1
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
2
|
Faraco G. Dietary salt, vascular dysfunction, and cognitive impairment. Cardiovasc Res 2025; 120:2349-2359. [PMID: 39429024 PMCID: PMC11976728 DOI: 10.1093/cvr/cvae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Excessive salt consumption is a major health problem worldwide leading to serious cardiovascular events including hypertension, heart disease, and stroke. Additionally, high-salt diet has been increasingly associated with cognitive impairment in animal models and late-life dementia in humans. High-salt consumption is harmful for the cerebral vasculature, disrupts blood supply to the brain, and could contribute to Alzheimer's disease pathology. Although animal models have advanced our understanding of the cellular and molecular mechanisms, additional studies are needed to further elucidate the effects of salt on brain function. Furthermore, the association between excessive salt intake and cognitive impairment will have to be more thoroughly investigated in humans. Since the harmful effects of salt on the brain are independent by its effect on blood pressure, in this review, I will specifically discuss the evidence, available in experimental models and humans, on the effects of salt on vascular and cognitive function in the absence of changes in blood pressure. Given the strong effects of salt on the function of immune cells, I will also discuss the evidence linking salt consumption to gut immunity dysregulation with particular attention to the ability of salt to disrupt T helper 17 (Th17) cell homeostasis. Lastly, I will briefly discuss the data implicating IL-17A, the major cytokine produced by Th17 cells, in vascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
3
|
Zhan Y, Chen Z, Zheng S, Dai L, Zhang W, Dai Y, Gao F, Shen Y, Zhang W. Elevated BACE1 and IFNγ+ T Cells in Patients with Cognitive Impairment and the 5xFAD Mouse Model. ACS Chem Neurosci 2025; 16:384-392. [PMID: 39810314 PMCID: PMC11804866 DOI: 10.1021/acschemneuro.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
The dysregulation of T cell differentiation was associated with cognitive impairment. Recently, the peripheric β-secretase (BACE1) has been suggested as a regulator of T cell differentiation, which was increased in both cognitive impairment (CI) and type 2 diabetes mellitus (T2DM) in CI patients. However, the relationship between T cell dysfunction and CI remains unclear. To address this question, we measured T cell subtypes and BACE1 enzyme activity in a clinical cohort and 5xFAD mice. We found that both IFNγ+ Th1 and Tc1 cells were increased in the CI and T2DM-CI groups, which were associated with worsening cognitive function. The elevated IFNγ + Th1 and Tc1 cells were also observed in 8-month-old 5xFAD mice. The elevated BACE1-mediated INSR cleavage was associated with increased IFNγ + Th1 and Tc1 cells. These findings demonstrate the potential role of elevated BACE1 in IFNγ+ T cells and CI.
Collapse
Affiliation(s)
- Yaxi Zhan
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Zuolong Chen
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Shuxin Zheng
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Linbin Dai
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Wei Zhang
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| | - Yumeng Dai
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| | - Feng Gao
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Yong Shen
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
- Neurodegenerative
Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
- Anhui Province
Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Huangshan Road 373, Hefei 230026, Anhui, China
| | - Weiwei Zhang
- Department
of International Medical, The First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China
| |
Collapse
|
4
|
Ghadirzade Arani L, Advani S, Mardani G, Moslemi Haghighi S, Abdollahimajd F, Robati RM, Mozafari N, Moravvej H, Gheisari M, Nasiri S, Dadkhahfar S. Mild cognitive impairment in pemphigus. Int J Dermatol 2024; 63:1761-1766. [PMID: 38702904 DOI: 10.1111/ijd.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Pemphigus is a group of autoimmune blistering disorders that have been associated with dementia in previous studies. Mild cognitive impairment (MCI) can be the first stage of progression into dementia. The objective of the present study was to evaluate the frequency of MCI in pemphigus patients compared to a control group. METHODS This case-control study included 80 patients with pemphigus referred to the dermatology clinics of Shohadaye Tajrish and Loghman Hakim hospitals, Tehran, Iran, in 2021. A group of 80 individuals without pemphigus who visited the same clinics for cosmetic consultation or interventions were regarded as controls. Age, sex, marital status, and education were recorded for all participants. Disease duration, medications, and severity were noted for pemphigus patients. The Persian version of the Montreal Cognitive Assessment (MoCA) test was used to assess cognitive function. RESULTS MCI was significantly more frequent in pemphigus patients than in controls (55% vs. 37.5%, P = 0.026). Furthermore, the total MoCA score was significantly lower in pemphigus patients compared to controls (23.98 ± 3.77 vs. 25.21 ± 3.45, P = 0.032); however, among MoCA's different domains, only the executive functions score was significantly lower in pemphigus patients (P = 0.010). After adjustment, multivariable logistic regression analysis revealed that every 1-year higher education in patients decreased the odds of MCI by 52% (adjusted odds ratio = 0.483, 95% confidence interval 0.326; 0.715, P < 0.001). CONCLUSIONS The frequency of MCI was found to be significantly higher, and overall scores of the MoCA test, as well as its executive function domain, were significantly lower among pemphigus patients in this study compared to the control group. Additionally, a higher level of education was associated with decreased odds of MCI in pemphigus patients. Identifying pemphigus patients with MCI through the use of the MoCA test can facilitate early intervention, enabling them to seek help and support.
Collapse
Affiliation(s)
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Mardani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Gheisari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Nasiri
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hu Y, Deeba E, Kläppe U, Öijerstedt L, Andersson J, Ruffin N, Piehl F, Ingre C, Fang F, Seitz C. Immune cells and the trajectories of depression, anxiety, and cognitive function among people with amyotrophic lateral sclerosis. Brain Behav Immun Health 2024; 42:100907. [PMID: 39650285 PMCID: PMC11625338 DOI: 10.1016/j.bbih.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) represents a complex syndrome characterized by motor, psychiatric, and cognitive symptoms, where associations between cellular immune features and non-motor manifestations remain unknown. Methods In this cohort study, we enrolled 250 incident people with ALS (pwALS) assessed with the Hospital Anxiety and Depression Scale, and 226 pwALS with the Montreal Cognitive Assessment, including 218 overlapping pwALS. All individuals were diagnosed between January 2015 and January 2023 in Stockholm, Sweden. We applied joint latent class models to delineate distinct trajectories of anxiety, depression, and cognition, incorporating survival outcomes. A majority of the pwALS had data on leukocyte counts and flow cytometric analyses using a comprehensive T cell panel. We then used immune cell subtypes measured at diagnosis to predict trajectories of these outcomes following ALS diagnosis. Results We identified two distinct trajectories for anxiety, depression, and cognitive function following ALS diagnosis. PwALS with longer survival displayed more stable trajectories, while those with shorter survival showed decreasing anxiety symptom, increasing depressive symptom, and declining cognitive function. Higher count of leukocytes at the time of ALS diagnosis tended to associate with anxiety and depression trajectories related to shorter survival. Among T cell subpopulations, several CD8+ T cell subsets were associated with a stable trajectory of depressive symptom, and, in turn, better survival. Conclusion ALS-associated psychiatric and cognitive trajectories vary significantly between pwALS with different prognosis. Certain T cell subsets measured at diagnosis might be indicative of depression trajectories post-diagnosis.
Collapse
Affiliation(s)
- Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elie Deeba
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Linn Öijerstedt
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Ruffin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Artlett CM, Abdelwahab SH, Hoffman WH, Calikoglu AS. Early expression of neuroinflammation in an untreated fatal case of diabetic ketoacidosis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240074. [PMID: 39529986 PMCID: PMC11554359 DOI: 10.20945/2359-4292-2024-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/26/2024] [Indexed: 11/16/2024]
Abstract
We present the case of a young adult who had lethargy and significant weight loss for the three weeks before his death. The history of the present illness suggested a prodrome of several weeks, with progressive weakness indicating an advancing metabolic decompensation. To our knowledge, this is the first study performed on human brain tissue with type 1 diabetes (T1D) and likely diabetic ketoacidosis (DKA) before treatment. We studied neuroinflammatory markers in an insulin-deficient state without treatment compared with those found in a treated patient with T1D/DKA of similar age and race who died shortly after treatment. The frontal cortex and hippocampus were stained for tight junction proteins, RAGE, NLRP3, and HMGB1. Other markers that can disrupt the blood-brain barrier, such as IL-17, IL-6, IL-1β, GFAP, and IL-10 were also tested. This case study reveals that neuroinflammatory markers are expressed in the DKA brain at a lower level before treatment than those found to be expressed in the brain after treatment. These findings suggest that in DKA, dehydration minimizes inflammation which could be exacerbated with fluids promoting neuroinflammation and cognitive deficits. These findings require further studies and could identify therapeutic targets to reduce the progression of neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Carol M. Artlett
- Drexel UniversityDrexel University College of MedicineDepartment of Microbiology and ImmunologyPhiladelphiaPAUnited StatesDepartment of Microbiology and Immunology, Drexel University College of Medicine, Drexel University, Philadelphia PA
| | - Sabri H. Abdelwahab
- University of North CarolinaDepartment of GeneticsChapel HillNCUnited StatesDepartment of Genetics, University of North Carolina, Chapel Hill NC
| | - William H. Hoffman
- Augusta UniversityMedical College of GeorgiaSection of Pediatric EndocrinologyAugustaGAUnited StatesSection of Pediatric Endocrinology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ali S. Calikoglu
- University of North CarolinaDivision of Pediatric EndocrinologyChapel HillNCUnited StatesDivision of Pediatric Endocrinology, University of North Carolina, Chapel Hill NC
| |
Collapse
|
7
|
Leonardi L, Perna C, Bernabei I, Fiore M, Ma M, Frankovich J, Tarani L, Spalice A. Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS): Immunological Features Underpinning Controversial Entities. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1043. [PMID: 39334578 PMCID: PMC11430956 DOI: 10.3390/children11091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS), represent an overlapping group of disorders which is characterized by acute-onset obsessive compulsive disorders, eating restriction, tics, cognitive and behavioral deterioration which typically follows a relapsing-remitting course but some patients have a primary or secondary persistent progress. This condition is likely caused by heterogeneous inflammatory mechanisms (autoantibodies, complement activation, pro-inflammatory cytokine production) involving the basal ganglia as evidenced by imaging studies (patients vs. controls), sleep studies that found movements and/or atonia during REM sleep, and neurological soft signs that go along with basal ganglia dysfunction. The condition causes significant psychiatric and behavioral symptoms, caregiver burden and sleep abnormalities. Autoantibodies resulting from molecular mimicry of infectious agents (namely group A Streptococcus) and neuronal autoantigens that map to the basal ganglia play also a subtle role. This narrative review aims to describe the key immunological features documented thus far and that likely play a role in the pathogenesis and clinical manifestations of this disorder.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Camilla Perna
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Irene Bernabei
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00185 Rome, Italy
| | - Meiqian Ma
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
8
|
Shumilov K, Ni A, Garcia-Bonilla M, Celorrio M, Friess SH. Early depletion of gut microbiota shape oligodendrocyte response after traumatic brain injury. J Neuroinflammation 2024; 21:171. [PMID: 39010082 PMCID: PMC11251111 DOI: 10.1186/s12974-024-03158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the regulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression, and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Allen Ni
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, Campus Box 8028, 3rd Fl MPRB 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
10
|
Biazus Soares G, Mahmoud O, Yosipovitch G, Mochizuki H. The mind-skin connection: A narrative review exploring the link between inflammatory skin diseases and psychological stress. J Eur Acad Dermatol Venereol 2024; 38:821-834. [PMID: 38311707 DOI: 10.1111/jdv.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Inflammatory skin diseases are known to negatively impact patient psychology, with individuals experiencing higher rates of stress and subsequent diminished quality of life, as well as mental health issues including anxiety and depression. Moreover, increased psychological stress has been found to exacerbate existing inflammatory skin diseases. The association between inflammatory skin diseases and psychological stress is a timely topic, and a framework to better understand the relationship between the two that integrates available literature is needed. In this narrative review article, we discuss potential neurobiological mechanisms behind psychological stress due to inflammatory skin diseases, focusing mainly on proinflammatory cytokines in the circulating system (the brain-gut-skin communications) and the default mode network in the brain. We also discuss potential descending pathways from the brain that lead to aggravation of inflammatory skin diseases due to psychological stress, including the central and peripheral hypothalamic-pituitary-adrenal axes, peripheral nerves and the skin barrier function.
Collapse
Affiliation(s)
- G Biazus Soares
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - O Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - H Mochizuki
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Shumilov K, Ni A, Garcia-Bonilla M, Celorrio M, Friess SH. Gut Microbiota Shape Oligodendrocyte Response after Traumatic Brain Injury. RESEARCH SQUARE 2024:rs.3.rs-4289147. [PMID: 38746334 PMCID: PMC11092821 DOI: 10.21203/rs.3.rs-4289147/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the modulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.
Collapse
Affiliation(s)
| | - Allen Ni
- Washington University in St. Louis School of Medicine
| | | | | | | |
Collapse
|
12
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
13
|
Bravi B, Melloni EMT, Paolini M, Palladini M, Calesella F, Servidio L, Agnoletto E, Poletti S, Lorenzi C, Colombo C, Benedetti F. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav Immun 2024; 116:52-61. [PMID: 38030049 DOI: 10.1016/j.bbi.2023.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Depressed patients exhibit altered levels of immune-inflammatory markers both in the peripheral blood and in the cerebrospinal fluid (CSF) and inflammatory processes have been widely implicated in the pathophysiology of mood disorders. The Choroid Plexus (ChP), located at the base of each of the four brain ventricles, regulates the exchange of substances between the blood and CSF and several evidence supported a key role for ChP as a neuro-immunological interface between the brain and circulating immune cells. Given the role of ChP as a regulatory gate between periphery, CSF spaces and the brain, we compared ChP volumes in patients with bipolar disorder (BP) or major depressive disorder (MDD) and healthy controls, exploring their association with history of illness and levels of circulating cytokines. Plasma levels of inflammatory markers and MRI scans were acquired for 73 MDD, 79 BD and 72 age- and sex-matched healthy controls (HC). Patients with either BD or MDD had higher ChP volumes than HC. With increasing age, the bilateral ChP volume was larger in patients, an effect driven by the duration of illness; while only minor effects were observed in HC. Right ChP volumes were proportional to higher levels of circulating cytokines in the clinical groups, including IFN-γ, IL-13 and IL-17. Specific effects in the two diagnostic groups were observed when considering the left ChP, with positive association with IL-1ra, IL-13, IL-17, and CCL3 in BD, and negative associations with IL-2, IL-4, IL-1ra, and IFN-γ in MDD. These results suggest that ChP could represent a reliable and easy-to-assess biomarker to evaluate the brain effects of inflammatory status in mood disorders, contributing to personalized diagnosis and tailored treatment strategies.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Calesella
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Servidio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Elena Agnoletto
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy; Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute San Raffaele Hospital, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Sallam DE, Shaker YS, Mostafa GA, El-Hossiny RM, Taha SI, Ahamed MAEH. Evaluation of serum interleukin-17 A and interleukin-22 levels in pediatric patients with autism spectrum disorder: a pilot study. BMC Pediatr 2024; 24:18. [PMID: 38183030 PMCID: PMC10768424 DOI: 10.1186/s12887-023-04484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Many neurodevelopmental abnormalities are connected to autism spectrum disorder (ASD), which can result in inflammation and elevated cytokine levels due to immune system dysregulation. Interleukin (IL)-17 A and IL-22 have been linked to the regulation of host defense against pathogens at the barrier surface, the regeneration of injured tissue, and the integration of the neurological, endocrine, and immune systems. Several studies have investigated the possible connection between IL-17 A and ASD as well as the severity of behavioral symptoms, but few of them included IL-22. OBJECTIVES To measure serum levels of interleukin (IL)-17 A and IL-22 in children with ASD and to investigate their association with disease severity. METHODS This pilot study was performed on 24 children with ASD and 24 matched controls. Childhood Autism Rating Scale (CARS) assessed ASD severity, and serum levels of IL-17 A and IL-22 were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS In ASD patients, serum levels of IL-17 A and IL-22 showed a significant increase compared to controls (p-values < 0.001). We compared serum levels of IL-17 A and IL-22 according to the severity categories by CARS and could not find any significant differences (p-values > 0.05). Only IL-22 had a significant positive correlation with ASD severity by CARS scores. CONCLUSIONS Raised serum levels of IL-17 A and IL-22 are associated with ASD; only IL-22, not IL-17 A, is correlated with ASD severity. This finding proposes IL-22 as a possible future effective target for ASD treatment. To fully comprehend the significance of these cytokines in ASD and their possible effects on ASD diagnosis and treatment, more research on a wider scale is required.
Collapse
Affiliation(s)
- Dina E Sallam
- Department of Pediatrics, Pediatric Nephrology Unit, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Gehan A Mostafa
- Department of Pediatrics, Pediatric Allergy, and Immunology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham M El-Hossiny
- Department of Pediatrics, Pediatric Neuropsychiatric Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
15
|
Leonardi L, Lorenzetti G, Carsetti R, Piano Mortari E, Guido CA, Zicari AM, Förster-Waldl E, Loffredo L, Duse M, Spalice A. Immunological characterization of an Italian PANDAS cohort. Front Pediatr 2024; 11:1216282. [PMID: 38239595 PMCID: PMC10794562 DOI: 10.3389/fped.2023.1216282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
This cross-sectional study aimed to contribute to the definition of Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) pathophysiology. An extensive immunological assessment has been conducted to investigate both immune defects, potentially leading to recurrent Group A β-hemolytic Streptococcus (GABHS) infections, and immune dysregulation responsible for a systemic inflammatory state. Twenty-six PANDAS patients with relapsing-remitting course of disease and 11 controls with recurrent pharyngotonsillitis were enrolled. Each subject underwent a detailed phenotypic and immunological assessment including cytokine profile. A possible correlation of immunological parameters with clinical-anamnestic data was analyzed. No inborn errors of immunity were detected in either group, using first level immunological assessments. However, a trend toward higher TNF-alpha and IL-17 levels, and lower C3 levels, was detected in the PANDAS patients compared to the control group. Maternal autoimmune diseases were described in 53.3% of PANDAS patients and neuropsychiatric symptoms other than OCD and tics were detected in 76.9% patients. ASO titer did not differ significantly between the two groups. A possible correlation between enduring inflammation (elevated serum TNF-α and IL-17) and the persistence of neuropsychiatric symptoms in PANDAS patients beyond infectious episodes needs to be addressed. Further studies with larger cohorts would be pivotal to better define the role of TNF-α and IL-17 in PANDAS pathophysiology.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Lorenzetti
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Cristiana Alessia Guido
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabeth Förster-Waldl
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics & Adolescent Medicine, Center for Congenital Immunodeficiencies, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Loffredo
- Department of Clinical, Internal Medicine, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alberto Spalice
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Dill-McFarland KA, Altman MC, Esnault S, Jarjour NN, Busse WW, Rosenkranz MA. Molecular pathways underlying lung-brain axis signaling in asthma: Relevance for psychopathology and neuroinflammation. J Allergy Clin Immunol 2024; 153:111-121. [PMID: 37730134 PMCID: PMC10841090 DOI: 10.1016/j.jaci.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Accumulating evidence indicates that asthma has systemic effects and affects brain function. Although airway inflammation is proposed to initiate afferent communications with the brain, the signaling pathways have not been established. OBJECTIVE We sought to identify the cellular and molecular pathways involved in afferent lung-brain communication during airway inflammation in asthma. METHODS In 23 adults with mild asthma, segmental bronchial provocation with allergen (SBP-Ag) was used to provoke airway inflammation and retrieve bronchoalveolar lavage fluid for targeted protein analysis and RNA sequencing to determine gene expression profiles. Neural responses to emotional cues in nodes of the salience network were assessed with functional magnetic resonance imaging at baseline and 48 hours after SBP-Ag. RESULTS Cell deconvolution and gene coexpression network analysis identified 11 cell-associated gene modules that changed in response to SBP-Ag. SBP-Ag increased bronchoalveolar lavage eosinophils and expression of an eosinophil-associated module enriched for genes related to TH17-type inflammation (eg, IL17A), as well as cell proliferation in lung and brain (eg, NOTCH1, VEGFA, and LIF). Increased expression of genes in this module, as well as several TH17-type inflammation-related proteins, was associated with an increase from baseline in salience network reactivity. CONCLUSIONS Our results identify a specific inflammatory pathway linking asthma-related airway inflammation and emotion-related neural function. Systemically, TH17-type inflammation has been implicated in both depression and neuroinflammation, with impacts on long-term brain health. Thus, our data emphasize that inflammation in the lung in asthma may have profound effects outside of the lung that may be targetable with novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wis
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wis; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
17
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
18
|
Abarca-Castro EA, Talavera-Peña AK, Reyes-Lagos JJ, Becerril-Villanueva E, Pérez-Sanchez G, de la Peña FR, Maldonado-García JL, Pavón L. Modulation of vagal activity may help reduce neurodevelopmental damage in the offspring of mothers with pre-eclampsia. Front Immunol 2023; 14:1280334. [PMID: 38022681 PMCID: PMC10653300 DOI: 10.3389/fimmu.2023.1280334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Maternal Immune Activation (MIA) has been linked to the pathogenesis of pre-eclampsia and adverse neurodevelopmental outcomes in the offspring, such as cognitive deficits, behavioral abnormalities, and mental disorders. Pre-eclampsia is associated with an activation of the immune system characterized by persistently elevated levels of proinflammatory cytokines, as well as a decrease in immunoregulatory factors. The Cholinergic Anti-inflammatory Pathway (CAP) may play a relevant role in regulating the maternal inflammatory response during pre-eclampsia and protecting the developing fetus from inflammation-induced damage. Dysregulation in the CAP has been associated with the clinical evolution of pre-eclampsia. Some studies suggest that therapeutic stimulation of this pathway may improve maternal and fetal outcomes in preclinical models of pre-eclampsia. Modulation of vagal activity influences the CAP, improving maternal hemodynamics, limiting the inflammatory response, and promoting the growth of new neurons, which enhances synaptic plasticity and improves fetal neurodevelopment. Therefore, we postulate that modulation of vagal activity may improve maternal and fetal outcomes in pre-eclampsia by targeting underlying immune dysregulation and promoting better fetal neurodevelopment. In this perspective, we explore the clinical and experimental evidence of electrical, pharmacological, physical, and biological stimulation mechanisms capable of inducing therapeutical CAP, which may be applied in pre-eclampsia to improve the mother's and offspring's quality of life.
Collapse
Affiliation(s)
- Eric Alonso Abarca-Castro
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Lerma (UAM-L), Lerma, Mexico
| | - Ana Karen Talavera-Peña
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Lerma (UAM-L), Lerma, Mexico
| | - José Javier Reyes-Lagos
- Facultad de Medicina, Universidad Autónoma del Estado de México (UAEMéx), Toluca de Lerdo, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gilberto Pérez-Sanchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Francisco R. de la Peña
- Unidad de Fomento a la Investigación, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
19
|
VURALLI D, DAĞIDIR HGÖK, TOPA EABBASOĞLU, BELEN HBOLAY. Leaky gut and inflammatory biomarkers in a medication overuse headache model in male rats. Turk J Med Sci 2023; 54:33-41. [PMID: 38812640 PMCID: PMC11031181 DOI: 10.55730/1300-0144.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Medication overuse is common among chronic migraine patients and nonsteroidal antiinflammatory drugs (NSAIDs) are the most frequently overused drugs. The pathophysiological mechanisms underlying medication overuse headache (MOH) are not completely understood. Intestinal hyperpermeability and leaky gut are reported in patients using NSAIDs. The aim of the study is to investigate the role of leaky gut and inflammation in an MOH model MOH model in male rats. Methods The study was conducted in male Sprague Dawley rats. There were two experimental groups. The first group was the chronic NSAID group in which the rats received mefenamic acid (n = 8) for four weeks intraperitoneally (ip) and the second group was the vehicle group (n = 8) that received 5% dimethyl sulfoxide+sesame oil (ip) for 4 weeks. We assessed spontaneous pain-like behavior, periorbital mechanical withdrawal thresholds, and anxiety-like behavior using an elevated plus maze test. After behavioral testing, serum levels of occludin and lipopolysaccharide-binding protein (LBP) and brain levels of IL-17, IL-6, and high mobility group box 1 protein (HMGB1) were evaluated with ELISA.Results: Serum LBP and occludin levels and brain IL-17 and HMGB1 levels were significantly elevated in the chronic NSAID group compared to its vehicle (p = 0.006, p = 0.016, p = 0.016 and p = 0.016 respectively) while brain IL-6 levels were comparable (p = 0.67) between the groups. The chronic NSAID group showed pain-like and anxiety-like behavior in behavioral tests. Brain IL-17 level was positively correlated with number of head shakes (r = 0.64, p = 0.045), brain IL-6 level was negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.71, p = 0.049), and serum occludin level was positively correlated with grooming duration (r = 0.73, p = 0.032) in chronic NSAID group. Conclusion Elevated serum occludin and LBP levels and brain IL-17 and HMGB1 levels indicate a possible role of leaky gut and inflammation in an MOH model in male rats. Additionally, a significant correlation between pain behavior and markers of inflammation and intestinal hyperpermeability, supports the role of inflammation and leaky gut in MOH pathophysiology.
Collapse
Affiliation(s)
- Doğa VURALLI
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| | - Hale GÖK DAĞIDIR
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
| | | | - Hayrunnisa BOLAY BELEN
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| |
Collapse
|
20
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
21
|
Ma H, Chang Q, Jia J, Zhang Y, Wang G, Li Y. Linkage of blood cell division cycle 42 with T helper cells, and their correlation with anxiety, depression, and cognitive impairment in stroke patients. Braz J Med Biol Res 2023; 56:e12855. [PMID: 37703110 PMCID: PMC10496759 DOI: 10.1590/1414-431x2023e12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.
Collapse
Affiliation(s)
- Haifeng Ma
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Qing Chang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jujuan Jia
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yaoyuan Zhang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gang Wang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuanyuan Li
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
22
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Traumatic brain injury induces an adaptive immune response in the meningeal transcriptome that is amplified by aging. Front Neurosci 2023; 17:1210175. [PMID: 37588516 PMCID: PMC10425597 DOI: 10.3389/fnins.2023.1210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
23
|
Chen H, Liao Y, Zhang X, Shen H, Shang D, He Z, Zhou W, Song Z. Age- and sex-related differences of periodontal bone resorption, cognitive function, and immune state in APP/PS1 murine model of Alzheimer's disease. J Neuroinflammation 2023; 20:153. [PMID: 37370108 PMCID: PMC10294321 DOI: 10.1186/s12974-023-02790-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/24/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The existence of an interconnected mechanism between cognitive disorders and periodontitis has been confirmed by mounting evidence. However, the role of age or sex differences in this mechanism has been less studied. This study aims to investigate sex and age differences in the characterization of periodontal bone tissue, immune state and cognitive function in amyloid precursor protein/presenilin 1(APP/PS1) murine model of Alzheimer's disease (AD). METHODS Three- and twelve-month-old male and female APP/PS1 transgenic mice and wild-type (WT) littermates were used in this study. The Morris water maze (MWM) was used to assess cognitive function. The bone microarchitecture of the posterior maxillary alveolar bone was evaluated by microcomputed tomography (micro-CT). Pathological changes in periodontal bone tissue were observed by histological chemistry. The proportions of helper T cells1 (Th1), Th2, Th17 and regulatory T cells (Tregs) in the peripheral blood mononuclear cells (PBMCs) and brain samples were assessed by flow cytometry. RESULTS The learning ability and spatial memory of 12-month-old APP/PS1 mice was severely damaged. The changes in cognitive function were only correlated with age and genotype, regardless of sex. The 12-month-old APP/PS1 female mice exhibited markedly periodontal bone degeneration, evidenced by the decreased bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and bone mineral density (BMD), and the increased trabecular separation (Tb.Sp). The altered periodontal bone microarchitecture was associated with genotype, age and females. The flow cytometry data showed the increased Th1 and Th17 cells and the decreased Th2 cells in the brain and PBMC samples of 12-month-old APP/PS1 mice, compared to age- and sex-matched WT mice. However, there was no statistical correlation between age or sex and this immune state. CONCLUSIONS Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Dihua Shang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
24
|
Fiorillo A, Gallego JJ, Casanova-Ferrer F, Giménez-Garzó C, Urios A, Ballester MP, Durbán L, Rios MP, Megías J, San Miguel T, Kosenko E, Escudero-García D, Benlloch S, Felipo V, Montoliu C. Mild Cognitive Impairment Is Associated with Enhanced Activation of Th17 Lymphocytes in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:10407. [PMID: 37373554 DOI: 10.3390/ijms241210407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) may show mild cognitive impairment (MCI). The mechanisms involved remain unclear. The plasma concentrations of several cytokines and chemokines were measured in 71 NAFLD patients (20 with and 51 without MCI) and 61 controls. Characterization and activation of leukocyte populations and CD4+ sub-populations were carried out and analyzed by flow cytometry. We analyzed the cytokines released from CD4+ cell cultures and the mRNA expression of transcription factors and receptors in peripheral blood mononuclear cells. The appearance of MCI in NAFLD patients was associated with increased activation of CD4+ T lymphocytes, mainly of the Th17 subtype, increased plasma levels of pro-inflammatory and anti-inflammatory cytokines such as IL-17A, IL-23, IL-21, IL-22, IL-6, INF-γ, and IL-13, and higher expression of the CCR2 receptor. Constitutive expression of IL-17 was found in cultures of CD4+ cells from MCI patients, reflecting Th17 activation. High IL-13 plasma levels were predictive of MCI and could reflect a compensatory anti-inflammatory response to the increased expression of pro-inflammatory cytokines. This study identified some specific alterations of the immune system associated with the appearance of neurological alterations in MCI patients with NAFLD that could be the basis to improve and restore cognitive functions and quality of life in these patients.
Collapse
Affiliation(s)
- Alessandra Fiorillo
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Juan-José Gallego
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Franc Casanova-Ferrer
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Amparo Urios
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
| | - Maria-Pilar Ballester
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Lucia Durbán
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Maria-Pilar Rios
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
| | - Javier Megías
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Teresa San Miguel
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Elena Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Desamparados Escudero-García
- Servicio de Medicina Digestiva, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Salvador Benlloch
- Servicio de Medicina Digestiva, Hospital Arnau de Vilanova, 46015 Valencia, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carmina Montoliu
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, 46010 Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
25
|
Guo L, Li X, Gould T, Wang ZY, Cao W. T cell aging and Alzheimer's disease. Front Immunol 2023; 14:1154699. [PMID: 37081887 PMCID: PMC10110977 DOI: 10.3389/fimmu.2023.1154699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
The brain has long been considered an immune-privileged organ due to the presence of the blood-brain barrier (BBB). However, recent discoveries have revealed the underestimated role of T cells in the brain through the meningeal lymphatic system. Age is the primary risk factor for Alzheimer's disease (AD), resulting in marked age-dependent changes in T cells. Manipulating peripheral T cell immune response has been shown to impact AD, but the relationship between T cell aging and AD remains poorly understood. Given the limited success of targeting amyloid beta (Aβ) and the growing evidence of T cells' involvement in non-lymphoid organ aging, a deeper understanding of the relationship between T cells and AD in the context of aging is crucial for advancing therapeutic progress. In this review, we comprehensively examine existing studies on T cells and AD and offer an integrated perspective on their interconnections in the context of aging. This understanding can inform the development of new interventions to prevent or treat AD.
Collapse
Affiliation(s)
- Lin Guo
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Xiaoting Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Wenqiang Cao
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Choi BJ, Park MH, Park KH, Han WH, Yoon HJ, Jung HY, Hong JY, Chowdhury MR, Kim KY, Lee J, Song IS, Pang M, Choi MK, Gulbins E, Reichel M, Kornhuber J, Hong CW, Kim C, Kim SH, Schuchman EH, Jin HK, Bae JS. Immunotherapy targeting plasma ASM is protective in a mouse model of Alzheimer's disease. Nat Commun 2023; 14:1631. [PMID: 36959217 PMCID: PMC10036484 DOI: 10.1038/s41467-023-37316-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Acid sphingomyelinase (ASM) has been implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, the specific role of plasma ASM in promoting these pathologies is poorly understood. Herein, we explore plasma ASM as a circulating factor that accelerates neuropathological features in AD by exposing young APP/PS1 mice to the blood of mice overexpressing ASM, through parabiotic surgery. Elevated plasma ASM was found to enhance several neuropathological features in the young APP/PS1 mice by mediating the differentiation of blood-derived, pathogenic Th17 cells. Antibody-based immunotherapy targeting plasma ASM showed efficient inhibition of ASM activity in the blood of APP/PS1 mice and, interestingly, led to prophylactic effects on neuropathological features by suppressing pathogenic Th17 cells. Our data reveals insights into the potential pathogenic mechanisms underlying AD and highlights ASM-targeting immunotherapy as a potential strategy for further investigation.
Collapse
Affiliation(s)
- Byung Jo Choi
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Min Hee Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kang Ho Park
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Wan Hui Han
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hee Ji Yoon
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hye Yoon Jung
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ju Yeon Hong
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Riad Chowdhury
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyung Yeol Kim
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Minyeong Pang
- College of Pharmacy, Dankook University, Cheon-an, South Korea
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an, South Korea
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chang-Won Hong
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Changho Kim
- Department of Emergency Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea.
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| | - Jae-Sung Bae
- KNU Alzheimer's disease Research Institute, Kyungpook National University, Daegu, South Korea.
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
27
|
Neurovascular Coupling in Hypertension Is Impaired by IL-17A through Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043959. [PMID: 36835372 PMCID: PMC9967204 DOI: 10.3390/ijms24043959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Hypertension, a multifactorial chronic inflammatory condition, is an important risk factor for neurovascular and neurodegenerative diseases, including stroke and Alzheimer's disease. These diseases have been associated with higher concentrations of circulating interleukin (IL)-17A. However, the possible role that IL-17A plays in linking hypertension with neurodegenerative diseases remains to be established. Cerebral blood flow regulation may be the crossroads of these conditions because regulating mechanisms may be altered in hypertension, including neurovascular coupling (NVC), known to participate in the pathogenesis of stroke and Alzheimer's disease. In the present study, the role of IL-17A on NVC impairment induced by angiotensin (Ang) II in the context of hypertension was examined. Neutralization of IL-17A or specific inhibition of its receptor prevents the NVC impairment (p < 0.05) and cerebral superoxide anion production (p < 0.05) induced by Ang II. Chronic administration of IL-17A impairs NVC (p < 0.05) and increases superoxide anion production. Both effects were prevented with Tempol and NADPH oxidase 2 gene deletion. These findings suggest that IL-17A, through superoxide anion production, is an important mediator of cerebrovascular dysregulation induced by Ang II. This pathway is thus a putative therapeutic target to restore cerebrovascular regulation in hypertension.
Collapse
|
28
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
29
|
Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today 2023; 28:103517. [PMID: 36736763 DOI: 10.1016/j.drudis.2023.103517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
T helper 17 cells are thought to significantly contribute to the neuroinflammation process during neurogenerative diseases via their signature cytokine, interleukin (IL)-17. Recently, an emerging key role of IL-17 and its receptors has been documented in inflammatory and autoimmune diseases. The clinical studies conducted on patients with neurodegenerative disease have also shown an increase in IL-17 levels in serum as well as cerebrospinal fluid samples. Therapeutic targeting of either IL-17 receptors or direct IL-17 neutralizing antibodies has shown a promising preclinical and clinical proof of concept for treating chronic autoimmune neurodegenerative diseases such as multiple sclerosis. Thus, IL-17 and its receptors have a central role in regulation of neuroinflammation and can be considered as one of the major therapeutic targets in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
30
|
de Paula JJ, Paiva RERP, Souza-Silva NG, Rosa DV, Duran FLDS, Coimbra RS, Costa DDS, Dutenhefner PR, Oliveira HSD, Camargos ST, Vasconcelos HMM, de Oliveira Carvalho N, da Silva JB, Silveira MB, Malamut C, Oliveira DM, Molinari LC, de Oliveira DB, Januário JN, Silva LC, De Marco LA, Queiroz DMDM, Meira W, Busatto G, Miranda DM, Romano-Silva MA. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Mol Psychiatry 2023; 28:553-563. [PMID: 35701598 PMCID: PMC9196149 DOI: 10.1038/s41380-022-01632-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023]
Abstract
People recovered from COVID-19 may still present complications including respiratory and neurological sequelae. In other viral infections, cognitive impairment occurs due to brain damage or dysfunction caused by vascular lesions and inflammatory processes. Persistent cognitive impairment compromises daily activities and psychosocial adaptation. Some level of neurological and psychiatric consequences were expected and described in severe cases of COVID-19. However, it is debatable whether neuropsychiatric complications are related to COVID-19 or to unfoldings from a severe infection. Nevertheless, the majority of cases recorded worldwide were mild to moderate self-limited illness in non-hospitalized people. Thus, it is important to understand what are the implications of mild COVID-19, which is the largest and understudied pool of COVID-19 cases. We aimed to investigate adults at least four months after recovering from mild COVID-19, which were assessed by neuropsychological, ocular and neurological tests, immune markers assay, and by structural MRI and 18FDG-PET neuroimaging to shed light on putative brain changes and clinical correlations. In approximately one-quarter of mild-COVID-19 individuals, we detected a specific visuoconstructive deficit, which was associated with changes in molecular and structural brain imaging, and correlated with upregulation of peripheral immune markers. Our findings provide evidence of neuroinflammatory burden causing cognitive deficit, in an already large and growing fraction of the world population. While living with a multitude of mild COVID-19 cases, action is required for a more comprehensive assessment and follow-up of the cognitive impairment, allowing to better understand symptom persistence and the necessity of rehabilitation of the affected individuals.
Collapse
Affiliation(s)
- Jonas Jardim de Paula
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Rachel E R P Paiva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Nathália Gualberto Souza-Silva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Daniela Valadão Rosa
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | | | - Roney Santos Coimbra
- Neurogenômica / Imunopatologia. Instituto René Rachou, Fiocruz, Belo Horizonte-MG, Brazil
| | - Danielle de Souza Costa
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Pedro Robles Dutenhefner
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Computação Científica, ICEX, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Henrique Soares Dutra Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Sarah Teixeira Camargos
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Herika Martins Mendes Vasconcelos
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
| | - Nara de Oliveira Carvalho
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | | | - Carlos Malamut
- UPPR, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte-MG, Brazil
| | - Derick Matheus Oliveira
- Departamento de Computação Científica, ICEX, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Luiz Carlos Molinari
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Danilo Bretas de Oliveira
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - José Nélio Januário
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | - Luiz Armando De Marco
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Departamento de Cirurgia, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | | | - Wagner Meira
- Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo-SP, Brazil
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Geraldo Busatto
- Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo-SP, Brazil
| | - Débora Marques Miranda
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
- Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Marco Aurélio Romano-Silva
- Centro de Tecnologia em Medicina Molecular (CTMM), Universidade Federal de Minas Gerais (UFMG), Av Alfredo Balena 190, Belo Horizonte-MG, Brazil.
- Departamento de Saúde Mental, Faculdade de Medicina da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil.
- Centro de Inovação em Inteligência Artificial para a Saúde (CIIAS-Saúde), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil.
| |
Collapse
|
31
|
Kim JH, Yi YY, Ha EK, Cha HR, Han MY, Baek HS. Neurodevelopment at 6 years of age in children with atopic dermatitis. Allergol Int 2023; 72:116-127. [PMID: 36058807 DOI: 10.1016/j.alit.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Few studies have reported an association between atopic dermatitis and cognitive impairment in children. Therefore, we evaluated the association between atopic dermatitis (AD) and neurodevelopmental dysfunction in children. METHODS We analyzed 2,395,966 children born between 2008 and 2012 in Korea. All data were acquired from the databases of the Korean National Health Insurance System. AD was defined as five or more diagnoses before age 24 months. The outcome was suspected neurodevelopmental dysfunction in the gross motor skill, fine motor skill, cognition, language, sociality, and self-care domains of the Korean Developmental Screening Test for Infants and Children at age 6 years. The positive control outcome was defined as attention deficit hyperactive disorder (ADHD). The associations were assessed using ordinal logistic regression, adjusting for asthma and allergic rhinitis. RESULTS Among the eligible children, 89,452 and 30,557 were allocated to the control and AD groups, respectively. In the weighted data, the AD group showed a higher risk of suspected neurodevelopmental dysfunction in the total score (weighted adjusted odds ratio [95% CI] 1.10 [1.05-1.16]), gross motor skills (1.14 [1.04-1.25]), and fine motor skills (1.15 [1.06-1.25]) than the control group. The AD with steroids or hospitalization groups showed an increased risk of suspected neurodevelopmental dysfunction. In addition, the AD group showed a significant association with mental retardation, psychological development disorder, and behavioral and emotional disorders as well as ADHD. CONCLUSIONS AD before age 2 years may be associated with an increased risk of neurodevelopmental dysfunction including gross and fine motor skills in the young childhood period.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Yoon Young Yi
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Hey Ryung Cha
- Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea.
| | - Hey-Sung Baek
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| |
Collapse
|
32
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
33
|
Muñoz L, Caparrós E, Albillos A, Francés R. The shaping of gut immunity in cirrhosis. Front Immunol 2023; 14:1139554. [PMID: 37122743 PMCID: PMC10141304 DOI: 10.3389/fimmu.2023.1139554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cirrhosis is the common end-stage of chronic liver diseases of different etiology. The altered bile acids metabolism in the cirrhotic liver and the increase in the blood-brain barrier permeability, along with the progressive dysbiosis of intestinal microbiota, contribute to gut immunity changes, from compromised antimicrobial host defense to pro-inflammatory adaptive responses. In turn, these changes elicit a disruption in the epithelial and gut vascular barriers, promoting the increased access of potential pathogenic microbial antigens to portal circulation, further aggravating liver disease. After summarizing the key aspects of gut immunity during homeostasis, this review is intended to update the contribution of liver and brain metabolites in shaping the intestinal immune status and, in turn, to understand how the loss of homeostasis in the gut-associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced chronic liver disease progression. Finally, several therapeutic approaches targeting the intestinal homeostasis in cirrhosis are discussed.
Collapse
Affiliation(s)
- Leticia Muñoz
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Agustín Albillos
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| | - Rubén Francés
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnologiía Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
- *Correspondence: Agustín Albillos, ; Rubén Frances,
| |
Collapse
|
34
|
Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 24:ijms24010223. [PMID: 36613667 PMCID: PMC9820677 DOI: 10.3390/ijms24010223] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.
Collapse
|
35
|
Boehme M, Guzzetta KE, Wasén C, Cox LM. The gut microbiota is an emerging target for improving brain health during ageing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:E2. [PMID: 37179659 PMCID: PMC10174391 DOI: 10.1017/gmb.2022.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The gut microbiota plays crucial roles in maintaining the health and homeostasis of its host throughout lifespan, including through its ability to impact brain function and regulate behaviour during ageing. Studies have shown that there are disparate rates of biologic ageing despite equivalencies in chronologic age, including in the development of neurodegenerative diseases, which suggests that environmental factors may play an important role in determining health outcomes in ageing. Recent evidence demonstrates that the gut microbiota may be a potential novel target to ameliorate symptoms of brain ageing and promote healthy cognition. This review highlights the current knowledge around the relationships between the gut microbiota and host brain ageing, including potential contributions to age-related neurodegenerative diseases. Furthermore, we assess key areas for which gut microbiota-based strategies may present as opportunities for intervention.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katherine Elizabeth Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Laura Michelle Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
36
|
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM 2.5 exposure. J Environ Sci (China) 2022; 122:25-40. [PMID: 35717088 DOI: 10.1016/j.jes.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 µg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384-5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
37
|
Zhang Y, Song H, Wang J, Xi X, Cefalo P, Wood LJ, Luo X, Wang QM. Multiplex array analysis of serum cytokines offers minimal predictive value for cognitive function in the subacute phase after stroke. Front Neurol 2022; 13:886018. [PMID: 36330425 PMCID: PMC9622930 DOI: 10.3389/fneur.2022.886018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The effects of inflammation on post-stroke cognitive function are still unclear. This study investigated the correlation between the Th17-related cytokines in peripheral blood and post-stroke cognitive function after ischemic stroke in the subacute phase. DESIGN A retrospective cohort study. SETTING Academic acute inpatient rehabilitation facility. PARTICIPANTS One hundred and fourteen patients with first ischemic stroke were categorized as the poor cognitive recovery group (n = 58) or good cognitive recovery group (n = 56) based on their cognitive MRFS efficiency. INTERVENTIONS All subjects received routine physical, occupational, and speech-language pathology therapy. MAIN OUTCOME MEASURES Serum cytokines/chemokine (IL-1 β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-17E, IL-17F, IL-21, IL-22, IL-23, IL-27, IL-28A, IL-31, IL-33, GM-CSF, IFN-γ, MIP-3 α, TNF-α, and TNF-β) levels were measured in duplicate using Human Th17 magnetic bead panel and multiplex array analysis (Luminex-200 system). The primary functional outcome was a gain in functional independence measure (FIM) cognitive subscore at discharge. The secondary outcome measures were FIM total score at discharge, length of stay in the hospital, and discharge destination. Cognitive Montebello Rehabilitation Factor Score (MRFS) and cognitive MRFS efficiency were calculated. Demographic and clinical characteristics were obtained from the medical record. RESULTS The good cognitive recovery group had an interesting trend of higher IL-13 than the poor cognitive recovery group (good cognitive recovery group 257.82 ± 268.76 vs. poor cognitive recovery group 191.67 ± 201.82, p = 0.049, unit: pg/ml). However, Pearson's correlation analysis showed no significant correlation between cytokine levels and gain of cognition, cognitive MRFS, or cognitive MRFS efficiency. Receiver operating characteristic (ROC) analysis of cytokines also suggested a low accuracy of prediction as a predictor for post-stroke cognitive recovery improvement. CONCLUSION Our preliminary findings suggested that the level of serum cytokines had minimal predictive value for the recovery of cognitive function during the subacute inpatient rehabilitation after stroke.
Collapse
Affiliation(s)
- Yuling Zhang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haixin Song
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Rehabilitation Department, Sir Run Run Show Hospital, Hangzhou, China
| | - Jun Wang
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiao Xi
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Philip Cefalo
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| | - Lisa J. Wood
- William F. Connell School of Nursing at Boston College, Boston, MA, United States
| | - Xun Luo
- School of Medicine, Shenzhen University, Shenzhen, China
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
38
|
Li X, Cheng W, Zhang J, Li D, Wang F, Cui N. Early alteration of peripheral blood lymphocyte subsets as a risk factor for delirium in critically ill patients after cardiac surgery: A prospective observational study. Front Aging Neurosci 2022; 14:950188. [PMID: 36118695 PMCID: PMC9477480 DOI: 10.3389/fnagi.2022.950188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Objective There is a high incidence of delirium among patients with organ dysfunction undergoing cardiac surgery who need critical care. This study aimed to explore the risk factors for delirium in critically ill patients undergoing cardiac surgery and the predictive value of related risk factors. Methods We conducted a prospective observational study on adult critically ill patients who underwent cardiac surgery between January 2019 and August 2021. Patients were consecutively assigned to delirium and non-delirium groups. Univariate analysis and multivariate logistic analysis were used to determine the risk factors for delirium. Receiver operating characteristic curves and a nomogram were used to identify the predictive value of related risk factors. Results Delirium developed in 242 of 379 (63.9%) participants. Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were 14.2 ± 5.6 and 18 ± 8.4, respectively. Patients with delirium had longer cardiopulmonary bypass time (149.6 ± 59.1 vs. 126.7 ± 48.5 min, p < 0.001) and aortic cross-clamp time (98.7 ± 51.5 vs. 86.1 ± 41.6 min, p = 0.010) compared with the non-delirium group. The area under the curve was 0.824 for CD4+ T cell count and 0.862 for CD4/CD8 ratio. Multivariate analysis demonstrated that age [odds ratio (OR) 1.030, p = 0.038], duration of physical restraint (OR 1.030, p < 0.001), interleukin-6 (OR 1.001, p = 0.025), CD19+ B cell count (OR 0.996, p = 0.016), CD4+ T cell count (OR 1.005, p < 0.001) and CD4/CD8 ratio (OR 5.314, p < 0.001) were independent risk factors for delirium. A nomogram revealed that age, cardiopulmonary bypass duration, CD4+ T cell count and CD4/CD8 ratio were independent predictors of delirium. Conclusion Age, duration of physical restraint, CD4+ T cell count and CD4/CD8 ratio were reliable factors for predicting delirium in critically ill patients after cardiac surgery. The receiver operating characteristic curves and nomogram suggested a potential role for CD4+ T cells in mediating potential neuroinflammation of delirium.
Collapse
Affiliation(s)
- Xiao Li
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Wei Cheng
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Jiahui Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Dongkai Li
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fei Wang
- Department of Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Na Cui,
| |
Collapse
|
39
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
40
|
Zhang Y, Niu C. Relation of CDC42, Th1, Th2, and Th17 cells with cognitive function decline in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:1428-1436. [PMID: 35976992 PMCID: PMC9463943 DOI: 10.1002/acn3.51643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) regulates neurite outgrowth, neurotransmitter, and T help (Th) cell-mediated neuroinflammation, while its clinical implication in Alzheimer's disease (AD) is not clear. The present study aimed to investigate the correlation of CDC42 with Th1, Th2, and Th17 cells, as well as CDC42' longitudinal change and relation to cognitive function decline in AD patients. METHODS 150 AD patients were enrolled, then their blood Th1, Th2, and Th17 cells were quantified by flow cytometry at baseline; CDC42 was detected by RT-qPCR and MMSE score was assessed at baseline and during 3-year follow-up. Meanwhile, CDC42, Th1, Th2, and Th17 cells were quantified in 30 Parkinson's disease (PD) patients and 30 healthy controls (HCs). RESULTS CDC42 (p < 0.001) and Th2 cells (p < 0.001) were lowest in AD patients, followed by PD patients, highest in HCs; but Th1 cells (p = 0.001) and Th17 cells (p < 0.001) showed opposite trends. CDC42 was not related to Th1 cells (p = 0.134), positively correlated with Th2 cells (p = 0.023) and MMSE (p < 0.001), while negatively associated with Th17 cells (p < 0.001) in AD patients. CDC42 was only related to Th17 cells (p = 0.048) and MMSE (p = 0.048) in PD patients; and it was not linked with Th1, Th2, Th17 cells, or MMSE in HCs (all p > 0.05). During a 3-year follow-up, CDC42 was gradually declined in AD patients (p < 0.001), its decline was positively correlated with MMSE decline at 1 year (p = 0.004), 2 years (p = 0.005), and 3 years (p = 0.026). INTERPRETATION CDC42 might have the potency to serve as a biomarker for estimating AD risk and progression.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chenglin Niu
- Department of ICU, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Wen Y, Feng S, Dai H, Mao M, Zhou Z, Li B, Wang C, Cai X, Li S, Yang J, Ren Q, Sun J. Intestinal dysbacteriosis-propelled T helper 17 cells activation mediate the perioperative neurocognitive disorder induced by anesthesia/surgery in aged rats. Neurosci Lett 2022; 783:136741. [PMID: 35716962 DOI: 10.1016/j.neulet.2022.136741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) is a common postoperative disease in elderly patients, but its pathogenesis remains unclear. METHODS Exploratory laparotomy was performed to establish PND model under sevoflurane anesthesia. 16S rRNA high-throughput sequencing was used to detect the changes of intestinal flora. Antibiotics were used to relatively eliminate intestinal flora before anesthesia/surgery, and behavior tests, such as open field, Y maze, and fear conditioning tests were applied to detect the changes of memory ability. The number of Th17 cells and Foxp3 cells was detected by flow cytometry in the Peyer's patches (PP), mesenteric lymph nodes (MLN), blood and brain. Western blot was used to detect the expression of IL17, IL17RA, IL6 and IL10 in the hippocampus. Immunofluorescence was used to detect the expression of IL17, IL17R and IBA1 (ionized calcium binding adaptor molecule1) in the hippocampus. RESULTS Anesthesia/surgery caused intestinal flora imbalance and induced neurocognitive impairment, increased the number of Th17 cells in the PP, MLN, blood and brain, increased the level of IL17, IL17R and inflammatory factors production in the hippocampus. Antibiotics administration before anesthesia/surgery significantly decreased the number of Th17 cells and the level of IL17, IL17R and inflammatory factors production, and improved the memory function. In addition, we found that IL17R was co-labeled with IBA1 in a large amount in the hippocampus through immunofluorescence double-staining. CONCLUSION Our study suggested that intestinal dysbacteriosis-propelled T helper 17 cells activation and IL17 secretion might play an important role in the pathogenesis of PND induced by anesthesia/surgery in aged rats.
Collapse
Affiliation(s)
- Yazhou Wen
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Department of Anesthesiology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu 210004, China
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu 210004, China
| | - Hongyu Dai
- Department of Anesthesiology, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Meng Mao
- Department of Anesthesiology, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Zhenhui Zhou
- Department of Anesthesiology, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Bin Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Chaoran Wang
- Department of Anesthesiology, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Xuechun Cai
- Department of Anesthesiology, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Shuming Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Quan Ren
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
42
|
Oh SL, Zhou M, Chin EWM, Amarnath G, Cheah CH, Ng KP, Kandiah N, Goh ELK, Chiam KH. Alzheimer's Disease Blood Biomarkers Associated With Neuroinflammation as Therapeutic Targets for Early Personalized Intervention. Front Digit Health 2022; 4:875895. [PMID: 35899035 PMCID: PMC9309434 DOI: 10.3389/fdgth.2022.875895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The definitive diagnosis of Alzheimer's Disease (AD) without the need for neuropathological confirmation remains a challenge in AD research today, despite efforts to uncover the molecular and biological underpinnings of the disease process. Furthermore, the potential for therapeutic intervention is limited upon the onset of symptoms, providing motivation for studying and treating the AD precursor mild cognitive impairment (MCI), the prodromal stage of AD instead. Applying machine learning classification to transcriptomic data of MCI, AD, and cognitively normal (CN) control patients, we identified differentially expressed genes that serve as biomarkers for the characterization and classification of subjects into MCI or AD groups. Predictive models employing these biomarker genes exhibited good classification performances for CN, MCI, and AD, significantly above random chance. The PI3K-Akt, IL-17, JAK-STAT, TNF, and Ras signaling pathways were also enriched in these biomarker genes, indicating their diagnostic potential and pathophysiological roles in MCI and AD. These findings could aid in the recognition of MCI and AD risk in clinical settings, allow for the tracking of disease progression over time in individuals as part of a therapeutic approach, and provide possible personalized drug targets for early intervention of MCI and AD.
Collapse
Affiliation(s)
- Sher Li Oh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
| | - Meikun Zhou
- Bioinformatics Institute, ASTAR, Singapore, Singapore
| | - Eunice W. M. Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gautami Amarnath
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chee Hoe Cheah
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kok Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eyleen L. K. Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Eyleen L. K. Goh
| | - Keng-Hwee Chiam
- Bioinformatics Institute, ASTAR, Singapore, Singapore
- Keng-Hwee Chiam
| |
Collapse
|
43
|
Yu S, Cui W, Han J, Chen J, Tao W. Longitudinal change of Th1, Th2, and Th17 cells and their relationship between cognitive impairment, stroke recurrence, and mortality among acute ischemic stroke patients. J Clin Lab Anal 2022; 36:e24542. [PMID: 35689536 PMCID: PMC9280005 DOI: 10.1002/jcla.24542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Background T‐helper (Th) cells regulate immunity and inflammation, and modulate cognitive impairment in both cardio‐cerebrovascular and neurological diseases. This study aimed to explore the correlation of longitudinal change of Th1/2/17 cells with cognitive impairment and prognosis in acute ischemic stroke (AIS). Methods Th1/2/17 cells were detected by flow cytometry in peripheral blood samples from 150 AIS patients at admission (baseline), Day (D)1, D3, and D7 after admission, and from 30 controls. Mini‐Mental State Examination (MMSE) score among AIS patients at discharge was assessed. Stroke recurrence and mortality were evaluated. Results Th1 (p = 0.013) and Th17 cells (p < 0.001) but not Th2 cells (p = 0.105) were elevated in AIS patients versus controls. Th1 cells (p = 0.027) and Th17 cells (p < 0.001) but not Th2 cells (p = 0.227) were positively correlated with NIHSS score in AIS patients. Furthermore, Th1 and Th17 cells elevated from baseline to D3 and then decreased on D7 after AIS onset, while Th2 cells illustrated an opposite trend (all p < 0.001). Th17 cells on D1 (p = 0.011), D3 (p = 0.014), and D7 (p < 0.001) were correlated with lower MMSE score, and their levels on D3 (p = 0.033) and D7 (p = 0.004) were related to elevated cognitive impairment. Th1 and Th2 cells were not related to cognitive function (all p > 0.05). Additionally, Th17 cells at baseline, D1, D3, and D7 (all p < 0.05) were increased in recurrent patients versus non‐recurrent patients, and in survived patients versus dead patients, but Th1 or Th2 cells did not vary (all p > 0.05). Conclusion Th17 cells correlate with increased cognitive impairment, stroke recurrence, and mortality among AIS patients.
Collapse
Affiliation(s)
- Shijian Yu
- Department of Anesthesiology, Jing'an District Central Hospital, Shanghai, China
| | - Wei Cui
- Department of Anesthesiology, Jing'an District Central Hospital, Shanghai, China
| | - Jingfeng Han
- Department of Anesthesiology, Jing'an District Central Hospital, Shanghai, China
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Central Hospital, Shanghai, China
| | - Weiping Tao
- Department of Anesthesiology, Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
44
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Wang W, Li S, Li X, Chen S, Pang S, Zhang Y. CCL21 contributes to Th17 cell migration in neuroinflammation in obese mice following lead exposure. Toxicol Lett 2022; 366:7-16. [PMID: 35752368 DOI: 10.1016/j.toxlet.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/24/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Obesity and lead exposure can independently cause neuroinflammation, which is associated with neurodegenerative diseases. Although Th17 cells play critical roles in inflammatory diseases of the central nervous system, few studies have evaluated their role in neuroinflammation in the background of obesity and lead exposure. In this study, the mechanism underlying inflammatory injury was evaluated in a mouse model of high fat diet-induced obesity following lead exposure. Neuroinflammation was aggravated in mice with obesity following lead exposure, and this was accompanied by increases in Th17 cells in the brain and IL-17A and IL-22 secretion. An antibody array using Z310, a choroid plexus epithelium cell line, revealed that CCL21 was the most highly altered chemokine. CCL21 expression was higher in the choroid plexus of obese mice treated with lead than in mice with obesity or lead treatment alone and was higher in Z310 cells treated with lead and palmitic acid. CCL21 knockout reduced chemotaxis. Our findings suggest that lead exposure can aggravate inflammation in brain tissues of obese mice, possibly by the CCL21-mediated regulation of the passage of Th17 cells through the blood-cerebrospinal fluid barrier. Our findings provide new insights into the mechanism underlying the combined effects of lead and obesity.
Collapse
Affiliation(s)
- Weixuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Shuang Li
- Laboratory Animal Center, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Xinying Li
- School of Public Health, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Song Chen
- Laboratory Animal Center, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Shulang Pang
- School of Public Health, North China University of Science and Technology, Tangshan Hebei 063210, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan Hebei 063210, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan Hebei 063210, China
| |
Collapse
|
46
|
Mickael ME, Bhaumik S, Chakraborti A, Umfress AA, van Groen T, Macaluso M, Totenhagen J, Sorace AG, Bibb JA, Standaert DG, Basu R. RORγt-Expressing Pathogenic CD4 + T Cells Cause Brain Inflammation during Chronic Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2054-2066. [PMID: 35379749 PMCID: PMC10103644 DOI: 10.4049/jimmunol.2100869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 01/09/2023]
Abstract
Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.
Collapse
Affiliation(s)
| | - Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Ayanabha Chakraborti
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Alan A Umfress
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; and
| | - James A Bibb
- Department of Surgery, Neuroscience, and Neurology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
47
|
Blockade on Lin28a Prevents Cognitive Impairment and Disruption of the Blood-Brain Barrier Induced by Chronic Cerebral Hypoperfusion. Biomedicines 2022; 10:biomedicines10040852. [PMID: 35453602 PMCID: PMC9029709 DOI: 10.3390/biomedicines10040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Lin28a is an RNA-binding protein involved in the translation and regulation of multiple mRNAs. Lin28a is overexpressed in animal models of brain injury. Similarly, our preliminary study found increased Lin28a expression levels in the animal models four to seven days after chronic cerebral hypoperfusion. Therefore, this current study aimed to evaluate the effects of modulating Lin28a on cognition and brain functions. Vascular dementia (VaD) was induced in 12-week-old male Wistar rats using permanent bilateral common carotid artery occlusion (BCCAO), and these rats were treated with Lin28a siRNA on the fourth and seventh day after BCCAO. From the 42nd day after BCCAO, cognitive behavioral experiments were performed for two weeks. VaD induced by BCCAO resulted in cognitive impairment and microglial activation. Lin28a expression was upregulated after BCCAO. Lin28a siRNA treatment alleviated cognitive impairment and overexpression of GFAP and Iba-1 in the brain. Furthermore, the treatment ameliorated the VaD-induced damage to the blood-brain barrier (BBB) components, including PECAM-1, PDGFRβ, occludin, claudin-9, and ZO-1. CCR6 activation after VaD, associated with BBB disruption, was diminished by treatment with Lin28a siRNA. The treatment inhibited VaD-induced microglial activity and alleviated BBB damage. Thus, blocking Lin28a may alleviate cognitive impairment caused by VaD.
Collapse
|
48
|
Rosenkranz MA, Dean DC, Bendlin BB, Jarjour NN, Esnault S, Zetterberg H, Heslegrave A, Evans MD, Davidson RJ, Busse WW. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J Allergy Clin Immunol 2022; 149:589-598.e6. [PMID: 34536414 PMCID: PMC8821112 DOI: 10.1016/j.jaci.2021.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epidemiologic studies have shown that Alzheimer's disease (AD) and related dementias (ADRD) are seen more frequently with asthma, especially with greater asthma severity or exacerbation frequency. OBJECTIVE To examine the changes in brain structure that may underlie this phenomenon, we examined diffusion-weighted magnetic resonance imaging (dMRI) and blood-based biomarkers of AD (phosphorylated tau 181, p-Tau181), neurodegeneration (neurofilament light chain, NfL), and glial activation (glial fibrillary acidic protein, GFAP). METHODS dMRI data were obtained in 111 individuals with asthma, ranging in disease severity from mild to severe, and 135 healthy controls. Regression analyses were used to test the relationships between asthma severity and neuroimaging measures, as well as AD pathology, neurodegeneration, and glial activation, indexed by plasma p-Tau181, NfL, and GFAP, respectively. Additional relationships were tested with cognitive function. RESULTS Asthma participants had widespread and large-magnitude differences in several dMRI metrics, which were indicative of neuroinflammation and neurodegeneration, and which were robustly associated with GFAP and, to a lesser extent, NfL. The AD biomarker p-Tau181 was only minimally associated with neuroimaging outcomes. Further, asthma severity was associated with deleterious changes in neuroimaging outcomes, which in turn were associated with slower processing speed, a test of cognitive performance. CONCLUSIONS Asthma, particularly when severe, is associated with characteristics of neuroinflammation and neurodegeneration, and may be a potential risk factor for neural injury and cognitive dysfunction. There is a need to determine how asthma may affect brain health and whether treatment directed toward characteristics of asthma associated with these risks can mitigate these effects.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc.
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisc; Waisman Center, University of Wisconsin-Madison, Madison, Wisc
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, Madison, Wisc
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Michael D Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minn
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc; Department of Psychology, University of Wisconsin-Madison, Madison, Wisc
| | - William W Busse
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| |
Collapse
|
49
|
McLellan J, Kim DHJ, Bruce M, Ramirez-Celis A, Van de Water J. Maternal Immune Dysregulation and Autism-Understanding the Role of Cytokines, Chemokines and Autoantibodies. Front Psychiatry 2022; 13:834910. [PMID: 35722542 PMCID: PMC9201050 DOI: 10.3389/fpsyt.2022.834910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is acknowledged as a highly heterogeneous, behaviorally defined neurodevelopmental disorder with multiple etiologies. In addition to its high heritability, we have come to recognize a role for maternal immune system dysregulation as a prominent risk factor for the development of ASD in the child. Examples of these risk factors include altered cytokine/chemokine activity and the presence of autoantibodies in mothers that are reactive to proteins in the developing brain. In addition to large clinical studies, the development of pre-clinical models enables the ability to evaluate the cellular and molecular underpinnings of immune-related pathology. For example, the novel animal models of maternal autoantibody-related (MAR) ASD described herein will serve as a preclinical platform for the future testing of targeted therapeutics for one 'type' of ASD. Identification of the cellular targets will advance precision medicine efforts toward tailored therapeutics and prevention. This minireview highlights emerging evidence for the role of maternal immune dysregulation as a potential biomarker, as well as a pathologically relevant mechanism for the development of ASD in offspring. Further, we will discuss the current limitations of these models as well as potential avenues for future research.
Collapse
Affiliation(s)
- Janna McLellan
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Danielle H J Kim
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Matthew Bruce
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Alexandra Ramirez-Celis
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Judy Van de Water
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
50
|
Liang L, Yan J, Huang X, Zou C, Chen L, Li R, Xie J, Pan M, Zou D, Liu Y. Identification of molecular signatures associated with sleep disorder and Alzheimer's disease. Front Psychiatry 2022; 13:925012. [PMID: 35990086 PMCID: PMC9386361 DOI: 10.3389/fpsyt.2022.925012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and sleep disorders are both neurodegenerative conditions characterized by impaired or absent sleep. However, potential common pathogenetic mechanisms of these diseases are not well characterized. METHODS Differentially expressed genes (DEGs) were identified using publicly available human gene expression profiles GSE5281 for AD and GSE40562 for sleep disorder. DEGs common to the two datasets were used for enrichment analysis, and we performed multi-scale embedded gene co-expression network analysis (MEGENA) for common DEGs. Fast gene set enrichment analysis (fGSEA) was used to obtain common pathways, while gene set variation analysis (GSVA) was applied to quantify those pathways. Subsequently, we extracted the common genes between module genes identified by MEGENA and genes of the common pathways, and we constructed protein-protein interaction (PPI) networks. The top 10 genes with the highest degree of connectivity were classified as hub genes. Common genes were used to perform Metascape enrichment analysis for functional enrichment. Furthermore, we quantified infiltrating immune cells in patients with AD or sleep disorder and in controls. RESULTS DEGs common to the two disorders were involved in the citrate cycle and the HIF-1 signaling pathway, and several common DEGs were related to signaling pathways regulating the pluripotency of stem cells, as well as 10 other pathways. Using MEGENA, we identified 29 modules and 1,498 module genes in GSE5281, and 55 modules and 1,791 module genes in GSE40562. Hub genes involved in AD and sleep disorder were ATP5A1, ATP5B, COX5A, GAPDH, NDUFA9, NDUFS3, NDUFV2, SOD1, UQCRC1, and UQCRC2. Plasmacytoid dendritic cells and T helper 17 cells had the most extensive infiltration in both AD and sleep disorder. CONCLUSION AD pathology and pathways of neurodegeneration participate in processes contributing in AD and sleep disorder. Hub genes may be worth exploring as potential candidates for targeted therapy of AD and sleep disorder.
Collapse
Affiliation(s)
- Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Yan
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongjie Li
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Jieqiong Xie
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Liu
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|