451
|
Sampaio-Marques B, Burhans WC, Ludovico P. Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. MICROBIAL CELL 2014; 1:118-127. [PMID: 28357232 PMCID: PMC5349200 DOI: 10.15698/mic2014.04.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ageing is a complex and multi-factorial process that results in the progressive
accumulation of molecular alterations that disrupt different cellular functions.
The budding yeast Saccharomyces cerevisiae is an important
model organism that has significantly contributed to the identification of
conserved molecular and cellular determinants of ageing. The nutrient-sensing
pathways are well-recognized modulators of longevity from yeast to mammals, but
their downstream effectors and outcomes on different features of ageing process
are still poorly understood. A hypothesis that is attracting increased interest
is that one of the major functions of these “longevity pathways” is to
contribute to the maintenance of the proteome during ageing. In support of this
hypothesis, evidence shows that TOR/Sch9 and Ras/PKA pathways are important
regulators of autophagy that in turn are essential for healthy cellular ageing.
It is also well known that mitochondria homeostasis and function regulate
lifespan, but how mitochondrial dynamics, mitophagy and biogenesis are regulated
during ageing remains to be elucidated. This review describes recent findings
that shed light on how longevity pathways and metabolic status impact
maintenance of the proteome in both yeast ageing paradigms. These findings
demonstrate that yeast remain a powerful model system for elucidating these
relationships and their influence on ageing regulation.
Collapse
Affiliation(s)
- Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - William C Burhans
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
452
|
Ahmed Nasef N, Mehta S, Ferguson LR. Dietary interactions with the bacterial sensing machinery in the intestine: the plant polyphenol case. Front Genet 2014; 5:64. [PMID: 24772116 PMCID: PMC3983525 DOI: 10.3389/fgene.2014.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/13/2014] [Indexed: 12/20/2022] Open
Abstract
There are millions of microbes that live in the human gut. These are important in digestion as well as defense. The host immune system needs to be able to distinguish between the harmless bacteria and pathogens. The initial interaction between bacteria and the host happen through the pattern recognition receptors (PRRs). As these receptors are in direct contact with the external environment, this makes them important candidates for regulation by dietary components and therefore potential targets for therapy. In this review, we introduce some of the main PRRs including a cellular process known as autophagy, and how they function. Additionally we review dietary phytochemicals from plants which are believed to be beneficial for humans. The purpose of this review was to give a better understanding of how these components work in order to create better awareness on how they could be explored in the future.
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Sunali Mehta
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Lynnette R Ferguson
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| |
Collapse
|
453
|
Namba T, Takabatake Y, Kimura T, Takahashi A, Yamamoto T, Matsuda J, Kitamura H, Niimura F, Matsusaka T, Iwatani H, Matsui I, Kaimori J, Kioka H, Isaka Y, Rakugi H. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. J Am Soc Nephrol 2014; 25:2254-66. [PMID: 24700866 DOI: 10.1681/asn.2013090986] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy.
Collapse
Affiliation(s)
- Tomoko Namba
- Departments of Geriatric Medicine and Nephrology (B6)
| | | | - Tomonori Kimura
- Departments of Geriatric Medicine and Nephrology (B6), Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico; and
| | | | | | - Jun Matsuda
- Departments of Geriatric Medicine and Nephrology (B6)
| | | | | | - Taiji Matsusaka
- Institute of Medical Science and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | - Isao Matsui
- Departments of Geriatric Medicine and Nephrology (B6)
| | | | - Hidetaka Kioka
- Medical Biochemistry, and Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Hiromi Rakugi
- Departments of Geriatric Medicine and Nephrology (B6)
| |
Collapse
|
454
|
Wei Y, Zhang YJ, Cai Y, Xu MH. The role of mitochondria in mTOR-regulated longevity. Biol Rev Camb Philos Soc 2014; 90:167-81. [PMID: 24673778 DOI: 10.1111/brv.12103] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 02/07/2014] [Accepted: 02/27/2014] [Indexed: 11/27/2022]
Abstract
Several unbiased genome-wide RNA interference (RNAi) screens have pointed to mitochondrial metabolism as the major factor for lifespan regulation. However, conflicting data remain to be clarified concerning the mitochondrial free radical theory of aging (MFRTA). Recently, mTOR (mechanistic target of rapamycin) has been proposed to be the central regulator of aging although how mTOR modulates lifespan is poorly understood. Interestingly, mTOR has been shown to regulate many aspects of mitochondrial function, such as mitochondrial biogenesis, apoptosis, mitophagy and mitochondrial hormesis (mitohormesis) including the retrograde response and mitochondrial unfolded protein response (mito-UPR). Here we discuss the data linking mitochondrial metabolism to mTOR regulation of lifespan, suggesting that hormetic effects may be key to explaining some controversial results regarding the MFRTA. We also discuss the possibility that dysfunction of mitochondrial adaptive responses rather than free radicals per se contributes to the aging process.
Collapse
Affiliation(s)
- Yuehua Wei
- No.3 People's Hospital, School of Medicine, Shanghai Jiao Tong University, 280 Mohe Road, Shanghai, 201900, China
| | | | | | | |
Collapse
|
455
|
Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 2014; 15:566-75. [PMID: 24671035 DOI: 10.1002/embr.201438501] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1-binding-deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase-active ULK1 and a phospho-mimicking mutant of FUNDC1 rescue mitophagy in ULK1-null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Neurology, Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy 2014; 10:835-45. [PMID: 24657987 PMCID: PMC5119063 DOI: 10.4161/auto.28259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.
Collapse
Affiliation(s)
- James M Nuttall
- Department of Molecular Biology and Biotechnology; University of Sheffield, Western Bank; Sheffield, UK
| | - Alison M Motley
- Department of Molecular Biology and Biotechnology; University of Sheffield, Western Bank; Sheffield, UK
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology; University of Sheffield, Western Bank; Sheffield, UK
| |
Collapse
|
457
|
MacVicar TDB, Lane JD. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation. J Cell Sci 2014; 127:2313-25. [PMID: 24634514 PMCID: PMC4021475 DOI: 10.1242/jcs.144337] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial dynamics play crucial roles in mitophagy-based mitochondrial quality control, but how these pathways are regulated to meet cellular energy demands remains obscure. Using non-transformed human RPE1 cells, we report that upregulation of mitochondrial oxidative phosphorylation alters mitochondrial dynamics to inhibit Parkin-mediated mitophagy. Despite the basal mitophagy rates remaining stable upon the switch to dependence on oxidative phosphorylation, mitochondria resist fragmentation when RPE1 cells are treated with the protonophore carbonyl cyanide m-chlorophenyl hydrazone. Mechanistically, we show that this is because cleavage of the inner membrane fusion factor L-OPA1 is prevented due to the failure to activate the inner membrane protease OMA1 in mitochondria that have a collapsed membrane potential. In parallel, mitochondria that use oxidative phosphorylation are protected from damage-induced fission through the impaired recruitment and activation of mitochondrial DRP1. Using OMA1-deficient MEF cells, we show that the preservation of a stable pool of L-OPA1 at the inner mitochondrial membrane is sufficient to delay mitophagy, even in the presence of Parkin. The capacity of cells that are dependent on oxidative phosphorylation to maintain substantial mitochondrial content in the face of acute damage has important implications for mitochondrial quality control in vivo.
Collapse
Affiliation(s)
- Thomas D B MacVicar
- Cell Biology Laboratories, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jon D Lane
- Cell Biology Laboratories, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
458
|
Abstract
Plasma cells (PCs) are the effectors responsible for antibody (Ab)-mediated immunity. They differentiate from B lymphocytes through a complete remodeling of their original structure and function. Stress is a constitutive element of PC differentiation. Macroautophagy, conventionally referred to as autophagy, is a conserved lysosomal recycling strategy that integrates cellular metabolism and enables adaptation to stress. In metazoa, autophagy plays diverse roles in cell differentiation. Recently, a number of autophagic functions have been recognized in innate and adaptive immunity, including clearance of intracellular pathogens, inflammasome regulation, lymphocyte ontogenesis, and antigen presentation. We identified a previously unrecognized role played by autophagy in PC differentiation and activity. Following B cell activation, autophagy moderates the expression of the transcriptional repressor Blimp-1 and immunoglobulins through a selective negative control exerted on the size of the endoplasmic reticulum and its stress signaling response, including the essential PC transcription factor, XBP-1. This containment of PC differentiation and function, i.e., Ab production, is essential to optimize energy metabolism and viability. As a result, autophagy sustains Ab responses in vivo. Moreover, autophagy is an essential intrinsic determinant of long-lived PCs in their as yet poorly understood bone marrow niche. In this essay, we discuss these findings in the context of the established biological functions of autophagy, and their manifold implications for adaptive immunity and PC diseases, in primis multiple myeloma.
Collapse
Affiliation(s)
- Laura Oliva
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy ; Università Vita-Salute San Raffaele , Milan , Italy ; Bone Pathophysiology Program (BoNetwork), Division of Genetics and Cell Biology, San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
459
|
Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 2014; 56:147-53. [PMID: 24607515 DOI: 10.1016/j.exger.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria are highly dynamic organelles which play a central role in cellular homeostasis. Mitochondrial dysfunction leads to life-threatening disorders and accelerates the aging process. Surprisingly, on the other hand, a mild reduction of mitochondria functionality can have pro-longevity effects in organisms spanning from yeast to mammals. Autophagy is a fundamental cellular housekeeping process that needs to be finely regulated for proper cell and organism survival, as underlined by the fact that both its over- and its defective activation have been associated with diseases and accelerated aging. A reciprocal interplay exists between mitochondria and autophagy, which is needed to constantly adjust cellular energy metabolism in different pathophysiological conditions. Here we review general features of mitochondrial function and autophagy with particular focus on their crosstalk and its possible implication in the aging process.
Collapse
Affiliation(s)
- Alfonso Schiavi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
460
|
Böckler S, Westermann B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 2014; 28:450-8. [PMID: 24530295 DOI: 10.1016/j.devcel.2014.01.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Damaged and superfluous mitochondria are removed from the cell by selective autophagy, a process termed mitophagy. This serves to maintain the proper quantity and quality of the organelle. Mitophagy is executed by an evolutionarily conserved pathway, many components of which were first discovered and characterized in yeast. In a systematic screen of a yeast deletion collection, we identified ERMES, a complex connecting mitochondria and the endoplasmic reticulum (ER), as an important factor contributing to the selective degradation of mitochondria. We show that efficient mitophagy depends on mitochondrial ER tethering. ERMES colocalizes with sites of mitophagosome biogenesis and affects the formation of the isolation membrane that engulfs the organelles destined for degradation. These results provide insights into the cellular mechanisms that govern organelle homeostasis.
Collapse
Affiliation(s)
- Stefan Böckler
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
461
|
Tamura N, Oku M, Sakai Y. Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris. FEMS Yeast Res 2014; 14:435-44. [PMID: 24373415 DOI: 10.1111/1567-1364.12132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 01/28/2023] Open
Abstract
Pexophagy is a selective degradation pathway of peroxisomes. In the present study, we revealed that PpAtg21 was required for pexophagy in the methylotrophic yeast Pichia pastoris. PpAtg21 was essential for efficient lipidation of Atg8 and for de novo synthesis of pexophagic membranes. In contrast to PpAtg18, PpAtg21 was not necessary for vacuolar fission nor invagination during micropexophagy. PpAtg21 specifically bound to PI(3)P, but not to PI(3,5)P2 in vitro, and the localization analyses matched with this phosphoinositide-binding specificity. The mutant which lost the lipid-binding activity showed defect in pexophagy, suggesting that PI(3)P-binding activity of PpAtg21 was required for pexophagy.
Collapse
Affiliation(s)
- Naoki Tamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
462
|
Chin C, Donaghey F, Helming K, McCarthy M, Rogers S, Austriaco N. Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death. MICROBIAL CELL 2014; 1:58-63. [PMID: 28357223 PMCID: PMC5348969 DOI: 10.15698/mic2014.01.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caspofungin was the first member of a new class of antifungals called echinocandins to be approved by a drug regulatory authority. Like the other echinocandins, caspofungin blocks the synthesis of β(1,3)-D-glucan of the fungal cell wall by inhibiting the enzyme, β(1,3)-D-glucan synthase. Loss of β(1,3)-D-glucan leads to osmotic instability and cell death. However, the precise mechanism of cell death associated with the cytotoxicity of caspofungin was unclear. We now provide evidence that Saccharomyces cerevisiae cells cultured in media containing caspofungin manifest the classical hallmarks of programmed cell death (PCD) in yeast, including the generation of reactive oxygen species (ROS), the fragmentation of mitochondria, and the production of DNA strand breaks. Our data also suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Collapse
Affiliation(s)
- Christopher Chin
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: University of Massachusetts School of Medicine, 55 Lake Ave. N., Worcester, MA 01655, U.S.A
| | - Faith Donaghey
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Katherine Helming
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, U.S.A
| | - Morgan McCarthy
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Stephen Rogers
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| |
Collapse
|
463
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
464
|
Abstract
Autophagy is a bulk degradation process of cytosolic proteins and organelles through the lysosomal/vacuolar machinery. Mitophagy is a type of autophagy that selectively degrades mitochondria. Recent studies have revealed that mitophagy plays an important role in cellular mitochondrial quality control. The budding yeast Saccharomyces cerevisiae is a powerful model that has been applied to study many biological phenomena. This model organism has contributed greatly to our understanding of autophagy, including the identification of more than 30 autophagy-related genes. Similarly, the molecular mechanisms and physiological roles of mitophagy have been gradually elucidated using S. cerevisiae. In this chapter, we describe two commonly used protocols to detect mitophagy in S. cerevisiae: fluorescence microscopy and immunoblotting.
Collapse
Affiliation(s)
- Tomotake Kanki
- Laboratory of Biosignaling, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan,
| | | |
Collapse
|
465
|
Veljanovski V, Batoko H. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:308. [PMID: 25009550 PMCID: PMC4070572 DOI: 10.3389/fpls.2014.00308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin) conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg) and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins.
Collapse
Affiliation(s)
| | - Henri Batoko
- *Correspondence: Henri Batoko, Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4–5, L7.07.14 1348, Louvain-la-Neuve, Belgium e-mail:
| |
Collapse
|
466
|
Yang P, Zhang H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 2014; 24:80-91. [PMID: 24296782 PMCID: PMC3879703 DOI: 10.1038/cr.2013.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of embryonic apoptotic cell corpses by promoting phagosome maturation. During larval development, autophagy modulates miRNA-mediated gene silencing by selectively degrading AIN-1, a component of miRNA-induced silencing complex, and thus participates in the specification of multiple cell fates controlled by miRNAs. During development of the hermaphrodite germline, autophagy acts coordinately with the core apoptotic machinery to execute genotoxic stress-induced germline cell death and also cell death when caspase activity is partially compromised. Autophagy is also involved in the utilization of lipid droplets in the aging process in adult animals. Studies in C. elegans provide valuable insights into the physiological functions of autophagy in the development of multicellular organisms.
Collapse
Affiliation(s)
- Peiguo Yang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
467
|
Abstract
The year of 2013 marked the 50th anniversary of C de Duve's coining of the term "autophagy" for the degradation process of cytoplasmic constituents in the lysosome/vacuole. This year we regretfully lost this great scientist, who contributed much during the early years of research to the field of autophagy. Soon after the discovery of lysosomes by de Duve, electron microscopy revealed autophagy as a means of delivering intracellular components to the lysosome. For a long time after the discovery of autophagy, studies failed to yield any significant advances at a molecular level in our understanding of this fundamental pathway of degradation. The first breakthrough was made in the early 1990s, as autophagy was discovered in yeast subjected to starvation by microscopic observation. Next, a genetic effort to address the poorly understood problem of autophagy led to the discovery of many autophagy-defective mutants. Subsequent identification of autophagy-related genes in yeast revealed unique sets of molecules involved in membrane dynamics during autophagy. ATG homologs were subsequently found in various organisms, indicating that the fundamental mechanism of autophagy is well conserved among eukaryotes. These findings brought revolutionary changes to research in this field. For instance, the last 10 years have seen remarkable progress in our understanding of autophagy, not only in terms of the molecular mechanisms of autophagy, but also with regard to its broad physiological roles and relevance to health and disease. Now our knowledge of autophagy is dramatically expanding day by day. Here, the historical landmarks underpinning the explosion of autophagy research are described with a particular focus on the contribution of yeast as a model organism.
Collapse
Affiliation(s)
- Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
468
|
Abstract
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.
Collapse
Affiliation(s)
- Yuchen Feng
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ding He
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiyuan Yao
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
469
|
Abstract
Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
470
|
Abstract
Autophagy refers to a group of processes that involve degradation of cytoplasmic components including cytosol, macromolecular complexes, and organelles, within the vacuole or the lysosome of higher eukaryotes. The various types of autophagy have attracted increasing attention for at least two reasons. First, autophagy provides a compelling example of dynamic rearrangements of subcellular membranes involving issues of protein trafficking and organelle identity, and thus it is fascinating for researchers interested in questions pertinent to basic cell biology. Second, autophagy plays a central role in normal development and cell homeostasis, and, as a result, autophagic dysfunctions are associated with a range of illnesses including cancer, diabetes, myopathies, some types of neurodegeneration, and liver and heart diseases. That said, this review focuses on autophagy in yeast. Many aspects of autophagy are conserved from yeast to human; in particular, this applies to the gene products mediating these pathways as well as some of the signaling cascades regulating it, so that the information we relate is relevant to higher eukaryotes. Indeed, as with many cellular pathways, the initial molecular insights were made possible due to genetic studies in Saccharomyces cerevisiae and other fungi.
Collapse
|
471
|
Sesaki H, Adachi Y, Kageyama Y, Itoh K, Iijima M. In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1179-85. [PMID: 24326103 DOI: 10.1016/j.bbadis.2013.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 01/19/2023]
Abstract
Mitochondria grow, divide, and fuse in cells. Mitochondrial division is critical for the maintenance of the structure and function of mitochondria. Alterations in this process have been linked to many human diseases, including peripheral neuropathies and aging-related neurological disorders. In this review, we discuss recent progress in mitochondrial division by focusing on molecular and in vivo analyses of the evolutionarily conserved, central component of mitochondrial division, dynamin-related protein 1 (Drp1), in the yeast and mouse model organisms.
Collapse
Affiliation(s)
- Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yoshihiro Adachi
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
472
|
Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol 2013; 3:292. [PMID: 24350057 PMCID: PMC3844930 DOI: 10.3389/fonc.2013.00292] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Michelle L Boland
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA
| | - Aparajita H Chourasia
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago , Chicago, IL , USA ; Committee on Molecular Metabolism and Nutrition, The University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, The University of Chicago , Chicago, IL , USA
| |
Collapse
|
473
|
Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl Environ Microbiol 2013; 80:1002-12. [PMID: 24271183 DOI: 10.1128/aem.03130-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.
Collapse
|
474
|
Rokeach LA, Jbel M, Dulude D. Another face of cell death. Cell Cycle 2013; 13:181-2. [PMID: 24309543 PMCID: PMC3906233 DOI: 10.4161/cc.27302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luis A Rokeach
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Mehdi Jbel
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Dominic Dulude
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
475
|
Ishida H, Izumi M, Wada S, Makino A. Roles of autophagy in chloroplast recycling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:512-21. [PMID: 24269172 DOI: 10.1016/j.bbabio.2013.11.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 01/04/2023]
Abstract
Chloroplasts are the primary energy suppliers for plants, and much of the total leaf nitrogen is distributed to these organelles. During growth and reproduction, chloroplasts in turn represent a major source of nitrogen to be recovered from senescing leaves and used in newly-forming and storage organs. Chloroplast proteins also can be an alternative substrate for respiration under suboptimal conditions. Autophagy is a process of bulk degradation and nutrient sequestration that is conserved in all eukaryotes. Autophagy can selectively target chloroplasts as whole organelles and or as Rubisco-containing bodies that are enclosed by the envelope and specifically contain the stromal portion of the chloroplast. Although information is still limited, recent work indicates that chloroplast recycling via autophagy plays important roles not only in developmental processes but also in organelle quality control and adaptation to changing environments. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Hiroyuki Ishida
- Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | - Masanori Izumi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shinya Wada
- Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Amane Makino
- Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
476
|
Zhang W, Wu H, Liu L, Zhu Y, Chen Q. Phosphorylation Events in Selective Mitophagy: Possible Biochemical Markers? CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
477
|
Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases. ScientificWorldJournal 2013; 2013:180759. [PMID: 24288463 PMCID: PMC3830867 DOI: 10.1155/2013/180759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.
Collapse
|
478
|
Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S, Khelghatybana L, Piano A, Greenwood M, Vali H, Titorenko VI. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from "liponecrosis", a previously unknown form of programmed cell death. Cell Cycle 2013; 13:138-47. [PMID: 24196447 DOI: 10.4161/cc.26885] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities-namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.
Collapse
Affiliation(s)
- Sara Sheibani
- Department of Anatomy and Cell Biology; McGill University; Montreal, Quebec, Canada; Department of Chemistry and Chemical Engineering; Royal Military College of Canada; Kingston, Ontario, Canada
| | - Vincent R Richard
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Adam Beach
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Anna Leonov
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Rachel Feldman
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Sevan Mattie
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | | | - Amanda Piano
- Department of Biology; Concordia University; Montreal, Quebec, Canada
| | - Michael Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College of Canada; Kingston, Ontario, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal, Quebec, Canada
| | | |
Collapse
|
479
|
Hollomon MG, Gordon N, Santiago-O'Farrill JM, Kleinerman ES. Knockdown of autophagy-related protein 5, ATG5, decreases oxidative stress and has an opposing effect on camptothecin-induced cytotoxicity in osteosarcoma cells. BMC Cancer 2013; 13:500. [PMID: 24160177 PMCID: PMC3924338 DOI: 10.1186/1471-2407-13-500] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Background Autophagy induction can increase or decrease anticancer drug efficacy. Anticancer drug-induced autophagy induction is poorly characterized in osteosarcoma (OS). In this study, we investigated the impact of autophagy inhibition on camptothecin (CPT)-induced cytotoxicity in OS. Methods Autophagy-inhibited DLM8 and K7M3 metastatic murine OS cell lines were generated by infection with lentiviral shRNA directed against the essential autophagy protein ATG5. Knockdown of ATG5 protein expression and inhibition of autophagy was confirmed by immunoblot of ATG5 and LC3II proteins, respectively. Metabolic activity was determined by MTT assay and cell viability was determined by trypan blue exclusion. Acridine orange staining and immunoblotting for LC3II protein expression were used to determine autophagy induction. Oxidative stress was assessed by staining cells with HE and DCFH-DA followed by flow cytometry analysis. Mitochondrial membrane potential was determined by staining cells with TMRE followed by flow cytometry analysis. Immunoblotting was used to detect caspase activation, Parp cleavage and p53 phosphorylation. Results Autophagy inhibition caused a greater deficit in metabolic activity and cell growth in K7M3 cells compared to DLM8 cells. K7M3 cells exhibited higher basal autophagy levels than DLM8 cells and non-transformed murine MCT3 osteoblasts. Autophagy inhibition did not affect CPT-induced DNA damage. Autophagy inhibition decreased CPT-induced cell death in DLM8 cells while increasing CPT-induced cell death in K7M3 cells. Autophagy inhibition reduced CPT-induced mitochondrial damage and CPT-induced caspase activation in DLM8 cells. Buthionine sulfoximine (BSO)-induced cell death was greater in autophagy-competent DLM8 cells and was reversed by antioxidant pretreatment. Camptothecin-induced and BSO-induced autophagy induction was also reversed by antioxidant pretreatment. Significantly, autophagy inhibition not only reduced CPT-induced oxidative stress but also reduced basal oxidative stress. Conclusions The results of this study indicate that autophagy inhibition can have an opposing effect on CPT-induced cytotoxicity within OS. The cytoprotective mechanism of autophagy inhibition observed in DLM8 cells involves reduced CPT-induced oxidative stress and not reduced DNA damage. Our results also reveal the novel finding that knockdown of ATG5 protein reduces both basal oxidative stress and drug-induced oxidative stress.
Collapse
Affiliation(s)
- Mario G Hollomon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | | | |
Collapse
|
480
|
Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis. Aging (Albany NY) 2013; 5:234-69. [PMID: 23553280 PMCID: PMC3651518 DOI: 10.18632/aging.100547] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how theatg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.2%) concentration of glucose. Under these longevity-extending conditions of caloric restriction (CR) yeast cells are not starving. We also assessed a role of macromitophagy in lifespan extension by lithocholic acid (LCA), a bile acid that prolongs yeast longevity under CR conditions. Our findings imply that macromitophagy is a longevity assurance process underlying the synergistic beneficial effects of CR and LCA on yeast lifespan. Our analysis of how the atg32Δ mutation influences mitochondrial morphology, composition and function revealed that macromitophagy is required to maintain a network of healthy mitochondria. Our comparative analysis of the membrane lipidomes of organelles purified from wild-type and atg32Δ cells revealed that macromitophagy is required for maintaining cellular lipid homeostasis. We concluded that macromitophagy defines yeast longevity by modulating vital cellular processes inside and outside of mitochondria.
Collapse
|
481
|
Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB. Autophagy: cancer's friend or foe? Adv Cancer Res 2013; 118:61-95. [PMID: 23768510 DOI: 10.1016/b978-0-12-407173-5.00003-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The functional relevance of autophagy in tumor formation and progression remains controversial. Autophagy can promote tumor suppression during cancer initiation and protect tumors during progression. Autophagy-associated cell death may act as a tumor suppressor, with several autophagy-related genes deleted in cancers. Loss of autophagy induces genomic instability and necrosis with inflammation in mouse tumor models. Conversely, autophagy enhances survival of tumor cells subjected to metabolic stress and may promote metastasis by enhancing tumor cell survival under environmental stress. Unraveling the complex molecular regulation and multiple diverse roles of autophagy is pivotal in guiding development of rational and novel cancer therapies.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Li S, Yang P, Tian E, Zhang H. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol Cell 2013; 52:421-33. [PMID: 24140420 DOI: 10.1016/j.molcel.2013.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022]
Abstract
The selective degradation of intracellular components by autophagy involves sequential interactions of the cargo with a receptor, which also binds the autophagosomal protein Atg8 and a scaffold protein. Here, we demonstrated that mutations in C. elegans epg-11, which encodes an arginine methyltransferase homologous to PRMT1, cause the defective removal of PGL-1 and PGL-3 (cargo)-SEPA-1 (receptor) complexes, known as PGL granules, from somatic cells during embryogenesis. Autophagic degradation of the PGL granule scaffold protein EPG-2 and other protein aggregates was unaffected in epg-11/prmt-1 mutants. Loss of epg-11/prmt-1 activity impairs the association of PGL granules with EPG-2 and LGG-1 puncta. EPG-11/PRMT-1 directly methylates arginines in the RGG domains of PGL-1 and PGL-3. Autophagic removal of PGL proteins is impaired when the methylated arginines are mutated. Our study reveals that posttranslational arginine methylation regulates the association of the cargo-receptor complex with the scaffold protein, providing a mechanism for modulating degradation efficiency in selective autophagy.
Collapse
Affiliation(s)
- Sihui Li
- College of Life Sciences, Peking University, Beijing 100875, China; State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | |
Collapse
|
483
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 451] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
484
|
Abstract
Mitophagy describes the selective targeting and degradation of mitochondria by the autophagy pathway. In this process, defective mitochondria are first purged from the mitochondrial network then delivered to the lysosome by the autophagy machinery. Mitophagy has emerged as a key facet of mitochondrial quality control and has been implicated in a variety of human diseases. Disturbances in the cellular control of mitophagy can result in a dysfunctional mitochondrial network with grave implications for high energy demanding tissue. The present chapter reviews the recent advancements in the study of mitophagy mechanisms and regulation.
Collapse
|
485
|
Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy 2013; 9:1720-36. [PMID: 24091872 DOI: 10.4161/auto.26550] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Beyond its role in recycling intracellular components nonselectively to sustain survival in response to metabolic stresses, autophagy can also selectively degrade specific cargoes such as damaged or dysfunctional organelles to maintain cellular homeostasis. Mitochondria, known as the power plant of cells, are the critical and dynamic organelles playing a fundamental role in cellular metabolism. Mitophagy, the selective autophagic elimination of mitochondria, has been identified both in yeast and in mammalian cells. Moreover, defects in mitophagy may contribute to a variety of human disorders such as neurodegeneration and myopathies. However, the role of mitophagy in development and cancer remains largely unclear. In this review, we summarize our current knowledge of the regulation and function of mitophagy in development and cancer.
Collapse
Affiliation(s)
- Haiqi Lu
- Laboratory of Cancer Biology; Institute of Clinical Science; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang China; Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou; Zhejiang China
| | | | | | | | | | | |
Collapse
|
486
|
Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood) 2013; 238:450-60. [PMID: 23856898 DOI: 10.1177/1535370213493069] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Under normal physiological conditions, reactive oxygen species (ROS) serve as 'redox messengers' in the regulation of intracellular signalling, whereas excess ROS may induce irreversible damage to cellular components and lead to cell death by promoting the intrinsic apoptotic pathway through mitochondria. In the aging process, accumulation of mitochondria DNA mutations, impairment of oxidative phosphorylation as well as an imbalance in the expression of antioxidant enzymes result in further overproduction of ROS. This mitochondrial dysfunction-elicited ROS production axis forms a vicious cycle, which is the basis of mitochondrial free radical theory of aging. In addition, several lines of evidence have emerged recently to demonstrate that ROS play crucial roles in the regulation of cellular metabolism, antioxidant defence and posttranslational modification of proteins. We first discuss the oxidative stress responses, including metabolites redistribution and alteration of the acetylation status of proteins, in human cells with mitochondrial dysfunction and in aging. On the other hand, autophagy and mitophagy eliminate defective mitochondria and serve as a scavenger and apoptosis defender of cells in response to oxidative stress during aging. These scenarios mediate the restoration or adaptation of cells to respond to aging and age-related disorders for survival. In the natural course of aging, the homeostasis in the network of oxidative stress responses is disturbed by a progressive increase in the intracellular level of the ROS generated by defective mitochondria. Caloric restriction, which is generally thought to promote longevity, has been reported to enhance the efficiency of this network and provide multiple benefits to tissue cells. In this review, we emphasize the positive and integrative roles of mild oxidative stress elicited by mitochondria in the regulation of adaptation, anti-aging and scavenging pathway beyond their roles in the vicious cycle of mitochondrial dysfunction in the aging process.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
487
|
Abstract
Autophagy maintains cell, tissue and organism homeostasis through degradation. Codogno, Boya and Reggiori review recent data that have uncovered unexpected functions of autophagy, such as regulation of metabolism, membrane transport and modulation of host defenses. Autophagy maintains cell, tissue and organism homeostasis through degradation. Complex post-translational modulation of the Atg (autophagy-related) proteins adds additional entry points for crosstalk with other cellular processes and helps define cell-type-specific regulations of autophagy. Beyond the simplistic view of a process exclusively dedicated to the turnover of cellular components, recent data have uncovered unexpected functions for autophagy and the autophagy-related genes, such as regulation of metabolism, membrane transport and modulation of host defenses — indicating the novel frontiers lying ahead.
Collapse
|
488
|
Tomasetti M, Neuzil J, Dong L. MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta Gen Subj 2013; 1840:1441-53. [PMID: 24016605 DOI: 10.1016/j.bbagen.2013.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers. SCOPE OF REVIEW In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications. MAJOR CONCLUSIONS MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases. GENERAL SIGNIFICANCE The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60020, Italy.
| | - Jiri Neuzil
- Apoptosis Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Qld 4222, Australia; Molecular Therapy Group, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 4 142 20, Czech Republic
| | - Lanfeng Dong
- Apoptosis Research Group, School of Medical Science and Griffith Health Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
489
|
Wang K, Jin M, Liu X, Klionsky DJ. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 2013; 9:1828-36. [PMID: 24025448 DOI: 10.4161/auto.26281] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.
Collapse
Affiliation(s)
- Ke Wang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | | | | | | |
Collapse
|
490
|
Welter E, Montino M, Reinhold R, Schlotterhose P, Krick R, Dudek J, Rehling P, Thumm M. Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS J 2013; 280:4970-82. [PMID: 23910823 DOI: 10.1111/febs.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 01/01/2023]
Abstract
Mitochondria are turned over by an autophagic process termed mitophagy. This process is considered to remove damaged, superfluous and aged organelles. However, little is known about how defective organelles are recognized, what types of damage induce turnover, and whether an identical set of factors contributes to degradation under different conditions. Here we systematically compared the mitophagy rate and requirement for mitophagy-specific proteins during post-log-phase and rapamycin-induced mitophagy. To specifically assess mitophagy of damaged mitochondria, we analyzed cells accumulating proteins prone to degradation due to lack of the mitochondrial AAA-protease Yme1. While autophagy 32 (Atg32) was required under all tested conditions, the function of Atg33 could be partially bypassed in post-log-phase and rapamycin-induced mitophagy. Unexpectedly, we found that Uth1 was dispensable for mitophagy. A re-evaluation of its mitochondrial localization revealed that Uth1 is a protein of the inner mitochondrial membrane that is targeted by a cleavable N-terminal pre-sequence. In agreement with our functional analyses, this finding excludes a role of Uth1 as a mitochondrial surface receptor.
Collapse
Affiliation(s)
- Evelyn Welter
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
491
|
Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biol 2013; 1:427-32. [PMID: 24191236 PMCID: PMC3814950 DOI: 10.1016/j.redox.2013.08.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 01/14/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the US and many western countries. It is well known that APAP induces mitochondrial damage to trigger centrilobular necrosis. Emerging evidence suggests that autophagic removal of damaged mitochondria may protect against APAP-induced liver injury. Electron and confocal microscopy analysis of liver tissues revealed that APAP overdose triggers unique biochemical and pathological zonated changes in the mouse liver, which includes necrosis (zone 1), mitochondrial spheroid formation (zone 2), autophagy (zone 3) and mitochondrial biogenesis (zone 4). In this graphic review, we discuss the role of autophagy/mitophagy in limiting the expansion of necrosis and promoting mitochondrial biogenesis and liver regeneration for the recovery of APAP-induced liver injury. We also discuss possible mechanisms that could be involved in regulating APAP-induced autophagy/mitophagy and the formation of mitochondrial spheroids.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | | | | |
Collapse
|
492
|
The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol Cell Biol 2013; 33:4083-94. [PMID: 23959800 DOI: 10.1128/mcb.00227-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A special group of mitochondrial outer membrane proteins spans the membrane once, exposing soluble domains to both sides of the membrane. These proteins are synthesized in the cytosol and then inserted into the membrane by an unknown mechanism. To identify proteins that are involved in the biogenesis of the single-span model protein Mim1, we performed a high-throughput screen in yeast. Two interesting candidates were the cytosolic cochaperone Djp1 and the mitochondrial import receptor Tom70. Our results indeed demonstrate a direct interaction of newly synthesized Mim1 molecules with Tom70. We further observed lower steady-state levels of Mim1 in mitochondria from djp1Δ and tom70 tom71Δ cells and massive mislocalization of overexpressed GFP-Mim1 to the endoplasmic reticulum in the absence of Djp1. Importantly, these phenotypes were observed specifically for the deletion of DJP1 and were not detected in mutant cells lacking any of the other cytosolic cochaperones of the Hsp40 family. Furthermore, the djp1Δ tom70Δ tom71Δ triple deletion resulted in a severe synthetic sick/lethal growth phenotype. Taking our results together, we identified Tom70 and Djp1 as crucial players in the biogenesis of Mim1. Moreover, the involvement of Djp1 provides a unique case of specificity between a cochaperone and its substrate protein.
Collapse
|
493
|
Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 2013; 65:1162-97. [PMID: 23943849 PMCID: PMC3799234 DOI: 10.1124/pr.112.007120] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a process of self-digestion of the cytoplasm and organelles through which cellular components are recycled for reuse or energy production, is an evolutionarily conserved response to metabolic stress found in eukaryotes from yeast to mammals. It is noteworthy that autophagy is also associated with various pathophysiologic conditions in which this cellular process plays either a cytoprotective or cytopathic role in response to a variety of stresses such as metabolic, inflammatory, neurodegenerative, and therapeutic stress. It is now generally believed that modulating the activity of autophagy through targeting specific regulatory molecules in the autophagy machinery may impact disease processes, thus autophagy may represent a new pharmacologic target for drug development and therapeutic intervention of various human disorders. Induction or inhibition of autophagy using small molecule compounds has shown promise in the treatment of diseases such as cancer. Depending on context, induction or suppression of autophagy may exert therapeutic effects via promoting either cell survival or death, two major events targeted by therapies for various disorders. A better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for several human diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
494
|
Kanki T, Kurihara Y, Jin X, Goda T, Ono Y, Aihara M, Hirota Y, Saigusa T, Aoki Y, Uchiumi T, Kang D. Casein kinase 2 is essential for mitophagy. EMBO Rep 2013; 14:788-94. [PMID: 23897086 DOI: 10.1038/embor.2013.114] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 01/05/2023] Open
Abstract
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.
Collapse
Affiliation(s)
- Tomotake Kanki
- Laboratory of Biosignaling, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Maintenance of mitochondrial morphology by autophagy and its role in high glucose effects on chronological lifespan of Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:636287. [PMID: 23936612 PMCID: PMC3727090 DOI: 10.1155/2013/636287] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023]
Abstract
In Saccharomyces cerevisiae, mitochondrial morphology changes when cells are shifted between nonfermentative and fermentative carbon sources. Here, we show that cells of S. cerevisiae grown in different glucose concentrations display different mitochondrial morphologies. The morphology of mitochondria in the cells growing in 0.5% glucose was similar to that of mitochondria in respiring cells. However, the mitochondria of cells growing in higher glucose concentrations (2% and 4%) became fragmented after growth in these media, due to the production of acetic acid; however, the fragmentation was not due to intracellular acidification. From a screen of mutants involved in sensing and utilizing nutrients, cells lacking TOR1 had reduced mitochondrial fragmentation, and autophagy was found to be essential for this reduction. Mitochondrial fragmentation in cells grown in high glucose was reversible by transferring them into conditioned medium from a culture grown on 0.5% glucose. Similarly, the chronological lifespan of cells grown in high glucose medium was reduced, and this phenotype could be reversed when cells were transferred to low glucose conditioned medium. These data indicate that chronological lifespan seems correlated with mitochondrial morphology of yeast cells and that both phenotypes can be influenced by factors from conditioned medium of cultures grown in low glucose medium.
Collapse
|
496
|
Feng D, Liu L, Zhu Y, Chen Q. Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res 2013; 319:1697-1705. [DOI: 10.1016/j.yexcr.2013.03.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
|
497
|
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev Cell 2013; 26:9-18. [PMID: 23810512 DOI: 10.1016/j.devcel.2013.05.024] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/09/2013] [Accepted: 05/24/2013] [Indexed: 11/20/2022]
Abstract
As the cellular power plant, mitochondria play a significant role in homeostasis. To maintain the proper quality and quantity of mitochondria requires both mitochondrial degradation and division. A selective type of autophagy, mitophagy, drives the degradation of excess or damaged mitochondria, whereas division is controlled by a specific fission complex; however, the relationship between these two processes, especially the role of mitochondrial fission during mitophagy, remains unclear. In this study, we report that mitochondrial fission is important for the progression of mitophagy. When mitophagy is induced, the fission complex is recruited to the degrading mitochondria through an interaction between Atg11 and Dnm1; interfering with this interaction severely blocks mitophagy. These data establish a paradigm for selective organelle degradation.
Collapse
|
498
|
Saita S, Shirane M, Nakayama KI. Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 2013; 4:1410. [PMID: 23361001 DOI: 10.1038/ncomms2400] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/17/2012] [Indexed: 12/22/2022] Open
Abstract
Mitophagy refers to the degradation of mitochondria by the autophagy system that is regulated by Parkin and PINK1, mutations in the genes for which have been linked to Parkinson's disease. Here we show that certain mitochondrial outer membrane proteins, including FKBP38 and Bcl-2, translocate from the mitochondria to the endoplasmic reticulum (ER) during mitophagy, thereby escaping degradation by autophagosomes. This translocation depends on the ubiquitylation activity of Parkin and on microtubule polymerization. Photoconversion analysis confirmed that FKBP38 detected at the ER during mitophagy indeed represents preexisting protein transported from the mitochondria. The escape of FKBP38 and Bcl-2 from the mitochondria is determined by the number of basic amino acids in their COOH-terminal signal sequences. Furthermore, the translocation of FKBP38 is essential for the suppression of apoptosis during mitophagy. Our results thus show that not all mitochondrial proteins are degraded during mitophagy, with some proteins being evacuated to the ER to prevent unwanted apoptosis.
Collapse
Affiliation(s)
- Shotaro Saita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
499
|
Nordgren M, Wang B, Apanasets O, Fransen M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 2013; 4:145. [PMID: 23785334 PMCID: PMC3682127 DOI: 10.3389/fphys.2013.00145] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are remarkably dynamic organelles that participate in a diverse array of cellular processes, including the metabolism of lipids and reactive oxygen species. In order to regulate peroxisome function in response to changing nutritional and environmental stimuli, new organelles need to be formed and superfluous and dysfunctional organelles have to be selectively removed. Disturbances in any of these processes have been associated with the etiology and progression of various congenital neurodegenerative and age-related human disorders. The aim of this review is to critically explore our current knowledge of how peroxisomes are degraded in mammalian cells and how defects in this process may contribute to human disease. Some of the key issues highlighted include the current concepts of peroxisome removal, the peroxisome quality control mechanisms, the initial triggers for peroxisome degradation, the factors for dysfunctional peroxisome recognition, and the regulation of peroxisome homeostasis. We also dissect the functional and mechanistic relationship between different forms of selective organelle degradation and consider how lysosomal dysfunction may lead to defects in peroxisome turnover. In addition, we draw lessons from studies on other organisms and extrapolate this knowledge to mammals. Finally, we discuss the potential pathological implications of dysfunctional peroxisome degradation for human health.
Collapse
Affiliation(s)
- Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven Leuven, Vlaams-Brabant, Belgium
| | | | | | | |
Collapse
|
500
|
Yin XM, Ding WX. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy 2013; 9:1687-92. [PMID: 24162069 DOI: 10.4161/auto.24871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial homeostasis is critical to cellular homeostasis, and mitophagy is an important mechanism to eliminate mitochondria that are superfluous or damaged. Multiple events can be involved in the recognition of mitochondria by the phagophore, and the key one is the priming of the mitochondria with specific molecular signatures. PARK2/Parkin is an E3 ligase that can be recruited to depolarized mitochondria and is required for mitophagy caused by respiration uncoupling. PARK2 induces ubiquitination of mitochondrial outer membrane proteins, which are subsequently degraded by the proteasome. Why these PARK2-mediated priming events are necessary for mitophagy to occur is not clear. We propose that they are needed to prevent a default pathway that would be inhibitory to mitophagy. In the default pathway depolarized and fragmented mitochondria undergo a dramatic three-dimensional conformational change to become mitochondrial spheroids. This transformation requires mitofusins; however, PARK2 inhibits this process by causing mitofusin ubiquitination and degradation. The spherical transformation may prevent recognition of the damaged mitochondria by the autophagosome, and PARK2 ensures that no such transformation occurs in order to promote mitophagy. Whether the formed mitochondrial spheroids functionally represent an alternative mitigation to mitophagy or an adverse consequence in the absence of PARK2 has yet to be determined.
Collapse
Affiliation(s)
- Xiao-Ming Yin
- Departments of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis, IN USA
| | | |
Collapse
|