1
|
Gonzalez C, Ranchod S, Rakobowchuk M. Using multivariate partial least squares on fNIRS data to examine load-dependent brain-behaviour relationships in aging. PLoS One 2024; 19:e0312109. [PMID: 39401216 PMCID: PMC11472942 DOI: 10.1371/journal.pone.0312109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Researchers implementing non-invasive neuroimaging have reported distinct load-dependent brain activity patterns in older adults compared with younger adults. Although findings are mixed, these age-related patterns are often associated with compensatory mechanisms of cognitive decline even in the absence of direct comparisons between brain activity and cognitive performance. This study investigated the effects of cognitive load on brain-behavior relationships in younger and older adults using a data-driven, multivariate partial least squares (PLS) analysis of functional near-infrared spectroscopy (fNIRS) data. We measured bilateral prefrontal brain activity in 31 older and 27 younger adults while they performed single and dual 2-back tasks. Behavioral PLS analysis was used to determine relationships between performance metrics (reaction time and error rate) and brain oxygenation (HbO) and deoxygenation (HbR) patterns across groups and task loads. Results revealed significant age-group differences in brain-behavior relationships. In younger adults, increased brain activity (i.e., increased HbO and decreased HbR) was associated with faster reaction times and better accuracy in the single task, indicating sufficient neural capacity. Conversely, older adults showed a negative correlation between HbR and error rates in the single task; however, in the dual task, they demonstrated a positive relationship between HbO and performance, indicative of compensatory mechanisms under the higher cognitive load. Overall, older adults' showed relationships with either HbR or HbO, but not both, indicating that the robustness of the relationship between brain activity and behavior varies across task load conditions. Our PLS approach revealed distinct load-dependent brain activity between age groups, providing further insight into neurocognitive aging patterns, such as compensatory mechanisms, by emphasizing the variability and complexity of brain-behavior relationships. Our findings also highlight the importance of considering task complexity and cognitive demands in interpreting age-related brain activity patterns.
Collapse
Affiliation(s)
- Claudia Gonzalez
- Psychology Department, Faculty of Arts, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Supreeta Ranchod
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Mark Rakobowchuk
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|
2
|
Yao Q, Chen L, Qu H, Fan W, He L, Li G, Hu J, Zou J, Huang G, Zeng Q. Comparable cerebral cortex activity and gait performance in elderly hypertensive and healthy individuals during dual-task walking: A fNIRS study. Brain Behav 2024; 14:e3568. [PMID: 38988039 PMCID: PMC11236899 DOI: 10.1002/brb3.3568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.
Collapse
Affiliation(s)
- Qiuru Yao
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Ling Chen
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Hang Qu
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Weichao Fan
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of NursingSouthern Medical UniversityGuangzhouChina
| | - Longlong He
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Gege Li
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jinjing Hu
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jihua Zou
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of Rehabilitation MedicineSouthern Medical UniversityGuangzhouChina
- Faculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Guozhi Huang
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- School of Rehabilitation MedicineSouthern Medical UniversityGuangzhouChina
| | - Qing Zeng
- Department of Rehabilitation MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Ou ZT, Ding Q, Yao ST, Zhang L, Li YW, Lan Y, Xu GQ. Functional near-infrared spectroscopy evidence of cognitive-motor interference in different dual tasks. Eur J Neurosci 2024; 59:3045-3060. [PMID: 38576168 DOI: 10.1111/ejn.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.
Collapse
Affiliation(s)
- Zi-Tong Ou
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shan-Tong Yao
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ya-Wen Li
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hwang J, Liu C, Winesett SP, Chatterjee SA, Gruber AD, Swanson CW, Manini TM, Hass CJ, Seidler RD, Ferris DP, Roy A, Clark DJ. Prefrontal cortical activity during uneven terrain walking in younger and older adults. Front Aging Neurosci 2024; 16:1389488. [PMID: 38765771 PMCID: PMC11099210 DOI: 10.3389/fnagi.2024.1389488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.
Collapse
Affiliation(s)
- Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sudeshna A. Chatterjee
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States
| | - Anthony D. Gruber
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Clayton W. Swanson
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachael D. Seidler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
5
|
Elshorbagy R, Alkhaldi H, Alshammari N, El Semary M. Influence of Sex on Cognitive and Motor Dual-Task Performance Among Young Adults: A Cross-Sectional Study. Ann Rehabil Med 2024; 48:163-170. [PMID: 38575372 PMCID: PMC11058369 DOI: 10.5535/arm.23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE To investigate the sex-related differences in single-task performance through motor torque, cognitive tasks and walking speed, and the combined dual-task costs (DTCs) considering both motor and cognitive performance in young adults. METHODS Sixty-seven non-athletic subjects 37 females and 30 males were enrolled. The study measured their knee extension muscle torque using an isokinetic strength dynamometer and their walking speed using the one step app. these assessments were performed both with and without a cognitive task, and the DTCs were calculated. RESULTS The females exhibited significantly larger motor performance dual task effect through (torque-DTC, speed-DTC) compared with males while exhibiting smaller cognitive dual task effect with muscle torque and speed. CONCLUSION Deterioration in motor performance during muscle force production and speed during dual tasks was large in females compared to males, whereas males experience a decline in cognitive ability when performing dual tasks compared with females.
Collapse
Affiliation(s)
- Radwa Elshorbagy
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Physical Therapy for Musculoskeletal Disorders and Their Surgeries, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Hanin Alkhaldi
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Njoud Alshammari
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Moataz El Semary
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Kao PC, Pierro MA, Gonzalez DM. Performance during attention-demanding walking conditions in older adults. Gait Posture 2024; 109:70-77. [PMID: 38281432 DOI: 10.1016/j.gaitpost.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Conventional balance and gait assessments for fall risk screening are often conducted under unperturbed conditions. However, older adults can allocate their attention to motor tasks (balance or walking) without revealing performance deficiencies, posing a challenge in identifying those with compromised gait and balance. RESEARCH QUESTIONS Do community-dwelling older adults exhibit greater changes in cognitive and/or walking performance under balance-challenging conditions compared to typical dual-task walking conditions? METHODS Twenty-nine healthy, community-dwelling older adults performed four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) while walking with and without lateral treadmill sways (Perturbed vs. Unperturbed) and during standing. We calculated dual-task costs (DTC) and walking perturbation effects (WPE) as the percentage of change in cognitive and walking performance between dual and single-task conditions and between Perturbed and Unperturbed conditions, respectively. RESULTS Older adults exhibited similar DTC and WPE on cognitive task performance. However, in walking performance, they demonstrated significantly greater WPE than DTC across all gait and stability measures (p < 0.01), including the mean and variability of stride and margins of stability (MOS) measures, the variability of trunk movement and lower-limb joint angles, and the local stability measures. Older adults took shorter but wider steps, exhibited shorter MOSAP but greater MOSML, and experienced increased movement variability and walking instability to a greater extent than during dual-task walking. Overall, changes in variability and stability measures were more pronounced than those in mean gait measures. SIGNIFICANCE Introducing destabilizing perturbations to increase the task demands of balance and gait assessments is a more effective method to challenge older adults compared to simply adding a concurrent cognitive task. Fall screening assessments for community-dwelling older adults should incorporate balance-challenging conditions, such as introducing gait perturbations.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
7
|
Liu S, Rosso AL, Baillargeon EM, Weinstein AM, Rosano C, Torres-Oviedo G. Novel attentional gait index reveals a cognitive ability-related decline in gait automaticity during dual-task walking. Front Aging Neurosci 2024; 15:1283376. [PMID: 38274986 PMCID: PMC10808635 DOI: 10.3389/fnagi.2023.1283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). Methods The index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. Results As DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. Conclusion The proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.
Collapse
Affiliation(s)
- Shuqi Liu
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Andrea L. Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emma M. Baillargeon
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Downey R, Gagné N, Mohanathas N, Campos JL, Pichora-Fuller KM, Bherer L, Lussier M, Phillips NA, Wittich W, St-Onge N, Gagné JP, Li K. At-home computerized executive-function training to improve cognition and mobility in normal-hearing adults and older hearing aid users: a multi-centre, single-blinded randomized controlled trial. BMC Neurol 2023; 23:378. [PMID: 37864139 PMCID: PMC10588173 DOI: 10.1186/s12883-023-03405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Hearing loss predicts cognitive decline and falls risk. It has been argued that degraded hearing makes listening effortful, causing competition for higher-level cognitive resources needed for secondary cognitive or motor tasks. Therefore, executive function training has the potential to improve cognitive performance, in turn improving mobility, especially when older adults with hearing loss are engaged in effortful listening. Moreover, research using mobile neuroimaging and ecologically valid measures of cognition and mobility in this population is limited. The objective of this research is to examine the effect of at-home cognitive training on dual-task performance using laboratory and simulated real-world conditions in normal-hearing adults and older hearing aid users. We hypothesize that executive function training will lead to greater improvements in cognitive-motor dual-task performance compared to a wait-list control group. We also hypothesize that executive function training will lead to the largest dual-task improvements in older hearing aid users, followed by normal-hearing older adults, and then middle-aged adults. METHODS A multi-site (Concordia University and KITE-Toronto Rehabilitation Institute, University Health Network) single-blinded randomized controlled trial will be conducted whereby participants are randomized to either 12 weeks of at-home computerized executive function training or a wait-list control. Participants will consist of normal-hearing middle-aged adults (45-60 years old) and older adults (65-80 years old), as well as older hearing aid users (65-80 years old, ≥ 6 months hearing aid experience). Separate samples will undergo the same training protocol and the same pre- and post-evaluations of cognition, hearing, and mobility across sites. The primary dual-task outcome measures will involve either static balance (KITE site) or treadmill walking (Concordia site) with a secondary auditory-cognitive task. Dual-task performance will be assessed in an immersive virtual reality environment in KITE's StreetLab and brain activity will be measured using functional near infrared spectroscopy at Concordia's PERFORM Centre. DISCUSSION This research will establish the efficacy of an at-home cognitive training program on complex auditory and motor functioning under laboratory and simulated real-world conditions. This will contribute to rehabilitation strategies in order to mitigate or prevent physical and cognitive decline in older adults with hearing loss. TRIAL REGISTRATION Identifier: NCT05418998. https://clinicaltrials.gov/ct2/show/NCT05418998.
Collapse
Affiliation(s)
- Rachel Downey
- Department of Psychology, Concordia University, Montréal, Québec, Canada.
- PERFORM Centre, Concordia University, Montréal, Québec, Canada.
| | - Nathan Gagné
- Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Niroshica Mohanathas
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Jennifer L Campos
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | | | - Louis Bherer
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de L'Institut de Cardiologie de Montréal, Montréal, Québec, Canada
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Maxime Lussier
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de L'Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| | - Natalie A Phillips
- Department of Psychology, Concordia University, Montréal, Québec, Canada
- PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - Walter Wittich
- École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Nancy St-Onge
- PERFORM Centre, Concordia University, Montréal, Québec, Canada
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Jean-Pierre Gagné
- École d'orthophonie Et d'audiologie, Université de Montréal, Montréal, Québec, Canada
| | - Karen Li
- Department of Psychology, Concordia University, Montréal, Québec, Canada
- PERFORM Centre, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Baek CY, Kim HD, Yoo DY, Kang KY, Woo Lee J. Effect of automaticity induced by treadmill walking on prefrontal cortex activation and dual-task performance in older adults. PLoS One 2023; 18:e0287252. [PMID: 37535522 PMCID: PMC10399859 DOI: 10.1371/journal.pone.0287252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 08/05/2023] Open
Abstract
As individuals age, they may experience a decline in gait automaticity, which requires increased attentional resources for the control of gait. This age-related decline in gait automaticity has been shown to contribute to higher prefrontal cortex (PFC) activation and lower dual-task performance during dual-task walking in older adults. This study is to investigate the effect of treadmill walking on PFC activation and dual-task performance in older adults. A total of 20 older adults (mean age, 64.35 ± 2.74 years) and 20 younger adults (mean age, 30.00 ± 3.15 years) performed single- and dual-task walking in overground and treadmill conditions. A wearable functional near-infrared spectroscopy and gait analyzer were used to analyze PFC activation and dual-task performance, respectively. To determine the dual-task (gait and cognitive) performance, the dual-task cost (DTC) was calculated using the following formula: (single-task - dual-task)/single-task × 100. In both groups, dual-task treadmill walking led to reduced PFC activation and reduced DTC compared to dual-task overground walking. Furthermore, despite a higher DTC in gait variability, correct response, total response, response index and a higher error score in older adults than in younger adults during overground walking, there was no difference in treadmill walking. The difference in PFC activation between single- and dual-tasks was also observed only in overground walking. Performing dual-task walking on a treadmill compared to overground walking results in different levels of dual-task performance and PFC activity. Specifically, older adults are able to maintain similar levels of dual-task performance as younger adults while walking on a treadmill, with reduced PFC activation due to the automaticity induced by the treadmill. Therefore, older adults who exhibit low dual-task performance during overground walking may be able to improve their performance while walking on a treadmill with fewer attentional resources.
Collapse
Affiliation(s)
- Chang Yoon Baek
- Department of Physical Therapy, College of Health Science, Korea University, Seoul, Republic of Korea
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Hyeong Dong Kim
- Department of Physical Therapy, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Dong Yup Yoo
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Kyoung Yee Kang
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| | - Jang Woo Lee
- Department of Rehabilitation medicine, National Health Insurance Ilsan Hospital, Ilsan, Republic of Korea
| |
Collapse
|
11
|
Baek CY, Kim HD, Yoo DY, Kang KY, Lee JW. Change in activity patterns in the prefrontal cortex in different phases during the dual-task walking in older adults. J Neuroeng Rehabil 2023; 20:86. [PMID: 37420235 PMCID: PMC10327141 DOI: 10.1186/s12984-023-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Studies using functional near-infrared spectroscopy (fNIRS) have shown that dual-task walking leads to greater prefrontal cortex (PFC) activation compared to the single-task walking task. However, evidence on age-related changes in PFC activity patterns is inconsistent. Therefore, this study aimed to explore the changes in the activation patterns of PFC subregions in different activation phases (early and late phases) during both single-task and dual-task walking in both older and younger adults. METHODS Overall, 20 older and 15 younger adults performed a walking task with and without a cognitive task. The activity of the PFC subregions in different phases (early and late phases) and task performance (gait and cognitive task) were evaluated using fNIRS and a gait analyzer. RESULTS The gait (slower speed and lower cadence) and cognitive performance (lower total response, correct response and accuracy rate, and higher error rate) of older adults was poorer during the dual task than that of younger adults. Right dorsolateral PFC activity in the early period in older adults was higher than that in younger adults, which declined precipitously during the late period. Conversely, the activity level of the right orbitofrontal cortex in the dual-task for older adults was lower than for younger adults. CONCLUSIONS These altered PFC subregion-specific activation patterns in older adults would indicate a decline in dual-task performance with aging.
Collapse
Affiliation(s)
- Chang Yoon Baek
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Hyeong Dong Kim
- Department of Physical Therapy and School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
| | - Dong Yup Yoo
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Kyoung Yee Kang
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| | - Jang Woo Lee
- Department of Rehabilitation Medicine, National Health Insurance Ilsan Hospital, 100 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-do 10444 South Korea
| |
Collapse
|
12
|
Chai KXY, Marie Goodwill A, Leuk JSP, Teo WP. Treadmill Walking Maintains Dual-task Gait Performance and Reduces Frontopolar Cortex Activation in Healthy Adults. Neuroscience 2023; 521:148-156. [PMID: 37105393 DOI: 10.1016/j.neuroscience.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Studies examining dual-task gait (DTG) have used varying conditions such as overground or treadmill walking, however it is not known whether brain activation patterns differ during these conditions. Therefore, this study compared oxyhaemoglobin (O2Hb) responses of the prefrontal cortex (PFC) during overground and treadmill walking. A total of 30 participants (14M/16F) were recruited in a randomized crossover study comparing overground and treadmill walking under single- and dual-task (STG and DTG) conditions. The DTG consisted of performing walking and cognitive (serial subtraction by 7's) tasks concurrently. A portable 24-channel functional near-infrared spectroscopy system was placed over the PFC, corresponding the left and right dorsolateral PFC and frontopolar cortices (DLPFC and FPC) during overground and treadmill STG and DTG. Results showed a reduction in gait speed during DTG compared to STG on overground but not treadmill walking, while cognitive performance was maintained during DTG on both overground and treadmill walking. A reduction in O2Hb was seen in the FPC during DTG compared to a cognitive task only, and on the treadmill compared to overground walking. Increased activation was seen in the left and right DLPFC during DTG but did not differ between treadmill and overground walking. Our results support the concept of improved gait efficiency during treadmill walking, indicated by the lack of change in STG and DTG performance and concomitant with a reduction in FPC activation. These findings suggest different neural strategies underpinning treadmill and overground walking, which should be considered when designing gait assessment and rehabilitation interventions.
Collapse
Affiliation(s)
- Keller Xin-Yu Chai
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore
| | - Alicia Marie Goodwill
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore
| | - Jessie Siew-Pin Leuk
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
Patelaki E, Foxe JJ, Mantel EP, Kassis G, Freedman EG. Paradoxical improvement of cognitive control in older adults under dual-task walking conditions is associated with more flexible reallocation of neural resources: A Mobile Brain-Body Imaging (MoBI) study. Neuroimage 2023; 273:120098. [PMID: 37037381 DOI: 10.1016/j.neuroimage.2023.120098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation. These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy 'paradoxically' improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify 'super-agers', or individuals at risk for cognitive decline due to aging or neurodegenerative disease.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, New York, 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| | - Emma P Mantel
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - George Kassis
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
14
|
Kvist A, Bezuidenhout L, Johansson H, Albrecht F, Ekman U, Conradsson DM, Franzén E. Using functional near-infrared spectroscopy to measure prefrontal cortex activity during dual-task walking and navigated walking: A feasibility study. Brain Behav 2023; 13:e2948. [PMID: 36917560 PMCID: PMC10097069 DOI: 10.1002/brb3.2948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION While functional near-infrared spectroscopy (fNIRS) can provide insight into motor-cognitive deficits during ecologically valid gait conditions, the feasibility of using fNIRS during complex walking remains unknown. We tested the process and scientific feasibility of using an fNIRS device to measure cortical activity during complex walking tasks consisting of straight walking and navigated walking under single and dual-task (DT) conditions. METHODS Nineteen healthy people from 18 to 64 years (mean age: 45.7 years) participated in this study which consisted of three complex walking protocols: (i) straight walking, DT walking (walking while performing an auditory Stroop task) and single-task auditory Stroop, (ii) straight and navigated walking, and (iii) navigated walking and navigated DT walking. A rest condition (standing still) was also included in each protocol. Process feasibility outcomes included evaluation of the test procedures and participant experience during and after each protocol. Scientific feasibility outcomes included signal quality measures, and the ability to measure changes in concentration of deoxygenated and oxygenated hemoglobin in the prefrontal cortex. RESULTS All participants were able to complete the three protocols with most agreeing that the equipment was comfortable (57.9%) and that the testing duration was adequate (73.7%). Most participants did not feel tired (94.7%) with some experiencing pain (42.1%) during the protocols. The signal qualities were high for each protocol. Compared to the rest condition, there was an increase in oxygenated hemoglobin in the prefrontal cortex when performing dual-task walking and navigation. CONCLUSION We showed that our experimental setup was feasible for assessing activity in the prefrontal cortex with fNIRS during complex walking. The experimental setup was deemed acceptable and practicable. Signal quality was good during complex walking conditions and findings suggest that the different tasks elicit a differential brain activity, supporting scientific feasibility.
Collapse
Affiliation(s)
- Alexander Kvist
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
| | - Lucian Bezuidenhout
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Faculty of Community and Health SciencesUniversity of Western CapeCape TownSouth Africa
| | - Hanna Johansson
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Franziska Albrecht
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Urban Ekman
- Department of Neurobiology, Care Sciences and Society, Division of Clinical GeriatricsKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Medical PsychologyKarolinska University HospitalStockholmSweden
| | - David Moulaee Conradsson
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| | - Erika Franzén
- Department of Neurobiology, Care sciences and Society, Division of PhysiotherapyKarolinska InstitutetStockholmSweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & PhysiotherapyKarolinska University HospitalStockholmSweden
| |
Collapse
|
15
|
Pellegrini-Laplagne M, Dupuy O, Sosner P, Bosquet L. Effect of simultaneous exercise and cognitive training on executive functions, baroreflex sensitivity, and pre-frontal cortex oxygenation in healthy older adults: a pilot study. GeroScience 2023; 45:119-140. [PMID: 35881301 PMCID: PMC9315336 DOI: 10.1007/s11357-022-00595-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/20/2022] [Indexed: 02/02/2023] Open
Abstract
Aging is characterized by cognitive decline affecting daily functioning. To manage this socio-economic challenge, several non-pharmacological methods such as physical, cognitive, and combined training are proposed. Although there is an important interest in this subject, the literature is still heterogeneous. The superiority of simultaneous training compared to passive control and physical training alone seems clear but very few studies compared simultaneous training to cognitive training alone. The aim of this pilot study was to investigate the effect of simultaneous exercise and cognitive training on several cognitive domains in healthy older adults, in comparison with either training alone. Thirty-five healthy older adults were randomized into one of three experimental groups: exercise training, cognitive training, and simultaneous exercise and cognitive training. The protocol involved two 30-min sessions per week for 24 weeks. Cognitive performance in several domains, pre-frontal cortex oxygenation, and baroreflex sensitivity were assessed before and after the intervention. All groups improved executive performance, including flexibility or working memory. We found a group by time interaction for inhibition cost (F(2,28) = 6.44; p < 0.01) and baroreflex sensitivity during controlled breathing (F(2,25) = 4.22; p = 0.01), the magnitude of improvement of each variable being associated (r = -0.39; p = 0.03). We also found a decrease in left and right pre-frontal cortex oxygenation in all groups during the trail making test B. A simultaneous exercise and cognitive training are more efficient than either training alone to improve executive function and baroreflex sensitivity. The results of this study may have important clinical repercussions by allowing to optimize the interventions designed to maintain the physical and cognitive health of older adults.
Collapse
Affiliation(s)
- Manon Pellegrini-Laplagne
- Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, 8 allée Jean Monnet - TSA 31113 - 96073 Poitiers cedex 9, Poitiers, France
| | - Olivier Dupuy
- Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, 8 allée Jean Monnet - TSA 31113 - 96073 Poitiers cedex 9, Poitiers, France.
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, University of Montreal, Montreal, Canada.
| | - Phillipe Sosner
- Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, 8 allée Jean Monnet - TSA 31113 - 96073 Poitiers cedex 9, Poitiers, France
- Mon Stade, Paris, France
| | - Laurent Bosquet
- Laboratoire MOVE (EA6314), Faculté des sciences du sport, Université de Poitiers, 8 allée Jean Monnet - TSA 31113 - 96073 Poitiers cedex 9, Poitiers, France
- School of Kinesiology and Physical Activity Sciences (EKSAP), Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
16
|
Korivand S, Jalili N, Gong J. Experiment protocols for brain-body imaging of locomotion: A systematic review. Front Neurosci 2023; 17:1051500. [PMID: 36937690 PMCID: PMC10014824 DOI: 10.3389/fnins.2023.1051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Human locomotion is affected by several factors, such as growth and aging, health conditions, and physical activity levels for maintaining overall health and well-being. Notably, impaired locomotion is a prevalent cause of disability, significantly impacting the quality of life of individuals. The uniqueness and high prevalence of human locomotion have led to a surge of research to develop experimental protocols for studying the brain substrates, muscle responses, and motion signatures associated with locomotion. However, from a technical perspective, reproducing locomotion experiments has been challenging due to the lack of standardized protocols and benchmarking tools, which impairs the evaluation of research quality and the validation of previous findings. Methods This paper addresses the challenges by conducting a systematic review of existing neuroimaging studies on human locomotion, focusing on the settings of experimental protocols, such as locomotion intensity, duration, distance, adopted brain imaging technologies, and corresponding brain activation patterns. Also, this study provides practical recommendations for future experiment protocols. Results The findings indicate that EEG is the preferred neuroimaging sensor for detecting brain activity patterns, compared to fMRI, fNIRS, and PET. Walking is the most studied human locomotion task, likely due to its fundamental nature and status as a reference task. In contrast, running has received little attention in research. Additionally, cycling on an ergometer at a speed of 60 rpm using fNIRS has provided some research basis. Dual-task walking tasks are typically used to observe changes in cognitive function. Moreover, research on locomotion has primarily focused on healthy individuals, as this is the scenario most closely resembling free-living activity in real-world environments. Discussion Finally, the paper outlines the standards and recommendations for setting up future experiment protocols based on the review findings. It discusses the impact of neurological and musculoskeletal factors, as well as the cognitive and locomotive demands, on the experiment design. It also considers the limitations imposed by the sensing techniques used, including the acceptable level of motion artifacts in brain-body imaging experiments and the effects of spatial and temporal resolutions on brain sensor performance. Additionally, various experiment protocol constraints that need to be addressed and analyzed are explained.
Collapse
Affiliation(s)
- Soroush Korivand
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
| | - Nader Jalili
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Jiaqi Gong
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jiaqi Gong
| |
Collapse
|
17
|
Salzman T, Tobón DP, Perreault H, Farhat F, Fraser S. Using Cognitive-Motor Dual-Tasks and Functional Near-Infrared Spectroscopy to Characterize Older Adults with and without Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1497-1508. [PMID: 37718810 DOI: 10.3233/jad-230469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) refers to individuals who report persistent cognitive deficits but perform normally on neuropsychological tests. Performance may be facilitated by increased prefrontal cortex activation, known as neural compensation, and could be used to differentiate between older adults with and without SCD. OBJECTIVE This cross-sectional pilot study measured changes in the hemodynamic response (ΔHbO2) using functional near-infrared spectroscopy (fNIRS) as well as cognitive and motor performance during fine and gross motor dual-tasks in older adults with and without SCD. METHODS Twenty older adults over 60 years old with (n = 10) and without (n = 10) SCD were recruited. Two experiments were conducted using 1) gross motor walking and 2) fine motor finger tapping tasks that were paired with an n-back working memory task. Participants also completed neuropsychological assessments and questionnaires on everyday functioning. RESULTS Repeated measures ANOVAs demonstrated slower response times during dual-task gait compared to the single task (p = 0.032) and in the non-SCD group, slower gait speed was also observed in the dual compared to single task (p = 0.044). Response times during dual-task finger tapping were slower than the single task (p = 0.049) and greater ΔHbO2 was observed overall in the SCD compared to non-SCD group (p = 0.002). CONCLUSIONS Examining neural and performance outcomes revealed differences between SCD and non-SCD groups and single and dual-tasks. Greater brain activation during dual-task finger tapping may reflect neural compensation, which should be examined in a larger sample and longitudinally to better characterize SCD.
Collapse
Affiliation(s)
- Talia Salzman
- School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Diana P Tobón
- Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, Colombia
| | - Hannah Perreault
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| | - Farah Farhat
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Bläsing D, Buder A, Reiser JE, Nisser M, Derlien S, Vollmer M. ECG performance in simultaneous recordings of five wearable devices using a new morphological noise-to-signal index and Smith-Waterman-based RR interval comparisons. PLoS One 2022; 17:e0274994. [PMID: 36197850 PMCID: PMC9534432 DOI: 10.1371/journal.pone.0274994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/08/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Numerous wearables are used in a research context to record cardiac activity although their validity and usability has not been fully investigated. The objectives of this study is the cross-model comparison of data quality at different realistic use cases (cognitive and physical tasks). The recording quality is expressed by the ability to accurately detect the QRS complex, the amount of noise in the data, and the quality of RR intervals. METHODS Five ECG devices (eMotion Faros 360°, Hexoskin Hx1, NeXus-10 MKII, Polar RS800 Multi and SOMNOtouch NIBP) were attached and simultaneously tested in 13 participants. Used test conditions included: measurements during rest, treadmill walking/running, and a cognitive 2-back task. Signal quality was assessed by a new local morphological quality parameter morphSQ which is defined as a weighted peak noise-to-signal ratio on percentage scale. The QRS detection performance was evaluated with eplimited on synchronized data by comparison to ground truth annotations. A modification of the Smith-Waterman algorithm has been used to assess the RR interval quality and to classify incorrect beat annotations. Evaluation metrics includes the positive predictive value, false negative rates, and F1 scores for beat detection performance. RESULTS All used devices achieved sufficient signal quality in non-movement conditions. Over all experimental phases, insufficient quality expressed by morphSQ values below 10% was only found in 1.22% of the recorded beats using eMotion Faros 360°whereas the rate was 8.67% with Hexoskin Hx1. Nevertheless, QRS detection performed well across all used devices with positive predictive values between 0.985 and 1.000. False negative rates are ranging between 0.003 and 0.017. eMotion Faros 360°achieved the most stable results among the tested devices with only 5 false positive and 19 misplaced beats across all recordings identified by the Smith-Waterman approach. CONCLUSION Data quality was assessed by two new approaches: analyzing the noise-to-signal ratio using morphSQ, and RR interval quality using Smith-Waterman. Both methods deliver comparable results. However the Smith-Waterman approach allows the direct comparison of RR intervals without the need for signal synchronization whereas morphSQ can be computed locally.
Collapse
Affiliation(s)
- Dominic Bläsing
- Institute of Psychology, University Greifswald, Greifswald, Germany
- Institute for Community Medicine, Prevention Research and Social Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anja Buder
- Institute of Physiotherapy, University Hospital Jena, Jena, Germany
| | - Julian Elias Reiser
- Leibniz Research Centre for Working Environment and Human Factors – IfADo, Dortmund, Germany
| | - Maria Nisser
- Institute of Physiotherapy, University Hospital Jena, Jena, Germany
| | - Steffen Derlien
- Institute of Physiotherapy, University Hospital Jena, Jena, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Liu YC, Yang YR, Yeh NC, Ku PH, Lu CF, Wang RY. Multiarea Brain Activation and Gait Deterioration During a Cognitive and Motor Dual Task in Individuals With Parkinson Disease. J Neurol Phys Ther 2022; 46:260-269. [PMID: 35404916 DOI: 10.1097/npt.0000000000000402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE In people with Parkinson disease (PD), gait performance deteriorating during dual-task walking has been noted in previous studies. However, the effects of different types of dual tasks on gait performance and brain activation are still unknown. The purpose of this study was to investigate cognitive and motor dual-task walking performance on multiarea brain activity in individuals with PD. METHODS Twenty-eight participants with PD were recruited and performed single walking (SW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT) at their self-selected speed. Gait performance including walking speed, stride length, stride time, swing cycle, temporal and spatial variability, and dual-task cost (DTC) was recorded. Brain activation of the prefrontal cortex (PFC), premotor cortex (PMC), and supplementary motor areas (SMA) were measured using functional near-infrared spectroscopy during walking. RESULTS Walking performance deteriorated upon performing a secondary task, especially the cognitive task. Also, a higher and more sustained activation in the PMC and SMA during WCT, as compared with the WMT and SW, in the late phase of walking was found. During WMT, however, the SMA and PMC did not show increased activation compared with during SW. Moreover, gait performance was negatively correlated with PMC and SMA activity during different walking tasks. DISCUSSION AND CONCLUSIONS Individuals with mild to moderate PD demonstrated gait deterioration during dual-task walking, especially during WCT. The SMA and PMC were further activated in individuals with PD when performing cognitive dual-task walking.Supplemental Digital Content is Available in the Text.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A383 ).
Collapse
Affiliation(s)
- Yan-Ci Liu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan (Y.C.L.); and Departments of Physical Therapy and Assistive Technology (Y.R.Y., N.C.Y., P.H.K., R.Y.W.) and Biomedical Imaging and Radiological science (C.F.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Lin CC, Bair WN, Willson J. Age differences in brain activity in dorsolateral prefrontal cortex and supplementary motor areas during three different walking speed tasks. Hum Mov Sci 2022; 85:102982. [DOI: 10.1016/j.humov.2022.102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
|
21
|
St George RJ, Jayakody O, Healey R, Breslin M, Hinder MR, Callisaya ML. Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adults. Gait Posture 2022; 95:186-191. [PMID: 35525151 DOI: 10.1016/j.gaitpost.2022.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prior work suggests there may be greater reliance on executive function for walking in older people. The pre-frontal cortex (PFC), which controls aspects of executive function, is known to be active during dual-task walking (DTW). However, there is debate on how PFC activity during DTW is impacted by ageing and the requirements of the cognitive task. RESEARCH QUESTION Functional near infrared spectroscopy, was used to investigate how PFC activity during walking was affected by (i) healthy ageing; and (ii) dual-tasks that utilise inhibition or working memory aspects of executive function. METHODS Young (n = 26, 16 females, mean 20.9 years) and older (n = 26, 16 females, mean 70.3 years) adults performed five conditions: normal walking; Reciting Alternate Letters of the alphabet (RAL, requiring cognitive inhibition and working memory) during standing and walking; and serial subtraction by threes (SS3, requiring working memory alone) during standing and walking. Walking speed, cognitive performance, the PFC haemodynamic response, and fear of falling ratings were analysed using linear mixed-effects modelling. RESULTS Compared to quiet standing, PFC activity increased during normal walking for older adults but decreased for young adults (p < 0.01). Across both groups, fear of falling contributed to higher PFC activity levels when walking (p < 0.01). PFC activity increased during DTW, and this increase was greater when performing RAL compared to the SS3 task (p < 0.01). Although the rate of correct responses was higher for RAL, walking speed reduced more with RAL than SS3 in the young group (p = 0.01), and the rate of correct responses reduced more when walking with RAL than SS3 in the older group (p < 0.01). SIGNIFICANCE Older adults have increased levels of PFC activation during walking compared to younger adults and fear of falling is a cofounding factor. The interference between gait and a concurrent cognitive task is higher when the cognitive task requires inhibition.
Collapse
Affiliation(s)
- Rebecca J St George
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia.
| | - Oshadi Jayakody
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Rebecca Healey
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Sandy Bay, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
St-Amant G, Salzman T, Michaud L, Polskaia N, Fraser S, Lajoie Y. Hemodynamic responses of quiet standing simultaneously performed with different cognitive loads in older adults. Hum Mov Sci 2022; 82:102931. [DOI: 10.1016/j.humov.2022.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
23
|
Jor’dan AJ, Bernad-Elazari H, Mirelman A, Gouskova NA, Lo OY, Hausdorff JM, Manor B. Transcranial Direct Current Stimulation May Reduce Prefrontal Recruitment During Dual Task Walking in Functionally Limited Older Adults – A Pilot Study. Front Aging Neurosci 2022; 14:843122. [PMID: 35360209 PMCID: PMC8963782 DOI: 10.3389/fnagi.2022.843122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (dlPFC) improves dual task walking in older adults, when tested just after stimulation. The acute effects of tDCS on the cortical physiology of walking, however, remains unknown. Methods In a previous study, older adults with slow gait and executive dysfunction completed a dual task walking assessment before and after 20 min of tDCS targeting the left dlPFC or sham stimulation. In a subset of seven participants per group, functional near-infrared spectroscopy (fNIRS) was used to quantify left and right prefrontal recruitment defined as the oxygenated hemoglobin response to usual and dual task walking (ΔHbO2), as well as the absolute change in this metric from usual to dual task conditions (i.e., ΔHbO2cost). Paired t-tests examined pre- to post-stimulation differences in each fNIRS metric within each group. Results The tDCS group exhibited pre- to post-stimulation reduction in left prefrontal ΔHbO2cost (p = 0.03). This mitigation of dual task “cost” to prefrontal recruitment was induced primarily by a reduction in left prefrontal ΔHbO2 specifically within the dual task condition (p = 0.001), an effect that was observed in all seven participants within this group. Sham stimulation did not influence ΔHbO2cost or ΔHbO2 in either walking condition (p > 0.35), and neither tDCS nor sham substantially influenced right prefrontal recruitment (p > 0.16). Discussion This preliminary fNIRS data suggests that tDCS over the left dlPFC may modulate prefrontal recruitment, as reflected by a relative reduction in the oxygen consumption of this brain region in response to dual task walking.
Collapse
Affiliation(s)
- Azizah J. Jor’dan
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Azizah J. Jor’dan,
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia A. Gouskova
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Hassan SA, Bonetti LV, Kasawara KT, Beal DS, Rozenberg D, Reid WD. Decreased automaticity contributes to dual task decrements in older compared to younger adults. Eur J Appl Physiol 2022; 122:965-974. [PMID: 35084541 DOI: 10.1007/s00421-022-04891-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE To contrast older and younger adults' prefrontal cortex (PFC) neural activity (through changes in oxygenated hemoglobin) during single and dual tasks, and to compare decrements in task performance. METHODS Changes in oxygenated hemoglobin of dorsolateral PFC were monitored using functional near-infrared spectroscopy during single tasks of spelling backwards (cognitive task) and 30 m preferred paced walk; and a dual task combining both. Gait velocity was measured by a pressure sensitive mat. RESULTS Twenty sex-matched younger (27.6 ± 3.5 years) and 17 older adults (71.2 ± 4.9 years) were recruited. The left PFC oxygenated hemoglobin decreased from start (1st quintile) to the end (5th quintile) of the walking task in younger adults ( - 0.03 ± 0.03 to - 0.72 ± 0.20 µM; p < .05) unlike the non-significant change in older adults (0.03 ± 0.06 to - 0.41 ± 0.32 µM, p > .05). Overall, oxygenation increased bilaterally during dual versus single walk task in older adults (Left PFC: 0.22 ± 0.16 vs. - 0.23 ± 0.21 µM, respectively; Right PFC: 0.17 ± 0.18 vs. - 0.33 ± 0.22 µM, respectively), but only in right PFC in younger adults ( - 0.02 ± 0.15 vs. - 0.47 ± 0.13 µM). Older adults exhibited lower velocity during the dual task compared to younger adults (1.03 ± 0.16 vs. 1.20 ± 0.17 m/s, respectively). Older age was associated with dual task cost on velocity during walking after adjusting for confounding variables. CONCLUSIONS Age-related cognitive decline in older adults may increase neural activity for cognitive tasks and diminish walking automaticity that may lead to decrements during dual tasking; the greater PFC increases in the oxygenated hemoglobin and lower velocity may be due to increased cognitive load and limited attentional resources.
Collapse
Affiliation(s)
- S Ahmed Hassan
- Physical Therapy, University of Toronto, Toronto, ON, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Institute of Health Policy, Management and Evaluation, University of Toronto, 155 College St 4th Floor, Toronto, ON, Canada.
| | - Leandro Viçosa Bonetti
- Physical Therapy, University of Toronto, Toronto, ON, Canada
- Post-Graduation Program in Health Sciences, Universidade de Caxias Do Sul, Caxias Do Sul, Rio Grande do Sul, Brazil
- Department of Physical Therapy, Universidade de Caxias Do Sul, Caxias Do Sul, Rio Grande do Sul, Brazil
| | | | - Deryk S Beal
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Dmitry Rozenberg
- Temerty Faculty of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - W Darlene Reid
- Physical Therapy, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE-Toronto Rehab-University Health Network, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Hoang I, Paire-Ficout L, Derollepot R, Perrey S, Devos H, Ranchet M. Increased prefrontal activity during usual walking in aging. Int J Psychophysiol 2022; 174:9-16. [DOI: 10.1016/j.ijpsycho.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/10/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
26
|
Rahman TT, Polskaia N, St-Amant G, Salzman T, Vallejo DT, Lajoie Y, Fraser SA. An fNIRS Investigation of Discrete and Continuous Cognitive Demands During Dual-Task Walking in Young Adults. Front Hum Neurosci 2021; 15:711054. [PMID: 34867235 PMCID: PMC8637836 DOI: 10.3389/fnhum.2021.711054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Dual-task studies have demonstrated that walking is attention-demanding for younger adults. However, numerous studies have attributed this to task type rather than the amount of required to accomplish the task. This study examined four tasks: two discrete (i.e., short intervals of attention) and two continuous (i.e., sustained attention) to determine whether greater attentional demands result in greater dual-task costs due to an overloaded processing capacity. Methods: Nineteen young adults (21.5 ± 3.6 years, 13 females) completed simple reaction time (SRT) and go/no-go (GNG) discrete cognitive tasks and n-back (NBK) and double number sequence (DNS) continuous cognitive tasks with or without self-paced walking. Prefrontal cerebral hemodynamics were measured using functional near-infrared spectroscopy (fNIRS) and performance was measured using response time, accuracy, and gait speed. Results: Repeated measures ANOVAs revealed decreased accuracy with increasing cognitive demands (p = 0.001) and increased dual-task accuracy costs (p < 0.001). Response times were faster during the single compared to dual-tasks during the SRT (p = 0.005) and NBK (p = 0.004). DNS gait speed was also slower in the dual compared to single task (p < 0.001). Neural findings revealed marginally significant interactions between dual-task walking and walking alone in the DNS (p = 0.06) and dual -task walking compared to the NBK cognitive task alone (p = 0.05). Conclusion: Neural findings suggest a trend towards increased PFC activation during continuous tasks. Cognitive and motor measures revealed worse performance during the discrete compared to continuous tasks. Future studies should consider examining different attentional demands of motor tasks.
Collapse
Affiliation(s)
- Tabassum Tahmina Rahman
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Talia Salzman
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Diana Tobón Vallejo
- Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, Colombia
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Anne Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Kim J, Lee G, Lee J, Kim YH. Changes in Cortical Activity during Preferred and Fast Speed Walking under Single- and Dual-Tasks in the Young-Old and Old-Old Elderly. Brain Sci 2021; 11:brainsci11121551. [PMID: 34942853 PMCID: PMC8699214 DOI: 10.3390/brainsci11121551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023] Open
Abstract
In the elderly, walking while simultaneously engaging in other activities becomes more difficult. This study aimed to examine the changes in cortical activity during walking with aging. We try to reveal the effects of an additional task and increased walking speed on cortical activation in the young-old and the old-old elderly. Twenty-seven young-old (70.2 ± 3.0 years) and 23 old-old (78.0 ± 2.3 years) participated in this study. Each subject completed four walking tasks on the treadmill, a 2 × 2 design; two single-task (ST) walking conditions with self-selected walking speed (SSWS) and fast walking speed (FWS), and two dual-task (DT) walking conditions with SSWS and FWS. Functional near-infrared spectroscopy was applied for measurement of cerebral oxyhemoglobin (oxyHb) concentration during walking. Cortical activities were increased during DT conditions compared with ST conditions but decreased during the FWS compared with the SSWS on the primary leg motor cortex, supplementary motor area, and dorsolateral prefrontal cortex in both the young-old and the old-old. These oxyHb concentration changes were significantly less prominent in the old-old than in the young-old. This study demonstrated that changes in cortical activity during dual-task walking are lower in the old-old than in the young-old, reflecting the reduced adaptive plasticity with severe aging.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Gihyoun Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.K.); (G.L.)
| | - Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.K.); (G.L.)
- Correspondence: (J.L.); (Y.-H.K.); Tel.: +82-2-3410-2832 (J.L.); +82-2-3410-2824 (Y.-H.K.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (J.K.); (G.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Correspondence: (J.L.); (Y.-H.K.); Tel.: +82-2-3410-2832 (J.L.); +82-2-3410-2824 (Y.-H.K.)
| |
Collapse
|
28
|
Goh HT, Pearce M, Vas A. Task matters: an investigation on the effect of different secondary tasks on dual-task gait in older adults. BMC Geriatr 2021; 21:510. [PMID: 34563129 PMCID: PMC8465774 DOI: 10.1186/s12877-021-02464-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
Background Dual-task gait performance declines as humans age, leading to increased fall risk among older adults. It is unclear whether different secondary cognitive tasks mediate age-related decline in dual-task gait. This study aimed to examine how type and difficulty level of the secondary cognitive tasks differentially affect dual-task gait in older adults. Methods Twenty young and twenty older adults participated in this single-session study. We employed four different types of secondary tasks and each consisted of two difficulty levels, yielding eight different dual-task conditions. The dual-task conditions included walking and 1) counting backward by 3 s or by 7 s; 2) remembering a 5-item or 7-item lists; 3) responding to a simple or choice reaction time tasks; 4) generating words from single or alternated categories. Gait speed and cognitive task performance under single- and dual-task conditions were used to compute dual-task cost (DTC, %) with a greater DTC indicating a worse performance. Results A significant three-way interaction was found for the gait speed DTC (p = .04). Increased difficulty in the reaction time task significantly increased gait speed DTC for older adults (p = .01) but not for young adults (p = .90). In contrast, increased difficulty level in the counting backward task significantly increased gait speed DTC for young adults (p = .03) but not for older adults (p = .85). Both groups responded similarly to the increased task difficulty in the other two tasks. Conclusions Older adults demonstrated a different response to dual-task challenges than young adults. Aging might have different impacts on various cognitive domains and result in distinctive dual-task gait interference patterns.
Collapse
Affiliation(s)
- Hui-Ting Goh
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA.
| | - Miranda Pearce
- School of Physical Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| | - Asha Vas
- School of Occupational Therapy-Dallas, Texas Woman's University, Dallas, TX, USA
| |
Collapse
|
29
|
de Barros GM, Melo F, Domingos J, Oliveira R, Silva L, Fernandes JB, Godinho C. The Effects of Different Types of Dual Tasking on Balance in Healthy Older Adults. J Pers Med 2021; 11:jpm11090933. [PMID: 34575710 PMCID: PMC8466690 DOI: 10.3390/jpm11090933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
Numerous of our daily activities are performed within multitask or dual task conditions. These conditions involve the interaction of perceptual and motor processes involved in postural control. Age-related changes may negatively impact cognition and balance control. Studies identifying changes related to dual-task actions in older people are need. This study aimed to determine the effects of different types of dual-tasking on the balance control of healthy older adults. The sample included 36 community-living older adults, performing two tests—a sway test and a timed up-and-go test—in three conditions: (a) single motor task; (b) dual motor task; and (c) dual motor task with cognitive demands. Cognitive processes (dual-task and cognition) affected static balance, increasing amplitude (p < 0.001) and frequency (p < 0.001) of the center of mass displacements. Dynamic balance revealed significant differences between the single motor condition and the other two conditions during gait phases (p < 0.001). The effect of dual-tasking in older adults suggests that cognitive processes are a main cause of increased variability in balance and gait when under an automatic control. During sit-to-stand, turning, and turn-to-sit movements under dual-tasking, the perceptive information becomes the most important focus of attention, while any cognitive task becomes secondary.
Collapse
Affiliation(s)
- Graça Monteiro de Barros
- Fisio-Lógica Centro de Fisioterapia, Lda, 1350-275 Lisboa, Portugal;
- Escola Superior de Saúde Atlântica, 2730-036 Barcarena, Portugal
| | - Filipe Melo
- Laboratório de Comportamento Motor, Faculdade de Motricidade Humana, Universidade de Lisboa, 1495-688 Cruz Quebrada, Portugal;
| | - Josefa Domingos
- Grupo de Patologia Médica, Nutrição e Exercício Clínico (PaMNEC) do Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Caparica, 2829-511 Almada, Portugal; (J.D.); (J.B.F.)
| | - Raul Oliveira
- Neuromuscular Research Lab, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1495-688 Cruz Quebrada, Portugal;
| | - Luís Silva
- Physics Department, LIBPhys-UNL, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, 2829-516 Almada, Portugal;
| | - Júlio Belo Fernandes
- Grupo de Patologia Médica, Nutrição e Exercício Clínico (PaMNEC) do Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Caparica, 2829-511 Almada, Portugal; (J.D.); (J.B.F.)
| | - Catarina Godinho
- Grupo de Patologia Médica, Nutrição e Exercício Clínico (PaMNEC) do Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Caparica, 2829-511 Almada, Portugal; (J.D.); (J.B.F.)
- Correspondence: ; Tel.: +351-910077492
| |
Collapse
|
30
|
Mohammadi H, Vincent T, Peng K, Nigam A, Gayda M, Fraser S, Joanette Y, Lesage F, Bherer L. Coronary artery disease and its impact on the pulsatile brain: A functional NIRS study. Hum Brain Mapp 2021; 42:3760-3776. [PMID: 33991155 PMCID: PMC8288102 DOI: 10.1002/hbm.25463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have reported that optical indices of cerebral pulsatility are associated with cerebrovascular health in older adults. Such indices, including cerebral pulse amplitude and the pulse relaxation function (PRF), have been previously applied to quantify global and regional cerebral pulsatility. The aim of the present study was to determine whether these indices are modulated by cardiovascular status and whether they differ between individuals with low or high cardiovascular risk factors (LCVRF and HCVRF) and coronary artery disease (CAD). A total of 60 older adults aged 57-79 were enrolled in the study. Participants were grouped as LCVRF, HCVRF, and CAD. Participants were asked to walk freely on a gym track while a near-infrared spectroscopy (NIRS) device recorded hemodynamics data. Low-intensity, short-duration walking was used to test whether a brief cardiovascular challenge could increase the difference of pulsatility indices with respect to cardiovascular status. Results indicated that CAD individuals have higher global cerebral pulse amplitude compared with the other groups. Walking reduced global cerebral pulse amplitude and PRF in all groups but did not increase the difference across the groups. Instead, walking extended the spatial distribution of cerebral pulse amplitude to the anterior prefrontal cortex when CAD was compared to the CVRF groups. Further research is needed to determine whether cerebral pulse amplitude extracted from data acquired with NIRS, which is a noninvasive, inexpensive method, can provide an index to characterize the cerebrovascular status associated with CAD.
Collapse
Affiliation(s)
- Hanieh Mohammadi
- Laboratory of Optical and Molecular ImagingBiomedical Engineering Institute, Polytechnique MontrealQuebecCanada
- Research CenterUniversity Institute of Geriatrics of MontrealMontrealQuebecCanada
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
| | - Thomas Vincent
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
| | - Ke Peng
- Center for Pain and the BrainBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Research CenterUniversity of Montreal Health CentreMontrealQuebecCanada
| | - Anil Nigam
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
| | - Mathieu Gayda
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| | - Yves Joanette
- Research CenterUniversity Institute of Geriatrics of MontrealMontrealQuebecCanada
- Faculty of MedicineUniversity of MontrealMontrealQuebecCanada
| | - Frédéric Lesage
- Laboratory of Optical and Molecular ImagingBiomedical Engineering Institute, Polytechnique MontrealQuebecCanada
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
| | - Louis Bherer
- Research CenterUniversity Institute of Geriatrics of MontrealMontrealQuebecCanada
- Research CenterEPIC Centre of Montreal Heart InstituteMontrealQuebecCanada
- Faculty of MedicineUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
31
|
Bhatt M, Mahana B, Ko JH, Kolesar TA, Kanitkar A, Szturm T. Computerized Dual-Task Testing of Gait Visuomotor and Cognitive Functions in Parkinson's Disease: Test-Retest Reliability and Validity. Front Hum Neurosci 2021; 15:706230. [PMID: 34335213 PMCID: PMC8320846 DOI: 10.3389/fnhum.2021.706230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mobility and cognitive impairments in Parkinson's disease (PD) often coexist and are prognostic of adverse health events. Consequently, assessment and training that simultaneously address both gait function and cognition are important to consider in rehabilitation and promotion of healthy aging. For this purpose, a computer game-based rehabilitation treadmill platform (GRP) was developed for dual-task (DT) assessment and training. OBJECTIVE The first objective was to establish the test-retest reliability of the GRP assessment protocol for DT gait, visuomotor and executive cognitive function in PD patients. The second objective was to examine the effect of task condition [single task (ST) vs. DT] and disease severity (stage 2 vs. stage 3) on gait, visuomotor and cognitive function. METHODS Thirty individuals aged 55 to 70 years, diagnosed with PD; 15 each at Hoehn and Yahr scale stage 2 (PD-2) and 3 (PD-3) performed a series of computerized visuomotor and cognitive game tasks while sitting (ST) and during treadmill walking (DT). A treadmill instrumented with a pressure mat was used to record center of foot pressure and compute the average and coefficient of variation (COV) of step time, step length, and drift during 1-min, speed-controlled intervals. Visuomotor and cognitive game performance measures were quantified using custom software. Testing was conducted on two occasions, 1 week apart. RESULTS With few exceptions, the assessment protocol showed moderate to high intraclass correlation coefficient (ICC) values under both ST and DT conditions for the spatio-temporal gait measures (average and COV), as well as the visuomotor tracking and cognitive game performance measures. A significant decline in gait, visuomotor, and cognitive game performance measures was observed during DT compared to ST conditions, and in the PD-3 compared to PD-2 groups. CONCLUSION The high to moderate ICC values along with the lack of systematic errors in the measures indicate that this tool has the ability to repeatedly record reliable DT interference (DTI) effects over time. The use of interactive digital media provides a flexible method to produce and evaluate DTI for a wide range of executive cognitive activities. This also proves to be a sensitive tool for tracking disease progression. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03232996.
Collapse
Affiliation(s)
- Mayank Bhatt
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Anuprita Kanitkar
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
32
|
de Rond V, Orcioli-Silva D, Dijkstra BW, Orban de Xivry JJ, Pantall A, Nieuwboer A. Compromised Brain Activity With Age During a Game-Like Dynamic Balance Task: Single- vs. Dual-Task Performance. Front Aging Neurosci 2021; 13:657308. [PMID: 34290599 PMCID: PMC8287632 DOI: 10.3389/fnagi.2021.657308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Postural control and cognition are affected by aging. We investigated whether cognitive distraction influenced neural activity differently in young and older adults during a game-like mediolateral weight-shifting task with a personalized task load. Methods: Seventeen healthy young and 17 older adults performed a balance game, involving hitting virtual wasps, serial subtractions and a combination of both (dual-task). A motion analysis system estimated each subject's center of mass position. Cortical activity in five regions was assessed by measuring oxygenated hemoglobin (HbO2) with a functional Near-Infrared Spectroscopy system. Results: When adding cognitive load to the game, weight-shifting speed decreased irrespective of age, but older adults reduced the wasp-hits more than young adults. Accompanying these changes, older adults decreased HbO2 in the left pre-frontal cortex (PFC) and frontal eye fields (FEF) compared to single-tasking, a finding not seen in young adults. Additionally, lower HbO2 levels were found during dual-tasking compared to the summed activation of the two single tasks in all regions except for the right PFC. These relative reductions were specific for the older age group in the left premotor cortex (PMC), the right supplementary motor area (SMA), and the left FEF. Conclusion: Older adults showed more compromised neural activity than young adults when adding a distraction to a challenging balance game. We interpret these changes as competitive downgrading of neural activity underpinning the age-related deterioration of game performance during dual-tasking. Future work needs to ascertain if older adults can train their neural flexibility to withstand balance challenges during daily life activities.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Diego Orcioli-Silva
- Posture and Gait Studies Laboratory (LEPLO), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Bauke Wybren Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Motor Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Annette Pantall
- Clinical Ageing Research Unit, Institute of Neuroscience, Newcastle University Institute of Ageing, Newcastle upon Tyne, United Kingdom
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
33
|
Fettrow T, Hupfeld K, Tays G, Clark DJ, Reuter-Lorenz PA, Seidler RD. Brain activity during walking in older adults: Implications for compensatory versus dysfunctional accounts. Neurobiol Aging 2021; 105:349-364. [PMID: 34182403 DOI: 10.1016/j.neurobiolaging.2021.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022]
Abstract
A prominent trend in the functional brain imaging literature is that older adults exhibit increased brain activity compared to young adults to perform a given task. This phenomenon has been extensively studied for cognitive tasks, with the field converging on interpretations described in two alternative accounts. One account interprets over-activation in older adults as reflecting neural dysfunction (increased brain activity - indicates poorer performance), whereas another interprets it as neural compensation (increased brain activity - supports better performance). Here we review studies that have recorded brain activity and walking measurements in older adults, and we categorize their findings as reflecting either neural dysfunction or neural compensation. Based on this synthesis, we recommend including multiple task difficulty levels in future work to help differentiate if and when compensation fails as the locomotion task becomes more difficult. Using multiple task difficulty levels with neuroimaging will lead to a more advanced understanding of how age-related changes in locomotor brain activity fit with existing accounts of brain aging and support the development of targeted neural rehabilitation techniques.
Collapse
Affiliation(s)
- Tyler Fettrow
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Kathleen Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Grant Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | | | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Asghari M, Ehsani H, Cohen A, Tax T, Mohler J, Toosizadeh N. Nonlinear analysis of the movement variability structure can detect aging-related differences among cognitively healthy individuals. Hum Mov Sci 2021; 78:102807. [PMID: 34023753 DOI: 10.1016/j.humov.2021.102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Studying the dynamics of nonlinear systems can provide additional information about the variability structure of the system. Within the current study, we examined the application of regularity and local stability measures to capture motor function alterations due to dual-tasking using a previously validated upper-extremity function (UEF). We targeted young (ages 18 and 30 years) and older adults (65 years or older) with normal cognition based on clinical screening. UEF involved repetitive elbow flexion without counting (ST) and while counting backward by one (DT1) or three (DT3). We measured the regularity (measured by sample entropy (SE)), local stability (measured by the largest Lyapunov exponent (LyE)), as well as conventional peak-dependent variability measures (coefficient of variation of kinematics parameters) to capture motor dynamic alterations due to dual-tasking. Within both groups, only SE showed significant differences between all pairs of UEF condition comparisons, even ST vs DT1 (p = 0.007, effect size = 0.507), for which no peak-dependent parameter showed significant difference. Among all measures, the only parameter that showed a significant difference between young and older adults was LyE (p < 0.001, effect size = 0.453). Current findings highlight the potential of nonlinear analysis to detect aging-related alterations among cognitively healthy participants.
Collapse
Affiliation(s)
- Mehran Asghari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Hossein Ehsani
- Department of Kinesiology, University of Maryland College Park, Maryland, MD, USA
| | - Audrey Cohen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Talia Tax
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Jane Mohler
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging (ACOA), Department of Medicine, University of Arizona, College of Medicine, Tucson, AZ, USA; Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Salzman T, Tobón Vallejo D, Polskaia N, Michaud L, St‐Amant G, Lajoie Y, Fraser S. Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks. Brain Behav 2021; 11:e02021. [PMID: 33417301 PMCID: PMC7994703 DOI: 10.1002/brb3.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Executive functions play a fundamental role in walking by integrating information from cognitive-motor pathways. Subtle changes in brain and behavior may help identify older adults who are more susceptible to executive function deficits with advancing age due to prefrontal cortex deterioration. This study aims to examine how older adults mitigate executive demands while walking during cognitively demanding tasks. METHODS Twenty healthy older adults (M = 71.8 years, SD = 6.4) performed simple reaction time (SRT), go/no-go (GNG), n-back (NBK), and double number sequence (DNS) cognitive tasks of increasing difficulty while walking (i.e., dual task). Functional near infra-red spectroscopy (fNIRS) was used to measure the hemodynamic response (i.e., oxy- [HbO2] and deoxyhemoglobin [HbR]) changes in the prefrontal cortex (PFC) during dual and single tasks (i.e., walking alone). In addition, performance was measured using gait speed (m/s), response time (s), and accuracy (% correct). RESULTS Using repeated measures ANOVAs, neural findings demonstrated a main effect of task such that ∆HbO2 (p = .047) and ∆HbR (p = .040) decreased between single and dual tasks. An interaction between task and cognitive difficulty (p = .014) revealed that gait speed decreased in the DNS between single and dual tasks. A main effect of task in response time indicated that the SRT response time was faster than all other difficulty levels (p < .001). Accuracy performance declined between single and dual tasks (p = .028) and across difficulty levels (p < .001) but was not significantly different between the NBK and DNS. CONCLUSION Findings suggest that a healthy older adult sample might mitigate executive demands using an automatic locomotor control strategy such that shifting conscious attention away from walking during the dual tasks resulted in decreased ∆HbO2 and ∆HbR. However, decreased prefrontal activation was inefficient at maintaining response time and accuracy performance and may be differently affected by increasing cognitive demands.
Collapse
Affiliation(s)
- Talia Salzman
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaONCanada
| | | | - Nadia Polskaia
- School of Human KineticsUniversity of OttawaOttawaONCanada
| | - Lucas Michaud
- School of Human KineticsUniversity of OttawaOttawaONCanada
| | | | - Yves Lajoie
- School of Human KineticsUniversity of OttawaOttawaONCanada
| | - Sarah Fraser
- Interdisciplinary School of Health SciencesUniversity of OttawaOttawaONCanada
| |
Collapse
|
36
|
Bishnoi A, Holtzer R, Hernandez ME. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sci 2021; 11:291. [PMID: 33652706 PMCID: PMC7996848 DOI: 10.3390/brainsci11030291] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Functional near-infrared spectroscopy (fNIRS) provides a useful tool for monitoring brain activation changes while walking in adults with neurological disorders. When combined with dual task walking paradigms, fNIRS allows for changes in brain activation to be monitored when individuals concurrently attend to multiple tasks. However, differences in dual task paradigms, baseline, and coverage of cortical areas, presents uncertainty in the interpretation of the overarching findings. (2) Methods: By conducting a systematic review of 35 studies and meta-analysis of 75 effect sizes from 17 studies on adults with or without neurological disorders, we show that the performance of obstacle walking, serial subtraction and letter generation tasks while walking result in significant increases in brain activation in the prefrontal cortex relative to standing or walking baselines. (3) Results: Overall, we find that letter generation tasks have the largest brain activation effect sizes relative to walking, and that significant differences between dual task and single task gait are seen in persons with multiple sclerosis and stroke. (4) Conclusions: Older adults with neurological disease generally showed increased brain activation suggesting use of more attentional resources during dual task walking, which could lead to increased fall risk and mobility impairments. PROSPERO ID: 235228.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461, USA;
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manuel E. Hernandez
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
37
|
Jensen AM, Andersen JQ, Quisth L, Ramstrand N. Finger orthoses for management of joint hypermobility disorders: Relative effects on hand function and cognitive load. Prosthet Orthot Int 2021; 45:36-45. [PMID: 33834743 PMCID: PMC7978036 DOI: 10.1177/0309364620956866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/06/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Joint hypermobility refers to joints that move beyond their normal limits. Individuals with hypermobility of the fingers experience difficulties in activities of daily living. Finger orthoses are available for managing hypermobility of the fingers, but their effectiveness has received little attention in scholarly literature. OBJECTIVES To determine if use of custom fit finger orthoses leads to improvements in time needed to perform standardised hand function tests, and attentional demand required to perform these tests, in individuals with joint hypermobility syndrome, Hypermobile Ehlers-Danlos syndrome or Classical Ehlers-Danlos syndrome. STUDY DESIGN Repeated-measures study. METHODS Fourteen participants performed three different hand function tests (target box and block test, writing and picking up coins), with and without their finger orthoses. Time to complete each test was recorded as a measure of functional performance. Brain activity was recorded in the pre-frontal cortices as a measure of attentional demand. RESULTS Functional performance significantly improved for all but one test (picking up coins with non-dominant hand) when participants wore finger orthoses (p < 0.05). Activity in the pre-frontal cortex was lower when using the orthosis to perform the coin test (dominant hand; p < 0.05). No differences were observed in other tests (p > 0.05). CONCLUSIONS Results suggested that finger orthoses improved hand function and provided limited evidence to suggest that they may also affect attentional demand. While the limited sample does not provide conclusive evidence supporting the use of finger orthosis in this clinical population, results warrant further investigation in large scale longitudinal studies or randomised controlled trials.
Collapse
Affiliation(s)
| | | | | | - Nerrolyn Ramstrand
- CHILD Research Group, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
38
|
Geissler CF, Schneider J, Frings C. Shedding light on the prefrontal correlates of mental workload in simulated driving: a functional near-infrared spectroscopy study. Sci Rep 2021; 11:705. [PMID: 33436950 PMCID: PMC7804012 DOI: 10.1038/s41598-020-80477-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022] Open
Abstract
Optimal mental workload plays a key role in driving performance. Thus, driver-assisting systems that automatically adapt to a drivers current mental workload via brain-computer interfacing might greatly contribute to traffic safety. To design economic brain computer interfaces that do not compromise driver comfort, it is necessary to identify brain areas that are most sensitive to mental workload changes. In this study, we used functional near-infrared spectroscopy and subjective ratings to measure mental workload in two virtual driving environments with distinct demands. We found that demanding city environments induced both higher subjective workload ratings as well as higher bilateral middle frontal gyrus activation than less demanding country environments. A further analysis with higher spatial resolution revealed a center of activation in the right anterior dorsolateral prefrontal cortex. The area is highly involved in spatial working memory processing. Thus, a main component of drivers' mental workload in complex surroundings might stem from the fact that large amounts of spatial information about the course of the road as well as other road users has to constantly be upheld, processed and updated. We propose that the right middle frontal gyrus might be a suitable region for the application of powerful small-area brain computer interfaces.
Collapse
Affiliation(s)
| | - Jörn Schneider
- Department of Computer Science, Trier University of Applied Sciences, Schneidershof, 54293, Trier, Germany
| | - Christian Frings
- Department of Cognitive Psychology, University of Trier, 54286, Trier, Germany
| |
Collapse
|
39
|
Prefrontal Cortex Involvement during Dual-Task Stair Climbing in Healthy Older Adults: An fNIRS Study. Brain Sci 2021; 11:brainsci11010071. [PMID: 33430358 PMCID: PMC7825747 DOI: 10.3390/brainsci11010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Executive function and motor control deficits adversely affect gait performance with age, but the neural correlates underlying this interaction during stair climbing remains unclear. Twenty older adults (72.7 ± 6.9 years) completed single tasks: standing and responding to a response time task (SC), ascending or descending stairs (SMup, SMdown); and a dual-task: responding while ascending or descending stairs (DTup, DTdown). Prefrontal hemodynamic response changes (∆HbO2, ∆HbR) were examined using functional near-infrared spectroscopy (fNIRS), gait speed was measured using in-shoe smart insoles, and vocal response time and accuracy were recorded. Findings revealed increased ∆HbO2 (p = 0.020) and slower response times (p < 0.001) during dual- versus single tasks. ∆HbR (p = 0.549), accuracy (p = 0.135) and gait speed (p = 0.475) were not significantly different between tasks or stair climbing conditions. ∆HbO2 and response time findings suggest that executive processes are less efficient during dual-tasks. These findings, in addition to gait speed and accuracy maintenance, may provide insights into the neural changes that precede performance declines. To capture the subtle differences between stair ascent and descent and extend our understanding of the neural correlates of stair climbing in older adults, future studies should examine more difficult cognitive tasks.
Collapse
|
40
|
Hoang I, Ranchet M, Derollepot R, Moreau F, Paire-Ficout L. Measuring the Cognitive Workload During Dual-Task Walking in Young Adults: A Combination of Neurophysiological and Subjective Measures. Front Hum Neurosci 2020; 14:592532. [PMID: 33328938 PMCID: PMC7714906 DOI: 10.3389/fnhum.2020.592532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Walking while performing a secondary task (dual-task (DT) walking) increases cognitive workload in young adults. To date, few studies have used neurophysiological measures in combination to subjective measures to assess cognitive workload during a walking task. This combined approach can provide more insights into the amount of cognitive resources in relation with the perceived mental effort involving in a walking task. Research Question: The objective was to examine cognitive workload in young adults during walking conditions varying in complexity. Methods: Twenty-five young adults (mean = 24.4 ± 5.4) performed four conditions: (1) usual walking, (2) simple DT walking, (3) complex DT walking and (4) standing while subtracting. During the walking task, mean speed, cadence, stride time, stride length, and their respective coefficient of variation (CV) were recorded. Cognitive workload will be measured through changes in oxy- and deoxy-hemoglobin (ΔHbO2 and ΔHbR) during walking in the dorsolateral prefrontal cortex (DLPFC) and perceived mental demand score from NASA-TLX questionnaire. Results: In young adults, ΔHbO2 in the DLPFC increased from usual walking to both DT walking conditions and standing while subtracting condition. ΔHbO2 did not differ between the simple and complex DT and between the complex DT and standing while subtracting condition. Perceived mental demand gradually increased with walking task complexity. As expected, all mean values of gait parameters were altered according to task complexity. CV of speed, cadence and stride time were significantly higher during DT walking conditions than during usual walking whereas CV of stride length was only higher during complex DT walking than during usual walking. Significance: Young adults had greater cognitive workload in the two DT walking conditions compared to usual walking. However, only the mental demand score from NASA-TLX questionnaire discriminated simple from complex DT walking. Subjective measure provides complementary information to objective one on changes in cognitive workload during challenging walking tasks in young adults. These results may be useful to improve our understanding of cognitive workload during walking.
Collapse
Affiliation(s)
- Isabelle Hoang
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Maud Ranchet
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Romain Derollepot
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Fabien Moreau
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| | - Laurence Paire-Ficout
- Transport, Health, Safety Department, Laboratory Ergonomics and Cognitive Sciences Applied to Transport, Univ Gustave Eiffel, Univ Lyon, Lyon, France
| |
Collapse
|
41
|
Menant JC, Maidan I, Alcock L, Al-Yahya E, Cerasa A, Clark DJ, de Bruin ED, Fraser S, Gramigna V, Hamacher D, Herold F, Holtzer R, Izzetoglu M, Lim S, Pantall A, Pelicioni P, Peters S, Rosso AL, St George R, Stuart S, Vasta R, Vitorio R, Mirelman A. A consensus guide to using functional near-infrared spectroscopy in posture and gait research. Gait Posture 2020; 82:254-265. [PMID: 32987345 DOI: 10.1016/j.gaitpost.2020.09.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works. RESEARCH QUESTION AND METHODS Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders. RESULTS Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. SIGNIFICANCE This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research.
Collapse
Affiliation(s)
- Jasmine C Menant
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia.
| | - Inbal Maidan
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lisa Alcock
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emad Al-Yahya
- Department of Physiotherapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan; Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Antonio Cerasa
- IRIB, National Research Council, Mangone, CS, Italy; S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - David J Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Huddinge, Sweden
| | - Sarah Fraser
- École interdisciplinaire des sciences de la santé (Interdisciplinary School of Health sciences), University of Ottawa, Ottawa, Ontario, Canada
| | - Vera Gramigna
- Neuroscience Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Dennis Hamacher
- German University for Health and Sports, (DHGS), Berlin, Germany
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Medical Faculty, Otto Von Guericke University, Magdeburg, Germany
| | - Roee Holtzer
- Yeshiva University, Ferkauf Graduate School of Psychology, The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering Department, Villanova, PA, USA
| | - Shannon Lim
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Annette Pantall
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paulo Pelicioni
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia; School of Population Health, University of New South Wales, New South Wales, Australia
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Rebecca St George
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Roberta Vasta
- Neuroscience Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
43
|
Nóbrega-Sousa P, Gobbi LTB, Orcioli-Silva D, Conceição NRD, Beretta VS, Vitório R. Prefrontal Cortex Activity During Walking: Effects of Aging and Associations With Gait and Executive Function. Neurorehabil Neural Repair 2020; 34:915-924. [DOI: 10.1177/1545968320953824] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Declines in gait parameters are common with aging and more pronounced in tasks with increased executive demand. However, the neural correlates of age-related gait impairments are not fully understood yet. Objectives To investigate ( a) the effects of aging on prefrontal cortex (PFC) activity and gait parameters during usual walking, obstacle crossing and dual-task walking and ( b) the association between PFC activity and measures of gait and executive function. Methods Eighty-eight healthy individuals were distributed into 6 age-groups: 20-25 (G20), 30-35 (G30), 40-45 (G40), 50-55 (G50), 60-65 (G60), and 70-75 years (G70). Participants walked overground under 3 conditions: usual walking, obstacle crossing, and dual-task walking. Changes in oxygenated and deoxygenated hemoglobin in the PFC were recorded using functional near-infrared spectroscopy. Gait spatiotemporal parameters were assessed using an electronic walkway. Executive function was assessed through validated tests. Results Between-group differences on PFC activity were observed for all conditions. Multiple groups (ie, G30, G50, G60, and G70) showed increased PFC activity in at least one of the walking conditions. Young adults (G20 and G30) had the lowest levels of PFC activity while G60 had the highest levels. Only G70 showed reduced executive function and gait impairments (which were more pronounced during obstacle crossing and dual-task walking). PFC activity was related to gait and executive function. Conclusions Aging causes a gradual increase in PFC activity during walking. This compensatory mechanism may reach the resource ceiling in the 70s, when reduced executive function limits its efficiency and gait impairments are observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo Vitório
- São Paulo State University–UNESP, Rio Claro, Sao Paulo, Brazil
- Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
44
|
Schack J, Pripp AAH, Mirtaheri P, Steen H, Güler E, Gjøvaag T. Increased prefrontal cortical activation during challenging walking conditions in persons with lower limb amputation - an fNIRS observational study. Physiother Theory Pract 2020; 38:255-265. [PMID: 32367750 DOI: 10.1080/09593985.2020.1758979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Lower limb amputation (LLA) alters the sensorimotor control systems. Despite the self-reports of increased attention during mobility, the interaction between mobility and cognitive control mechanisms is not fully understood.Objective: Concurrently evaluate walking performance and prefrontal cortical (PFC) activity in persons with and without LLA during different walking conditions.Methods: Thirty-nine persons with LLA and thirty-three able-bodied controls participated. Walking performance was evaluated using the Figure-of 8-walk-test during three conditions: 1) UW (Usual walking with self-selected walking speed); 2) WCT (walking and carrying a tray with two cups filled with water); and 3) WUT (walking on uneven terrain). PFC activity was assessed using functional near-infrared spectroscopy (fNIRS). Linear mixed models were used to detect changes between groups and between walking conditions within each group.Results: Between-group comparisons showed increased PFC activity in persons with LLA during UW and WUT, and a significant decrease in walking performance during WCT and WUT compared to controls. Within-group comparisons showed increased PFC activity during WUT compared with UW and WCT and an overall difference in walking performance between the conditions (WU > WUT > WCT) in both groups. However, the effect of walking condition on PFC activity and walking performance was not modified by group (P > .1).Conclusion: The results suggest that persons with LLA have increased attentional demands during walking but choose the same cognitive-mobility strategy during challenging walking conditions as able-bodied persons. However, the attentional demands seem to depend on the complexity of the task.
Collapse
Affiliation(s)
- Jette Schack
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - aAre Hugo Pripp
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Peyman Mirtaheri
- Faculty Of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Harald Steen
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,Biomechanics Lab, Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | - Evin Güler
- Faculty Of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Terje Gjøvaag
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
45
|
Holtzer R, Izzetoglu M, Chen M, Wang C. Distinct fNIRS-Derived HbO2 Trajectories During the Course and Over Repeated Walking Trials Under Single- and Dual-Task Conditions: Implications for Within Session Learning and Prefrontal Cortex Efficiency in Older Adults. J Gerontol A Biol Sci Med Sci 2020; 74:1076-1083. [PMID: 30107534 DOI: 10.1093/gerona/gly181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Neural trajectories of gait are not well established. We determined two distinct, clinically relevant neural trajectories, operationalized via functional near-infrared spectroscopy (fNIRS) HbO2 measures in the prefrontal cortex (PFC), under Single-Task-Walk (STW), and Dual-Task-Walk (DTW) conditions. Course trajectory assessed neural activity associated with attention during the course of a walking task; the second trajectory assessed neural activity associated with learning over repeated walking trials. Improved neural efficiency was defined as reduced PFC HbO2 after practice. METHODS Walking was assessed under STW and DTW conditions. fNIRS was utilized to quantify HbO2 in the PFC while walking. Burst measurement included three repeated trials for each experimental condition. The course of each walking task consisted of six consecutive segments. RESULTS Eighty-three nondemented participants (mean age = 78.05 ± 6.37 years; %female = 49.5) were included. Stride velocity (estimate = -0.5259 cm/s, p = <.0001) and the rate of correct letter generation (log estimate of rate ratio = -0.0377, p < .0001) declined during the course of DTW. In contrast, stride velocity (estimate = 1.4577 cm/s, p < .0001) and the rate of correct letter generation (log estimate of rate ratio = 0.0578, p < .0001) improved over repeated DTW trials. Course and trial effects were not significant in STW. HbO2 increased during the course of DTW (estimate = 0.0454 μM, p < .0001) but declined over repeated trials (estimate = -0.1786 μM, p < .0001). HbO2 declined during the course of STW (estimate = -.0542 μM, p < .0001) but did not change significantly over repeated trials. CONCLUSION We provided evidence for distinct attention (course) and learning (repeated trials) trajectories and their corresponding PFC activity. Findings suggest that learning and improved PFC efficiency were demonstrated in one experimental session involving repeated DTW trials.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, Pennsylvania
| | - Michelle Chen
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Cuiling Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
46
|
St-Amant G, Rahman T, Polskaia N, Fraser S, Lajoie Y. Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing. Hum Mov Sci 2020; 70:102587. [DOI: 10.1016/j.humov.2020.102587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/30/2023]
|
47
|
Goenarjo R, Bosquet L, Berryman N, Metier V, Perrochon A, Fraser SA, Dupuy O. Cerebral Oxygenation Reserve: The Relationship Between Physical Activity Level and the Cognitive Load During a Stroop Task in Healthy Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041406. [PMID: 32098221 PMCID: PMC7068614 DOI: 10.3390/ijerph17041406] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Introduction: Many studies have reported that regular physical activity is positively associated with cognitive performance and more selectively with executive functions. However, some studies reported that the association of physical activity on executive performance in younger adults was not as clearly established when compared to studies with older adults. Among the many physiological mechanisms that may influence cognitive functioning, prefrontal (PFC) oxygenation seems to play a major role. The aim of the current study was to assess whether executive function and prefrontal oxygenation are dependent on physical activity levels (active versus inactive) in healthy young males. Methods: Fifty-six healthy young males (22.1 ± 2.4 years) were classified as active (n = 26) or inactive (n = 30) according to the recommendations made by the World Health Organization (WHO) and using the Global Physical Activity Questionnaire (GPAQ). Bilateral PFC oxygenation was assessed using functional near-infrared spectroscopy (fNIRS) during a computerized Stroop task (which included naming, inhibition, and switching conditions). Accuracy (% of correct responses) and reaction times (ms) were used as behavioural indicators of cognitive performances. Changes in oxygenated (∆HbO2) and deoxygenated (∆HHb) hemoglobin were measured to capture neural changes. Several two-way repeated measures ANOVAs (Physical activity level x Stroop conditions) were performed to test the null hypothesis of an absence of interaction between physical activity level and executive performance in prefrontal oxygenation. Results: The analysis revealed an interaction between physical activity level and Stroop conditions on reaction time (p = 0.04; ES = 0.7) in which physical activity level had a moderate effect on reaction time in the switching condition (p = 0.02; ES = 0.8) but not in naming and inhibition conditions. At the neural level, a significant interaction between physical activity level and prefrontal oxygenation was found. Physical activity level had a large effect on ΔHbO2 in the switching condition in the right PFC (p = 0.04; ES = 0.8) and left PFC (p = 0.02; ES = 0.96), but not in other conditions. A large physical activity level effect was also found on ΔHHb in the inhibition condition in the right PFC (p < 0.01; ES = 0.9), but not in the left PFC or other conditions. Conclusion: The results of this cross-sectional study indicate that active young males performed better in executive tasks than their inactive counterparts and had a larger change in oxygenation in the PFC during these most complex conditions.
Collapse
Affiliation(s)
- Roman Goenarjo
- Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Université de Poitiers, 86000 Poitiers, France; (R.G.); (L.B.); (V.M.)
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Laurent Bosquet
- Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Université de Poitiers, 86000 Poitiers, France; (R.G.); (L.B.); (V.M.)
| | - Nicolas Berryman
- Department of Sports Studies, Bishop’s University, Sherbrooke, QC J1M 1Z7, Canada;
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada
| | - Valentine Metier
- Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Université de Poitiers, 86000 Poitiers, France; (R.G.); (L.B.); (V.M.)
| | - Anaick Perrochon
- Laboratoire HAVAE (EA 6310), Département STAPS, Université de Limoges, 87032 Limoges, France;
| | - Sarah Anne Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Olivier Dupuy
- Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Université de Poitiers, 86000 Poitiers, France; (R.G.); (L.B.); (V.M.)
- Correspondence:
| |
Collapse
|
48
|
van der Veen SM, Hammerbeck U, Hollands KL. How accuracy of foot-placement is affected by the size of the base of support and crutch support in stroke survivors and healthy adults. Gait Posture 2020; 76:224-230. [PMID: 31874454 DOI: 10.1016/j.gaitpost.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The high prevalence of falls due to trips and slips following stroke may signify difficulty controlling balance and adjusting foot-placement in response to the environment. We know very little about how controlling foot-placement is affected by balance requirements and the effects of stroke. Therefore, in this study the research question is how foot-placement control is affected by balance support from crutches and reducing or enlarging the base of support. By understanding how foot-placement control and balance deficits following stroke interact, rehabilitation efforts can be more effectively targeted towards the cause of poor mobility. METHODS Young (N=13, 30±6 years) and older (N=10, 64±8 years) healthy adults and stroke survivors (N=11, 67±9 years) walked to targets on an instrumented treadmill with or without crutch support for balance. Targets were randomized to either reduce or increase the base of support in the antero-posterior (AP) or medio-lateral (ML) direction. Mean and absolute foot-placement error were measured using motion analysis. These outcomes were compared using repeated measures ANCOVA with walking speed as a covariate. RESULTS Overall, stroke survivors missed more targets (9.1±2.3%, p=0.001) than young (1.0±2.5%) and older (0.2±2.1%) healthy adults (p=0.001). However, there were no significant differences between groups in foot-placement error. Crutch support reduced both AP and ML foot-placement error (p=<0.001, AP 5.2±0.5cm unsupported, 4.1±0.4cm supported, ML 2.3±0.2cm unsupported, 1.9±0.2cm supported) for all participants. Interaction effects indicate crutch support reduced foot-placement error more when narrowing (unsupported 2.8±0.2cm, supported 1.8±0.2cm) than widening (unsupported 2.6±0.4cm, supported 2.4±0.4cm) steps (p<0.001), SIGNIFICANCE: Stroke survivors have greater difficulty accurately adjusting steps in response to the environment. Crutch support reduces foot-placement error for all steps, but particularly when narrowing foot-placement. These results provide support for the implication of walking aids, which support balance to improve ability to adjust footplacement in response to the environment.
Collapse
|
49
|
Hill C, Van Gemmert AWA, Fang Q, Hou L, Wang J, Pan Z. Asymmetry in the aging brain: A narrative review of cortical activation patterns and implications for motor function. Laterality 2019; 25:413-429. [PMID: 31875769 DOI: 10.1080/1357650x.2019.1707219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Age-related changes have been identified in neural and motor level. A prominent change is reduced asymmetry in cortical activation as well as motor performance. Cortical activation models have been established based on cognitive research utilizing neuroimaging techniques to explain age-related effects on neural recruitment and reduced brain asymmetry. Recently, researchers in motor behaviour attempted to apply the models to explain motor pattern changes in aging and proposed compensation as the mechanism of the reduced motor asymmetry in older adults. Age-related alterations in movement patterns and brain activations seem to be correlated. However, based on the literature search result, no direct evidence substantiates the connection between reduced brain asymmetry and motor asymmetry in older adults. Therefore, a theoretical gap was identified. The theoretical gap exists because either neuroimaging studies have not considered motor asymmetry or motor asymmetry studies have not integrated neuroimaging techniques into study designs. Answering the research question can be valuable to both research and clinical practice. With the mechanisms of brain activation patterns during motor tasks in an aging population being better understood, protocols developed upon the new understandings can be applied to current motor interventions and better maintain the longevity of motor function of older adults.
Collapse
Affiliation(s)
- Christopher Hill
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA.,Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL, USA
| | | | - Qun Fang
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Jun Wang
- Department of Civil and Environmental Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Zhujun Pan
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
50
|
Kahya M, Moon S, Ranchet M, Vukas RR, Lyons KE, Pahwa R, Akinwuntan A, Devos H. Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review. Exp Gerontol 2019; 128:110756. [PMID: 31648005 PMCID: PMC6876748 DOI: 10.1016/j.exger.2019.110756] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/18/2022]
Abstract
The aims of this systematic review were to investigate (1) real-time brain activity during DT gait and balance, (2) whether changes in brain activity correlate with changes in behavioral outcomes in older adults and people with age-related neurodegenerative conditions. PubMed, PsycINFO, and Web of Science were searched from 2009 to 2019 using the keywords dual task, brain activity, gait, balance, aging, neurodegeneration, and other related search terms. A total of 15 articles were included in this review. Functional near-infrared spectroscopy and electroencephalogram measures demonstrated that older adults had higher brain activity, particularly in the prefrontal cortex (PFC), compared to young adults during dual task gait and balance. Similar neurophysiological results were observed in people with age-related neurodegenerative conditions. Few studies demonstrated a relationship between increased brain activity and better behavioral outcomes. This systematic review supports the notion that aging and age-related neurodegenerative conditions are associated with neuronal network changes, resulting in increased brain activity specifically in the PFC. Further studies are warranted to assess the relationship between increased PFC activation during dual task gait and balance and behavioral outcomes to better optimize the rehabilitation interventions.
Collapse
Affiliation(s)
- Melike Kahya
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sanghee Moon
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Maud Ranchet
- University of Lyon, IFSTTAR, TS2 LESCOT, Lyon, France.
| | - Rachel R Vukas
- A.R. Dykes Library of the Health Sciences, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Abiodun Akinwuntan
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA; Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|