451
|
Tavares D, van der Meer JR. Ribose-Binding Protein Mutants With Improved Interaction Towards the Non-natural Ligand 1,3-Cyclohexanediol. Front Bioeng Biotechnol 2021; 9:705534. [PMID: 34368100 PMCID: PMC8343135 DOI: 10.3389/fbioe.2021.705534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023] Open
Abstract
Bioreporters consist of genetically modified living organisms that respond to the presence of target chemical compounds by production of an easily measurable signal. The central element in a bioreporter is a sensory protein or aptamer, which, upon ligand binding, modifies expression of the reporter signal protein. A variety of naturally occurring or modified versions of sensory elements has been exploited, but it has proven to be challenging to generate elements that recognize non-natural ligands. Bacterial periplasmic binding proteins have been proposed as a general scaffold to design receptor proteins for non-natural ligands, but despite various efforts, with only limited success. Here, we show how combinations of randomized mutagenesis and reporter screening improved the performance of a set of mutants in the ribose binding protein (RbsB) of Escherichia coli, which had been designed based on computational simulations to bind the non-natural ligand 1,3-cyclohexanediol (13CHD). Randomized mutant libraries were constructed that used the initially designed mutants as scaffolds, which were cloned in an appropriate E. coli bioreporter system and screened for improved induction of the GFPmut2 reporter fluorescence in presence of 1,3-cyclohexanediol. Multiple rounds of library screening, sorting, renewed mutagenesis and screening resulted in 4.5-fold improvement of the response to 1,3-cyclohexanediol and a lower detection limit of 0.25 mM. All observed mutations except one were located outside the direct ligand-binding pocket, suggesting they were compensatory and helping protein folding or functional behavior other than interaction with the ligand. Our results thus demonstrate that combinations of ligand-binding-pocket redesign and randomized mutagenesis can indeed lead to the selection and recovery of periplasmic-binding protein mutants with non-natural compound recognition. However, current lack of understanding of the intermolecular movement and ligand-binding in periplasmic binding proteins such as RbsB are limiting the rational production of further and better sensory mutants.
Collapse
Affiliation(s)
- Diogo Tavares
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
452
|
Xu X, Yan Y, Huang W, Mo T, Wang X, Wang J, Li J, Shi S, Liu X, Tu P. Molecular cloning and biochemical characterization of a new coumarin glycosyltransferase CtUGT1 from Cistanche tubulosa. Fitoterapia 2021; 153:104995. [PMID: 34293438 DOI: 10.1016/j.fitote.2021.104995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
UDP-glycosyltransferases (UGTs) are an important and functionally diverse family of enzymes involved in secondary metabolite biosynthesis. Coumarin is one of the most common skeletons of natural products with candidate pharmacological activities. However, to date, many reported GTs from plants mainly recognized flavonoids as sugar acceptors. Only limited GTs could catalyze the glycosylation of coumarins. In this study, a new UGT was cloned from Cistanche tubulosa, a valuable traditional tonic Chinese herb, which is abundant with diverse glycosides such as phenylethanoid glycosides, lignan glycosides, and iridoid glycosides. Sequence alignment and phylogenetic analysis showed that CtUGT1 is phylogenetically distant from most of the reported flavonoid UGTs and adjacent to phenylpropanoid UGTs. Extensive in vitro enzyme assays found that although CtUGT1 was not involved in the biosynthesis of bioactive glycosides in C. tubulosa, it could catalyze the glucosylation of coumarins umbelliferone 1, esculetine 2, and hymecromone 3 in considerable yield. The glycosylated products were identified by comparison with the reference standards or NMR spectroscopy, and the results indicated that CtUGT1 can regiospecifically catalyze the glucosylation of hydroxyl coumarins at the C7-OH position. The key residues that determined CtUGT1's activity were further discussed based on homology modeling and molecular docking analyses. Combined with site-directed mutagenesis results, it was found that H19 played an irreplaceable role as the crucial catalysis basis. CtUGT1 could be used in the enzymatic preparation of bioactive coumarin glycosides.
Collapse
Affiliation(s)
- Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
453
|
Russo CA, Torti MF, Marquez AB, Sepúlveda CS, Alaimo A, García CC. Antiviral bioactivity of resveratrol against Zika virus infection in human retinal pigment epithelial cells. Mol Biol Rep 2021; 48:5379-5392. [PMID: 34282543 PMCID: PMC8289713 DOI: 10.1007/s11033-021-06490-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Resveratrol (RES) is a polyphenol with increasing interest for its inhibitory effects on a wide variety of viruses. Zika virus (ZIKV) is an arbovirus which causes a broad spectrum of ophthalmological manifestations in humans. Currently there is no certified therapy or vaccine to treat it, thus it has become a major global health threat. Retinal pigment epithelium (RPE) is highly permissive and susceptible to ZIKV. This work explored the protective effects of RES on ZIKV-infected human RPE cells. RES treatment resulted in a significant reduction of infectious viral particles in infected male ARPE-19 and female hTERT-RPE1 cells. This protection was positively influenced by the action of RES on mitochondrial dynamics. Also, docking studies predicted that RES has a high affinity for two enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis and viral polymerase. This evidence suggests that RES might be a potential antiviral agent to treat ZIKV-induced ocular abnormalities.
Collapse
Affiliation(s)
- Constanza A Russo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - María F Torti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Agostina B Marquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Cybele C García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina. .,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
454
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
455
|
Kublicki M, Koszelewski D, Brodzka A, Ostaszewski R. Wheat germ lipase: isolation, purification and applications. Crit Rev Biotechnol 2021; 42:184-200. [PMID: 34266327 DOI: 10.1080/07388551.2021.1939259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, wheat germ lipase (WGL) is attracting considerable interest. To date, several WGL applications have already been described: (i) fats and oils modification; (ii) esterification reactions in organic media, accepting a wide range of acids and alcohols as substrates; (iii) the asymmetric resolution of various chiral racemic intermediates; (iv) more recently, the promiscuous activity of WGL has been shown in carbon-carbon bond formation. To date, no crystallographic structure of this enzyme has been published, which means its activity, catalytic potential and substrate scope is being assessed empirically. Therefore, new catalytic activities of this enzyme are constantly being discovered. Taking into account the emergency and the current interest in environmentally sustainable processes, this review aims to highlight the origin, isolation, stabilization by immobilization and applications of the wheat germ lipase.HIGHLIGHTSWheat germ as an inexpensive source of biocatalystsWheat germ lipase an efficient catalyst for various chemical transformationsWheat germ lipase in food productionIndustrial applications of wheat germ lipaseWheat germ lipase as a promiscuous biocatalystImmobilization of wheat germ lipase as a method of stabilization.
Collapse
Affiliation(s)
- Marcin Kublicki
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
456
|
Shi Y, Bethea JP, Hetzel-Ebben HL, Landim-Vieira M, Mayper RJ, Williams RL, Kessler LE, Ruiz AM, Gargiulo K, Rose JSM, Platt G, Pinto JR, Washburn BK, Chase PB. Mandibular muscle troponin of the Florida carpenter ant Camponotus floridanus: extending our insights into invertebrate Ca 2+ regulation. J Muscle Res Cell Motil 2021; 42:399-417. [PMID: 34255253 DOI: 10.1007/s10974-021-09606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 μm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.
Collapse
Affiliation(s)
- Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Julia P Bethea
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hannah L Hetzel-Ebben
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Ross J Mayper
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Regan L Williams
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Lauren E Kessler
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amanda M Ruiz
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Kathryn Gargiulo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jennifer S M Rose
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Grayson Platt
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA. .,Department of Biological Science, Florida State University, Biology Unit One, Box 3064370, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
457
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
458
|
Bhattacharjee S, Kharwar S, Mishra AK. Insights Into the Phylogenetic Distribution, Diversity, Structural Attributes, and Substrate Specificity of Putative Cyanobacterial Orthocaspases. Front Microbiol 2021; 12:682306. [PMID: 34276616 PMCID: PMC8283722 DOI: 10.3389/fmicb.2021.682306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
The functionality of caspase homologs in prokaryotic cell execution has been perceived, yet the dimensions of their metabolic pertinence are still cryptic. Here, a detailed in silico study on putative cyanobacterial caspase homologs, termed orthocaspases, in a sequenced genome of 132 strains was performed. We observed that 473 putative orthocaspases were distributed among 62% cyanobacterial strains subsumed within all the taxonomical orders. However, high diversity among these orthocaspases was also evident as the conventional histidine–cysteine (HC) dyad was present only in 72.03% of orthocaspases (wild-type), whereas the rest 28.18% were pseudo-variants having substituted the catalytic dyad. Besides, the presence of various accessory functional domains with Peptidase C14 probably suggested the multifunctionality of the orthocaspases. Moreover, the early origin and emergence of wild-type orthocaspases were conferred by their presence in Gloeobacter; however, the complex phylogeny displayed by these caspase-homologs perhaps suggested horizontal a gene transfer for their acquisition. However, morpho-physiological advancements and larger genome size favored the acquisition of orthocaspases. Moreover, the conserved caspase hemoglobinase fold not only in the wild-type but also in the pseudo-orthocaspases in Nostoc sp. PCC 7120 ascertained the least effect of catalytic motifs in the protein tertiary structure. Further, the 100-ns molecular dynamic simulation and molecular mechanics/generalized born surface area exhibited stable binding of arginylarginine dipeptide with wild-type orthocaspase of Nostoc sp. PCC 7120, displaying arginine-P1 specificity of wild-type orthocaspases. This study deciphered the distribution, diversity, domain architecture, structure, and basic substrate specificity of putative cyanobacterial orthocaspases, which may aid in functional investigations in the future.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
459
|
Aldaais EA, Yegnaswamy S, Albahrani F, Alsowaiket F, Alramadan S. Sequence and structural analysis of COVID-19 E and M proteins with MERS virus E and M proteins-A comparative study. Biochem Biophys Rep 2021; 26:101023. [PMID: 34013072 PMCID: PMC8120451 DOI: 10.1016/j.bbrep.2021.101023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.
Collapse
Affiliation(s)
- Ebtisam A. Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31441, Saudi Arabia
| | - Subha Yegnaswamy
- Aldaais Research Group, Imam Abdulrahman bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatimah Albahrani
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatima Alsowaiket
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Sarah Alramadan
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| |
Collapse
|
460
|
Beg AZ, Farhat N, Khan AU. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 93:104982. [PMID: 34186254 DOI: 10.1016/j.meegid.2021.104982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) displays high drug resistance and biofilm-mediated adaptability, which makes its infections difficult to treat. Alternative intervention methods and targets have made such infections treatment manageable. One of the biofilm components, functional amyloids of Pseudomonas (Fap) is correlated positively with virulence and mucoidy phenotype found in infection in cystic fibrosis (CF) patients. Extracellular accessibility, conservation across P. aeruginosa isolates and linkage with lung infections phenotype in CF patients, makes Fap a promising intervention target. Furthermore, the reported effect of bacterial amyloid on neuronal function and immune response makes it a targetable candidate. In the current study, Fap C protein and its immediate interactions were explored to extract antigenic T-cell and B-cell epitopes. A combination of epitopes and peptide adjuvants has been linked to derive vaccine candidate structures. The vaccine candidates were validated for antigenicity, allergenicity, physiochemical properties, stability and interactions with TLRs and MHC alleles. Immunosimulation studies have demonstrated that vaccines elicit Th1 dominated response, which can assist in good prognosis of infection in CF patients.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Centre for Bioinformatic on Antimicrobial Resistance, IBU, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
461
|
Fernandes A, Piotrowski Y, Williamson A, Frade K, Moe E. Studies of multifunctional DNA polymerase I from the extremely radiation resistant Deinococcus radiodurans: Recombinant expression, purification and characterization of the full-length protein and its large fragment. Protein Expr Purif 2021; 187:105925. [PMID: 34175440 DOI: 10.1016/j.pep.2021.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
Deinococcus radiodurans is a bacterium with extreme resistance to desiccation and radiation. Although the origins of this extreme resistance have not been fully elucidated, an efficient DNA repair machinery that includes the enzyme DNA polymerase I, is potentially crucial as part of a protection mechanism. Here we have cloned and performed small, medium, and large-scale expression of full-length D. radiodurans DNA polymerase I (DrPolI) as well as the large/Klenow fragment (DrKlenow). We then carried out functional characterization of 5' exonuclease, DNA strand displacement and polymerase activities of these proteins using gel-based and molecular beacon-based biochemical assays. With the same expression and purification strategy, we got higher yield in the production of DrKlenow than of the full-length protein, approximately 2.5 mg per liter of culture. Moreover, we detected a prominent 5' exonuclease activity of DrPolI in vitro. This activity and, DrKlenow strand displacement and DNA polymerase activities are preferentially stimulated at pH 8.0-8.5 and are reduced by addition of NaCl. Interestingly, both protein variants are more thermostable at pH 6.0-6.5. The characterization of DrPolI's multiple functions provides new insights into the enzyme's role in DNA repair pathways, and how the modulation of these functions is potentially used by D. radiodurans as a survival strategy.
Collapse
Affiliation(s)
- A Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Y Piotrowski
- UiT - The Artic University of Norway, Tromsø, Norway
| | - A Williamson
- UiT - The Artic University of Norway, Tromsø, Norway; University of Waikato, Hamilton, New Zealand
| | - K Frade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - E Moe
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal; UiT - The Artic University of Norway, Tromsø, Norway.
| |
Collapse
|
462
|
Helmick H, Turasan H, Yildirim M, Bhunia A, Liceaga A, Kokini JL. Cold Denaturation of Proteins: Where Bioinformatics Meets Thermodynamics to Offer a Mechanistic Understanding: Pea Protein As a Case Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6339-6350. [PMID: 34029090 DOI: 10.1021/acs.jafc.0c06558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein structure can be altered with heat, but models which predict denaturation show that globular proteins also spontaneously unfold at low temperatures through cold denaturation. By an analysis of the primary structure of pea protein using bioinformatic modeling, a mechanism of pea protein cold denaturation is proposed. Pea protein is then fractionated into partially purified legumin and vicilin components, suspended in ethanol, and subjected to low temperatures (-10 to -20 °C). The structural characterizations of the purified fractions are conducted through FTIR, ζ potential, dynamic light scattering, and oil binding, and these are compared to the results of commercial protein isolates. The observed structural changes suggest that pea protein undergoes changes in structure as the result of low-temperature treatments, which could lead to innovative industrial processing techniques for functionalization by low-temperature processing.
Collapse
Affiliation(s)
- Harrison Helmick
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Hazal Turasan
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Merve Yildirim
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Arun Bhunia
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Andrea Liceaga
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Jozef L Kokini
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
463
|
Lopes‐Marques M, Pacheco AR, Peixoto MJ, Cardoso AR, Serrano C, Amorim A, Prata MJ, Cooper DN, Azevedo L. Common polymorphic OTC variants can act as genetic modifiers of enzymatic activity. Hum Mutat 2021; 42:978-989. [PMID: 34015158 PMCID: PMC8362079 DOI: 10.1002/humu.24221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Understanding the role of common polymorphisms in modulating the clinical phenotype when they co‐occur with a disease‐causing lesion is of critical importance in medical genetics. We explored the impact of apparently neutral common polymorphisms, using the gene encoding the urea cycle enzyme, ornithine transcarbamylase (OTC), as a model system. Distinct combinations of genetic backgrounds embracing two missense polymorphisms were created in cis with the pathogenic p.Arg40His replacement. In vitro enzymatic assays revealed that the polymorphic variants were able to modulate OTC activity both in the presence or absence of the pathogenic lesion. First, we found that the combination of the minor alleles of polymorphisms p.Lys46Arg and p.Gln270Arg significantly enhanced enzymatic activity in the wild‐type protein. Second, enzymatic assays revealed that the minor allele of the p.Gln270Arg polymorphism was capable of ameliorating OTC activity when combined in cis with the pathogenic p.Arg40His replacement. Structural analysis predicted that the minor allele of the p.Gln270Arg polymorphism would serve to stabilize the OTC wild‐type protein, thereby corroborating the results of the experimental assays. Our findings demonstrate the potential importance of cis‐interactions between common polymorphic variants and pathogenic missense mutations and illustrate how standing genetic variation can modulate protein function.
Collapse
Affiliation(s)
- Mónica Lopes‐Marques
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Ana Rita Pacheco
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
| | - Maria João Peixoto
- ICVS‐ Life and Health Sciences Research Institute, School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Ana Rita Cardoso
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Catarina Serrano
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - António Amorim
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Maria João Prata
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - David N. Cooper
- Institute of Medical Genetics; School of MedicineCardiff UniversityCardiffUK
| | - Luísa Azevedo
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| |
Collapse
|
464
|
Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, Haltiwanger RS. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem 2021; 297:100843. [PMID: 34058199 PMCID: PMC8233153 DOI: 10.1016/j.jbc.2021.100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes, have mutations in the gene encoding β1,3-glucosyltransferase [B3GLCT]). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - James L Mull
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
465
|
Yesiltas B, Gregersen S, Lægsgaard L, Brinch ML, Olsen TH, Marcatili P, Overgaard MT, Hansen EB, Jacobsen C, García-Moreno PJ. Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chem 2021; 362:130217. [PMID: 34098440 DOI: 10.1016/j.foodchem.2021.130217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Global focus on sustainability has accelerated research into alternative non-animal sources of food protein and functional food ingredients. Amphiphilic peptides represent a class of promising biomolecules to replace chemical emulsifiers in food emulsions. In contrast to traditional trial-and-error enzymatic hydrolysis, this study utilizes a bottom-up approach combining quantitative proteomics, bioinformatics prediction, and functional validation to identify novel emulsifier peptides from seaweed, methanotrophic bacteria, and potatoes. In vitro functional validation reveal that all protein sources contained embedded novel emulsifier peptides comparable to or better than sodium caseinate (CAS). Thus, peptides efficiently reduced oil-water interfacial tension and generated physically stable emulsions with higher net zeta potential and smaller droplet sizes than CAS. In silico structure modelling provided further insight on peptide structure and the link to emulsifying potential. This study clearly demonstrates the potential and broad applicability of the bottom-up approach for identification of abundant and potent emulsifier peptides.
Collapse
Affiliation(s)
- Betül Yesiltas
- National Food Institute, Technical University of Denmark, Denmark.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Denmark.
| | - Linea Lægsgaard
- National Food Institute, Technical University of Denmark, Denmark
| | - Maja L Brinch
- National Food Institute, Technical University of Denmark, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | | | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Denmark
| | | | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Denmark; Department of Chemical Engineering, University of Granada, Spain.
| |
Collapse
|
466
|
Ambrose AJ, Chapman E. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. J Med Chem 2021; 64:7060-7082. [PMID: 34009983 DOI: 10.1021/acs.jmedchem.0c02091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hsp70s are among the most highly conserved proteins in all of biology. Through an iterative binding and release of exposed hydrophobic residues on client proteins, Hsp70s can prevent aggregation and promote folding to the native state of their client proteins. The human proteome contains eight canonical Hsp70s. Because Hsp70s are relatively promiscuous they play a role in folding a large proportion of the proteome. Hsp70s are implicated in disease through their ability to regulate protein homeostasis. In recent years, researchers have attempted to develop selective inhibitors of Hsp70 isoforms to better understand the role of individual isoforms in biology and as potential therapeutics. Selective inhibitors have come from rational design, forced localization, and serendipity, but the development of completely selective inhibitors remains elusive. In the present review, we discuss the Hsp70 structure and function, the known Hsp70 client proteins, the role of Hsp70s in disease, and current efforts to discover Hsp70 modulators.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| |
Collapse
|
467
|
Tyler JJ, Smaczynska-de Rooij II, Abugharsa L, Palmer JS, Hancock LP, Allwood EG, Ayscough KR. Phosphorylation of the WH2 domain in yeast Las17/WASP regulates G-actin binding and protein function during endocytosis. Sci Rep 2021; 11:9718. [PMID: 33958621 PMCID: PMC8102491 DOI: 10.1038/s41598-021-88826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. WH2 domains are short sequence motifs found in many different actin binding proteins including WASP family proteins which regulate the actin nucleating complex Arp2/3. In this study we reveal a phosphorylation site, Serine 554, within the WH2 domain of the yeast WASP homologue Las17. Both phosphorylation and a phospho-mimetic mutation reduce actin monomer binding affinity while an alanine mutation, generated to mimic the non-phosphorylated state, increases actin binding affinity. The effect of these mutations on the Las17-dependent process of endocytosis in vivo was analysed and leads us to propose that switching of Las17 phosphorylation states may allow progression through distinct phases of endocytosis from site assembly through to the final scission stage. While the study is focused on Las17, the sole WASP family protein in yeast, our results have broad implications for our understanding of how a key residue in this conserved motif can underpin the many different actin regulatory roles with which WH2 domains have been associated.
Collapse
Affiliation(s)
- J J Tyler
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - I I Smaczynska-de Rooij
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L Abugharsa
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - J S Palmer
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L P Hancock
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - E G Allwood
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - K R Ayscough
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
468
|
Tietcheu Galani BR, Ayissi Owona VB, Guemmogne Temdie RJ, Metzger K, Atsama Amougou M, Djamen Chuisseu PD, Fondjo Kouam A, Ngounoue Djuidje M, Aliouat-Denis CM, Cocquerel L, Fewou Moundipa P. In silico and in vitro screening of licensed antimalarial drugs for repurposing as inhibitors of hepatitis E virus. In Silico Pharmacol 2021; 9:35. [PMID: 33959472 PMCID: PMC8093904 DOI: 10.1007/s40203-021-00093-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
ABSTRACT Hepatitis E virus (HEV) infection is emerging in Cameroon and represents one of the most common causes of acute hepatitis and jaundice. Moreover, earlier reports showed evidence of falciparum malaria/HEVcoexistence. Although the Sofosbuvir/Ribavirin combination was recently proposed in the treatment of HEV-infected patients, no specific antiviral drug has been approved so far, thereby urging the search for new therapies. Fortunately, drug repurposing offers a good alternative to this end. In this study, we report the in silico and in vitro activities of 8 licensed antimalarial drugs and two anti-hepatitis C virus agents used as references (Sofosbuvir, and Ribavirin), for repurposing as antiviral inhibitors against HEV. Compounds were docked against five HEV-specific targets including the Zinc-binding non-structural protein (6NU9), RNA-dependent RNA polymerase (RdRp), cryoEM structure of HEV VLP, genotype 1 (6LAT), capsid protein ORF-2, genotype 3 (2ZTN), and the E2s domain of genotype 1 (3GGQ) using the iGEMDOCK software and their pharmacokinetic profiles and toxicities were predicted using ADMETlab2.0. Their in vitro effects were also assessed on a gt 3 p6Gluc replicon system using the luciferase reporter assay. The docking results showed that Sofosbuvir had the best binding affinities with 6NU9 (- 98.22 kcal/mol), RdRp (- 113.86 kcal/mol), 2ZTN (- 106.96 kcal/mol), while Ribavirin better collided with 6LAT (- 99.33 kcal/mol). Interestingly, Lumefantrine showed the best affinity with 3GGQ (-106.05 kcal/mol). N-desethylamodiaquine and Amodiaquine presented higher binding scores with 6NU9 (- 93.5 and - 89.9 kcal/mol respectively vs - 80.83 kcal/mol), while Lumefantrine had the greatest energies with RdRp (- 102 vs - 84.58), and Pyrimethamine and N-desethylamodiaquine had stronger affinities with 2ZTN compared to Ribavirin (- 105.17 and - 102.65 kcal/mol vs - 96.04 kcal/mol). The biological screening demonstrated a significant (P < 0.001) antiviral effect on replication with 1 µM N-desethylamodiaquine, the major metabolite of Amodiaquine. However, Lumefantrine showed no effect at the tested concentrations (1, 5, and 10 µM). The biocomputational analysis of the pharmacokinetic profile of both drugs revealed a low permeability of Lumefantrine and a specific inactivation by CYP3A2 which might partly contribute to the short half-time of this drug. In conclusion, Amodiaquine and Lumefantrine may be good antimalarial drug candidates for repurposing against HEV. Further in vitro and in vivo experiments are necessary to validate these predictions. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40203-021-00093-y.
Collapse
Affiliation(s)
- Borris Rosnay Tietcheu Galani
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Vincent Brice Ayissi Owona
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Romeo Joel Guemmogne Temdie
- Laboratory of Medicinal Plants, Health, and Galenic Formulation, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Karoline Metzger
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Atsama Amougou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Research Center for Emerging and Reemerging Infectious Diseases (CREMER-IMPM), Virology Unit, P.O. Box 906, Yaounde, Cameroon
| | - Pascal Dieudonné Djamen Chuisseu
- Department of Medicine, Medical and Biomedical Sciences, Higher Institute of Health Sciences, Université Des Montagnes, P.O. Box 208, Bangangte, Cameroon
| | - Arnaud Fondjo Kouam
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O Box 63, Buea, South West Region Cameroon
| | - Marceline Ngounoue Djuidje
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Cécile-Marie Aliouat-Denis
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laurence Cocquerel
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
469
|
Sciorra MD, Fantino E, Grossi CEM, Ulloa RM. Characterization of two group III potato CDPKs, StCDPK22 and StCDPK24, that contain three EF-Hand motifs in their CLDs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:716-729. [PMID: 33799183 DOI: 10.1016/j.plaphy.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Four members of the potato (Solanum tuberosum L.) calcium-dependent protein kinase (CDPK) family StCDPK22/23/24 and StCDPK27, present three functional EF-hands motifs in their calmodulin-like domain (CLD). StCDPK22/23/24 are clustered in clade III-b1 with tomato and Arabidopsis CDPKs that lack the first EF-hand motif, while StCDPK27 is clustered in clade III-b3 with CDPKs that lack EF-hand 2. Members of each clade share similar intron-exon structures and acylation profiles. 3D model predictions suggested that StCDPK22 and StCDPK24 are active kinases that undergo a conformational switch in the presence of Ca2+ even when lacking one functional EF-hand motif; however, assays performed with recombinant proteins indicated that StCDPK24:6xHis was active in all the conditions tested, and its activity was enhanced in the presence of Ca2+, but StCDPK22:6xHis had scarce or null activity. Both kinases share with AtCPK8 the same autophosphorylation pattern in the autoinhibitory (AD) and C-terminal variable (CTV) domains, suggesting that it could be a characteristic of clade III-b1. RT-qPCR analysis revealed that StCDPK22 is mainly expressed in early stages of tuberization, but not limited to, while StCDPK24 expression is more ubiquitous. In silico analysis predicted several abiotic stress-responsive elements in its promoters. Accordingly, StCDPK24 expression peaked at 10 h in in vitro plants exposed to salt shock and then declined. Moreover, a significant increase was observed at 2 h in stems of salt-treated greenhouse plants, suggesting that this CDPK could participate in the early events of the signaling cascade triggered in response to salt.
Collapse
Affiliation(s)
- Marcelo Daniel Sciorra
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (C.A.B.A.), Argentina; Departamento de Química Biológica, UBA, C.A.B.A, Argentina.
| |
Collapse
|
470
|
Seth R, Maritim TK, Parmar R, Sharma RK. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). HORTICULTURE RESEARCH 2021; 8:99. [PMID: 33931616 PMCID: PMC8087774 DOI: 10.1038/s41438-021-00532-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The most daunting issue of global climate change is the deleterious impact of extreme temperatures on tea productivity and quality, which has resulted in a quest among researchers and growers. The current study aims to unravel molecular programming underpinning thermotolerance by characterizing heat tolerance and sensitivity response in 20 tea cultivars. The significantly higher negative influence of heat stress was recorded in a sensitive cultivar with reduced water retention (47%), chlorophyll content (33.79%), oxidation potential (32.48%), and increase in membrane damage (76.4%). Transcriptional profiling of most tolerant and sensitive cultivars identified 78 differentially expressed unigenes with chaperon domains, including low and high molecular weight heat shock protein (HSP) and heat shock transcription factors (HSFs) involved in heat shock response (HSR). Further, predicted transcriptional interactome network revealed their key role in thermotolerance via well-co-ordinated transcriptional regulation of aquaporins, starch metabolism, chlorophyll biosynthesis, calcium, and ethylene mediated plant signaling system. The study identified the key role of HSPs (CsHSP90) in regulating HSR in tea, wherein, structure-based molecular docking revealed the inhibitory role of geldanamycin (GDA) on CsHSP90 by blocking ATP binding site at N-terminal domain of predicted structure. Subsequently, GDA mediated leaf disc inhibitor assay further affirmed enhanced HSR with higher expression of CsHSP17.6, CsHSP70, HSP101, and CsHSFA2 genes in tea. Through the current study, efforts were made to extrapolate a deeper understanding of chaperons mediated regulation of HSR attributing thermotolerance in tea.
Collapse
Affiliation(s)
- Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India
- Tea breeding and genetic improvement division, KALRO-Tea Research Institute, Box 820, 20200, Kericho, Kenya
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
471
|
Yadav SK, Panwar D, Singh A, Tellis MB, Joshi RS, Dixit A. Molecular phylogeny, structure modeling and in silico screening of putative inhibitors of aerolysin of Aeromonas hydrophila EUS112. J Biomol Struct Dyn 2021; 40:8840-8849. [PMID: 33931004 DOI: 10.1080/07391102.2021.1918254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, causes diseases in fish, resulting in excessive loss to the aquaculture industry. Aeromonas is a highly heterogeneous group of bacteria, and the heterogeneity of the genus is attributed to variation and diversity in the virulence factors and toxins among various Aeromonas strains. One of the major toxins aerolysin, secreted by the bacterium, causes hemorrhagic-septicemia and diarrhea and can serve as a drug target. Here, we describe characterization, molecular phylogeny, and homology modeling of the aerolysin of A. hydrophila strain EUS112 (AhEUS112) cloned in our lab. The encoded aerolysin is 485 amino acids long with an N-terminal signal sequence of 23 amino acids. Phylogenetic analysis of the aerolysin of AhEUS112 revealed that it belongs to a diverse group of toxins, showing maximum similarity with aerolysins of other Aeromonas strains followed by Vibrio toxin. The homology model of the mature aerolysin of AhEUS112 was generated using the crystal structure of a mutant aerolysin (PDB#3g4n) as the template, which showed that the encoded aerolysin exists as a channel protein. Validation of the generated model using bioinformatics tool confirmed it to be a good quality model that can be used for drug design. Molecular dock analysis revealed that drugs, aralia-saponin I, cyclamin, ardisiacrispin B, and aralia-saponin II bind to aerolysin with a higher affinity as compared to other drugs and at functionally important amino acids of aerolysin. Hence, these molecules can act as an effective therapeutics for inhibiting the aerolysin pore formation and curtail the severity of Aeromonas infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunita Kumari Yadav
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Deepak Panwar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankita Singh
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi B Tellis
- Biochemical Sciences Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road Pune, India.,Department of Botany, Savitribai Phule Pune University, Ganeshkhind Rd, Ganeshkhind, Pune, India
| | - Rakesh Shamsunder Joshi
- Biochemical Sciences Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road Pune, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
472
|
Baldassarre F, Menéndez Hurtado D, Elofsson A, Azizpour H. GraphQA: protein model quality assessment using graph convolutional networks. Bioinformatics 2021; 37:360-366. [PMID: 32780838 PMCID: PMC8058777 DOI: 10.1093/bioinformatics/btaa714] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Motivation Proteins are ubiquitous molecules whose function in biological processes is determined by their 3D structure. Experimental identification of a protein’s structure can be time-consuming, prohibitively expensive and not always possible. Alternatively, protein folding can be modeled using computational methods, which however are not guaranteed to always produce optimal results. GraphQA is a graph-based method to estimate the quality of protein models, that possesses favorable properties such as representation learning, explicit modeling of both sequential and 3D structure, geometric invariance and computational efficiency. Results GraphQA performs similarly to state-of-the-art methods despite using a relatively low number of input features. In addition, the graph network structure provides an improvement over the architecture used in ProQ4 operating on the same input features. Finally, the individual contributions of GraphQA components are carefully evaluated. Availability and implementation PyTorch implementation, datasets, experiments and link to an evaluation server are available through this GitHub repository: github.com/baldassarreFe/graphqa. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Federico Baldassarre
- Division of Robotics, Perception and Learning (RPL), KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
| | - David Menéndez Hurtado
- Department of Intelligent Systems, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
- Department of Biochemistry and Biophysics, school of Electrical Engineering and Computer Science (EECS), Stockholm University, 10691 Stockholm, Sweden
| | - Arne Elofsson
- Department of Intelligent Systems, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
- Department of Biochemistry and Biophysics, school of Electrical Engineering and Computer Science (EECS), Stockholm University, 10691 Stockholm, Sweden
| | - Hossein Azizpour
- Division of Robotics, Perception and Learning (RPL), KTH – Royal Institute of Technology, 10044 Stockholm, Sweden
- To whom correspondence should be addressed.
| |
Collapse
|
473
|
Wang H, Wang Q, Liu Y, Liao X, Chu H, Chang H, Cao Y, Li Z, Zhang T, Cheng J, Jiang H. PCPD: Plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synth Syst Biotechnol 2021; 6:102-109. [PMID: 33997360 PMCID: PMC8094579 DOI: 10.1016/j.synbio.2021.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
Plant cytochrome P450s play key roles in the diversification and functional modification of plant natural products. Although over 200,000 plant P450 gene sequences have been recorded, only seven crystalized P450 genes severely hampered the functional characterization, gene mining and engineering of important P450s. Here, we combined Rosetta homologous modeling and MD-based refinement to construct a high-resolution P450 structure prediction process (PCPCM), which was applied to 181 plant P450s with identified functions. Furthermore, we constructed a ligand docking process (PCPLD) that can be applied for plant P450s virtual screening. 10 examples of virtual screening indicated the process can reduce about 80% screening space for next experimental verification. Finally, we constructed a plant P450 database (PCPD: http://p450.biodesign.ac.cn/), which includes the sequences, structures and functions of the 181 plant P450s, and a web service based on PCPCM and PCPLD. Our study not only developed methods for the P450-specific structure analysis, but also introduced a universal approach that can assist the mining and functional analysis of P450 enzymes.
Collapse
Affiliation(s)
- Hui Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qian Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoping Liao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanyu Chu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hong Chang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Cao
- Department of Environmental Medicine, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
474
|
Hou ZS, Xin YR, Yang XD, Zeng C, Zhao HK, Liu MQ, Zhang MZ, Daniel JG, Li JF, Wen HS. Transcriptional Profiles of Genes Related to Stress and Immune Response in Rainbow Trout ( Oncorhynchus mykiss) Symptomatically or Asymptomatically Infected With Vibrio anguillarum. Front Immunol 2021; 12:639489. [PMID: 33968031 PMCID: PMC8097155 DOI: 10.3389/fimmu.2021.639489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most common aquaculture fish species worldwide. Vibriosis disease outbreaks cause significant setbacks to aquaculture. The stress and immune responses are bidirectionally modulated in response to the health challenges. Therefore, an investigation into the regulatory mechanisms of the stress and immune responses in trout is invaluable for identifying potential vibriosis treatments. We investigated the transcriptional profiles of genes associated with stress and trout immune functions after Vibrio anguillarum infection. We compared the control trout (CT, 0.9% saline injection), asymptomatic trout (AT, surviving trout with minor or no symptoms after bacteria injection), and symptomatic trout (ST, moribund trout with severe symptoms after bacteria injection). Our results showed activated immunomodulatory genes in the cytokine network and downregulated glucocorticoid and mineralocorticoid receptors in both AT and ST, indicating activation of the proinflammatory cytokine cascade as a common response in AT and ST. Moreover, the AT specifically activated the complement- and TNF-associated immune defenses in response to V. anguillarum infection. However, the complement and coagulation cascades, as well as steroid hormone homeostasis in ST, were disturbed by V. anguillarum. Our studies provide new insights toward understanding regulatory mechanisms in stress and immune functions in response to diseases.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Mei-Zhao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jeffrey G Daniel
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| |
Collapse
|
475
|
Saif R, Mahmood T, Ejaz A, Zia S, Qureshi AR. Whole genome comparison of Pakistani Corona virus with Chinese and US Strains along with its predictive severity of COVID-19. GENE REPORTS 2021; 23:101139. [PMID: 33875973 PMCID: PMC8046707 DOI: 10.1016/j.genrep.2021.101139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/07/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022]
Abstract
Initially submitted 784 SARS-nCoV2 whole genome sequences on NCBI Virus database were selected for phylogenetic analysis to look into their similarities with two of Pakistani sequenced coronavirus strains having accessions of MT240479 and MT262993. The MT240479 named (Gilgit1-Pak) was found in close proximity to MT184913 named (CruiseA-USA), while MT262993 named (Manga-Pak) was in neighboring to MT039887 named (WI-USA) strain, which were further chosen for variant calling analysis along with reference genome NC_045512 as out-group to construct concluding cladogram and looked for evolutionary distance with PAUP software in this article. Aforementioned Pakistani strains each of having 29,836 bases were compared with MT263429 (WI-USA) of 29,889 bases and MT259229 (Wuhan-P.R. China) of 29,864 bases. Whole genome variant calling pipeline revealed 31 variants in both Pakistani strains collectively (Manga-Pak vs USA having 2del & 7SNPs, while different from Chinese strain with 2del & 2SNPs, similarly Gilgit1-Pak vs USA having 10SNPs, while different from Chinese strains having 8SNPs). These variants harbour ORF1ab, ORF1a and N genes having their role is viral replication/translation, host innate immunity and viral capsid formation respectively. These novel variants may be one of the reasons for low mortality rate in Pakistan with 385 deaths as compared to USA with 63,871 and P.R. China with 4633 by May 01, 2020. However functional characterization of these variants and their integrations with other viral proteins including variability of human receptors (ACE2 & NRP1) may be the other reasons for unlikely COVID-19 statistics in Pakistan which need further confirmatory studies. Moreover, mutated N and ORF1a proteins in Pakistani strains were also analyzed by 3D structure modeling, which give another dimension of comparing these alterations at amino acid level. In a nutshell, these novel variants are correlated with reduced mortality of COVID-19 severity in Pakistan while more robust results can be obtained by wet lab experimentation. This also gives insight of genomic landscape of these indigenous strains to develop diagnostics kits, vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Rashid Saif
- Decode Genomics, 323-D, Punjab University Employees Housing Scheme (II), Lahore, Pakistan
| | - Tania Mahmood
- Decode Genomics, 323-D, Punjab University Employees Housing Scheme (II), Lahore, Pakistan
| | - Aniqa Ejaz
- Decode Genomics, 323-D, Punjab University Employees Housing Scheme (II), Lahore, Pakistan
| | - Saeeda Zia
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Abdul Rasheed Qureshi
- Out Patients Department-Pulmonology, Gulab Devi Chest Hospital, Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
476
|
Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 2021; 184:2135-2150.e13. [PMID: 33765442 PMCID: PMC8054911 DOI: 10.1016/j.cell.2021.02.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.
Collapse
Affiliation(s)
- Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ay Lin Kho
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mathias Gautel
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Excellence Centre, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
477
|
Saih A, Baba H, Bouqdayr M, Ghazal H, Hamdi S, Kettani A, Wakrim L. In Silico Analysis of High-Risk Missense Variants in Human ACE2 Gene and Susceptibility to SARS-CoV-2 Infection. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6685840. [PMID: 33884270 PMCID: PMC8040925 DOI: 10.1155/2021/6685840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
SARS-CoV-2 coronavirus uses for entry to human host cells a SARS-CoV receptor of the angiotensin-converting enzyme (ACE2) that catalyzes the conversion of angiotensin II into angiotensin (1-7). To understand the effect of ACE2 missense variants on protein structure, stability, and function, various bioinformatics tools were used including SIFT, PANTHER, PROVEAN, PolyPhen2.0, I. Mutant Suite, MUpro, SWISS-MODEL, Project HOPE, ModPred, QMEAN, ConSurf, and STRING. All twelve ACE2 nsSNPs were analyzed. Six ACE2 high-risk pathogenic nsSNPs (D427Y, R514G, R708W, R710C, R716C, and R768W) were found to be the most damaging by at least six software tools (cumulative score between 6 and 7) and exert deleterious effect on the ACE2 protein structure and likely function. Additionally, they revealed high conservation, less stability, and having a role in posttranslation modifications such a proteolytic cleavage or ADP-ribosylation. This in silico analysis provides information about functional nucleotide variants that have an impact on the ACE2 protein structure and function and therefore susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Asmae Saih
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco
| | - Hana Baba
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco
| | - Hassan Ghazal
- National Center for Scientific Technical Research (CNRST), Rabat 10102, Morocco
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
| |
Collapse
|
478
|
Rozhkova DN, Zinevich LS, Karyakin IV, Sorokin AG, Tambovtseva VG, Kulikov AM. Non-Neutral Cytochrome b Variability in the Saker Falco cherrug Grey, 1834 and Gyrfalcon Falco rusticolus L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
479
|
Expression and Functional Analysis of the Argonaute Protein of Thermus thermophilus (TtAgo) in E. coli BL21(DE3). Biomolecules 2021; 11:biom11040524. [PMID: 33807395 PMCID: PMC8067300 DOI: 10.3390/biom11040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
The prokaryotic Argonaute proteins (pAgos) have been reported to cleave or interfere with DNA targets in a guide-dependent or independent manner. It is often difficult to characterize pAgos in vivo due to the extreme environments favored by their hosts. In the present study, we expressed functional Thermus thermophilus pAgo (TtAgo) in E. coli BL21 (DE3) cells at 37 °C. Initial attempts to express TtAgo in BL21(DE3) cells at 37 °C failed. This was not because of TtAgo mediated general toxicity to the host cells, but instead because of TtAgo-induced loss of its expression plasmid. We employed this discovery to establish a screening system for isolating loss-of-function mutants of TtAgo. The E. colifabI gene was used to help select for full-length TtAgo loss of function mutants, as overexpression of fabI renders the cell to be resistant to the triclosan. We isolated and characterized eight mutations in TtAgo that abrogated function. The ability of TtAgo to induce loss of its expression vector in vivo at 37 °C is an unreported function that is mechanistically different from its reported in vitro activity. These results shed light on the mechanisms by which TtAgo functions as a defense against foreign DNA invasion.
Collapse
|
480
|
Peiffer AL, Garlick JM, Wu Y, Soellner MB, Brooks CL, Mapp AK. TMPRSS2 inhibitor discovery facilitated through an in silico and biochemical screening platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.22.436465. [PMID: 33791707 PMCID: PMC8010734 DOI: 10.1101/2021.03.22.436465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has highlighted the need for new antiviral targets, as many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a highly promising antiviral target, as it plays a direct role in priming the spike protein before viral entry occurs. Further, unlike other targets such as ACE2, TMPRSS2 has no known biological role. Here we utilize virtual screening to curate large libraries into a focused collection of potential inhibitors. Optimization of a recombinant expression and purification protocol for the TMPRSS2 peptidase domain facilitates subsequent biochemical screening and characterization of selected compounds from the curated collection in a kinetic assay. In doing so, we demonstrate that serine protease inhibitors camostat, nafamostat, and gabexate inhibit through a covalent mechanism. We further identify new non-covalent compounds as TMPRSS2 protease inhibitors, demonstrating the utility of a combined virtual and experimental screening campaign in rapid drug discovery efforts.
Collapse
Affiliation(s)
- Amanda L. Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48019
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Julie M. Garlick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48019
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Yujin Wu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Matthew B. Soellner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48019
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
481
|
Solanki V, Tiwari M, Tiwari V. Immunoinformatic approach to design a multiepitope vaccine targeting non-mutational hotspot regions of structural and non-structural proteins of the SARS CoV2. PeerJ 2021; 9:e11126. [PMID: 33828922 PMCID: PMC7996071 DOI: 10.7717/peerj.11126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The rapid Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV2) outbreak caused severe pandemic infection worldwide. The high mortality and morbidity rate of SARS CoV2 is due to the unavailability of vaccination and mutation in this virus. The present article aims to design a potential vaccine construct VTC3 targeting the non-mutational region of structural and non-structural proteins of SARS CoV2. METHODS In this study, vaccines were designed using subtractive proteomics and reverse vaccinology. To target the virus adhesion and evasion, 10 different structural and non-structural proteins have been selected. Shortlisted proteins have been screened for B cell, T cell and IFN gamma interacting epitopes. 3D structure of vaccine construct was modeled and evaluated for its physicochemical properties, immunogenicity, allergenicity, toxicity and antigenicity. The finalized construct was implemented for docking and molecular dynamics simulation (MDS) with different toll-like receptors (TLRs) and human leukocyte antigen (HLA). The binding energy and dissociation construct of the vaccine with HLA and TLR was also calculated. Mutational sensitivity profiling of the designed vaccine was performed, and mutations were reconfirmed from the experimental database. Antibody production, clonal selection, antigen processing, immune response and memory generation in host cells after injection of the vaccine was also monitored using immune simulation. RESULTS Subtractive proteomics identified seven (structural and non-structural) proteins of this virus that have a role in cell adhesion and infection. The different epitopes were predicted, and only extracellular epitopes were selected that do not have similarity and cross-reactivity with the host cell. Finalized epitopes of all proteins with minimum allergenicity and toxicity were joined using linkers to designed different vaccine constructs. Docking different constructs with different TLRs and HLA demonstrated a stable and reliable binding affinity of VTC3 with the TLRs and HLAs. MDS analysis further confirms the interaction of VTC3 with HLA and TLR1/2 complex. The VTC3 has a favorable binding affinity and dissociation constant with HLA and TLR. The VTC3 does not have similarities with the human microbiome, and most of the interacting residues of VTC3 do not have mutations. The immune simulation result showed that VTC3 induces a strong immune response. The present study designs a multiepitope vaccine targeting the non-mutational region of structural and non-structural proteins of the SARS CoV2 using an immunoinformatic approach, which needs to be experimentally validated.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
482
|
Functional Analysis of the Fusion and Attachment Glycoproteins of Mojiang Henipavirus. Viruses 2021; 13:v13030517. [PMID: 33809833 PMCID: PMC8004131 DOI: 10.3390/v13030517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
Mojiang virus (MojV) is the first henipavirus identified in a rodent and known only by sequence data, whereas all other henipaviruses have been isolated from bats (Hendra virus, Nipah virus, Cedar virus) or discovered by sequence data from material of bat origin (Ghana virus). Ephrin-B2 and -B3 are entry receptors for Hendra and Nipah viruses, but Cedar virus can utilize human ephrin-B1, -B2, -A2 and -A5 and mouse ephrin-A1. However, the entry receptor for MojV remains unknown, and its species tropism is not well characterized. Here, we utilized recombinant full-length and soluble forms of the MojV fusion (F) and attachment (G) glycoproteins in membrane fusion and receptor tropism studies. MojV F and G were functionally competent and mediated cell–cell fusion in primate and rattine cells, albeit with low levels and slow fusion kinetics. Although a relative instability of the pre-fusion conformation of a soluble form of MojV F was observed, MojV F displayed significantly greater fusion activity when heterotypically paired with Ghana virus G. An exhaustive investigation of A- and B-class ephrins indicated that none serve as a primary receptor for MojV. The MojV cell fusion phenotype is therefore likely the result of receptor restriction rather than functional defects in recombinant MojV F and G glycoproteins.
Collapse
|
483
|
Waman VP, Sen N, Varadi M, Daina A, Wodak SJ, Zoete V, Velankar S, Orengo C. The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Brief Bioinform 2021; 22:742-768. [PMID: 33348379 PMCID: PMC7799268 DOI: 10.1093/bib/bbaa362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Antoine Daina
- Molecular Modeling Group at SIB, Swiss Institute of Bioinformatics
| | | | - Vincent Zoete
- Department of Fundamental Oncology at the University of Lausanne and Group leader at SIB
| | | | | |
Collapse
|
484
|
Pande M, Kundu D, Srivastava R. Vitamin C and Vitamin D3 show strong binding with the amyloidogenic region of G555F mutant of Fibrinogen A alpha-chain associated with renal amyloidosis: proposed possible therapeutic intervention. Mol Divers 2021; 26:939-949. [PMID: 33710477 DOI: 10.1007/s11030-021-10205-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
G555F mutant of Fibrinogen A alpha-chain (FGA) is reported to be associated with kidney amyloidosis. In the current study, we have modelled the G555F mutant and examined the mutation's effect on the structural and functional level. We have also docked Vitamin C and D3 on the mutant's amyloidogenic region to identify if these vitamins can bind amyloidogenic regions. Further, we analyzed if they could prevent or modulate amyloid formation by stopping critical interactions in amyloidogenic regions in FGA. We used the wild type FGA model protein as a control. Our docking and molecular dynamics simulation results indicate stronger Vitamin D3 binding than Vitamin C to the amyloidogenic region of the mutant protein. The RMSD, radius of gyration, and RMSF values were higher for the G555F mutant than the FGA wild type protein. Overall, the results support these vitamins' potential as a therapeutic and anti-amyloidogenic agent for FGA renal amyloidosis.
Collapse
Affiliation(s)
- Monu Pande
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
485
|
Directed Evolution of a Glutathione Transferase for the Development of a Biosensor for Alachlor Determination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present work, DNA recombination of three homologous tau class glutathione transferases (GSTUs) allowed the creation of a library of tau class GmGSTUs. The library was activity screened for the identification of glutathione transferase (GST) variants with enhanced catalytic activity towards the herbicide alachlor (2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide). One enzyme variant (GmGSTsf) with improved catalytic activity and binding affinity for alachlor was identified and explored for the development of an optical biosensor for alachlor determination. Kinetics analysis and molecular modeling studies revealed a key mutation (Ile69Val) at the subunit interface (helix α3) that appeared to be responsible for the altered catalytic properties. The enzyme was immobilized directly on polyvinylidenefluoride membrane by crosslinking with glutaraldehyde and was placed on the inner surface of a plastic cuvette. The rate of pH changes observed as a result of the enzyme reaction was followed optometrically using a pH indicator. A calibration curve indicated that the linear concentration range for alachlor was 30–300 μM. The approach used in the present study can provide tools for the generation of novel enzymes for eco-efficient and environment-friendly analytical technologies. In addition, the outcome of this study gives an example for harnessing protein symmetry for enzyme design.
Collapse
|
486
|
Abdollahi F, Alebrahim MT, Ngov C, Lallemand E, Zheng Y, Villette C, Zumsteg J, André F, Navrot N, Werck-Reichhart D, Miesch L. Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed. THE NEW PHYTOLOGIST 2021; 229:3253-3268. [PMID: 33253456 DOI: 10.1111/nph.17126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 05/24/2023]
Abstract
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Collapse
Affiliation(s)
- Fatemeh Abdollahi
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Mohammad Taghi Alebrahim
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Chheng Ngov
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Etienne Lallemand
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Yongxiang Zheng
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Laurence Miesch
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| |
Collapse
|
487
|
Baig MS, Reyaz E, Selvapandiyan A, Krishnan A. Differential binding of SARS-CoV-2 Spike protein variants to its cognate receptor hACE2 using molecular modeling based binding analysis. Bioinformation 2021; 17:337-347. [PMID: 34234394 PMCID: PMC8225600 DOI: 10.6026/97320630017337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/23/2022] Open
Abstract
The current emergence of novel coronavirus, SARS-CoV-2 and its ceaseless expansion worldwide has posed a global health emergency that has adversely affected the humans. With the entire world striving to understand the newly emerged virus, differences in morbidity and infection rate of SARS-CoV-2 have been observed across varied geographic areas, which have been ascribed to viral mutation and evolution over time. The homotrimeric Spike (S) glycoprotein on the viral envelope surface is responsible for binding, priming, and initiating infection in the host. Our phylogeny analysis of 1947 sequences of S proteins indicated there is a change in amino acid (aa) from aspartate (Group-A) to glycine (Group-B) at position 614, near the receptor- binding domain (RBD; aa positions 331-524). The two variants are reported to be in circulation, disproportionately across the world, with Group-A dominant in Asia and Group-B in North America. The trimeric, monomeric, and RBD of S protein of both the variant groups (A & B) were modeled using the Swiss-Model server and were docked with the human receptor angiotensin-converting enzyme 2 (hACE2) employing the PatchDock server and visualized in PyMol. Group-A S protein's RBD bound imperceptibly to the two binding clefts of the hACE2 protein, on the other hand, Group-B S protein's RBD perfectly interacted inside the binding clefts of hACE2, with higher number of hydrogen and hydrophobic interactions. This implies that the S protein's amino acid at position 614 near the core RBD influences its interaction with the cognate hACE2 receptor, which may induce its infectivity that should be explored further with molecular and biochemical studies.
Collapse
Affiliation(s)
- Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi - 110062, India
| | - Enam Reyaz
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi - 110062, India
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi - 110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
488
|
Kaldate S, Patel A, Modha K, Parekh V, Kale B, Vadodariya G, Patel R. Allelic characterization and protein structure analysis reveals the involvement of splice site mutation for growth habit differences in Lablab purpureus (L.) Sweet. J Genet Eng Biotechnol 2021; 19:34. [PMID: 33619637 PMCID: PMC7900342 DOI: 10.1186/s43141-021-00136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/14/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Interrelationship between growth habit and flowering played a key role in the domestication history of pulses; however, the actual genes responsible for these traits have not been identified in Indian bean. Determinate growth habit is desirable due to its early flowering, photo-insensitivity, synchronous pod maturity, ease in manual harvesting and short crop duration. The present study aimed to identify, characterize and validate the gene responsible for growth habit by using a candidate gene approach coupled with sequencing, multiple sequence alignment, protein structure prediction and binding pocket analysis. RESULTS Terminal flowering locus was amplified from GPKH 120 (indeterminate) and GNIB-21 (determinate) using the primers designed from PvTFL1y locus of common bean. Gene prediction revealed that the length of the third and fourth exons differed between the two alleles. Allelic sequence comparison indicated a transition from guanine to adenine at the end of the third exon in GNIB 21. This splice site single-nucleotide polymorphism (SNP) was validated in germplasm lines by sequencing. Protein structure analysis indicated involvement of two binding pockets for interaction of terminal flowering locus (TFL) protein with other proteins. CONCLUSION The splice site SNP present at the end of the third exon of TFL locus is responsible for the transformation of shoot apical meristem into a reproductive fate in the determinate genotype GNIB 21. The splice site SNP leads to absence of 14 amino acids in mutant TFL protein of GNIB 21, rendering the protein non-functional. This deletion disturbed previously reported anion-binding pocket and secondary binding pocket due to displacement of small β-sheet away from an external loop. This finding may enable the modulation of growth habit in Indian bean and other pulse crops through genome editing.
Collapse
Affiliation(s)
- Supriya Kaldate
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Apexa Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India.
| | - Vipulkumar Parekh
- Department of Basic Science and Humanities, ASPEE College of Horticulture and Forestry, NAU, Navsari, Gujarat, 396 450, India
| | - Bhushan Kale
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Gopal Vadodariya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, 396 450, India
| |
Collapse
|
489
|
Bakhshi H, Fazlalipour M, Dadgar-Pakdel J, Zakeri S, Raz A, Failloux AB, Dinparast Djadid N. Developing a Vaccine to Block West Nile Virus Transmission: In Silico Studies, Molecular Characterization, Expression, and Blocking Activity of Culex pipiens mosGCTL-1. Pathogens 2021; 10:pathogens10020218. [PMID: 33671430 PMCID: PMC7921969 DOI: 10.3390/pathogens10020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mosquito galactose-specific C-type lectins (mosGCTLs), such as mosGCTL-1, act as ligands to facilitate the invasion of flaviviruses like West Nile virus (WNV). WNV interacts with the mosGCTL-1 of Aedes aegypti (Culicidae) and facilitates the invasion of this virus. Nevertheless, there is no data about the role of mosGCTL-1 as a transmission-blocking vaccine candidate in Culex pipiens, the most abundant Culicinae mosquito in temperate regions. METHODS Adult female Cx. pipiens mosquitoes were experimentally infected with a WNV infectious blood meal, and the effect of rabbit anti-rmosGCTL-1 antibodies on virus replication was evaluated. Additionally, in silico studies such as the prediction of protein structure, homology modeling, and molecular interactions were carried out. RESULTS We showed a 30% blocking activity of Cx. pipiens mosGCTL-1 polyclonal antibodies (compared to the 10% in the control group) with a decrease in infection rates in mosquitoes at day 5 post-infection, suggesting that there may be other proteins in the midgut of Cx. pipiens that could act as cooperative-receptors for WNV. In addition, docking results revealed that WNV binds with high affinity, to the Culex mosquito lectin receptors. CONCLUSIONS Our results do not support the idea that mosGCTL-1 of Cx. pipiens primarily interacts with WNV to promote viral infection, suggesting that other mosGCTLs may act as primary infection factors in Cx. pipiens.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran;
| | - Javad Dadgar-Pakdel
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Trauma Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan Abad Square, Imam Khomeini Avenue, Tehran 1136746911, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue Dr. Roux, CEDEX 15, 75724 Paris, France
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| |
Collapse
|
490
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and the greater coronavirus family. RESEARCH SQUARE 2021:rs.3.rs-95030. [PMID: 33106800 PMCID: PMC7587783 DOI: 10.21203/rs.3.rs-95030/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M. Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C. Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- MAbSilico, Nouzilly, Centre, France, EU
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
491
|
Wang C, Konecki DM, Marciano DC, Govindarajan H, Williams AM, Wastuwidyaningtyas B, Bourquard T, Katsonis P, Lichtarge O. Identification of evolutionarily stable functional and immunogenic sites across the SARS-CoV-2 proteome and the greater coronavirus family. RESEARCH SQUARE 2021:rs.3.rs-95030. [PMID: 36575762 PMCID: PMC9793837 DOI: 10.21203/rs.3.rs-95030/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since the first recognized case of COVID-19, more than 100 million people have been infected worldwide. Global efforts in drug and vaccine development to fight the disease have yielded vaccines and drug candidates to cure COVID-19. However, the spread of SARS-CoV-2 variants threatens the continued efficacy of these treatments. In order to address this, we interrogate the evolutionary history of the entire SARS-CoV-2 proteome to identify evolutionarily conserved functional sites that can inform the search for treatments with broader coverage across the coronavirus family. Combining this information with the mutations observed in the current COVID-19 outbreak, we systematically and comprehensively define evolutionarily stable sites that may provide useful drug and vaccine targets and which are less likely to be compromised by the emergence of new virus strains. Several experimentally-validated effective drugs interact with these proposed target sites. In addition, the same evolutionary information can prioritize cross reactive antigens that are useful in directing multi-epitope vaccine strategies to illicit broadly neutralizing immune responses to the betacoronavirus family. Although the results are focused on SARS-CoV-2, these approaches stem from evolutionary principles that are agnostic to the organism or infective agent.
Collapse
Affiliation(s)
- Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel M. Konecki
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David C. Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Correspondence: (D.C.M), (O.L.)
| | - Harikumar Govindarajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Williams
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,MAbSilico, Nouzilly, Centre, France, EU
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA,Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Correspondence: (D.C.M), (O.L.)
| |
Collapse
|
492
|
Cheng H, Shao Z, Lu C, Duan D. Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses. BMC PLANT BIOLOGY 2021; 21:87. [PMID: 33568068 PMCID: PMC7874618 DOI: 10.1186/s12870-021-02849-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nitrogen-containing polysaccharide chitin is the second most abundant biopolymer on earth and is found in the cell walls of diatoms, where it serves as a scaffold for biosilica deposition. Diatom chitin is an important source of carbon and nitrogen in the marine environment, but surprisingly little is known about basic chitinase metabolism in diatoms. RESULTS Here, we identify and fully characterize 24 chitinase genes from the model centric diatom Thalassiosira pseudonana. We demonstrate that their expression is broadly upregulated under abiotic stresses, despite the fact that chitinase activity itself remains unchanged, and we discuss several explanations for this result. We also examine the potential transcriptional complexity of the intron-rich T. pseudonana chitinase genes and provide evidence for two separate tandem duplication events during their evolution. CONCLUSIONS Given the many applications of chitin and chitin derivatives in suture production, wound healing, drug delivery, and other processes, new insight into diatom chitin metabolism has both theoretical and practical value.
Collapse
Affiliation(s)
- Haomiao Cheng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
| | - Chang Lu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China.
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, 266400, P. R. China.
| |
Collapse
|
493
|
Urbániková Ľ. CE16 acetylesterases: in silico analysis, catalytic machinery prediction and comparison with related SGNH hydrolases. 3 Biotech 2021; 11:84. [PMID: 33505839 DOI: 10.1007/s13205-020-02575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/01/2020] [Indexed: 01/23/2023] Open
Abstract
Bioinformatics analysis was focused on unique acetylesterases annotated in the CAZy database within the CE16 family and simultaneously belonging to the SGNH hydrolase superfamily. The CE16 acetylesterases were compared to structurally related SGNH hydrolases: (i) selected members of the CE2, CE3, CE6, CE12 and CE17 family of the CAZy database and (ii) structural representatives of the Lipase_GDSL and Lipase_GDSL_2 families according to the Pfam database. Sequence alignment based on four conserved sequence regions (CSRs) containing active-site residues was used to calculate sequence logos specific for each CE family and to construct a phylogenetic tree. In many members of the CE16 family, aspartic acid from the Ser-His-Asp catalytic triad has been replaced by asparagine, and based on structure-sequence comparison, an alternative catalytic dyad mechanism was predicted for these enzymes. In addition to four conserved regions, CSR-I, CSR-II, CSR-III and CSR-V, containing catalytic and oxyanion-hole residues, CSR-IV was found in the CE16 family as the only CAZy family. Tertiary structures of the characterized CE16 members prepared by homology modeling showed that the α/β/α sandwich fold as well as the topology of their active sites are preserved. The phylogenetic tree and sequence alignment indicate the existence of a subfamily in the CE16 family fully consistent with the known biochemical data. In addition, nonstandard CE16 members that differ from others were analyzed and their active-site residues were predicted. A better understanding of the structure-function relationship of acetylesterases can help in the targeted design of these enzymes for biotechnology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02575-w.
Collapse
|
494
|
Berezina OV, Rykov SV, Polyakova AK, Bozdaganyan ME, Sidochenko AV, Baudrexl M, Schwarz WH, Zverlov VV, Yarotsky SV. Strategic aromatic residues in the catalytic cleft of the xyloglucanase MtXgh74 modifying thermostability, mode of enzyme action, and viscosity reduction ability. Appl Microbiol Biotechnol 2021; 105:1461-1476. [PMID: 33521846 DOI: 10.1007/s00253-021-11106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.
Collapse
Affiliation(s)
- Oksana V Berezina
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545. .,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182.
| | - Sergey V Rykov
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545.,National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| | - Angelina K Polyakova
- National Research Centre "Kurchatov Institute" - GOSNIIGENETIKA, 1-st Dorozhniy pr. 1, Moscow, Russian Federation, 117545
| | - Marine E Bozdaganyan
- Biological Department, Moscow State University, Leninskie gory 1, Build. 12, Moscow, Russian Federation, 119234.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Str., Bld. 1, Moscow, Russian Federation, 119991.,Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Anna V Sidochenko
- Moscow Polytechnic University, B. Semenovskaya Str. 38, 107023, Moscow, Russian Federation, 107023
| | - Melanie Baudrexl
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | | | - Vladimir V Zverlov
- Technical University Munich, Department of Microbiology, Emil-Ramann-Str. 4, 85354, Freising, Germany. .,National Research Centre "Kurchatov Institute" - Institute of Molecular Genetics, Kurchatov Sq. 2, Moscow, Russian Federation, 123182.
| | - Sergey V Yarotsky
- National Research Centre "Kurchatov Institute" 1, Kurchatov Sq, Moscow, Russian Federation, 123182
| |
Collapse
|
495
|
Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism. Nat Commun 2021; 12:449. [PMID: 33469028 PMCID: PMC7815742 DOI: 10.1038/s41467-020-20675-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Steroid hormones are essential in stress response, immune system regulation, and reproduction in mammals. Steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, are catalyzed by steroid 5α-reductases (SRD5As) to generate their corresponding 3-oxo-5α steroids, which are essential for multiple physiological and pathological processes. SRD5A2 is already a target of clinically relevant drugs. However, the detailed mechanism of SRD5A-mediated reduction remains elusive. Here we report the crystal structure of PbSRD5A from Proteobacteria bacterium, a homolog of both SRD5A1 and SRD5A2, in complex with the cofactor NADPH at 2.0 Å resolution. PbSRD5A exists as a monomer comprised of seven transmembrane segments (TMs). The TM1-4 enclose a hydrophobic substrate binding cavity, whereas TM5-7 coordinate cofactor NADPH through extensive hydrogen bonds network. Homology-based structural models of HsSRD5A1 and -2, together with biochemical characterization, define the substrate binding pocket of SRD5As, explain the properties of disease-related mutants and provide an important framework for further understanding of the mechanism of NADPH mediated steroids 3-oxo-Δ4 reduction. Based on these analyses, the design of therapeutic molecules targeting SRD5As with improved specificity and therapeutic efficacy would be possible.
Collapse
|
496
|
The investigation of detection and sensing mechanism of spicy substance based on human TRPV1 channel protein-cell membrane biosensor. Biosens Bioelectron 2021; 172:112779. [PMID: 33160235 DOI: 10.1016/j.bios.2020.112779] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a key target for the spicy taste sensor and analgesic drug development. However, the human TRPV1-associated signaling remains to be obscure. In this study, we overexpressed human TRPV1 (hTRPV1) in HEK293T cells and explored its signaling activated by spicy substances. A cell membrane biosensor was constructed by using the cells highly expressed hTRPV1 through a layer-by-layer assembly. Our results showed that the activation constants by capsaicin, allicin and sanshool, the active components of chili pepper, garlic and mountain pepper, were Ka, capsaicin = 3.5206 × 10-16 mol/L, Ka, allicin = 5.0227 × 10-15 mol/L, Ka, sanshool = 1.7832 × 10-15 mol/L. Obviously, the order of the sensitivity mediated by hTRPV1 was capsaicin > sanshool > allicin. The affinity values of the three spicy substances with hTRPV1 analyzed by molecular docking simulation also displayed the same law. Most importantly, some amide bonds and their similar groups and even benzene rings of spicy compounds were fund to be critical in the spicy sensing process. In addition, Glu570 in the active pocket of hTRPV1 plays an important role in identifying spicy substances. The elucidation of the detailed mechanism mediated by hTRPV1 in spicy sensing will lay a theoretical foundation to design rational strategies for screening of potential analgesics.
Collapse
|
497
|
Cynaroside inhibits Leishmania donovani UDP-galactopyranose mutase and induces reactive oxygen species to exert antileishmanial response. Biosci Rep 2021; 41:227423. [PMID: 33367614 PMCID: PMC7805024 DOI: 10.1042/bsr20203857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with −10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.
Collapse
|
498
|
Calcagnile M, Forgez P, Iannelli A, Bucci C, Alifano M, Alifano P. Molecular docking simulation reveals ACE2 polymorphisms that may increase the affinity of ACE2 with the SARS-CoV-2 Spike protein. Biochimie 2021; 180:143-148. [PMID: 33181224 PMCID: PMC7834737 DOI: 10.1016/j.biochi.2020.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that ACE2 gene polymorphism can modulate the interaction between ACE2 and the SARS-CoV-2 spike protein affecting the viral entry into the host cell, and/or contribute to lung and systemic damage in COVID-19. Here we used in silico molecular docking to predict the effects of ACE2 missense variants on the interaction with the spike protein of SARS-CoV-2. HDOCK and FireDock simulations identified 6 ACE2 missense variants (I21T, A25T, K26R, E37K, T55A, E75G) with higher affinity for SARS-CoV-2 Spike protein receptor binding domain (RBD) with respect to wild type ACE2, and 11 variants (I21V, E23K, K26E, T27A, E35K, S43R, Y50F, N51D, N58H, K68E, M82I) with lower affinity. This result supports the hypothesis that ACE2 genetic background may represent the first "genetic gateway" during the disease progression.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Patricia Forgez
- INSERM UMR-S 1124 T3S, Eq 5 CELLULAR HOMEOSTASIS, CANCER and THERAPY, University of Paris, Campus Saint Germain, Paris, France
| | - Antonio Iannelli
- Digestive Disease Department, Archet 2 Hospital, Nice University Hospital, University of Nice Côte d'Azur, Nice, France; INSERM,U1065, Team 8 "Hepatic Complications of Obesity", University Nice Côte d'Azur, France
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, France; INSERM U1138 Team «Cancer, Immune Control, and Escape», Cordeliers Research Center, University of Paris, France.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
499
|
Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3-A versatile homology modelling toolbox. PLoS Comput Biol 2021; 17:e1008667. [PMID: 33507980 PMCID: PMC7872268 DOI: 10.1371/journal.pcbi.1008667] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/09/2021] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Computational methods for protein structure modelling are routinely used to complement experimental structure determination, thus they help to address a broad spectrum of scientific questions in biomedical research. The most accurate methods today are based on homology modelling, i.e. detecting a homologue to the desired target sequence that can be used as a template for modelling. Here we present a versatile open source homology modelling toolbox as foundation for flexible and computationally efficient modelling workflows. ProMod3 is a fully scriptable software platform that can perform all steps required to generate a protein model by homology. Its modular design aims at fast prototyping of novel algorithms and implementing flexible modelling pipelines. Common modelling tasks, such as loop modelling, sidechain modelling or generating a full protein model by homology, are provided as production ready pipelines, forming the starting point for own developments and enhancements. ProMod3 is the central software component of the widely used SWISS-MODEL web-server.
Collapse
Affiliation(s)
- Gabriel Studer
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marco Biasini
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niklaus Johner
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
500
|
Naseer MI, Pushparaj PN, Abdulkareem AA, Muthaffar OY. Whole-Exome Sequencing Reveals a Missense Variant c.1612C>T (p.Arg538Cys) in the BTD Gene Leading to Neuromyelitis Optica Spectrum Disorder in Saudi Families. Front Pediatr 2021; 9:829251. [PMID: 35265569 PMCID: PMC8900663 DOI: 10.3389/fped.2021.829251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Biotinidase deficiency is an autosomal recessive, multiple carboxylase deficiency usually associated with seizures, eczema, hypotonia, visual disturbances, hearing loss, and developmental delays. Only a handful of cases of biotinidase deficiency that had clinical features of neuromyelitis optica spectrum disorder have been reported in the literature. The case report study is about the clinical and genetic features of two pediatric patients from different families with biotinidase deficiency whose brain and spine MRI scans were suggestive of neuromyelitis optica. Neither child improved with immunotherapy. They come from a first-degree blood-related family. In both cases, a deficiency of the enzyme biotinidase was detected. The missense variant NM_001370658.1 (BTD):c.1612C>T (p.Arg538Cys) NM_000060.4 in exon 4 was identified by whole-exome sequencing. The identified sequence variation was validated using Sanger sequencing analysis. The intake of biotin resulted in clinical improvement. After a follow-up period of 12 months, the patient was gradually weaned from tracheostomy. His vision had improved significantly. He was able to walk and run independently. In conclusion, biotinidase deficiency is a rare and treatable cause of neuromyelitis optica. Early diagnosis can prevent poor clinical outcomes. Biotinidase enzyme levels should be considered as part of the examination algorithm for neuromyelitis optica spectrum disorder.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|