1
|
Hnath B, Dokholyan NV. Novel extracellular vesicle release pathway facilitated by toxic superoxide dismutase 1 oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647611. [PMID: 40291716 PMCID: PMC12026985 DOI: 10.1101/2025.04.07.647611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease resulting in paralysis and death within three to five years. Mutations in over forty different proteins have been linked to ALS, leading to controversy whether ALS is one disease or many diseases with a similar phenotype. Mutations in Cu,Zn superoxide dismutase 1 (SOD1) are only found in 2-3% of ALS cases, yet misfolded SOD1 is found in both sporadic (sALS) and familial (fALS) patients. Yet, mutations in TDP-43 or FUS increase the level of misfolded SOD1 on extracellular vesicles (EVs). Additionally, small EVs isolated from ALS patient samples caused cell death of wild type motor neurons and myotubules. The toxicity and protein alterations of ALS EVs have led to the theory that EVs are responsible for the spread of ALS. We hypothesize that previously-identified toxic trimeric SOD1 is spreading on EVs in ALS and altering the spread of other ALS-related proteins, linking them to a common mechanism. To test our hypothesis, we isolate EVs from motor neuron-like cells expressing trimer stabilizing mutations and perform a sandwich enzyme-linked immunoassay (ELISA) (CD9 capture antibody) to quantify whether misfolded SOD1 and 17 other ALS-related proteins increase or decrease on EVs with trimer stabilization. We identify which EV release pathway is being affected by trimeric SOD1 utilizing endocytosis and exocytosis inhibitors, and determine if any specific EV-related proteins are altered with trimer stabilization. We establish that VAPB, VCP, and Stathmin-2 increase on EVs with trimer stabilization. The common pathway between SOD1 and three other ALS-associated proteins is affected by multiple pathways, including the Caveolae endocytosis pathway, suggesting a novel hybrid pathway of EV release present in ALS.
Collapse
|
2
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
3
|
Tserennadmid B, Nam MK, Park JH, Rhim H, Kang S. HAP/ClpP-mediated disaggregation and degradation of Mutant SOD1 aggregates: A potential therapeutic strategy for Amyotrophic lateral sclerosis (ALS). Biochem Biophys Res Commun 2025; 756:151533. [PMID: 40054065 DOI: 10.1016/j.bbrc.2025.151533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by the accumulation of misfolded Cu/Zn superoxide dismutase (SOD1) protein aggregates in motor neurons, leading to progressive motor dysfunction and ultimately death. While the molecular chaperone heat shock protein 104 (Hsp104) has been shown to reduce protein misfolding by disaggregating protein aggregates, fully degrading these disaggregated proteins remains a significant challenge. In this study, we have investigated the effects of Hsp104 and its hyperactive variant, HAP, in combination with caseinolytic protease P (CIpP), on the disaggregation and degradation of SOD1 aggregates. Using laser confocal microscopy, fluorescence loss in photobleaching (FLIP), and biomolecular fluorescence complementation (BiFC)-fluorescence resonance energy transfer (FRET) assays, we demonstrate that Hsp104 effectively disaggregates SOD1 aggregates across 14 different G93 mutants, classified based on the properties of substituted amino acids, thus restoring protein mobility. Notably, the HAP/CIpP system not only disaggregates ALS-associated SOD1G93A aggregates but also promotes their proteolytic degradation, as evidenced by a significant reduction in high-order oligomers observed through BiFC and FRET assays. This dual mechanism of action presents. the HAP/CIpP system holds significant therapeutic potential for ALS and other neurodegenerative diseases characterized by protein aggregates, as it enables both effective disaggregation and degradation of toxic protein aggregates, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Battur Tserennadmid
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ju-Hwang Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Nakaya T. Release of FUS into the extracellular space is regulated by its amino-terminal prion-like domain. FEBS Lett 2025; 599:1046-1054. [PMID: 39737526 DOI: 10.1002/1873-3468.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
5
|
Le QD, Lewis A, Dix-Matthews A, Ringler P, Duff A, Whitten AE, Atkin R, Brunner M, Ho D, Iyer KS, Marshall AC, Fox AH, Bond CS. Structural Characteristics and Properties of the RNA-Binding Protein hnRNPK at Multiple Physical States. Int J Mol Sci 2025; 26:1356. [PMID: 39941124 PMCID: PMC11818384 DOI: 10.3390/ijms26031356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA-binding protein containing low-complexity domains (LCDs), which are known to regulate protein behavior under stress conditions. This study demonstrates the ability to control hnRNPK's transitions into four distinct material states-monomer, soluble aggregate, liquid droplet, and fibrillar hydrogel-by modulating environmental factors such as temperature and protein concentration. Importantly, the phase-separated and hydrogel states are newly identified for eGFP-hnRNPK, marking a significant advancement in understanding its material properties. A combination of biophysical techniques, including DLS and SEC-LS, were used to further characterize hnRNPK in monomeric and soluble aggregate states. Structural methods, such as SANS, SAXS, and TEM, revealed the elongated morphology of the hnRNPK monomer. Environmental perturbations, such as decreased temperature or crowding agents, drove hnRNPK into phase-separated or gel-like states, each with distinct biophysical characteristics. These novel states were further analyzed using SEM, X-ray diffraction, and fluorescence microscopy. Collectively, these results demonstrate the complex behaviors of hnRNPK under different conditions and illustrate the properties of the protein in each material state. Transitions of hnRNPK upon condition changes could potentially affect functions of hnRNPK, playing a significant role in regulation of hnRNPK-involved processes in the cell.
Collapse
Affiliation(s)
- Quang D. Le
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- Faculty of Biology, VNU University of Science, 334-Nguyen Trai Street, Ha Noi 100000, Vietnam
| | - Amanda Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Alice Dix-Matthews
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4001 Basel, Switzerland (P.R.)
| | - Anthony Duff
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Manuel Brunner
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Diwei Ho
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - K. Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Andrew C. Marshall
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| | - Archa H. Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Charles S. Bond
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia; (Q.D.L.); (A.H.F.)
| |
Collapse
|
6
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Neupane K, Narayan A, Sen Mojumdar S, Adhikari G, Garen CR, Woodside MT. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 2024; 20:1220-1226. [PMID: 39009686 DOI: 10.1038/s41589-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024]
Abstract
Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Supratik Sen Mojumdar
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| | - Gaurav Adhikari
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
9
|
Shephard VK, Brown ML, Thompson BA, Harpur A, McAlary L. Rapid classification of a novel ALS-causing I149S variant in superoxide dismutase-1. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:608-614. [PMID: 38742757 DOI: 10.1080/21678421.2024.2351177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Variants of the oxygen free radical scavenging enzyme superoxide dismutase-1 (SOD1) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS). These variants occur in roughly 20% of familial ALS cases, and 1% of sporadic ALS cases. Here, we identified a novel SOD1 variant in a patient in their 50s who presented with movement deficiencies and neuropsychiatric features. The variant was heterozygous and resulted in the isoleucine at position 149 being substituted with a serine (I149S). In silico analysis predicted the variant to be destabilizing to the SOD1 protein structure. Expression of the SOD1I149S variant with a C-terminal EGFP tag in neuronal-like NSC-34 cells resulted in extensive inclusion formation and reduced cell viability. Immunoblotting revealed that the intramolecular disulphide between Cys57 and Cys146 was fully reduced for SOD1I149S. Furthermore, SOD1I149S was highly susceptible to proteolytic digestion, suggesting a large degree of instability to the protein fold. Finally, fluorescence correlation spectroscopy and native-PAGE of cell lysates showed that SOD1I149S was monomeric in solution in comparison to the dimeric SOD1WT. This experimental data was obtained within 3 months and resulted in the rapid re-classification of the variant from a variant of unknown significance (VUS) to a clinically actionable likely pathogenic variant.
Collapse
Affiliation(s)
- Victoria K Shephard
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Bryony A Thompson
- Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia, and
| | - Alisha Harpur
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| |
Collapse
|
10
|
Mielke JK, Klingeborn M, Schultz EP, Markham EL, Reese ED, Alam P, Mackenzie IR, Ly CV, Caughey B, Cashman NR, Leavens MJ. Seeding activity of human superoxide dismutase 1 aggregates in familial and sporadic amyotrophic lateral sclerosis postmortem neural tissues by real-time quaking-induced conversion. Acta Neuropathol 2024; 147:100. [PMID: 38884646 PMCID: PMC11182821 DOI: 10.1007/s00401-024-02752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.
Collapse
Affiliation(s)
- Justin K Mielke
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Mikael Klingeborn
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Eric P Schultz
- Center for Biomolecular Structure and Dynamics, University of Montana, 32 Campus Drive ISB #106, Missoula, MT, USA
| | - Erin L Markham
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Emily D Reese
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA
| | - Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, 59840, USA
| | - Ian R Mackenzie
- Departments of Pathology and Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Cindy V Ly
- Department of Neurology, Washington University, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, 59840, USA
| | - Neil R Cashman
- Departments of Pathology and Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Moses J Leavens
- Department of Biomedical Sciences, McLaughlin Research Institute, 1520 23rd St. South, Great Falls, MT, 59405, USA.
| |
Collapse
|
11
|
Lambert-Smith IA, Shephard VK, McAlary L, Yerbury JJ, Saunders DN. High-content analysis of proteostasis capacity in cellular models of amyotrophic lateral sclerosis (ALS). Sci Rep 2024; 14:13844. [PMID: 38879591 PMCID: PMC11180180 DOI: 10.1038/s41598-024-64366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Disrupted proteome homeostasis (proteostasis) in amyotrophic lateral sclerosis (ALS) has been a major focus of research in the past two decades. However, the proteostasis processes that become disturbed in ALS are not fully understood. Obtaining more detailed knowledge of proteostasis disruption in association with different ALS-causing mutations will improve our understanding of ALS pathophysiology and may identify novel therapeutic targets and strategies for ALS patients. Here we describe the development and use of a novel high-content analysis (HCA) assay to investigate proteostasis disturbances caused by the expression of several ALS-causing gene variants. This assay involves the use of conformationally-destabilised mutants of firefly luciferase (Fluc) to examine protein folding/re-folding capacity in NSC-34 cells expressing ALS-associated mutations in the genes encoding superoxide dismutase-1 (SOD1A4V) and cyclin F (CCNFS621G). We demonstrate that these Fluc isoforms can be used in high-throughput format to report on reductions in the activity of the chaperone network that result from the expression of SOD1A4V, providing multiplexed information at single-cell resolution. In addition to SOD1A4V and CCNFS621G, NSC-34 models of ALS-associated TDP-43, FUS, UBQLN2, OPTN, VCP and VAPB mutants were generated that could be screened using this assay in future work. For ALS-associated mutant proteins that do cause reductions in protein quality control capacity, such as SOD1A4V, this assay has potential to be applied in drug screening studies to identify candidate compounds that can ameliorate this deficiency.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Victoria K Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
12
|
McAlary L, Nan JR, Shyu C, Sher M, Plotkin SS, Cashman NR. Amyloidogenic regions in beta-strands II and III modulate the aggregation and toxicity of SOD1 in living cells. Open Biol 2024; 14:230418. [PMID: 38835240 DOI: 10.1098/rsob.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/16/2024] [Indexed: 06/06/2024] Open
Abstract
Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into β-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in β-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that β-strands II and III may be good targets for the development of SOD1-associated ALS therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy R Nan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clay Shyu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Pokrishevsky E, DuVal MG, McAlary L, Louadi S, Pozzi S, Roman A, Plotkin SS, Dijkstra A, Julien JP, Allison WT, Cashman NR. Tryptophan residues in TDP-43 and SOD1 modulate the cross-seeding and toxicity of SOD1. J Biol Chem 2024; 300:107207. [PMID: 38522514 PMCID: PMC11087967 DOI: 10.1016/j.jbc.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons. Neuronal superoxide dismutase-1 (SOD1) inclusion bodies are characteristic of familial ALS with SOD1 mutations, while a hallmark of sporadic ALS is inclusions containing aggregated WT TAR DNA-binding protein 43 (TDP-43). We show here that co-expression of mutant or WT TDP-43 with SOD1 leads to misfolding of endogenous SOD1 and aggregation of SOD1 reporter protein SOD1G85R-GFP in human cell cultures and promotes synergistic axonopathy in zebrafish. Intriguingly, this pathological interaction is modulated by natively solvent-exposed tryptophans in SOD1 (tryptophan-32) and TDP-43 RNA-recognition motif RRM1 (tryptophan-172), in concert with natively sequestered TDP-43 N-terminal domain tryptophan-68. TDP-43 RRM1 intrabodies reduce WT SOD1 misfolding in human cell cultures, via blocking tryptophan-172. Tryptophan-68 becomes antibody-accessible in aggregated TDP-43 in sporadic ALS motor neurons and cell culture. 5-fluorouridine inhibits TDP-43-induced G85R-GFP SOD1 aggregation in human cell cultures and ameliorates axonopathy in zebrafish, via its interaction with SOD1 tryptophan-32. Collectively, our results establish a novel and potentially druggable tryptophan-mediated mechanism whereby two principal ALS disease effector proteins might directly interact in disease.
Collapse
Affiliation(s)
- Edward Pokrishevsky
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michéle G DuVal
- Department of Biological Sciences, Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
| | - Luke McAlary
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Louadi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec, Quebec, Canada; CERVO Brain Research Center, Québec, Quebec, Canada
| | - Andrei Roman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anke Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec, Quebec, Canada; CERVO Brain Research Center, Québec, Quebec, Canada
| | - W Ted Allison
- Department of Biological Sciences, Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | - Neil R Cashman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Sun Z, Zhang B, Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab Brain Dis 2024; 39:467-482. [PMID: 38078970 DOI: 10.1007/s11011-023-01334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that causes paralysis whose etiology and pathogenesis have not been fully elucidated. Presently it is incurable and rapidly progressive with a survival of 2-5 years from onset, and no treatments could cure it. Therefore, it is urgent to identify which therapeutic target(s) are more promising to develop treatments that could effectively treat ALS. So far, more than 90 novel treatments for ALS patients have been registered on ClinicalTrials.gov, of which 23 are in clinical trials, 12 have been terminated and the rest suspended. This review will systematically summarize the possible targets of these novel treatments under development or failing based on published literature and information released by sponsors, so as to provide basis and support for subsequent drug research and development.
Collapse
Affiliation(s)
- Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
17
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
18
|
Lockard G, Gordon J, Schimmel S, El Sayed B, Monsour M, Garbuzova‐Davis S, Borlongan CV. Attenuation of amyotrophic lateral sclerosis via stem cell and extracellular vesicle therapy: An updated review. NEUROPROTECTION 2023; 1:130-138. [PMID: 38188233 PMCID: PMC10766415 DOI: 10.1002/nep3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly fatal neurological disease characterized by upper and lower motor neuron degeneration. Though typically idiopathic, familial forms of ALS are commonly comprised of a superoxide dismutase 1 (SOD1) mutation. Basic science frequently utilizes SOD1 models in vitro and in vivo to replicate ALS conditions. Therapies are sparse; those that exist on the market extend life minimally, thus driving the demand for research to identify novel therapeutics. Transplantation of stem cells is a promising approach for many diseases and has shown efficacy in SOD1 models and clinical trials. The underlying mechanism for stem cell therapy presents an exciting venue for research investigations. Most notably, the paracrine actions of stem cell-derived extracellular vesicles (EVs) have been suggested as a potent mitigating factor. This literature review focuses on the most recent preclinical research investigating cell-free methods for treating ALS. Various avenues are being explored, differing on the EV contents (protein, microRNA, etc.) and on the cell target (astrocyte, endothelial cell, motor neuron-like cells, etc.), and both molecular and behavioral outcomes are being examined. Unfortunately, EVs may also play a role in propagating ALS pathology. Nonetheless, the overarching goal remains clear; to identify efficient cell-free techniques to attenuate the deadly consequences of ALS.
Collapse
Affiliation(s)
- Gavin Lockard
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Jonah Gordon
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Samantha Schimmel
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bassel El Sayed
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Molly Monsour
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Svitlana Garbuzova‐Davis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
19
|
Kang H, Park S, Jo A, Mao X, Kumar M, Park C, Ahn J, Lee Y, Choi J, Lee Y, Dawson VL, Dawson TM, Kam T, Shin J. PARIS undergoes liquid-liquid phase separation and poly(ADP-ribose)-mediated solidification. EMBO Rep 2023; 24:e56166. [PMID: 37870275 PMCID: PMC10626450 DOI: 10.15252/embr.202256166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.
Collapse
Affiliation(s)
- Hojin Kang
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Soojeong Park
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
| | - Areum Jo
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Chi‐Hu Park
- Neurodegeneration Research InstituteYEP Bio Co., Ltd.AnyangSouth Korea
| | - Jee‐Yin Ahn
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Yunjong Lee
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Jeong‐Yun Choi
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Yun‐Song Lee
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tae‐In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Brain and Cognitive SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Joo‐Ho Shin
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
20
|
Wilkins JM, Gakh O, Guo Y, Popescu B, Staff NP, Lucchinetti CF. Biomolecular alterations detected in multiple sclerosis skin fibroblasts using Fourier transform infrared spectroscopy. Front Cell Neurosci 2023; 17:1223912. [PMID: 37744877 PMCID: PMC10512183 DOI: 10.3389/fncel.2023.1223912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Multiple sclerosis (MS) is the leading cause of non-traumatic disability in young adults. New avenues are needed to help predict individuals at risk for developing MS and aid in diagnosis, prognosis, and outcome of therapeutic treatments. Previously, we showed that skin fibroblasts derived from patients with MS have altered signatures of cell stress and bioenergetics, which likely reflects changes in their protein, lipid, and biochemical profiles. Here, we used Fourier transform infrared (FTIR) spectroscopy to determine if the biochemical landscape of MS skin fibroblasts were altered when compared to age- and sex-matched controls (CTRL). More so, we sought to determine if FTIR spectroscopic signatures detected in MS skin fibroblasts are disease specific by comparing them to amyotrophic lateral sclerosis (ALS) skin fibroblasts. Spectral profiling of skin fibroblasts from MS individuals suggests significant alterations in lipid and protein organization and homeostasis, which may be affecting metabolic processes, cellular organization, and oxidation status. Sparse partial least squares-discriminant analysis of spectral profiles show that CTRL skin fibroblasts segregate well from diseased cells and that changes in MS and ALS may be unique. Differential changes in the spectral profile of CTRL, MS, and ALS cells support the development of FTIR spectroscopy to detect biomolecular modifications in patient-derived skin fibroblasts, which may eventually help establish novel peripheral biomarkers.
Collapse
Affiliation(s)
| | - Oleksandr Gakh
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bogdan Popescu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathan P. Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Claudia F. Lucchinetti
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
21
|
Brunette S, Sharma A, Bell R, Puente L, Megeney LA. Caspase 3 exhibits a yeast metacaspase proteostasis function that protects mitochondria from toxic TDP43 aggregates. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:157-169. [PMID: 37545643 PMCID: PMC10399456 DOI: 10.15698/mic2023.08.801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Caspase 3 activation is a hallmark of cell death and there is a strong correlation between elevated protease activity and evolving pathology in neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS). At the cellular level, ALS is characterized by protein aggregates and inclusions, comprising the RNA binding protein TDP-43, which are hypothesized to trigger pathogenic activation of caspase 3. However, a growing body of evidence indicates this protease is essential for ensuring cell viability during growth, differentiation and adaptation to stress. Here, we explored whether caspase 3 acts to disperse toxic protein aggregates, a proteostasis activity first ascribed to the distantly related yeast metacaspase ScMCA1. We demonstrate that human caspase 3 can functionally substitute for the ScMCA1 and limit protein aggregation in yeast, including TDP-43 inclusions. Proteomic analysis revealed that disrupting caspase 3 in the same yeast substitution model resulted in detrimental TDP-43/mitochondrial protein associations. Similarly, suppression of caspase 3, in either murine or human skeletal muscle cells, led to accumulation of TDP-43 aggregates and impaired mitochondrial function. These results suggest that caspase 3 is not inherently pathogenic, but may act as a compensatory proteostasis factor, to limit TDP-43 protein inclusions and protect organelle function in aggregation related degenerative disease.
Collapse
Affiliation(s)
- Steve Brunette
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Anupam Sharma
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ryan Bell
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lawrence Puente
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Aina A, Hsueh SCC, Gibbs E, Peng X, Cashman NR, Plotkin SS. De Novo Design of a β-Helix Tau Protein Scaffold: An Oligomer-Selective Vaccine Immunogen Candidate for Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2603-2617. [PMID: 37458595 DOI: 10.1021/acschemneuro.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Tau pathology is associated with many neurodegenerative disorders, including Alzheimer's disease (AD), where the spatio-temporal pattern of tau neurofibrillary tangles strongly correlates with disease progression, which motivates therapeutics selective for misfolded tau. Here, we introduce a new avidity-enhanced, multi-epitope approach for protein-misfolding immunogen design, which is predicted to mimic the conformational state of an exposed epitope in toxic tau oligomers. A predicted oligomer-selective tau epitope 343KLDFK347 was scaffolded by designing a β-helix structure that incorporated multiple instances of the 16-residue tau fragment 339VKSEKLDFKDRVQSKI354. Large-scale conformational ensemble analyses involving Jensen-Shannon Divergence and the embedding depth D showed that the multi-epitope scaffolding approach, employed in designing the β-helix scaffold, was predicted to better discriminate toxic tau oligomers than other "monovalent" strategies utilizing a single instance of an epitope for vaccine immunogen design. Using Rosetta, 10,000 sequences were designed and screened for the linker portions of the β-helix scaffold, along with a C-terminal stabilizing α-helix that interacts with the linkers, to optimize the folded structure and stability of the scaffold. Structures were ranked by energy, and the lowest 1% (82 unique sequences) were verified using AlphaFold. Several selection criteria involving AlphaFold are implemented to obtain a lead-designed sequence. The structure was further predicted to have free energetic stability by using Hamiltonian replica exchange molecular dynamics (MD) simulations. The synthesized β-helix scaffold showed direct binding in surface plasmon resonance (SPR) experiments to several antibodies that were raised to the structured epitope using a designed cyclic peptide. Moreover, the strength of binding of these antibodies to in vitro tau oligomers correlated with the strength of binding to the β-helix construct, suggesting that the construct presents an oligomer-like conformation and may thus constitute an effective oligomer-selective immunogen.
Collapse
Affiliation(s)
- Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ebrima Gibbs
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
23
|
Manzoor H, Zahid H, Emerling CA, Kumar KR, Hussain HMJ, Seo GH, Wajid M, Naz S. A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans. Eur J Hum Genet 2023; 31:629-637. [PMID: 36797467 PMCID: PMC10250411 DOI: 10.1038/s41431-023-01319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1-2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a β-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.
Collapse
Affiliation(s)
- Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafsa Zahid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | - Muhammad Wajid
- Department of Zoology, University of Okara, Punjab, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
24
|
Fisher EM, Greensmith L, Malaspina A, Fratta P, Hanna MG, Schiavo G, Isaacs AM, Orrell RW, Cunningham TJ, Arozena AA. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener 2023; 18:30. [PMID: 37143081 PMCID: PMC10161557 DOI: 10.1186/s13024-023-00619-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.
Collapse
Affiliation(s)
- Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
| | - Adrian M. Isaacs
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Richard W. Orrell
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Courtauld Building, 33 Cleveland Street, London, W1W 7FF UK
| | - Abraham Acevedo Arozena
- Research Unit, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, 38320 Spain
| |
Collapse
|
25
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
26
|
Sharma V, Nikolajeff F, Kumar S. Employing nanoparticle tracking analysis of salivary neuronal exosomes for early detection of neurodegenerative diseases. Transl Neurodegener 2023; 12:7. [PMID: 36747288 PMCID: PMC9903484 DOI: 10.1186/s40035-023-00339-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a set of progressive and currently incurable diseases that are primarily caused by neuron degeneration. Neurodegenerative diseases often lead to cognitive impairment and dyskinesias. It is now well recognized that molecular events precede the onset of clinical symptoms by years. Over the past decade, intensive research attempts have been aimed at the early diagnosis of these diseases. Recently, exosomes have been shown to play a pivotal role in the occurrence and progression of many diseases including cancer and neurodegenerative diseases. Additionally, because exosomes can cross the blood-brain barrier, they may serve as a diagnostic tool for neural dysfunction. In this review, we detail the mechanisms and current challenges of these diseases, briefly review the role of exosomes in the progression of neurodegenerative diseases, and propose a novel strategy based on salivary neuronal exosomes and nanoparticle tracking analysis that could be employed for screening the early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Saroj Kumar
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
28
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
29
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
30
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
31
|
P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022; 18:451-467. [PMID: 35478453 PMCID: PMC9832181 DOI: 10.1007/s11302-022-09863-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Collapse
|
32
|
Dar GH, Badierah R, Nathan EG, Bhat MA, Dar AH, Redwan EM. Extracellular vesicles: A new paradigm in understanding, diagnosing and treating neurodegenerative disease. Front Aging Neurosci 2022; 14:967231. [PMID: 36408114 PMCID: PMC9669424 DOI: 10.3389/fnagi.2022.967231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/29/2022] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders (NDs) are becoming one of the leading causes of disability and death across the globe due to lack of timely preventions and treatments. Concurrently, intensive research efforts are being carried out to understand the etiology of these age-dependent disorders. Extracellular vesicles (EVs)-biological nanoparticles released by cells-are gaining tremendous attention in understanding their role in pathogenesis and progression of NDs. EVs have been found to transmit pathogenic proteins of NDs between neurons. Moreover, the ability of EVs to exquisitely surmount natural biological barriers, including blood-brain barrier and in vivo safety has generated interest in exploring them as potential biomarkers and function as natural delivery vehicles of drugs to the central nervous system. However, limited knowledge of EV biogenesis, their heterogeneity and lack of adequate isolation and analysis tools have hampered their therapeutic potential. In this review, we cover the recent advances in understanding the role of EVs in neurodegeneration and address their role as biomarkers and delivery vehicles to the brain.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- Department of Biochemistry, S.P. College, Cluster University Srinagar, Srinagar, India
- Hassan Khoyihami Memorial Degree College, Bandipora, India
| | - Raied Badierah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Erica G. Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge, United Kingdom
| | | | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
33
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
34
|
Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, Ha NC. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol 2022; 5:1085. [PMID: 36224351 PMCID: PMC9556535 DOI: 10.1038/s42003-022-04017-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level. Characterization of the structure of an overoxidation-mimicking double mutant of superoxide dismutase SOD1 shows the production of more cytotoxic filaments seen in amyotrophic lateral sclerosis (ALS) neurons.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
McAlary L, Shephard VK, Sher M, Rice LJ, Yerbury JJ, Cashman NR, Plotkin SS. Assessment of protein inclusions in cultured cells using automated image analysis. STAR Protoc 2022; 3:101748. [PMID: 36201320 PMCID: PMC9535320 DOI: 10.1016/j.xpro.2022.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Proteinaceous inclusions are associated with neurodegenerative diseases and cell models are often used to determine genetic and chemical modifiers of their formation. This protocol involves the usage of automated microscopy and machine learning-based image analysis to accurately quantify the levels of protein inclusion formation in cultured cells from fluorescence microscopy images. This protocol is highly scalable and can be applied to a few images or large datasets. For complete details on the use and execution of this protocol, please refer to McAlary et al. (2022).
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia,Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada,Genome Science and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Corresponding author
| | - Victoria K. Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mine Sher
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Lauren J. Rice
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Genome Science and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Corresponding author
| |
Collapse
|
36
|
Rational Generation of Monoclonal Antibodies Selective for Pathogenic Forms of Alpha-Synuclein. Biomedicines 2022; 10:biomedicines10092168. [PMID: 36140270 PMCID: PMC9496384 DOI: 10.3390/biomedicines10092168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Misfolded toxic forms of alpha-synuclein (α-Syn) have been implicated in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The α-Syn oligomers and soluble fibrils have been shown to mediate neurotoxicity and cell-to-cell propagation of pathology. To generate antibodies capable of selectively targeting pathogenic forms of α-Syn, computational modeling was used to predict conformational epitopes likely to become exposed on oligomers and small soluble fibrils, but not on monomers or fully formed insoluble fibrils. Cyclic peptide scaffolds reproducing these conformational epitopes exhibited neurotoxicity and seeding activity, indicating their biological relevance. Immunization with the conformational epitopes gave rise to monoclonal antibodies (mAbs) with the desired binding profile showing selectivity for toxic α-Syn oligomers and soluble fibrils, with little or no reactivity with monomers, physiologic tetramers, or Lewy bodies. Recognition of naturally occurring soluble α-Syn aggregates in brain extracts from DLB and MSA patients was confirmed by surface plasmon resonance (SPR). In addition, the mAbs inhibited the seeding activity of sonicated pre-formed fibrils (PFFs) in a thioflavin-T fluorescence-based aggregation assay. In neuronal cultures, the mAbs protected primary rat neurons from toxic α-Syn oligomers, reduced the uptake of PFFs, and inhibited the induction of pathogenic phosphorylated aggregates of endogenous α-Syn. Protective antibodies selective for pathogenic species of α-Syn, as opposed to pan α-Syn reactivity, are expected to provide enhanced safety and therapeutic potency by preserving normal α-Syn function and minimizing the diversion of active antibody from the target by the more abundant non-toxic forms of α-Syn in the circulation and central nervous system.
Collapse
|
37
|
Xu F, Huang S, Li XY, Lin J, Feng X, Xie S, Wang Z, Li X, Zhu J, Lai H, Xu Y, Huang X, Yao X, Wang C. Identification of TARDBP Gly298Ser as a founder mutation for amyotrophic lateral sclerosis in Southern China. BMC Med Genomics 2022; 15:173. [PMID: 35932023 PMCID: PMC9356425 DOI: 10.1186/s12920-022-01327-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/30/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by predominant impairment of upper and lower motor neurons. Over 50 TARDBP mutations have been reported in both familial (FALS) and sporadic ALS (SALS). Some mutations in TARDBP, e.g. A382T and G294V, have genetic founder effects in certain geographic regions. However, such prevalence and founder effect have not been reported in Chinese. METHODS Whole-exome sequencing (WES) was performed in 16 Chinese FALS patients, followed by Sanger sequencing for the TARDBP p.Gly298Ser mutation (G298S) in 798 SALS patients and 1,325 controls. Haplotype analysis using microsatellites flanking TARDBP was conducted in the G298S-carrying patients and noncarriers. The geographic distribution and phenotypic correlation of the TARDBP mutations reported worldwide were reviewed. RESULTS WES detected the TARDBP G298S mutation in 8 FALS patients, and Sanger sequencing found additional 8 SALS cases, but no controls, carrying this mutation. All the 16 cases came from Southern China, and 7 of these patients shared the 117-286-257-145-246-270 allele for the D1S2736-D1S1151-D1S2667-D1S489-D1S434-D1S2697 markers, which was not found in the 92 non-carrier patients (0/92) (p < 0.0001) and 65 age-matched and neurologically normal individuals (0/65) (p < 0.0001). The A382T and G298S mutations were prevalent in Europeans and Eastern Asians, respectively. Additionally, carriers for the M337V mutation are dominated by bulbar onset with a long survival, whereas those for G298S are dominated by limb onset with a short survival. CONCLUSIONS Some prevalent TARDBP mutations are distributed in a geographic pattern and related to clinical profiles. TARDBP G298S mutation is a founder mutation in the Southern Chinese ALS population.
Collapse
Affiliation(s)
- Fanxi Xu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Sen Huang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu-Ying Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Lin
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Xian Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Junge Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Yanming Xu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
38
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
39
|
Sharma A, Dey P. Novel insights into the structural changes induced by disease-associated mutations in TDP-43: a computational approach. J Biomol Struct Dyn 2022:1-11. [PMID: 35751132 DOI: 10.1080/07391102.2022.2092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43 protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation process, the effects of these mutations on the bio-mechanism of pathological TDP-43 protein remained poorly understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular dynamic simulation and machine learning models (MD-ML). By performing an extensive structural analysis of three disease-related mutations (i.e., I168A, D169G, and I168A-D169G) in the conserved RNA recognition motifs (RRM1) of TDP-43, we observed that the I168A-D169G double mutant delineates the highest packing of the protein inner core as compared to the other mutations, which may indicate more stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein residues that influence the stability of the protein and could be experimentally evaluated to develop potential therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhibhav Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
40
|
Garg P, Semmler S, Baudouin C, Velde CV, Plotkin SS. Misfolding-Associated Exposure of Natively Buried Residues in Mutant SOD1 Facilitates Binding to TRAF6. J Mol Biol 2022; 434:167697. [PMID: 35753527 DOI: 10.1016/j.jmb.2022.167697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily impacting motor neurons. Mutations in superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS. Several of these mutations lead to misfolding or toxic gain of function in the SOD1 protein. Recently, we reported that misfolded SOD1 interacts with TNF receptor-associated factor 6 (TRAF6) in the SOD1G93A rat model of ALS. Further, we showed in cultured cells that several mutant SOD1 proteins, but not wildtype SOD1 protein, interact with TRAF6 via the MATH domain. Here, we sought to uncover the structural details of this interaction through molecular dynamics (MD) simulations of a dimeric model system, coarse grained using the AWSEM force field. We used direct MD simulations to identify buried residues, and predict binding poses by clustering frames from the trajectories. Metadynamics simulations were also used to deduce preferred binding regions on the protein surfaces from the potential of the mean force in orientation space. Well-folded SOD1 was found to bind TRAF6 via co-option of its native homodimer interface. However, if loops IV and VII of SOD1 were disordered, as typically occurs in the absence of stabilizing Zn2+ ion binding, these disordered loops now participated in novel interactions with TRAF6. On TRAF6, multiple interaction hot-spots were distributed around the equatorial region of the MATH domain beta barrel. Expression of TRAF6 variants with mutations in this region in cultured cells demonstrated that TRAF6T475 facilitates interaction with different SOD1 mutants. These findings contribute to our understanding of the disease mechanism and uncover potential targets for the development of therapeutics.
Collapse
Affiliation(s)
- Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada; Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada; Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Genome Sciences and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
41
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Phase-Separated Subcellular Compartmentation and Related Human Diseases. Int J Mol Sci 2022; 23:ijms23105491. [PMID: 35628304 PMCID: PMC9141834 DOI: 10.3390/ijms23105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid–liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.
Collapse
|
43
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
44
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
45
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
46
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
47
|
Vestergaard B, Langkilde AE. Protein fibrillation from another small angle: Sample preparation and SAXS data collection. Methods Enzymol 2022; 677:291-321. [DOI: 10.1016/bs.mie.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
49
|
Leroux É, Perbet R, Buée L, Colin M. [Extracellular vesicles in the central nervous system]. Med Sci (Paris) 2021; 37:1133-1138. [PMID: 34928217 DOI: 10.1051/medsci/2021205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular Vesicles (EVs) are released by a wide diversity of cells. They contain proteins, RNAs and lipids that will be exchanged between these cells. They represent therefore a major form of intercellular communication in both physiological and pathological conditions. This is particularly relevant in the nervous system where neurons and glial cells form a very dense network where billions of connections are made. In this review, the different roles played by the EVs in a healthy brain to maintain cerebral homeostasis during development, synaptic transmission or axonal myelination will be discussed. In addition, the pathological aspects of EVs presence will also be addressed. In recent years, the EVs have emerged as major players in the spread of neurodegenerative diseases, in neuroinflammation and in tumor development, although they may also be beneficial in some conditions.
Collapse
Affiliation(s)
- Élodie Leroux
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| |
Collapse
|
50
|
Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, Ravits J, Rouleau GA, Schüle R, Xu J, Züchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. eLife 2021; 10:e70905. [PMID: 34796871 PMCID: PMC8735862 DOI: 10.7554/elife.70905] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.
Collapse
Affiliation(s)
- Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Oscar Jackson
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Menelaos Pipis
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Neurology, King's College Hospital, King’s College LondonLondonUnited Kingdom
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Kristel R van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Stephen A Goutman
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | - Julia Kaye
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
| | - Leandro Lima
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
- Gladstone Institute of Data Science and Biotechnology, Gladstone InstitutesSan FranciscoUnited States
| | - Queen Square Genomics
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - John Ravits
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Guy A Rouleau
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Jishu Xu
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of SheffieldSheffieldUnited Kingdom
| | - Ziv Gan-Or
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|