments at the molecular level.
Collapse
Affiliation(s)
- Negin Shokrgozar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Allah Golafshan
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Santos-Silva A, Ribeiro S, Reis F, Belo L. Hepcidin in chronic kidney disease anemia. VITAMINS AND HORMONES 2019; 110:243-264. [PMID: 30798815 DOI: 10.1016/bs.vh.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is associated with several complications that worsen with progression of disease; anemia, disturbances in iron metabolism and inflammation are common features. Inflammatory response starts early, releasing pro-inflammatory cytokines, acute phase reactants and hepcidin. Hepcidin production is modulated by several factors, as hypoxia/anemia, erythropoietin and erythropoiesis products, transferrin saturation (TSAT) and liver iron levels, which are altered in CKD. Treatment of CKD anemia is based on pharmaceutical intervention, with erythropoietic stimulating agents and/or iron supplementation; however, in spite of the erythropoietic benefits, this therapy, on a regular basis, involves risks, namely iron overload. To overcome these risks, some therapeutic approaches are under study to target CKD anemia. Considering the actual alerts about risk of iron overload in dialysis patients, inhibition of hepcidin, the central key player in iron homeostasis, could be a pivotal strategy in the management of CKD anemia.
Collapse
Affiliation(s)
- Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Sandra Ribeiro
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, Weidner H, Hintze V, Campbell G, Petzold A, Lemaitre R, Henry I, Bellido T, Theurl I, Altamura S, Colucci S, Muckenthaler MU, Schett G, Komla Ebri D, Bassett JHD, Williams GR, Platzbecker U, Hofbauer LC. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat Metab 2019; 1:111-124. [PMID: 30886999 PMCID: PMC6420074 DOI: 10.1038/s42255-018-0005-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transferrin receptor 2 (Tfr2) is mainly expressed in the liver and controls iron homeostasis. Here, we identify Tfr2 as a regulator of bone homeostasis that inhibits bone formation. Mice lacking Tfr2 display increased bone mass and mineralization independent of iron homeostasis and hepatic Tfr2. Bone marrow transplantation experiments and studies of cell-specific Tfr2 knockout mice demonstrate that Tfr2 impairs BMP-p38MAPK signaling and decreases expression of the Wnt inhibitor sclerostin specifically in osteoblasts. Reactivation of MAPK or overexpression of sclerostin rescues skeletal abnormalities in Tfr2 knockout mice. We further show that the extracellular domain of Tfr2 binds BMPs and inhibits BMP-2-induced heterotopic ossification by acting as a decoy receptor. These data indicate that Tfr2 limits bone formation by modulating BMP signaling, possibly through direct interaction with BMP either as a receptor or as a co-receptor in a complex with other BMP receptors. Finally, the Tfr2 extracellular domain may be effective in the treatment of conditions associated with pathological bone formation.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Torino, Torino, Italy
| | | | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Juliane Salbach-Hirsch
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Graeme Campbell
- Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Regis Lemaitre
- Max Planck Institute for Cell Biology and Genetics, Protein Unit, Dresden, Germany
| | - Ian Henry
- Max Planck Institute for Cell Biology and Genetics, Scientific Computing Facility, Dresden, Germany
| | - Teresita Bellido
- Department of Anatomy and Cell Biology and Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Igor Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Davide Komla Ebri
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Uwe Platzbecker
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Medicine II, University Clinic Leipzig, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Wu J, Yang L, Zhang X, Li Y, Wang J, Zhang S, Liu H, Huang H, Wang Y, Yuan L, Cheng X, Zhuang D, Zhang H, Chen X. MC-LR induces dysregulation of iron homeostasis by inhibiting hepcidin expression: A preliminary study. CHEMOSPHERE 2018; 212:572-584. [PMID: 30172039 DOI: 10.1016/j.chemosphere.2018.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The liver is an important iron storage site and a primary MC-LR target. C57BL/6 and Hfe-/- mice were used to investigate effects and mechanisms of MC-LR on systematic iron homeostasis. Body weight, tissue iron content, hematological and serological indexes, and histopathological were evaluated. Ultrastructure and iron metabolism-related genes and proteins were analyzed. MC-LR induced dose-dependent increases in red blood cells, hemoglobin, and hematocrit. In contrast MC-LR-induced dose-dependent decreases in mean corpuscular volume, hemoglobin, and hemoglobin concentration were observed both C57BL/6 and Hfe-/- mice. In both mouse species, serological indexes increased. Aggravated liver and spleen iron were observed in C57BL/6 mice, consistent with Perls' Prussian blue staining. However, an opposite trend was observed in Hfe-/- mice. C57BL/6 mice had lower Hamp1 (Hepcidn), Bmp6, Il-6, and Tmprss6. Significant increased Hjv, Hif-1α and Hif-2α were observed in both C57BL/6 and Hfe-/- mice. MC-LR-induced pathological lesions were dose-dependent increase in C57BL/6 mice. More severe pathological injuries in MC-LR groups (25 μg/kg) were observed in Hfe-/- mice than in C57BL/6 mice. In Hfe-/- mice, upon exposure to 25 μg/kg MC-LR, mitochondrial membranes were damaged and mitochondrial counts increased with significant swelling. These results indicated that MC-LR can induce the accumulation of iron in C57BL/6 mice with the occurrence of anemia, similar to thalassemia. Moreover, dysregulation of iron homeostasis may be due to MC-LR-induced Hamp1 downregulation, possibly mediated by hypoxia or the IL6-STAT3 and BMP-SMAD signaling pathways.
Collapse
Affiliation(s)
- Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lei Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Nursing, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jianyao Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| |
Collapse
|
23
|
The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals (Basel) 2018; 11:ph11040115. [PMID: 30360575 PMCID: PMC6316356 DOI: 10.3390/ph11040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Iron homeostasis is a tightly regulated process in all living organisms because this metal is essential for cellular metabolism, but could be extremely toxic when present in excess. In mammals, there is a complex pathway devoted to iron regulation, whose key protein is hepcidin (Hepc), which is a powerful iron absorption inhibitor mainly produced by the liver. Transferrin receptor 2 (Tfr2) is one of the hepcidin regulators, and mutations in TFR2 gene are responsible for type 3 hereditary hemochromatosis (HFE3), a genetically heterogeneous disease characterized by systemic iron overload. It has been recently pointed out that Hepc production and iron regulation could be exerted also in tissues other than liver, and that Tfr2 has an extrahepatic role in iron metabolism as well. This review summarizes all the most recent data on Tfr2 extrahepatic role, taking into account the putative distinct roles of the two main Tfr2 isoforms, Tfr2α and Tfr2β. Representing Hepc modulation an effective approach to correct iron balance impairment in common human diseases, and with Tfr2 being one of its regulators, it would be worthwhile to envisage Tfr2 as a therapeutic target.
Collapse
|
24
|
Vela D, Sopi RB, Mladenov M. Low Hepcidin in Type 2 Diabetes Mellitus: Examining the Molecular Links and Their Clinical Implications. Can J Diabetes 2018; 42:179-187. [DOI: 10.1016/j.jcjd.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
|
25
|
Cavey T, Pierre N, Nay K, Allain C, Ropert M, Loréal O, Derbré F. Simulated microgravity decreases circulating iron in rats: role of inflammation-induced hepcidin upregulation. Exp Physiol 2018; 102:291-298. [PMID: 28087888 DOI: 10.1113/ep086188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although microgravity is well known to reduce circulating iron in astronauts, the underlying mechanism is still unknown. We investigated whether hepcidin, a key hormone regulating iron metabolism, could be involved in this deleterious effect. What is the main finding and its importance? We show that hindlimb suspension, a model of microgravity, stimulates the production of hepcidin in liver of rats. In agreement with the biological role of hepcidin, we found a decrease of circulating iron and an increase of spleen iron content in hindlimb-unloaded rats. Consequently, our study supports the idea that hepcidin could play a role in the alteration of iron metabolism parameters observed during spaceflight. During spaceflight, humans exposed to microgravity exhibit an increase of iron storage and a reduction of circulating iron. Such perturbations could promote oxidative stress and anaemia in astronauts. The mechanism by which microgravity modulates iron metabolism is still unknown. Herein, we hypothesized that microgravity upregulates hepcidin, a hormone produced by the liver that is the main controller of iron homeostasis. To test this hypothesis, rats were submitted to hindlimb unloading (HU), the reference model to mimic the effects of microgravity in rodents. After 7 days, the mRNA level of hepcidin was increased in the liver of HU rats (+74%, P = 0.001). In agreement with the biological role of hepcidin, we found an increase of spleen iron content (+78%, P = 0.030) and a decrease of serum iron concentration (-35%, P = 0.002) and transferrin saturation (-25%, P = 0.011) in HU rats. These findings support a role of hepcidin in microgravity-induced iron metabolism alteration. Furthermore, among the signalling pathways inducing hepcidin mRNA expression, we found that only the interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) axis was activated by HU, as shown by the increase of phospho-STAT3 (+193%, P < 0.001) and of the hepatic mRNA level of haptoglobin (+167%, P < 0.001), a STAT3-inducible gene, in HU rats. Taken together, these data support the idea that microgravity may alter iron metabolism through an inflammatory process upregulating hepcidin.
Collapse
Affiliation(s)
- Thibault Cavey
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Nicolas Pierre
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| | - Coralie Allain
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France
| | - Martine Ropert
- INSERM UMR 991 UMR, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Olivier Loréal
- INSERM UMR 991 UMR, Rennes, France.,University of Rennes 1, Rennes, France
| | - Frédéric Derbré
- Laboratory 'Movement, Sport and Health Sciences' (M2S), University Rennes 2-ENS Rennes, Bruz, France
| |
Collapse
|
26
|
Sugg KB, Markworth JF, Disser NP, Rizzi AM, Talarek JR, Sarver DC, Brooks SV, Mendias CL. Postnatal tendon growth and remodeling require platelet-derived growth factor receptor signaling. Am J Physiol Cell Physiol 2017; 314:C389-C403. [PMID: 29341790 DOI: 10.1152/ajpcell.00258.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRβ, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.
Collapse
Affiliation(s)
- Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - James F Markworth
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Nathaniel P Disser
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Andrew M Rizzi
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Jeffrey R Talarek
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan Medical School , Ann Arbor, Michigan
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Hospital for Special Surgery , New York, New York
| |
Collapse
|
27
|
Wang C, Fang Z, Zhu Z, Liu J, Chen H. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Exp Hematol 2017; 52:24-31. [DOI: 10.1016/j.exphem.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
|
28
|
Poli M, Asperti M, Ruzzenenti P, Naggi A, Arosio P. Non-Anticoagulant Heparins Are Hepcidin Antagonists for the Treatment of Anemia. Molecules 2017; 22:molecules22040598. [PMID: 28397746 PMCID: PMC6154463 DOI: 10.3390/molecules22040598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
The peptide hormone hepcidin is a key controller of systemic iron homeostasis, and its expression in the liver is mainly regulated by bone morphogenetic proteins (BMPs), which are heparin binding proteins. In fact, heparins are strong suppressors of hepcidin expression in hepatic cell lines that act by inhibiting the phosphorylation of SMAD1/5/8 proteins elicited by the BMPs. The inhibitory effect of heparins has been demonstrated in cells and in mice, where subcutaneous injections of non-anticoagulant heparins inhibited liver hepcidin expression and increased iron bioavailability. The chemical characteristics for high anti-hepcidin activity in vitro and in vivo include the 2O-and 6O-sulfation and a molecular weight above 7 kDa. The most potent heparins have been found to be the super-sulfated ones, active in hepcidin suppression with a molecular weight as low as 4 kDa. Moreover, the alteration of endogenous heparan sulfates has been found to cause a reduction in hepcidin expression in vitro and in vivo, indicating that heparins act by interfering with the interaction between BMPs and components of the complex involved in the activation of the BMP/SMAD1/5/8 pathway. This review summarizes recent findings on the anti-hepcidin activity of heparins and their possible use for the treatment of anemia caused by hepcidin excess, including the anemia of chronic diseases.
Collapse
Affiliation(s)
- Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Paola Ruzzenenti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan 20133, Italy.
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
29
|
|
30
|
Cheng Y, Zhou J, Li Q, Liu Y, Wang K, Zhang Y. The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice. Food Funct 2016; 7:1033-9. [PMID: 26757699 DOI: 10.1039/c5fo00855g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The crude polysaccharide was obtained from the root of Angelica sinensis (AS) to investigate its effect on tumor growth and iron metabolism in H22-bearing mice. In our study, we showed that Angelica sinensis polysaccharide (ASP) was mainly composed of arabinose, glucose and galactose in a molar ratio of 1:1:1.75, with a molecular weight of 80,900 Da and a sugar content of 88.0%. Animal experimental results revealed that three doses of ASP all had anti-tumor effects with inhibition ratios of 27.11%, 31.65% and 37.05%. With respect to iron metabolism, the mean levels of serum hepcidin, interleukin-6 (IL-6), ferritin, transferrin (Tf), transferrin receptor 1 (TfR1) and transferrin receptor 2 (TfR2) in H22-bearing mice were promoted, and serum iron concentration decreased significantly. After treatment with ASP, these iron-related indicators recovered in different degrees. The findings suggested that the anti-tumor activity of ASP may be affected by its regulation on iron metabolism in H22-bearing mice.
Collapse
Affiliation(s)
- Yao Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Ying Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| |
Collapse
|
31
|
Chen H, Choesang T, Li H, Sun S, Pham P, Bao W, Feola M, Westerman M, Li G, Follenzi A, Blanc L, Rivella S, Fleming RE, Ginzburg YZ. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica 2015; 101:297-308. [PMID: 26635037 DOI: 10.3324/haematol.2015.127902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.
Collapse
Affiliation(s)
- Huiyong Chen
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA
| | - Tenzin Choesang
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA
| | - Huihui Li
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA Central South University, Changsha, PR China
| | - Shuming Sun
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA
| | - Petra Pham
- Flow Cytometry Core Laboratory, LFKRI, New York Blood Center, NY, USA
| | - Weili Bao
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA
| | - Maria Feola
- Erythropoiesis Laboratory, LFKRI, New York Blood Center, NY, USA University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | | | - Guiyuan Li
- Central South University, Changsha, PR China
| | - Antonia Follenzi
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Lionel Blanc
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | |
Collapse
|
32
|
Miseta A, Nagy J, Nagy T, Poór VS, Fekete Z, Sipos K. Hepcidin and its potential clinical utility. Cell Biol Int 2015; 39:1191-202. [PMID: 26109250 DOI: 10.1002/cbin.10505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
A number of pathophysiological conditions are related to iron metabolism disturbances. Some of them are well known, others are newly discovered or special. Hepcidin is a newly identified iron metabolism regulating hormone, which could be a promising biomarker for many disorders. In this review, we provide background information about mammalian iron metabolism, cellular iron trafficking, and the regulation of expression of hepcidin. Beside these molecular biological processes, we summarize the methods that have been used to determine blood and urine hepcidin levels and present those pathological conditions (cancer, inflammation, neurological disorders) when hepcidin measurement may have clinical relevance.
Collapse
Affiliation(s)
- Attila Miseta
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Viktor Soma Poór
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Medical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Rokus Street 2. Pecs, Hungary
| |
Collapse
|
33
|
Wu Q, Wang H, An P, Tao Y, Deng J, Zhang Z, Shen Y, Chen C, Min J, Wang F. HJV and HFE Play Distinct Roles in Regulating Hepcidin. Antioxid Redox Signal 2015; 22:1325-36. [PMID: 25608116 PMCID: PMC4410569 DOI: 10.1089/ars.2013.5819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. RESULTS Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. INNOVATION We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. CONCLUSIONS Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.
Collapse
Affiliation(s)
- Qian Wu
- 1 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Cheng Y, Wang N, Zhang Q, Wang K. The action of JAK, SMAD and ERK signal pathways on hepcidin suppression by polysaccharides from Angelica sinensis in rats with iron deficiency anemia. Food Funct 2015; 5:1381-8. [PMID: 24752529 DOI: 10.1039/c4fo00006d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A crude polysaccharide was obtained by water extraction and ethanol precipitation from the root of Angelica sinensis (AS) to investigate its suppressive effect on hepcidin expression in rats with iron deficiency anemia (IDA). In this study, we showed that the Angelica sinensis polysaccharide (ASP) was mainly composed of arabinose, glucose and galactose in a molar ratio of 1 : 2.5 : 7.5, with the molecular weight of 72 900 Da and the sugar content of 95.1%. ASP markedly decreased hepcidin expression by suppressing the expression of JAK1/2, phospho-JAK1/2, phospho-SMAD1/5/8, phospho-ERK1/2, and promoting the expression of SMAD7 in the liver. These findings suggest that ASP can prevent the janus-kinase (JAK), son of mother against decapentaplegic (SMAD) and extracellular signal-regulated kinase (ERK) pathways to down-regulate hepcidin expression in IDA rats, and may be useful for the treatments of diseases induced by hepcidin over-expression.
Collapse
Affiliation(s)
- Yu Zhang
- Union Hospital of Huazhong University of Science and Technology, Department of Pharmacy, No. 1227, Jiefang Road, 430030 Wuhan, China
| | | | | | | | | |
Collapse
|
35
|
Chen J, Enns CA. CD81 promotes both the degradation of transferrin receptor 2 (TfR2) and the Tfr2-mediated maintenance of hepcidin expression. J Biol Chem 2015; 290:7841-50. [PMID: 25635054 DOI: 10.1074/jbc.m114.632778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in transferrin receptor 2 (TfR2) cause a rare form of the hereditary hemochromatosis, resulting in iron overload predominantly in the liver. TfR2 is primarily expressed in hepatocytes and is hypothesized to sense iron levels in the blood to positively regulate the expression of hepcidin through activation of the BMP signaling pathway. Hepcidin is a peptide hormone that negatively regulates iron egress from cells and thus limits intestinal iron uptake. In this study, a yeast two-hybrid approach using the cytoplasmic domain of TfR2 identified CD81 as an interacting protein. CD81 is an abundant tetraspanin in the liver. Co-precipitations of CD81 with different TfR2 constructs demonstrated that both the cytoplasmic and ecto-transmembrane domains of TfR2 interact with CD81. Knockdown of CD81 using siRNA significantly increased TfR2 levels by increasing the half-life of TfR2, indicating that CD81 promotes degradation of TfR2. Previous studies showed that CD81 is targeted for degradation by GRAIL, an ubiquitin E3 ligase. Knockdown of GRAIL in Hep3B-TfR2 cells increased TfR2 levels, consistent with inhibition of CD81 ubiquitination. These results suggest that down-regulation of CD81 by GRAIL targets TfR2 for degradation. Surprisingly, knockdown of CD81 decreased hepcidin expression, implying that the TfR2/CD81 complex is involved in the maintenance of hepcidin mRNA. Moreover, knockdown of CD81 did not affect the stimulation of hepcidin expression by BMP6 but increased both the expression of ID1 and SMAD7, direct targets of BMP signaling pathway, and the phosphorylation of ERK1/2, indicating that the CD81 regulates hepcidin expression differently from the BMP and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Juxing Chen
- From the Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
36
|
Kawabata H, Uchiyama T, Sakamoto S, Kanda J, Oishi S, Fujii N, Tomosugi N, Kadowaki N, Takaori-Kondo A. A HAMP promoter bioassay system for identifying chemical compounds that modulate hepcidin expression. Exp Hematol 2015; 43:404-413.e5. [PMID: 25633564 DOI: 10.1016/j.exphem.2015.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/28/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Hepcidin is the central regulator of systemic iron homeostasis; dysregulation of hepcidin expression causes various iron metabolic disorders, including hereditary hemochromatosis and anemia of inflammation. To identify molecules that modulate hepcidin expression, we developed a bioassay system for hepcidin gene (HAMP) promoter activity by stable transfection of Hep3B hepatoma cells with an expression plasmid in which EGFP was linked to a 2.5-kb human HAMP promoter. Interleukin 6, bone morphogenetic protein 6 (BMP-6), and oncostatin M, well-characterized stimulators of the HAMP promoter, strongly enhanced the green fluorescence intensity of these cells. Dorsomorphin, heparin, and cobalt chloride, known inhibitors of hepcidin expression, significantly suppressed green fluorescence intensity, and these inhibitory effects were more prominent when the cells were stimulated with BMP-6. Employing this system, we screened 1,280 biologically active small molecules and found several candidate inhibitors of hepcidin expression. Apomorphine, benzamil, etoposide, CGS-15943, kenpaullone, and rutaecarpine (all at 10 μmol/L) significantly inhibited hepcidin mRNA expression by Hep3B cells without affecting cell viability. CGS-15943 was the strongest suppressor of BMP-6-induced hepcidin-25 secretion in these cells. We conclude that our newly developed hepcidin promoter bioassay system is useful for identifying and evaluating compounds that modulate hepcidin expression.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tatsuki Uchiyama
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kanda
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shinya Oishi
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naohisa Tomosugi
- Division of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Japan
| | - Norimitsu Kadowaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Kent P, Wilkinson N, Constante M, Fillebeen C, Gkouvatsos K, Wagner J, Buffler M, Becker C, Schümann K, Santos MM, Pantopoulos K. Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin. J Mol Med (Berl) 2015; 93:489-98. [DOI: 10.1007/s00109-015-1253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
|
38
|
Wichaiyo S, Yatmark P, Morales Vargas RE, Sanvarinda P, Svasti S, Fucharoen S, Morales NP. Effect of iron overload on furin expression in wild-type and β-thalassemic mice. Toxicol Rep 2015; 2:415-422. [PMID: 28962376 PMCID: PMC5598392 DOI: 10.1016/j.toxrep.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Furin is a proprotein convertase enzyme. In the liver, it cleaves prohepcidin to form active hepcidin-25, which regulates systemic iron homeostasis. Hepcidin deficiency is a component of several iron overload disorders, including β-thalassemia. Several studies have identified factors that repress hepcidin gene transcription in iron overload. However, the effect of iron overload on furin, a post-translational regulator of hepcidin, has never been evaluated. The present study aimed to investigate the changes in furin and related factors in parenteral iron-overloaded mice, including those with β-thalassemia. Wild-type (WT) and β-thalassemia intermedia (th3/+) C57BL/6 mice were intraperitoneally injected with 9 doses of iron dextran (1 g iron/kg body weight) over 2 weeks. In the iron overload condition, our data demonstrated a significant Furin mRNA reduction in WT and th3/+ mice. In addition, the liver furin protein level in iron-overloaded WT mice was significantly reduced by 70% compared to control WT mice. However, the liver furin protein in iron-overloaded th3/+ mice did not show a significant reduction compared to control th3/+ mice. The hepcidin gene (hepcidin antimicrobial peptide gene, Hamp1) expression was increased in iron-overloaded WT and th3/+ mice. Surprisingly, the liver hepcidin protein level and total serum hepcidin were not increased in both WT and th3/+ mice with iron overload, regardless of the increase in Hamp1 mRNA. In conclusion, we demonstrate furin downregulation in conjunction with Hamp1 mRNA-unrelated pattern of hepcidin protein expression in iron-overloaded mice, particularly the WT mice, suggesting that, not only the amount of hepcidin but also the furin-mediated physiological activity may be decreased in severe iron overload condition.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Paranee Yatmark
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Ronald Enrique Morales Vargas
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pimtip Sanvarinda
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Noppawan Phumala Morales
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
- Corresponding author at: Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Tel.: +66 2 201 5507; fax: +66 2 354 7157.
| |
Collapse
|
39
|
Abstract
Iron and oxygen metabolism are intimately linked with one another.
Collapse
Affiliation(s)
- Robert J. Simpson
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| | - Andrew T. McKie
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| |
Collapse
|
40
|
Kida A, Kuragano T, Furuta M, Otaki Y, Hasuike Y, Matsuda S, Akaike N, Kokuba Y, Nakanishi T. Hemodialysis restored iron distribution that was sequestered in the spleen by bilateral nephrectomy. Am J Physiol Renal Physiol 2014; 306:F1393-9. [DOI: 10.1152/ajprenal.00685.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury (AKI) is associated with dysregulated iron metabolism, which may play a significant role in cellular injury. The effect of hemodialysis (HD) on iron metabolism in AKI therapy has not been well defined. The effects of HD on iron parameters were tested in control rats and bilateral nephrectomy (BNx) rats. The BNx rats were divided into the following three groups: 1) the sham-operated group (BNx-Sham), 2) the BNx group, and 3) the HD group (BNx-HD), which received HD therapy 40–45 h after BNx. Sections of the liver or spleen were stained with Berlin blue to examine the accumulation of iron. The mRNA levels of hepcidin and ferroportin 1 in the spleen and liver were also quantified using RT-PCR. In the BNx group, the plasma iron and hematocrit levels were decreased, and hepcidin levels were increased. The iron staining in the spleen in the BNx group was significantly more intense than that in the BNx-Sham group; however, after an HD session, splenic iron staining diminished to the level of the sham group along with an increase in plasma iron and a decrease in hepcidin. BNx moved iron from hemoglobin and the plasma to the spleen, which is associated with an increase in plasma hepcidin. A single HD session accelerated the release of iron from the spleen, and the increased plasma iron was linked to the removal of hepcidin. Our data suggested that hepcidin might dynamically modulate the iron metabolism in BNx as well as in HD.
Collapse
Affiliation(s)
- Aritoshi Kida
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Takahiro Kuragano
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Minoru Furuta
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Yoshinaga Otaki
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Yukiko Hasuike
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| | - Saori Matsuda
- Pharmaceutical Resarch Laboratories, Ajinomoto Company, Incorporated, Tokyo, Japan
| | - Nobuhide Akaike
- Pharmaceutical Resarch Laboratories, Ajinomoto Company, Incorporated, Tokyo, Japan
| | - Yukifumi Kokuba
- Pharmaceutical Resarch Laboratories, Ajinomoto Company, Incorporated, Tokyo, Japan
| | - Takeshi Nakanishi
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; and
| |
Collapse
|
41
|
Silvestri L, Nai A, Pagani A, Camaschella C. The extrahepatic role of TFR2 in iron homeostasis. Front Pharmacol 2014; 5:93. [PMID: 24847265 PMCID: PMC4019842 DOI: 10.3389/fphar.2014.00093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Transferrin receptor 2 (TFR2), a protein homologous to the cell iron importer TFR1, is expressed in the liver and erythroid cells and is reported to bind diferric transferrin, although at lower affinity than TFR1. TFR2 gene is mutated in type 3 hemochromatosis, a disorder characterized by iron overload and inability to upregulate hepcidin in response to iron. Liver TFR2 is considered a sensor of diferric transferrin, possibly in a complex with hemochromatosis protein. In erythroid cells TFR2 is a partner of erythropoietin receptor (EPOR) and stabilizes the receptor on the cell surface. However, Tfr2 null mice as well as TFR2 hemochromatosis patients do not show defective erythropoiesis and tolerate repeated phlebotomy. The iron deficient Tfr2-Tmprss6 double knock out mice have higher red cells count and more severe microcytosis than the liver-specific Tfr2 and Tmprss6 double knock out mice. TFR2 in the bone marrow might be a sensor of iron deficiency that protects against excessive microcytosis in a way that involves EPOR, although the mechanisms remain to be worked out.
Collapse
Affiliation(s)
- Laura Silvestri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele Milan, Italy
| | - Antonella Nai
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele Milan, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele Milan, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele Milan, Italy
| |
Collapse
|
42
|
Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol 2014; 5:86. [PMID: 24808863 PMCID: PMC4009444 DOI: 10.3389/fphar.2014.00086] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
The discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.
Collapse
Affiliation(s)
- Maura Poli
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Michela Asperti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paola Ruzzenenti
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Maria Regoni
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paolo Arosio
- Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| |
Collapse
|
43
|
Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence 2014; 5:465-76. [PMID: 24626108 PMCID: PMC4063809 DOI: 10.4161/viru.28508] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.
Collapse
Affiliation(s)
- Urania Georgopoulou
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Pelagia Foka
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece; Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| |
Collapse
|
44
|
Izawa T, Murakami H, Wijesundera KK, Golbar HM, Kuwamura M, Yamate J. Inflammatory regulation of iron metabolism during thioacetamide-induced acute liver injury in rats. ACTA ACUST UNITED AC 2013; 66:155-62. [PMID: 24373749 DOI: 10.1016/j.etp.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
Systemic iron homeostasis is tightly regulated by the interaction between iron regulatory molecules, mainly produced by the liver. However, the molecular mechanisms of iron regulation in liver diseases remain to be elucidated. Here we analyzed the expression profiles of iron regulatory molecules during transient iron overload in a rat model of thioacetamide (TAA)-induced acute liver injury. After TAA treatment, mild hepatocellular degeneration and extensive necrosis were observed in the centrilobular region at hour 10 and on day 1, respectively. Serum iron increased transiently at hour 10 and on day 1, in contrast to hypoferremia in other rodent models of acute inflammation reported previously. Thereafter, up-regulation of hepcidin, a central regulator of systemic iron homeostasis, was observed in hepatocytes on day 2. Expression of transferrin receptor 1 and ferritin subunits increased to a peak on day 3, followed by increases in liver iron content and stainable iron on day 5, in parallel with regeneration of hepatocytes. Histopathological lesions and hepatocellular iron accumulation disappeared until day 10. The hepcidin induction was preceded by activation of IL6/STAT3 pathway, whereas other pathways known to induce hepcidin were down-regulated. IL6 was expressed by MHC class II-positive macrophages in the portal area, suggestive of dendritic cells. Our results suggest that IL6 released by portal macrophages may regulate hepatocyte hepcidin expression via STAT3 activation during transient iron overload in TAA-induced acute liver injury.
Collapse
Affiliation(s)
- Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Japan.
| | - Hiroshi Murakami
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Japan
| | | | - Hossain M Golbar
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Japan
| |
Collapse
|
45
|
Díaz V, Gammella E, Recalcati S, Santambrogio P, Naldi AM, Vogel J, Gassmann M, Cairo G. Liver iron modulates hepcidin expression during chronically elevated erythropoiesis in mice. Hepatology 2013; 58:2122-32. [PMID: 23744538 DOI: 10.1002/hep.26550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023]
Abstract
UNLABELLED The liver-derived peptide hepcidin controls the balance between iron demand and iron supply. By inhibiting the iron export activity of ferroportin, hepcidin modulates iron absorption and delivery from the body's stores. The regulation of hepcidin, however, is not completely understood and includes a variety of different signals. We studied iron metabolism and hepcidin expression in mice constitutively overexpressing erythropoietin (Epo) (Tg6 mice), which leads to excessive erythropoiesis. We observed a very strong down-regulation of hepcidin in Tg6 mice that was accompanied by a strong increase in duodenal expression of ferroportin and divalent metal tranporter-1, as well as enhanced duodenal iron absorption. Despite these compensatory mechanisms, Tg6 mice displayed marked circulating iron deficiency and low levels of iron in liver, spleen, and muscle. To elucidate the primary signal affecting hepcidin expression during chronically elevated erythropoiesis, we increased iron availability by either providing iron (thus further increasing the hematocrit) or reducing erythropoiesis-dependent iron consumption by means of splenectomy. Both treatments increased liver iron and up-regulated hepcidin expression and the BMP6/SMAD pathway despite continuously high plasma Epo levels and sustained erythropoiesis. This suggests that hepcidin expression is not controlled by erythropoietic signals directly in this setting. Rather, these results indicate that iron consumption for erythropoiesis modulates liver iron content, and ultimately BMP6 and hepcidin. Analysis of the BMP6/SMAD pathway targets showed that inhibitor of DNA binding 1 (ID1) and SMAD7, but not transmembrane serine protease 6 (TMPRSS6), were up-regulated by increased iron availability and thus may be involved in setting the upper limit of hepcidin. CONCLUSION We provide evidence that under conditions of excessive and effective erythropoiesis, liver iron regulates hepcidin expression through the BMP6/SMAD pathway.
Collapse
Affiliation(s)
- Víctor Díaz
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), and University of Zurich, Switzerland; Department of Health and Human Performance, Faculty of Sports Science, INEF, Technical University of Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Iron is a micronutrient essential for almost all organisms: bacteria, plants, and animals. It is a metal that exists in multiple redox states, including the divalent ferrous (Fe(2+)) and the trivalent ferric (Fe(3+)) species. The multiple oxidation states of iron make it excellent for electron transfer, allowing iron to be selected during evolution as a cofactor for many proteins involved in central cellular processes including oxygen transport, mitochondrial respiration, and DNA synthesis. However, the redox cycling of ferrous and ferric iron in the presence of H2O2, which is physiologically present in the cells, also leads to the production of free radicals (Fenton reaction) that can attack and damage lipids, proteins, DNA, and other cellular components. To meet the physiological needs of the body, but to prevent cellular damage by iron, the amount of iron in the body must be tightly regulated. Here we review how the liver is the central conductor of systemic iron balance and show that this central role is related to the secretion of a peptide hormone hepcidin by hepatocytes. We then review how the liver receives and integrates the many signals that report the body's iron needs to orchestrate hepcidin production and maintain systemic iron homeostasis.
Collapse
|
47
|
Pérez MJ, Fernandez N, Pasquini JM. Oligodendrocyte differentiation and signaling after transferrin internalization: A mechanism of action. Exp Neurol 2013; 248:262-74. [DOI: 10.1016/j.expneurol.2013.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023]
|
48
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
49
|
Yamashita-Sugahara Y, Tokuzawa Y, Nakachi Y, Kanesaki-Yatsuka Y, Matsumoto M, Mizuno Y, Okazaki Y. Fam57b (family with sequence similarity 57, member B), a novel peroxisome proliferator-activated receptor γ target gene that regulates adipogenesis through ceramide synthesis. J Biol Chem 2012; 288:4522-37. [PMID: 23275342 DOI: 10.1074/jbc.m112.440792] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This report identifies a novel gene encoding Fam57b (family with sequence similarity 57, member B) as a novel peroxisome proliferator-activated receptor γ (PPARγ)-responsive transmembrane gene that is related to obesity. The gene was identified based on an integrated bioinformatics analysis of the following three expression profiling data sets: adipocyte differentiation of mouse stromal cells (ST2 cells), adipose tissues from obesity mice, and siRNA-mediated knockdown of Pparγ using ST2 cells. Fam57b consists of three variants expressed from different promoters and contains a Tram-Lag1-CLN8 domain that is related to ceramide synthase. Reporter and ChIP assays showed that Fam57b variant 2 is a bona fide PPARγ target gene in ST2 cells. Fam57b was up-regulated during adipocyte differentiation, suggesting that FAM57B is involved in this process. Surprisingly, FAM57B overexpression inhibited adipogenesis, and siRNA-mediated knockdown promoted adipocyte differentiation. Analysis of the ceramide content by lipid assay found that ceramides were in fact augmented in FAM57B-overexpressing ST2 cells. We also confirmed that ceramide inhibits adipogenesis. Therefore, the aforementioned results of FAM57B overexpression and siRNA experiments are reconciled by ceramide synthesis. In summary, we present in vitro evidence showing that PPARγ regulates Fam57b transcription during the adipogenesis of ST2 cells. In addition, our results suggest that PPARγ activation contributes to the regulation of ceramide metabolism during adipogenesis via FAM57B.
Collapse
Affiliation(s)
- Yzumi Yamashita-Sugahara
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama 350-1241, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Daba A, Gkouvatsos K, Sebastiani G, Pantopoulos K. Differences in activation of mouse hepcidin by dietary iron and parenterally administered iron dextran: compartmentalization is critical for iron sensing. J Mol Med (Berl) 2012; 91:95-102. [DOI: 10.1007/s00109-012-0937-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/06/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
|