1
|
Zhang M, Wang Y, Zhou Y, Wang X, Wu X. MicroRNAs in acute kidney injury. Clin Chim Acta 2025; 574:120301. [PMID: 40228573 DOI: 10.1016/j.cca.2025.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality. AKI has emerged as a significant global public health issue, particularly among hospitalized patients, with the highest incidence observed in those admitted to intensive care units (ICUs). However, early diagnosis of AKI remains challenging due to the limited sensitivity and specificity of conventional biomarkers, including serum creatinine and urine output. Recently, microRNAs (miRNAs) have garnered increasing interest for their potential in the early detection and management of AKI. Owing to their high stability, ease of quantification, well-characterized regulatory functions, and close association with key pathophysiological processes, miRNAs are considered promising diagnostic and therapeutic candidates. Nevertheless, the clinical utility of miRNAs remains limited by confounding factors such as co-infections, comorbidities, and medication use, which may lead to false-positive results. Challenges also persist regarding off-target effects and developing safe and efficient delivery systems. Furthermore, only a few studies have systematically characterized miRNA expression profiles in AKI, considering its heterogeneous etiologies and the dynamic nature of miRNA regulation. Interactions between miRNAs and between miRNAs and non-coding RNAs such as circular (circRNAs) and long non-coding RNAs (lncRNAs) warrant further investigation.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yazhi Wang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xiujuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
2
|
Mathur S, Chaturvedi A, Ranjan R. Advances in RNAi-based nanoformulations: revolutionizing crop protection and stress tolerance in agriculture. NANOSCALE ADVANCES 2025; 7:1768-1783. [PMID: 40046252 PMCID: PMC11877354 DOI: 10.1039/d5na00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 03/27/2025]
Abstract
Nucleic acid-based therapeutics have the ability to tackle a wide range of diseases and stress tolerance that present significant obstacles for conventional approaches in agriculture. RNA-based medicines have become a promising approach, using nanoformulation treatments to specifically target certain diseases. Nanoformulations offer numerous benefits in comparison to alternative treatment methods, such as precise administration, minimal toxicity, and medication loading compatibility due to their bioactivity. There are a variety of nanoformulations available today, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanogels, and solid lipid nanoparticles (SLNs). RNA-based therapy employs intracellular gene nanoparticles containing messenger RNA (mRNA), which play an important role in stress management and pest as well as disease control. The adoption of mRNA-based technology paves the way for future technological progress. This review focuses on elucidating the process underlying the development of RNA interference (RNAi) and the diverse array of nanocarriers employed for the transportation of RNAi. Currently, this technique is being employed in the field of crop protection to combat diseases, pests, and environmental stress. The article highlights the benefits of RNAi mediated nanoformulations and discusses the significant obstacles that must be overcome to improve the viability of this technology for future applications.
Collapse
Affiliation(s)
- Shivangi Mathur
- Plant Molecular Biology Lab, Department of Botany, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| | - Ambika Chaturvedi
- Plant Molecular Biology Lab, Department of Botany, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| | - Rajiv Ranjan
- Plant Molecular Biology Lab, Department of Botany, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| |
Collapse
|
3
|
Wei L, Wang J, Wu J, Li X, Zhou Q, Sun M, Peng B, Chen J, Sun B. Cyclometalated ruthenium (II) complex-based nanoparticles for enhanced microRNAs detection and imaging in living cells. Biosens Bioelectron 2025; 272:117090. [PMID: 39752890 DOI: 10.1016/j.bios.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
MicroRNA (miRNA) imaging in living cells is paramount for comprehending its dynamic functions and profiles, offering valuable insights into miRNA-related cellular processes. However, this remains challenging due to limited transfection agents and the low abundance of miRNAs. Herein, a smart nanosystem was proposed for miRNA imaging in living cells by ingeniously integrating cyclometalated ruthenium (II) nanoparticles (RuNPs) with a catalyzed hairpin assembly (CHA) strategy. Three cyclometalated ruthenium (II) complexes were synthesized and employed self-assembly technology to construct RuNPs. After evaluating their loading efficiency (LE), fluorescence quenching rates (QE), and fluorescence recovery rates (RE) for Hairpins, RuNPs-1 was selected to construct the Hairpins@RuNPs-1 nanosystem. With a detection limit of 1.5 pM, the Hairpins@RuNPs-1 nanosystem demonstrated high sensitivity for miR-25, live cell imaging confirmed its ability to detect intracellular miR-25 and differentiate its expression in various cells with excellent biocompatibility. We believe it has the potential to become an effective tool for nucleic acid research and would be poised to significantly influence the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Lintao Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianhao Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xidong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianying Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengxu Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Jun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
Joseph-Mullol B, Royo M, Preat V, Moliné T, Ferrer B, Aparicio G, Cortés-Hernández J, Solé C. Topical miRNA Delivery via Elastic Liposomal Formulation: A Promising Genetic Therapy for Cutaneous Lupus Erythematosus (CLE). Int J Mol Sci 2025; 26:2641. [PMID: 40141283 PMCID: PMC11942213 DOI: 10.3390/ijms26062641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune skin disorder with limited therapeutic options, particularly for refractory discoid lupus (DLE), which often results in scarring and atrophy. Recent studies have identified miR-31, miR-485-3p, and miR-885-5p as key regulators of inflammation, apoptosis, and fibrosis in CLE skin lesions. This research investigates a novel topical miRNA therapy using DDC642 elastic liposomes to target these pathways in CLE. DDC642 liposomes were complexed with miRNAs (anti-miR-31, anti-miR-485-3p, pre-miR-885-5p) and characterized through dynamic light scattering and Cryo-TEM. Cytotoxicity, cellular penetration, and therapeutic efficacy were evaluated in primary keratinocytes, PBMCs, and immune 3D-skin organoids. miRNA lipoplexes were successfully synthesized with optimized particle size, surface charge, and encapsulation efficiency. These lipoplexes exhibited effective cellular penetration and low cytotoxicity. Anti-miR-31 lipoplexes reduced miR-31 and NF-κB levels while increasing STK40 and PPP6C expression. Pre-miR-885-5p lipoplexes elevated miR-885-5p levels and downregulated PSMB5 and NF-κB in keratinocytes. While anti-miR-485-3p lipoplexes reduced T-cell activation markers. Anti-miR-31 and pre-miR-885-5p lipoplexes successfully modulated inflammatory pathways in 3D-skin CLE models. miRNA lipoplexes represent promising candidates for pioneering topical genetic therapies for CLE. Further studies, including animal models, are necessary to validate and optimize these findings.
Collapse
Affiliation(s)
- Blanca Joseph-Mullol
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Veronique Preat
- Louvain Drug Research Institute—Advanced Drug Delivery and Biomaterial, Universite Catholique de Louvain, 1200 Brussels, Belgium;
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Gloria Aparicio
- Department of Dermatology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| | - Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (B.J.-M.); (M.R.)
| |
Collapse
|
5
|
Torkzaban B, Zhu Y, Lopez C, Alexander JM, Ma J, Sun Y, Maschhoff KR, Hu W, Jacob MH, Lin D, Mao HQ, Martin S, Coller J. Use of polyadenosine tail mimetics to enhance mRNA expression from genes associated with haploinsufficiency disorders. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102453. [PMID: 39967850 PMCID: PMC11834087 DOI: 10.1016/j.omtn.2025.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Polyadenosine (poly(A)) tails are nearly ubiquitous in human messenger RNA (mRNA) governing mRNA stability and translation. Crucially, the poly(A) tail regulates cytoplasmic gene expression by undergoing controlled removal upon exposure to the cytoplasm. Upon removal, mRNA ceases protein production and may subsequently be degraded or silenced. We have generated a therapeutic modality that tethers a poly(A) tail mimetic on the 3' end of specifically targeted mRNAs, thereby enhancing their expression beyond their normal utility. This technology, which we term mRNA boosters, lends itself to uses on haploinsufficiency disorders, where reduced gene expression manifests in a disease state. By polyadenylating short RNA sequences antisense to the 3' untranslated region (UTR) of specific mRNAs, we demonstrate that we can selectively and significantly enhance mRNA expression both in vitro and in vivo. We showcase the effectiveness of this technology on genes linked to autism spectrum disorders such as SYNGAP1, M E CP2, PURA, and CTNNB1, illustrating increased expression in both human cell cultures and animal models. These findings indicate that small poly(A) tail mimetics can substantially enhance mRNA expression, providing the potential to efficaciously treat haploinsufficiency disorders.
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Lopez
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongzhi Sun
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michele H. Jacob
- Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Dingchang Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
- RNA Innovation Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Qi Y, Yu J, Lou M, Yu Y, Li R, Zhang Z, Dai Y, Lao K, Cao M, Gou X. Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly. Anal Chim Acta 2025; 1340:343659. [PMID: 39863312 DOI: 10.1016/j.aca.2025.343659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process. It is still urgently desired to develop enzyme-free yet sensitive assays that enable the sensitive analysis of miRNA in complicated biological samples. RESULTS A single microbead (MB)-based localized catalytic hairpin assembly (CHA) strategy is proposed for the sensitive analysis of microRNA (miRNA). This rationally designed CHA strategy allows target miRNA to walk only on a single MB which can create a micro-amplification zone, initiating a highly efficient localized CHA reaction, generating a large number of fluorescent DNA duplexes on the surface of single MB. The efficient localized CHA on single MB can not only greatly suppress the nonspecific reaction between two hairpin probes, thus decreasing the background signal, but also greatly enhance the brightness of MB owing to the highly-concentrated fluorescence enrichment on only one MB. Therefore, highly sensitive quantification of miRNA has been achieved by measuring the fluorescence signal on MB using a confocal fluorescence microscope. This new strategy exhibits a detection limit of 1.09 pM for let-7a detection, and enables high specificity of distinguishing homologous miRNA family members. SIGNIFICANCE This is the first report by only using one single MB as a carrier to conduct localized CHA, rendering highly-concentrated fluorescence enrichment on only one MB and a dramatic increase in sensitivity. This single MB-based localized CHA strategy has been successfully applied to the accurate analysis of miRNA target in complex biological sample.
Collapse
Affiliation(s)
- Yan Qi
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Jiangtao Yu
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Ming Lou
- Stomatology College of Xi'an Medical University, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Yameng Yu
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Ruohan Li
- Yantai Yongqi Technical Consulting Service Co., Ltd., Yantai, 264003, Shandong Province, PR China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Yuxuan Dai
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Meng Cao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China.
| |
Collapse
|
7
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
8
|
Caddeo A, Romeo S. Precision medicine and nucleotide-based therapeutics to treat steatotic liver disease. Clin Mol Hepatol 2025; 31:S76-S93. [PMID: 39103998 PMCID: PMC11925435 DOI: 10.3350/cmh.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex multifactorial disease and becoming the leading cause of liver-related morbidity and mortality. MASLD spans from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may progress to cirrhosis and hepatocellular carcinoma (HCC). Genetic, metabolic, and environmental factors strongly contribute to the heterogeneity of MASLD. Lifestyle intervention and weight loss represent a viable treatment for MASLD. Moreover, Resmetirom, a thyroid hormone beta receptor agonist, has recently been approved for MASLD treatment. However, most individuals treated did not respond to this therapeutic, suggesting the need for a more tailored approach to treat MASLD. Oligonucleotide-based therapies, namely small-interfering RNA (siRNA) and antisense oligonucleotide (ASO), have been recently developed to tackle MASLD by reducing the expression of genes influencing MASH progression, such as PNPLA3 and HSD17B13. Here, we review the latest progress made in the synthesis and development of oligonucleotide-based agents targeting genetic determinants of MASH.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Stefano Romeo
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medicine, Endocrinology (H7) Karolinska Institute and Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
9
|
Dansereau SJ, Cui H, Dartawan RP, Sheng J. The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies. Genes (Basel) 2025; 16:48. [PMID: 39858595 PMCID: PMC11765398 DOI: 10.3390/genes16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases. Given its broad range of interactions within the cell, RNA can be targeted by a therapeutic or modified as a pharmacologic scaffold for diseases such as nucleotide repeat disorders, infectious diseases, and cancer. RNA therapeutic techniques that have been researched include, but are not limited to, CRISPR/Cas gene editing, anti-sense oligonucleotides (ASOs), siRNA, small molecule treatments, and RNA aptamers. The knowledge gleaned from studying RNA-centric mechanisms will inevitably improve the design of RNA-based therapeutics. Building on this understanding, we explore the physiological diversity of RNA functions, examine specific dysfunctions, such as splicing errors and viral interactions, and discuss their therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA; (S.J.D.); (H.C.)
| |
Collapse
|
10
|
Jin W, Li X, Argandona SM, Ray RM, Lin MKTH, Melle F, Clergeaud G, Lars Andresen T, Nielsen M, Fairen-Jimenez D, Astakhova K, Qvortrup K. Surface engineering of metal-organic framework nanoparticles-based miRNA carrier: Boosting RNA stability, intracellular delivery and synergistic therapy. J Colloid Interface Sci 2025; 677:429-440. [PMID: 39153246 DOI: 10.1016/j.jcis.2024.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are critical for the regulation of multiple physiological and pathological processes, thus holding great clinical potential. However, the therapeutic applications of miRNAs are severely limited by their biological instability and poor intracellular delivery. Herein, we describe a dual-layers surface engineering strategy to design an efficient miRNA delivery nanosystem based on metal-organic frameworks (MOFs) incorporating lipid coating. The resulting nanoparticle system was demonstrated to protect miRNA from ribonuclease degradation, enhance cellular uptake and facilitate lysosomal escape. These ensured effective miRNA mediated gene therapy, which synergized with MOF-specific photodynamic therapy and pre-encapsulated doxorubicin (Dox) chemotherapy to provide a multifunctional with therapeutic effectiveness against cencer cells The mechanisms of miRNA binding and Dox loading were revealed, demonstrating the potential of the present MOFs surface-engineered strategy to overcome their inherent pore-size restriction for macromolecular miRNA carrying, enableefficient co-delivery. In vitro studies revealed the potential of our multifunctional system for miRNA delivery and the demonstrated the therapeutic effectiveness against cancer cells, thereby providing a versatile all-in-one MOFs strategy for delivery of nucleic acids and diverse therapeutic molecules in synergistic therapy.
Collapse
Affiliation(s)
- Weiguang Jin
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Xin Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Sergio Mercado Argandona
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Roslyn M Ray
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA.
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Francesca Melle
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Gael Clergeaud
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - David Fairen-Jimenez
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Thibonnier M, Ghosh S. Review of the Different Outcomes Produced by Genetic Knock Out of the Long Non-coding microRNA-host-gene MIR22HG versus Pharmacologic Antagonism of its Intragenic microRNA product miR-22-3p. Microrna 2025; 14:19-41. [PMID: 38952162 DOI: 10.2174/0122115366282339240604042154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharmacologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR- 22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological antagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmacologic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Pennington Biomedical Research Center, Department of Computational Biology, Duke-NUS Medical School, Singapore
| |
Collapse
|
12
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
13
|
Lou W, Zhang L, Wang J. Current status of nucleic acid therapy and its new progress in cancer treatment. Int Immunopharmacol 2024; 142:113157. [PMID: 39288629 DOI: 10.1016/j.intimp.2024.113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Nucleic acid is an essential biopolymer in all living cells, performing the functions of storing and transmitting genetic information and synthesizing protein. In recent decades, with the progress of science and biotechnology and the continuous exploration of the functions performed by nucleic acid, more and more studies have confirmed that nucleic acid therapy for living organisms has great medical therapeutic potential. Nucleic acid drugs began to become independent therapeutic agents. As a new therapeutic method, nucleic acid therapy plays an important role in the treatment of genetic diseases, viral infections and cancers. There are currently 19 nucleic acid drugs approved by the Food and Drug Administration (FDA). In the following review, we start from principles and advantages of nucleic acid therapy, and briefly describe development history of nucleic acid drugs. And then we give examples of various RNA therapeutic drugs, including antisense oligonucleotides (ASO), mRNA vaccines, small interfering RNA (siRNA) and microRNA (miRNA), aptamers, and small activating RNA (saRNA). In addition, we also focused on the current status of nucleic acid drugs used in cancer therapy and the breakthrough in recent years. Clinical trials of nucleic acid drugs for cancer treatment are under way, conventional radiotherapy and chemotherapy combined with the immunotherapies such as checkpoint inhibitors and nucleic acid drugs may be the main prospects for successful cancer treatment.
Collapse
Affiliation(s)
- Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou 310009, China.
| |
Collapse
|
14
|
Nowak R, Gazecka M, Hoffmann M, Kierzek R, Pöhlmann S, Zmora P. TMPRSS2-specific antisense oligonucleotides inhibit host cell entry of emerging viruses. Virology 2024; 600:110218. [PMID: 39276670 DOI: 10.1016/j.virol.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Emerging viruses, such as novel influenza A viruses (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose a constant threat to animal and human health. Identification of host cell factors necessary for viral replication but dispensable for cellular survival might reveal novel, attractive targets for therapeutic intervention. Proteolytic activation of IAV hemagglutinin (HA) and SARS-CoV-2 spike protein (S) by the type II transmembrane serine protease (TTSPs), e.g. TMPRSS2 is sought to be critical for viral spread and pathogenesis. Here, we investigated the secondary structure of TMPRSS2 mRNA coding sequence and designed TMPRSS2-specific antisense oligonucleotides (ASOs). Several of these ASOs markedly reduced the TMPRSS2 expression and decreased IAV infection and SARS-CoV-2 entry into cells.
Collapse
Affiliation(s)
- Rafal Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Pawel Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
15
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
16
|
Cao Y, Xia P, Zhu Y, Zhao Q, Li H. The Physical Driving Forces of Conformational Transition for TTR 91-96 with Proline Mutations. J Chem Inf Model 2024; 64:8604-8615. [PMID: 39513968 DOI: 10.1021/acs.jcim.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pathological aggregation of essentially dissociated Transthyretin (TTR) monomer proteins, driven by misfolding and self-interaction, is associated with Transthyretin amyloidosis (ATTR) disease. The TTR monomer proteins consist of several fragments that tend to self-aggregate. Recent experimental studies showed that the sequence of residues TTR91-96 plays an important role in self-aggregation. However, the mechanisms underlying the misfolding and aggregation of the TTR91-96 monomers are still unknown. In this study, we used microsecond molecular dynamics simulations to investigate the misfolding and self-assembly of TTR91-96 Octamers. We also investigated E92P and V94P mutants for comparative analysis. The analysis indicates that hydrophobic interactions and π-π stacking patterns play important roles in reducing the β-sheet content in the V94P and E92P mutants. Additionally, our findings reveal the conformational transition of TTR91-96 octamer from closed β-barrel, open β-barrel to the β-bilayer aggregation. We further elucidate the dynamic mechanism of the transition from intermediate states to stable states. Overall, our research may contribute to the development of drug design to combat fibrous amyloid fibrous diseases.
Collapse
Affiliation(s)
- Yuanming Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Pengxuan Xia
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
17
|
Li F, Lu Y, Xi K, Li Y, Chen X, Wang P, Huang X. Interkingdom Communication via Extracellular Vesicles: Unraveling Plant and Pathogen Interactions and Its Potential for Next-Generation Crop Protection. Microorganisms 2024; 12:2392. [PMID: 39770594 PMCID: PMC11677615 DOI: 10.3390/microorganisms12122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advancements in the field of plant-pathogen interactions have spotlighted the role of extracellular vesicles (EVs) as pivotal mediators of cross-kingdom communication, offering new vistas for enhancing crop protection strategies. EVs are instrumental in the transport of small regulatory RNAs (sRNAs) and other bioactive molecules across species boundaries, thus playing a critical role in the molecular warfare between plants and pathogens. This review elucidates the sophisticated mechanisms by which plants utilize EVs to dispatch sRNAs that silence pathogenic genes, fortifying defenses against microbial threats. Highlighting both eukaryotic and prokaryotic systems, this review delves into the biogenesis, isolation, and functional roles of EVs, illustrating their importance not only in fundamental biological processes but also in potential therapeutic applications. Recent studies have illuminated the significant role of EVs in facilitating communication between plants and pathogens, highlighting their potential in host-defense mechanisms. However, despite these advancements, challenges remain in the efficient isolation and characterization of plant-derived EVs. Overcoming these challenges is critical for fully harnessing their potential in developing next-generation crop protection strategies. This review proposes innovative strategies for utilizing RNA-based interventions delivered via EVs to bolster plant resilience against diseases. By integrating the latest scientific findings with practical applications in agriculture, this review aims to enhance the connection between fundamental plant biology and the development of innovative crop management technologies.
Collapse
Affiliation(s)
- Fei Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuntong Lu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Kuanling Xi
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Yuke Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Xiaoyan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Y.L.); (K.X.); (Y.L.); (X.C.); (P.W.); (X.H.)
| |
Collapse
|
18
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
19
|
Yun C, Woo HC, Lovatt D, Parish CA, Spellman DS, Shen H. Development of a Versatile High-through-put Oligonucleotide LC-MS Method to Accelerate Drug Discovery. AAPS PharmSciTech 2024; 25:239. [PMID: 39390148 DOI: 10.1208/s12249-024-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is an effective tool for high-throughput quantification of oligonucleotides that is crucial for understanding their biological roles and developing diagnostic tests. This paper presents a high-throughput LC-MS/MS method that may be versatilely applied for a wide range of oligonucleotides, making it a valuable tool for rapid screening and discovery. The method is demonstrated using an in-house synthesized MALAT-1 Antisense oligonucleotide (ASO) as a test case. Biological samples were purified using a reversed liquid-liquid extraction process automated by a liquid handling workstation and analyzed with ion-pairing LC-MS/MS. The assay was evaluated for sensitivity (LLOQ = 2 nM), specificity, precision, accuracy, recovery, matrix effect, and stability in rat cerebrospinal fluid (CSF) and plasma. Besides some existing considerations such as column selection, ion-pairing reagent, and sample purification, our work focused on the following four subtopics: 1) selecting the appropriate Multiple Reaction Monitoring (MRM) transition to maximize sensitivity for trace-level ASO in biological samples; 2) utilizing a generic risk-free internal standard (tenofovir) to avoid crosstalk interference from the oligo internal standard commonly utilized in the LC-MS assay; 3) automating the sample preparation process to increase precision and throughput; and 4) comparing liquid-liquid extraction (LLE) and solid-phase extraction (SPE) as sample purification methods in oligo method development. The study quantified the concentration of MALAT-1 ASO in rat CSF and plasma after intrathecal injection and used the difference between the two matrices to evaluate the injection technique. The results provide a solid foundation for further internal oligonucleotide discovery and development.
Collapse
Affiliation(s)
- Changhong Yun
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Boston, Massachusetts, 02115, USA
| | - Hyun Chong Woo
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Boston, Massachusetts, 02115, USA
| | - Ditte Lovatt
- Biology-Discovery, Merck & Co., Inc., West Point, Pennsylvania, 19446, USA
| | - Craig A Parish
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Daniel S Spellman
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., West Point, Pennsylvania, 19446, USA
| | - Honglue Shen
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Boston, Massachusetts, 02115, USA.
| |
Collapse
|
20
|
Song H, Zhang Q, Fang G, Luo X, Wu D, Li H, Zhou K, Zhao X, Xu F, Zhang Y, Huang A. Unraveling the Mechanisms of MicroRNA in Suppressing Hepatitis B Virus Progression: A Comprehensive Review for Designing Treatment Strategies. HEPATITIS MONTHLY 2024; 24. [DOI: 10.5812/hepatmon-144239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 01/02/2025]
Abstract
: Liver cancer and cirrhosis caused by the Hepatitis B virus (HBV) remain significant global health challenges due to the virus's high prevalence and contagious nature. Hepatitis B virus can be transmitted through various means, leading to mild or severe liver disease. Although an effective prophylactic vaccine is available, it offers limited benefits for those already chronically infected. Current treatments often fail to consistently eliminate the virus and can cause severe adverse effects. In response to these challenges, researchers have begun exploring microRNAs (miRNAs) as novel therapeutic targets. Studying miRNA-virus interactions presents a promising opportunity to identify potential therapeutic targets. By manipulating host miRNAs, researchers aim to enhance antiviral defenses, restore cellular balance, and prevent viral replication. The text concludes by highlighting the potential for personalized medicine in Hepatitis B treatment, guided by individual miRNA profiles. Numerous studies have been conducted to understand how different miRNAs inhibit HBV replication, paving the way for the development of innovative and effective therapeutic strategies.
Collapse
|
21
|
Napoletano S, Battista E, Netti PA, Causa F. MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a. Biosens Bioelectron 2024; 260:116406. [PMID: 38805889 DOI: 10.1016/j.bios.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 μL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| |
Collapse
|
22
|
Iannacci F, Medeiros Garcia Alcântara J, Marani M, Camesasca P, Chen M, Sousa F, Morbidelli M, Sponchioni M. High-density perfusion cultures of the marine bacterium Rhodovulum sulfidophilum for the biomanufacturing of oligonucleotides. J Biotechnol 2024; 392:152-160. [PMID: 39025367 DOI: 10.1016/j.jbiotec.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Therapeutic oligonucleotides (ONs) are typically manufactured via solid-phase synthesis, characterized by limited scalability and huge environmental footprint, limiting their availability. Biomanufactured ONs have the potential to reduce the immunogenic side-effects, and to improve the sustainability of their chemical counterparts. Rhodovulum sulfidophilum was demonstrated a valuable host for the extracellular production of recombinant ONs. However, low viable cell densities and product titer were reported so far. In this work, perfusion cell cultures were established for the intensification of ON biomanufacturing. First, the perfusion conditions were simulated in 50 mL spin tubes, selected as a scale-down model of the process, with the aim of optimizing the medium composition and process parameters. This optimization stage led to an increase in the cell density by 44 % compared to the reference medium formulation. In addition, tests at increasing perfusion rates were conducted until achieving the maximum viable cell density (VCDmax), allowing the determination of the minimum cell-specific perfusion rate (CSPRmin) required to sustain the cell culture. Intriguingly, we discovered in this system also a maximum CSPR, above which growth inhibition starts. By leveraging this process optimization, we show for the first time the conduction of perfusion cultures of R. sulfidophilum in bench-scale bioreactors. This process development pipeline allowed stable cultures for more than 20 days and the continuous biomanufacturing of ONs, testifying the great potential of perfusion processes.
Collapse
Affiliation(s)
- Francesco Iannacci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - João Medeiros Garcia Alcântara
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Martina Marani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Paolo Camesasca
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Michele Chen
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
23
|
Ramprosand S, Govinden-Soulange J, Ranghoo-Sanmukhiya VM, Sanan-Mishra N. miRNA, phytometabolites and disease: Connecting the dots. Phytother Res 2024; 38:4570-4591. [PMID: 39072874 DOI: 10.1002/ptr.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
miRNAs are tiny noncoding ribonucleotides that function as critical regulators of gene-expression in eukaryotes. A single miRNA may be involved in the regulation of several target mRNAs forming complex cellular networks to regulate diverse aspects of development in an organism. The deregulation of miRNAs has been associated with several human diseases. Therefore, miRNA-based therapeutics is gaining interest in the pharmaceutical industry as the next-generation drugs for the cure of many diseases. Medicinal plants have also been used for the treatment of several human diseases and their curative potential is attributed to their reserve in bioactive metabolites. A role for miRNAs as regulators of the phytometabolic pathways in plants has emerged in the recent past. Experimental studies have also indicated the potential of plant encoded secondary phytometabolites to act as cross-regulators of mammalian miRNAs and transcripts to regulate human diseases (like cancer). The evidence for this cross-kingdom gene regulation through miRNA has gathered considerable enthusiasm in the scientific field, even though there are on-going debates regarding the reproducibility and the effectiveness of these findings. In this review, we provide information to connect the medicinal and gene regulatory properties of secondary phytometabolites, their regulation by miRNAs in plants and their effects on human miRNAs for regulating downstream metabolic or pathological processes. While further extensive research initiatives and good clinical evidence are required to prove or disapprove these findings, understanding of these regulations will have important implications in the potential use of synthetic or artificial miRNAs as effective alternatives for providing health benefits.
Collapse
Affiliation(s)
- Srutee Ramprosand
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
24
|
Zabalza A, Pappolla A, Comabella M, Montalban X, Malhotra S. MiRNA-based therapeutic potential in multiple sclerosis. Front Immunol 2024; 15:1441733. [PMID: 39267760 PMCID: PMC11390414 DOI: 10.3389/fimmu.2024.1441733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
This review will briefly introduce microRNAs (miRNAs) and dissect their contribution to multiple sclerosis (MS) and its clinical outcomes. For this purpose, we provide a concise overview of the present knowledge of MS pathophysiology, biomarkers and treatment options, delving into the role of selectively expressed miRNAs in clinical forms of this disease, as measured in several biofluids such as serum, plasma or cerebrospinal fluid (CSF). Additionally, up-to-date information on current strategies applied to miRNA-based therapeutics will be provided, including miRNA restoration therapy (lentivirus expressing a specific type of miRNA and miRNA mimic) and miRNA inhibition therapy such as antisense oligonucleotides, small molecules inhibitors, locked nucleic acids (LNAs), anti-miRNAs, and antagomirs. Finally, it will highlight future directions and potential limitations associated with their application in MS therapy, emphasizing the need for improved delivery methods and validation of therapeutic efficacy.
Collapse
Affiliation(s)
- Ana Zabalza
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Agustin Pappolla
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVicUCC), Vic, Spain
| | - Sunny Malhotra
- Vall Hebron University Hospital & Research Institute (VHIR), Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Lin L, Chu J, An S, Liu X, Tan R. The Biological Mechanisms and Clinical Roles of RNA-Binding Proteins in Cardiovascular Diseases. Biomolecules 2024; 14:1056. [PMID: 39334823 PMCID: PMC11430443 DOI: 10.3390/biom14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal roles in cardiovascular biology, influencing various molecular mechanisms underlying cardiovascular diseases (CVDs). This review explores the significant roles of RBPs, focusing on their regulation of RNA alternative splicing, polyadenylation, and RNA editing, and their impact on CVD pathogenesis. For instance, RBPs are crucial in myocardial injury, contributing to disease progression and repair mechanisms. This review systematically analyzes the roles of RBPs in myocardial injury, arrhythmias, myocardial infarction, and heart failure, revealing intricate interactions that influence disease outcomes. Furthermore, the potential of RBPs as therapeutic targets for cardiovascular dysfunction is explored, highlighting the advances in drug development and clinical research. This review also discusses the emerging role of RBPs as biomarkers for cardiovascular diseases, offering insights into their diagnostic and prognostic potential. Despite significant progress, current research faces several limitations, which are critically examined. Finally, this review identifies the major challenges and outlines future research directions to advance the understanding and application of RBPs in cardiovascular medicine.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Anaesthesiology, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China;
| | - Jiemei Chu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Sanqi An
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Runxian Tan
- Department of Laboratory Medicine, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China
| |
Collapse
|
26
|
Zhou X, Gao F, Gao W, Wang Q, Li X, Li X, Li W, Liu J, Zhou H, Luo A, Chen C, Liu Z. Bismuth Sulfide Nanoflowers Facilitated miR339 Delivery to Overcome Stemness and Radioresistance through Ubiquitin-Specific Peptidase 8 in Esophageal Cancer. ACS NANO 2024; 18:19232-19246. [PMID: 38996055 DOI: 10.1021/acsnano.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Despite the superior efficacy of radiotherapy in esophageal squamous cell carcinoma (ESCC), radioresistance by cancer stem cells (CSCs) leads to recurrence, metastasis, and treatment failure. Therefore, it is necessary to develop CSC-based therapies to enhance radiotherapy. miR-339-5p (miR339) is involved in stem cell division and DNA damage checkpoint signaling pathways based on ESCC cohort. miR339 inhibited ESCC cell stemness and enhanced radiation-induced DNA damage by targeting USP8, suggesting that it acts as a potential CSC regulator and radiosensitizer. Considering the limited circulating periods and poor tumor-targeting ability of miRNA, a multifunctional nanoplatform based on bismuth sulfide nanoflower (Bi@PP) is developed to efficiently deliver miR339 and improve radioresistance. Intriguingly, Bi@PP encapsulates more miR339 owing to their flower-shaped structure, delivering more than 1000-fold miR339 into cells, superior to free miR339 alone. Besides being used as a carrier, Bi@PP is advantageous for dynamically monitoring the distribution of delivered miR339 in vivo while simultaneously inhibiting tumor growth. Additionally, Bi@PP/miR339 can significantly enhance radiotherapy efficacy in patient-derived xenograft models. This multifunctional platform, incorporating higher miRNA loading capacity, pH responsiveness, hypoxia relief, and CT imaging, provides another method to promote radiosensitivity and optimize ESCC treatment.
Collapse
Affiliation(s)
- Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fene Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingzhen Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huige Zhou
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
27
|
Bishani A, Meschaninova MI, Zenkova MA, Chernolovskaya EL. The Impact of Chemical Modifications on the Interferon-Inducing and Antiproliferative Activity of Short Double-Stranded Immunostimulating RNA. Molecules 2024; 29:3225. [PMID: 38999177 PMCID: PMC11243415 DOI: 10.3390/molecules29133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.
Collapse
Affiliation(s)
| | | | | | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.B.); (M.I.M.); (M.A.Z.)
| |
Collapse
|
28
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
29
|
Xue X, Li Y, Yao Y, Zhang S, Peng C, Li Y. A comprehensive review of miR-21 in liver disease: Big impact of little things. Int Immunopharmacol 2024; 134:112116. [PMID: 38696909 DOI: 10.1016/j.intimp.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
microRNAs (miRNAs), a class of non-coding RNA with 20-24 nucleotides, are defined as the powerful regulators for gene expression. miR-21 is a multifunctional miRNA enriched in the circulatory system and multiple organs, which not only serves as a non-invasive biomarker in disease diagnosis, but also participates in many cellular activities. In various chronic liver diseases, the increase of miR-21 affects glycolipid metabolism, viral infection, inflammatory and immune cell activation, hepatic stellate cells activation and tissue fibrosis, and autophagy. Moreover, miR-21 is also a liaison in the deterioration of chronic liver disease to hepatocellular carcinoma (HCC), and it impacts on cell proliferation, apoptosis, migration, invasion, angiogenesis, immune escape, and epithelial-mesenchymal transformation by regulating target genes expression in different signaling pathways. In current research on miRNA therapy, some natural products can exert the hepatoprotective effects depending on the inhibition of miR-21 expression. In addition, miR-21-based therapeutic also play a role in regulating intracellular miR-21 levels and enhancing the efficacy of chemotherapy drugs. Herein, we systemically summarized the recent progress of miR-21 on biosynthesis, biomarker function, molecular mechanism and miRNA therapy in chronic liver disease and HCC, and looked forward to outputting some information to enable it from bench to bedside.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
30
|
Fiserova B, Minarik M, Nahunek M, Kysilka R, Minarik M. Improvement of oligonucleotide separation using a repetto high-performance liquid chromatography recycling approach. J Sep Sci 2024; 47:e2400252. [PMID: 38822226 DOI: 10.1002/jssc.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
A new approach for the improvement of separation of oligonucleotides by recycling ion-pairing chromatography is described. In the so-called repetto process, segments of separated compounds are sequentially returned to the inlet for multiple passages through the column without a need to pass a pump and with the possibility of detecting the level of separation between individual passages. Unlike in the recently described twin-column recycle approach in which eluents are repeatedly transferred between two separation columns, with the repetto method a single column is sufficient, and the detector is not exposed to high back pressure. The repetto principle was used for the separation of synthetic oligonucleotides, resulting in a multi-fold improvement in single nt resolution of long (> 50 nt) synthetic oligonucleotide fragments with high gas chromatography (guanine-cytosine) content > 40% and their separation from impurities of the original synthesis.
Collapse
Affiliation(s)
- Barbora Fiserova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | | | - Marek Minarik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Watrex Praha s.r.o., Prague, Czech Republic
| |
Collapse
|
31
|
Yeoh YQ, Amin A, Cuic B, Tomas D, Turner BJ, Shabanpoor F. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Biomed Pharmacother 2024; 175:116737. [PMID: 38749176 DOI: 10.1016/j.biopha.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.
Collapse
Affiliation(s)
- Yuan Qi Yeoh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
32
|
Thomas BJ, Guldenpfennig C, Daniels MA, Burke DH, Porciani D. Multiplexed In Vivo Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents. Nucleic Acid Ther 2024; 34:109-124. [PMID: 38752363 PMCID: PMC11250842 DOI: 10.1089/nat.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 06/19/2024] Open
Abstract
Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
33
|
Hussain MS, Moglad E, Afzal M, Sharma S, Gupta G, Sivaprasad GV, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Pant K, Ali H, Singh SK, Dua K, Subramaniyan V. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson's disease pathogenesis. CNS Neurosci Ther 2024; 30:e14763. [PMID: 38790149 PMCID: PMC11126788 DOI: 10.1111/cns.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of CollegesMohaliPunjabIndia
| | - Gaurav Gupta
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
| | - G. V. Sivaprasad
- Department of Basic Science & HumanitiesRaghu Engineering CollegeVisakhapatnamIndia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health SciencesAjman UniversityAjmanUnited Arab Emirates
| | - Kumud Pant
- Graphic Era (Deemed to be University)DehradunIndia
- Graphic Era Hill UniversityDehradunIndia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
34
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
35
|
Li X, Cong J, Zhou X, Gao W, Li W, Yang Q, Li X, Liu Z, Luo A. JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating EMT and restraining PD-L1 degradation in esophageal squamous cell carcinoma. Cancer Lett 2024; 587:216731. [PMID: 38369005 DOI: 10.1016/j.canlet.2024.216731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.
Collapse
Affiliation(s)
- Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ji Cong
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuantong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
36
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
37
|
Ijee S, Chambayil K, Chaudhury AD, Bagchi A, Modak K, Das S, Benjamin ESB, Rani S, Paul DZ, Nath A, Roy D, Palani D, Priyanka S, Ravichandran R, Kumary BK, Sivamani Y, S. V, Babu D, Nakamura Y, Thamodaran V, Balasubramanian P, Velayudhan SR. Efficient deletion of microRNAs using CRISPR/Cas9 with dual guide RNAs. Front Mol Biosci 2024; 10:1295507. [PMID: 38628442 PMCID: PMC11020096 DOI: 10.3389/fmolb.2023.1295507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 04/19/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play crucial roles in gene regulation, exerting post-transcriptional silencing, thereby influencing cellular function, development, and disease. Traditional loss-of-function methods for studying miRNA functions, such as miRNA inhibitors and sponges, present limitations in terms of specificity, transient effects, and off-target effects. Similarly, CRISPR/Cas9-based editing of miRNAs using single guide RNAs (sgRNAs) also has limitations in terms of design space for generating effective gRNAs. In this study, we introduce a novel approach that utilizes CRISPR/Cas9 with dual guide RNAs (dgRNAs) for the rapid and efficient generation of short deletions within miRNA genomic regions. Through the expression of dgRNAs through single-copy lentiviral integration, this approach achieves over a 90% downregulation of targeted miRNAs within a week. We conducted a comprehensive analysis of various parameters influencing efficient deletion formation. In addition, we employed doxycycline (Dox)-inducible expression of Cas9 from the AAVS1 locus, enabling homogeneous, temporal, and stage-specific editing during cellular differentiation. Compared to miRNA inhibitory methods, the dgRNA-based approach offers higher specificity, allowing for the deletion of individual miRNAs with similar seed sequences, without affecting other miRNAs. Due to the increased design space, the dgRNA-based approach provides greater flexibility in gRNA design compared to the sgRNA-based approach. We successfully applied this approach in two human cell lines, demonstrating its applicability for studying the mechanisms of human erythropoiesis and pluripotent stem cell (iPSC) biology and differentiation. Efficient deletion of miR-451 and miR-144 resulted in blockage of erythroid differentiation, and the deletion of miR-23a and miR-27a significantly affected iPSC survival. We have validated the highly efficient deletion of genomic regions by editing protein-coding genes, resulting in a significant impact on protein expression. This protocol has the potential to be extended to delete multiple miRNAs within miRNA clusters, allowing for future investigations into the cooperative effects of the cluster members on cellular functions. The protocol utilizing dgRNAs for miRNA deletion can be employed to generate efficient pooled libraries for high-throughput comprehensive analysis of miRNAs involved in different biological processes.
Collapse
Affiliation(s)
- Smitha Ijee
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Karthik Chambayil
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Sree Chitra Tirunal Institute of Science and Medical Technology, Thiruvananthapuram, India
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Regional Centre for Biotechnology, New Delhi, India
| | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Kirti Modak
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Regional Centre for Biotechnology, New Delhi, India
| | - Saswati Das
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Esther Sathya Bama Benjamin
- Sree Chitra Tirunal Institute of Science and Medical Technology, Thiruvananthapuram, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Sonam Rani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Daniel Zechariah Paul
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Aneesha Nath
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Debanjan Roy
- Department of Haematology, Christian Medical College Campus, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Dhavapriya Palani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Sweety Priyanka
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | | | - Betty K. Kumary
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Yazhini Sivamani
- Department of Haematology, Christian Medical College Campus, Vellore, India
| | - Vijayanand S.
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Dinesh Babu
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vasanth Thamodaran
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Tata Institute of Genetics and Society, Bengaluru, India
| | | | - Shaji R. Velayudhan
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore, India
- Department of Haematology, Christian Medical College Campus, Vellore, India
| |
Collapse
|
38
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
40
|
Mahmoudi A, Jalili A, Aghaee-Bakhtiari SH, Oskuee RK, Butler AE, Rizzo M, Sahebkar A. Analysis of the therapeutic potential of miR-124 and miR-16 in non-alcoholic fatty liver disease. J Diabetes Complications 2024; 38:108722. [PMID: 38503000 DOI: 10.1016/j.jdiacomp.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFβ-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Hu Y, Revenko A, Barsoumian H, Bertolet G, Fowlkes NW, Maazi H, Green MM, He K, Sezen D, Voss TA, Leyton CSK, Masrorpour F, Rafiq Z, Puebla-Osorio N, Leuschner C, MacLeod R, Cortez MA, Welsh JW. Inhibition of MER proto-oncogene tyrosine kinase by an antisense oligonucleotide enhances treatment efficacy of immunoradiotherapy. J Exp Clin Cancer Res 2024; 43:70. [PMID: 38443968 PMCID: PMC10916163 DOI: 10.1186/s13046-024-02992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Hampartsoum Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hadi Maazi
- Ionis Pharmaceuticals, Carlsbad, CA, 92008, USA
| | - Morgan Maureen Green
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zahid Rafiq
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
42
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
43
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
44
|
Thau H, Neuber S, Emmert MY, Nazari-Shafti TZ. Targeting Lipoprotein(a): Can RNA Therapeutics Provide the Next Step in the Prevention of Cardiovascular Disease? Cardiol Ther 2024; 13:39-67. [PMID: 38381282 PMCID: PMC10899152 DOI: 10.1007/s40119-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Thau
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute for Regenerative Medicine, University of Zurich, 8044, Zurich, Switzerland.
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| |
Collapse
|
45
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
46
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
47
|
Zhang Y, Li Y, Bin S, Cheng X, Niu Q. A Neglected Gene: The Role of the ANG Gene in the Pathogenesis of Amyotrophic Lateral Sclerosis. Aging Dis 2024; 16:AD.2024.0107. [PMID: 38421827 PMCID: PMC11745432 DOI: 10.14336/ad.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with a poor prognosis. To date, more than 40 ALS-related genes have been identified. However, there is still a lack of targeted therapeutic drugs for the treatment of ALS, especially for patients with acute onset and severe disease. A series of studies reported missense heterozygous mutations with loss of function in the coding region of the ANG gene in ALS patients. ANG deficiency is related to the pathogenesis of ALS, but the underlying mechanism has not been determined. This article aimed to synthesize and consolidate the knowledge of the pathological mechanism of ALS induced by ANG mutation and provide a theoretical basis for ALS diagnosis and targeted therapy. This article further delves into the mechanisms underlying the current understanding of the structure and function of the ANG gene, the association between ANG and ALS, and its pathogenesis. Mutations in ANG may lead to the development of ALS through the loss of neuroprotective function, induction of oxidative stress, or inhibition of rRNA synthesis. ANG mutations and genetic and environmental factors may cause disease heterogeneity and more severe disease than in ALS patients with the wild-type gene. Exploring this mechanism is expected to provide a new approach for ALS treatment through increasing ANG expression or angiogenin activity. However, the related study is still in its infancy; therefore, this article also highlights the need for further exploration of the application of ANG gene mutations in clinical trials and animal experiments is needed to achieve improved early diagnosis and treatment of ALS.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yanan Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shen Bin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Xi Cheng
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qi Niu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
49
|
Ullah S, Burki S, Munir AB, Yousaf G, Shafique M. Nanocarrier-based localized and effective treatment of renal disorders: currently employed targeting strategies. Nanomedicine (Lond) 2024; 19:345-361. [PMID: 38293889 DOI: 10.2217/nnm-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Renal disorders pose a global health threat, with targeted drug-delivery systems emerging as a promising strategy to enhance therapy safety and efficacy. Recent efforts have harnessed targeted nanomaterials for kidney disease treatment. While some systems remain in the early stages, they show immense potential in delivering cargo to specific sites. Through animal model experimentations, it has been demonstrated to reduce systemic side effects and enhance treatment effectiveness. This review presents current strategies for kidney disorder treatment, emphasizing site-specific targeting critical to renal disease pathophysiology. Recent advancements in nano-drug delivery systems for kidney targeting are explored. Finally, toxicological aspects and prospects of the most promising kidney-targeting delivery systems are discussed in this review article.
Collapse
Affiliation(s)
- Shafi Ullah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Samiullah Burki
- Department of Pharmacology, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Abu Bakar Munir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Ghulam Yousaf
- PAF Ruth Pfau Medical College and Hospital Faisal Base Karachi, Karachi, 75350, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| |
Collapse
|
50
|
Kp A, Kaliaperumal K, Sekar D. microRNAs and their therapeutic strategy in phase I and phase II clinical trials. Epigenomics 2024; 16:259-271. [PMID: 38312027 DOI: 10.2217/epi-2023-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
miRNAs play a crucial therapeutic role in diseases such as cancer, diabetes and viral infections, with around 1900 identified in the human genome. Some have progressed to clinical trials, and miRNA mimics and miRNA inhibitors are pivotal therapeutic molecules undergoing evaluation. The review delves into various miRNA-associated clinical trials, emphasizing their precision in targeting specific genes, modulating disease pathways and diagnostic potential. This underscores the importance of miRNA therapy, foreseeing innovations in precision medicine techniques for diverse diseases. The future envisions improved delivery systems addressing challenges like immunogenicity and digestion, while a comprehensive miRNA-based omics database could guide the development of tailored antisense miRNAs, further advancing precision medicine strategies.
Collapse
Affiliation(s)
- Ameya Kp
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| |
Collapse
|