451
|
Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E, Case CP. The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res 2010; 688:53-61. [PMID: 20227425 DOI: 10.1016/j.mrfmmm.2010.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 02/12/2010] [Accepted: 03/05/2010] [Indexed: 05/28/2023]
Abstract
Humans are exposed to chromium and cobalt in industry, from the environment and after joint replacement surgery from the CoCr alloy in the implant. In this study we have investigated whether Cr(III), Cr(VI), Co(II) and Cr in combination with Co could induce chromosome aberrations in human fibroblasts in vitro at the same concentrations that have been found in the peripheral blood of exposed humans. We used 24 colour M-FISH as a sensitive way to detect translocations and aneuploidy and examined the effects of a 24-h exposure and its consequences up to 30 days after the exposure in order to record genomic instability and/or repair. At these physiological doses the metals induced predominantly numerical rather than structural aberrations. Co was the least reactive and Cr(VI) especially in combination with Co the most. All metals at the highest physiological doses caused simple (gain or loss of 3 or less chromosomes) and complex (more than 49 chromosomes) aneuploidy. All metals at the lowest physiological dose caused a significant increase of total aberrations. Cr(VI) was much more effective than Cr(III) in causing chromosome fragments, which were only induced at the highest doses. There was a slow resolution of aneuploidy with time after exposure. This involved a reduction in the proportion of aneuploid cells and a reduction of the number of chromosomes within cells showing complex aneuploidy. We conclude that these metal ions can cause chromosome aberrations at physiological concentrations and that their main effect is aneugenic.
Collapse
Affiliation(s)
- Martin Figgitt
- Bristol Implant Research Centre, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | | | | | | | | | | |
Collapse
|
452
|
Mannini L, Menga S, Musio A. The expanding universe of cohesin functions: a new genome stability caretaker involved in human disease and cancer. Hum Mutat 2010; 31:623-30. [PMID: 20513141 DOI: 10.1002/humu.21252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cohesin is responsible for sister chromatid cohesion, ensuring the correct chromosome segregation. Beyond this role, cohesin and regulatory cohesin genes seem to play a role in preserving genome stability and gene transcription regulation. DNA damage is thought to be a major culprit for many human diseases, including cancer. Our present knowledge of the molecular basis underlying genome instability is extremely limited. Mutations in cohesin genes cause human diseases such as Cornelia de Lange syndrome and Roberts syndrome/SC phocomelia, and all the cell lines derived from affected patients show genome instability. Cohesin mutations have also been identified in colorectal cancer. Here, we will discuss the human disorders caused by alterations of cohesin function, with emphasis on the emerging role of cohesin as a genome stability caretaker.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | | |
Collapse
|
453
|
Arendt T, Brückner MK, Mosch B, Lösche A. Selective cell death of hyperploid neurons in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:15-20. [PMID: 20472889 DOI: 10.2353/ajpath.2010.090955] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aneuploidy, an abnormal number of copies of a genomic region, might be a significant source for neuronal complexity, intercellular diversity, and evolution. Genomic instability associated with aneuploidy, however, can also lead to developmental abnormalities and decreased cellular fitness. Here we show that neurons with a more-than-diploid content of DNA are increased in preclinical stages of Alzheimer's disease (AD) and are selectively affected by cell death during progression of the disease. Present findings show that neuronal hyperploidy in AD is associated with a decreased viability. Hyperploidy of neurons thus represents a direct molecular signature of cells prone to death in AD and indicates that a failure of neuronal differentiation is a critical pathogenetic event in AD.
Collapse
Affiliation(s)
- Thomas Arendt
- D.Sc., University of Leipzig, Paul Flechsig Institute for Brain Research Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
454
|
Abstract
A longstanding hypothesis in the field of cancer biology is that aneuploidy causes cancer by promoting loss of chromosomes that contain tumor suppressor genes. By crossing aneuploidyprone Bub1 hypomorphic mice onto a heterozygous null background for p53, we provided conclusive evidence for this idea.(1) Surprisingly, the tumors that developed in this model had not just lost the chromosome 11 copy harboring wild-type p53, but had also gained an extra copy of chromosome 11 bearing the p53 null allele. Here we report that a similar chromosome-reshuffling blueprint drives colonic tumorigenesis in Bub1 hypomorphic mice that are heterozygous for Apc(Min), but now involving chromosome 18. These extended studies highlight that in order for whole chromosome instability to drive tumorigenesis, it needs to establish tumor suppressor gene loss of heterozygosity while retaining two copies of the other genes on the chromosome. Additional restrictions seem to apply to whole chromosome instability as a cancer causing mechanism, which will be discussed in this paper.
Collapse
Affiliation(s)
- Darren J. Baker
- Departments of Pediatric and Adolescent Medicine; Mayo Clinic College of Medicine; Rochester, MN USA
| | - Jan M. van Deursen
- Departments of Pediatric and Adolescent Medicine; Mayo Clinic College of Medicine; Rochester, MN USA
- Molecular Biology and Biochemistry; Mayo Clinic College of Medicine; Rochester, MN USA
| |
Collapse
|
455
|
G-CSF-induced aneuploidy does not affect CD34+ cells and does not require cell division. Blood 2010; 115:910-1. [PMID: 20110433 DOI: 10.1182/blood-2009-10-250837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
456
|
Spechler SJ, Fitzgerald RC, Prasad GA, Wang KK. History, molecular mechanisms, and endoscopic treatment of Barrett's esophagus. Gastroenterology 2010; 138:854-69. [PMID: 20080098 PMCID: PMC2853870 DOI: 10.1053/j.gastro.2010.01.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 02/06/2023]
Abstract
This report is an adjunct to the American Gastroenterological Association Institute's medical position statement and technical review on the management of Barrett's esophagus, which will be published in the near future. Those documents will consider a number of broad questions on the diagnosis, clinical features, and management of patients with Barrett's esophagus, and the reader is referred to the technical review for an in-depth discussion of those topics. In this report, we review historical, molecular, and endoscopic therapeutic aspects of Barrett's esophagus that are of interest to clinicians and researchers.
Collapse
Affiliation(s)
- Stuart Jon Spechler
- VA North Texas Healthcare System and The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | |
Collapse
|
457
|
Abstract
Aneuploidy involves changes in chromosomal copy number compared with normal euploid genotypes. Studies of gene expression in aneuploids in a variety of species have claimed many different types of responses. Studies of individual genes suggest that there are both structural gene dosage effects and compensation in aneuploids, and that subtle trans-acting effects across the genome are quite prevalent. A discussion is presented concerning the normalization procedures for studying gene expression in aneuploids. A careful documentation of the modulations of gene expression in aneuploids should provide insight into the nature of cancerous cells and the basis of aneuploid syndromes.
Collapse
|
458
|
Schvartzman JM, Sotillo R, Benezra R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 2010; 10:102-15. [PMID: 20094045 PMCID: PMC5526619 DOI: 10.1038/nrc2781] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stepwise progression from an early dysplastic lesion to full-blown metastatic malignancy is associated with increases in genomic instability. Mitotic chromosomal instability - the inability to faithfully segregate equal chromosome complements to two daughter cells during mitosis - is a widespread phenomenon in solid tumours that is thought to serve as the fuel for tumorigenic progression. How chromosome instability (CIN) arises in tumours and what consequences it has are still, however, hotly debated issues. Here we review the recent literature with an emphasis on models that recapitulate observations from human disease.
Collapse
Affiliation(s)
- Juan-Manuel Schvartzman
- Program in Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | |
Collapse
|
459
|
Thompson SL, Compton DA. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. ACTA ACUST UNITED AC 2010; 188:369-81. [PMID: 20123995 PMCID: PMC2819684 DOI: 10.1083/jcb.200905057] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation of nondiploid cells such that CIN generates cells with aneuploid genomes that resemble many human tumors. Thus, the p53 pathway plays an important role in limiting the propagation of aneuploid human cells in culture to preserve the diploid karyotype of the population. These data fit with the concordance of aneuploidy and disruption of the p53 pathway in many tumors, but the presence of aneuploid cells in some normal human and mouse tissues indicates that there are known exceptions to the involvement of p53 in aneuploid cells and that tissue context may be important in how cells respond to aneuploidy.
Collapse
Affiliation(s)
- Sarah L Thompson
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
460
|
Abstract
The regulation of centrosome number is lost in many tumors and the presence of extra centrosomes correlates with chromosomal instability. Recent work now reveals how extra centrosomes cause chromosome mis-segregation in tumor cells.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
461
|
Niikura Y, Ogi H, Kikuchi K, Kitagawa K. BUB3 that dissociates from BUB1 activates caspase-independent mitotic death (CIMD). Cell Death Differ 2010; 17:1011-24. [PMID: 20057499 DOI: 10.1038/cdd.2009.207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cell death mechanism that prevents aneuploidy caused by a failure of the spindle checkpoint has recently emerged as an important regulatory paradigm. We previously identified a new type of mitotic cell death, termed caspase-independent mitotic death (CIMD), which is induced during early mitosis by partial BUB1 (a spindle checkpoint protein) depletion and defects in kinetochore-microtubule attachment. In this study, we have shown that survived cells that escape CIMD have abnormal nuclei, and we have determined the molecular mechanism by which BUB1 depletion activates CIMD. The BUB3 protein (a BUB1 interactor and a spindle checkpoint protein) interacts with p73 (a homolog of p53), specifically in cells wherein CIMD occurs. The BUB3 protein that is freed from BUB1 associates with p73 on which Y99 is phosphorylated by c-Abl tyrosine kinase, resulting in the activation of CIMD. These results strongly support the hypothesis that CIMD is the cell death mechanism protecting cells from aneuploidy by inducing the death of cells prone to substantial chromosome missegregation.
Collapse
Affiliation(s)
- Y Niikura
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
462
|
Wei F, Zhang GS. Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2010; 123:87-95. [PMID: 19937082 DOI: 10.1007/s10265-009-0262-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The patterns of homologue segregation are the basis for euploidy or aneuploidy formation in diploids and allo-/auto-polyploids. Homologue segregation in diploids resembles that in allopolyploids during meiosis; however, meiotic chromosome behavior in autopolyploids is complicated by multiplication of homologous chromosome components. Obviously, loss of single chromosomes (or segmented chromosomes) frequently leads to abortion of reproductive gametes in diploids and allopolyploids. In contrast, the consequence of chromosome loss in autopolyploids is effortlessly compensated for by the presence of multiplied chromosome complements. Here, we use the meiotically asynaptic gene asy1, in combination with polyploidization, to elucidate aneuploidy formation in autotetraploid Arabidopsis. The results indicate that, due to homologous asynapsis in meiotic prophase I, retarded chromosome losses could induce aneuploidy during gametogenesis in autotetraploid asy1. The severe loss of individual chromosomes probably reaches the haploid genome among selfed or backcrossed progeny, leading to stochastic chromosome loss in Arabidopsis. Reciprocal crosses of autotetraploid asy1 with wild-type prove a pathway of duoparental transmission of aneuploidy (hypoploidy and hyperploidy). Viable hypoploids over-transmit via male gametes; conversely, viable hyperploids transmit mainly in female gametogenesis. This result suggests a more stringent maternal restriction of ploidy transmission in autopolyploid Arabidopsis.
Collapse
Affiliation(s)
- Fang Wei
- Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | |
Collapse
|
463
|
McAnally AA, Yampolsky LY. Widespread transcriptional autosomal dosage compensation in Drosophila correlates with gene expression level. Genome Biol Evol 2009; 2:44-52. [PMID: 20333221 PMCID: PMC2839349 DOI: 10.1093/gbe/evp054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 11/12/2022] Open
Abstract
Little is known about dosage compensation in autosomal genes. Transcription-level compensation of deletions and other loss-of-function mutations may be a mechanism of dominance of wild-type alleles, a ubiquitous phenomenon whose nature has been a subject of a long debate. We measured gene expression in two isogenic Drosophila lines heterozygous for long deletions and compared our results with previously published gene expression data in a line heterozygous for a long duplication. We find that a majority of genes are at least partially compensated at transcription, both for (1/2)-fold dosage (in heterozygotes for deletions) and for 1.5-fold dosage (in heterozygotes for a duplication). The degree of compensation does not vary among functional classes of genes. Compensation for deletions is stronger for highly expressed genes. In contrast, the degree of compensation for duplications is stronger for weakly expressed genes. Thus, partial transcriptional compensation appears to be based on regulatory mechanisms that insure high transcription levels of some genes and low transcription levels of other genes, instead of precise maintenance of a particular homeostatic expression level. Given the ubiquity of transcriptional compensation, dominance of wild-type alleles may be at least partially caused by of the regulation at transcription level.
Collapse
Affiliation(s)
- Ashley A McAnally
- Department of Biological Sciences, East Tennessee State University, USA
| | | |
Collapse
|
464
|
Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009; 16:475-86. [PMID: 19962666 PMCID: PMC2842992 DOI: 10.1016/j.ccr.2009.10.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 10/16/2009] [Indexed: 12/22/2022]
Abstract
Genetic alterations that promote chromosome missegregation have been proposed to drive tumorigenesis through loss of whole chromosomes containing key tumor suppressor genes. To test this unproven idea, we bred Bub1 mutant mice that inaccurately segregate their chromosomes onto p53(+/-), Apc(Min/+), Rb(+/-), or Pten(+/-) backgrounds. Bub1 insufficiency predisposed p53(+/-) mice to thymic lymphomas and Apc(Min/+) mice to colonic tumors. These tumors consistently lacked the nonmutated tumor suppressor allele but had gained a copy of the mutant allele. In contrast, Bub1 insufficiency had no impact on tumorigenesis in Rb(+/-) mice and inhibited prostatic intraepithelial neoplasia formation in Pten(+/-) mice. Thus, Bub1 insufficiency can drive tumor formation through tumor suppressor gene loss of heterozygosity, but only in restricted genetic and cellular contexts.
Collapse
Affiliation(s)
- Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Fang Jin
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Molecular Biology and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
- Address correspondence to Jan van Deursen Mayo Clinic, 200 First Street SW, Rochester, MN 55905 Tel: 507-284-2524
| |
Collapse
|
465
|
Kusumbe AP, Bapat SA. Cancer Stem Cells and Aneuploid Populations within Developing Tumors Are the Major Determinants of Tumor Dormancy. Cancer Res 2009; 69:9245-53. [DOI: 10.1158/0008-5472.can-09-2802] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
466
|
Panigrahi AK, Pati D. Road to the crossroads of life and death: linking sister chromatid cohesion and separation to aneuploidy, apoptosis and cancer. Crit Rev Oncol Hematol 2009; 72:181-93. [PMID: 19162508 PMCID: PMC2783576 DOI: 10.1016/j.critrevonc.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/02/2008] [Accepted: 12/11/2008] [Indexed: 01/22/2023] Open
Abstract
Genomic instability, aberrant cell proliferation and defects in apoptotic cell death are critical issues in cancer. The two most prominent hallmarks of cancer cells are multiple mutations in key genes encoding proteins that regulate important cell-survival pathways, and marked restructuring or redistribution of the chromosomes (aneuploidy) indicative of genomic instability. Both these aspects have been suggested to cause cancer, though a causal role for chromosomal restructuring in tumorigenesis has not been experimentally fully substantiated. This review is aimed at understanding the mechanisms of cell cycle (proliferation) and programmed cell death (apoptosis) and chromosomal instability governed by cohesin and other aneuploidy promoters, which will provide new insights into the process of carcinogenesis and new avenues for targeted treatment.
Collapse
Affiliation(s)
- Anil K. Panigrahi
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, 6621 Fannin St., MC3-3320, Houston, TX 77030, USA
| | - Debananda Pati
- Corresponding author. Tel.: +1 832 8244575; fax: +1 832 8254651. E-mail address: (D. Pati)
| |
Collapse
|
467
|
Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans 2009; 37:971-5. [PMID: 19754434 DOI: 10.1042/bst0370971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Error-free chromosome segregation during cell division relies on chromosome biorientation and mitotic checkpoint activity. A group of unrelated kinases controls various aspects of both processes. The present short review outlines our current understanding of the roles of these kinases in maintaining chromosomal stability.
Collapse
|
468
|
Abstract
The many different mechanisms that fungi use to transmit and share genetic material are mediated by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed microtubule motors position and move the nucleus in a cell. Although we know much about how cells move nuclei, we know much less about why the cell invests in so many different nuclear 'dances'. Here, we briefly survey the available models for the mechanics of nuclear migration in fungi and then focus on examples of how fungal cells use these nuclear dances - the movement of intact nuclei in and between cells - to control the integrity, ploidy and assortment of specific genomes or individual chromosomes.
Collapse
Affiliation(s)
- Amy Gladfelter
- Department of Biological Sciences, Gillman Hall, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
469
|
Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 2009; 5:e1000705. [PMID: 19876375 PMCID: PMC2760147 DOI: 10.1371/journal.pgen.1000705] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. C. albicans, the most prevalent human fungal pathogen, acquires resistance to fluconazole by genetic alterations that often include changes in the number of chromosomes or chromosome arms (aneuploidy). Here we demonstrate that chromosomal rearrangements resulting in increased gene dosage are the predominant means of acquired resistance to the antifungal drug fluconazole in replicated experimental populations of C. albicans. A specific aneuploidy, isochromosome 5L, which is composed of two copies of the left arm of Chr5, occurs with high frequency and is detectable soon after fluconazole exposure. The early appearance of aneuploidy in some populations is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. The results presented here indicate that the C. albicans genome is highly plastic and imply that exposure to an antifungal drug induces genome reorganization events, some of which provide a fitness advantage in the presence of drug.
Collapse
Affiliation(s)
- Anna M. Selmecki
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Keely Dulmage
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - James B. Anderson
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
470
|
Maenhaut C, Dumont JE, Roger PP, van Staveren WCG. Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis 2009; 31:149-58. [PMID: 19858069 DOI: 10.1093/carcin/bgp259] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The concept of cancer stem cells (CSC) embodies two aspects: the stem cell as the initial target of the oncogenic process and the existence of two populations of cells in cancers: the CSC and derived cells. The second is discussed in this review. CSC are defined as cells having three properties: a selectively endowed tumorigenic capacity, an ability to recreate the full repertoire of cancer cells of the parent tumor and the expression of a distinctive repertoire of surface biomarkers. In operational terms, the CSC are among all cancer cells those able to initiate a xenotransplant. Other explicit or implicit assumptions exist, including the concept of CSC as a single unique infrequent population of cells. To avoid such assumptions, we propose to use the operational term tumor-propagating cells (TPC); indeed, the cells that initiate transplants did not initiate the cancer. The experimental evidence supporting the explicit definition is analyzed. Cancers indeed contain a fraction of cells mainly responsible for the tumor development. However, there is evidence that these cells do not represent one homogenous population. Moreover, there is no evidence that the derived cells result from an asymmetric, qualitative and irreversible process. A more general model is proposed of which the CSC model could be one extreme case. We propose that the TPC are multiple evolutionary selected cancer cells with the most competitive properties [maintained by (epi-)genetic mechanisms], at least partially reversible, quantitative rather than qualitative and resulting from a stochastic rather than deterministic process.
Collapse
Affiliation(s)
- C Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université Libre de Bruxelles, Campus Erasme Hospital, Brussels, Belgium
| | | | | | | |
Collapse
|
471
|
Heilig CE, Löffler H, Mahlknecht U, Janssen JWG, Ho AD, Jauch A, Krämer A. Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group. J Cell Mol Med 2009; 14:895-902. [PMID: 19754665 PMCID: PMC3823121 DOI: 10.1111/j.1582-4934.2009.00905.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal instability (CIN), defined by an elevated frequency of the occurrence of novel chromosomal aberrations, is strongly implicated in the generation of aneuploidy, one of the hallmarks of human cancers. As for aneuploidy itself, the role of CIN in the evolution and progression of malignancy is a matter still open to debate. We investigated numerical as well as structural CIN in primary CD34-positive cells by determining the cell-to-cell variability of the chromosome content using fluorescence-in situ-hybridization (FISH). Thereby, CIN was measured in 65 patients with myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML) and control subjects. Among MDS patients, a subgroup with elevated levels of CIN was identified. At a median follow-up of 17.2 months, all patients within this ‘high CIN’ subgroup had died or progressed to AML, while 80% of MDS patients with normal CIN levels had stable disease (P < 0.001). Notably, there was no statistically significant difference between ‘normal CIN’ and ‘high CIN’ MDS patients regarding established risk factors. Hence, elevated CIN levels were associated with poor outcome, and our method provided additional prognostic information beyond conventional cytogenetics. Furthermore, in all three MDS patients for whom serial measurements were available, development of AML was preceded by increasing CIN levels. In conclusion, elevated CIN levels may be valuable as an early indicator of poor prognosis in MDS, hence corroborating the concept of CIN as a driving force in tumour progression.
Collapse
Affiliation(s)
- Christoph E Heilig
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
472
|
Torosantucci L, De Santis Puzzonia M, Cenciarelli C, Rens W, Degrassi F. Aneuploidy in mitosis of PtK1 cells is generated by random loss and nondisjunction of individual chromosomes. J Cell Sci 2009; 122:3455-61. [PMID: 19737818 DOI: 10.1242/jcs.047944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chromosome lagging at anaphase and migration of both sister chromatids to the same pole, i.e. nondisjunction, are two chromosome-segregation errors producing aneuploid cell progeny. Here, we developed an assay for the simultaneous detection of both chromosome-segregation errors in the marsupial PtK1 cell line by using multiplex fluorescence in situ hybridization with specific painting probes obtained by chromosome flow sorting. No differential susceptibility of the six PtK1 chromosomes to undergo nondisjunction and/or chromosome loss was observed in ana-telophase cells recovering from a nocodazole- or a monastrol-induced mitotic arrest, suggesting that the recurrent presence of specific chromosomes in several cancer types reflects selection effects rather than differential propensities of specific chromosomes to undergo missegregation. Experiments prolonging metaphase duration during drug recovery and inhibiting Aurora-B kinase activity on metaphase-aligned chromosomes provided evidence that some type of merotelic orientations was involved in the origin of both chromosome-segregation errors. Visualization of mero-syntelic kinetochore-microtubule attachments (a merotelic kinetochore in which the thicker microtubule bundle is attached to the same pole to which the sister kinetochore is connected) identified a peculiar malorientation that might participate in the generation of nondisjunction. Our findings imply random missegregation of chromosomes as the initial event in the generation of aneuploidy in mammalian somatic cells.
Collapse
Affiliation(s)
- Liliana Torosantucci
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, University La Sapienza, Via degli Apuli 4, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
473
|
Lotti M. Science and surmise. Arch Toxicol 2009; 83:885-6. [PMID: 19730821 DOI: 10.1007/s00204-009-0462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
474
|
Davidsson J, Lilljebjörn H, Andersson A, Veerla S, Heldrup J, Behrendtz M, Fioretos T, Johansson B. The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 2009; 18:4054-65. [DOI: 10.1093/hmg/ddp354] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
475
|
Abstract
Background: We have recently reported an inverse relationship between colon cancer progression and tumour proliferative activity. Here, we extend our findings by evaluating the proliferative activity of liver metastatic lesions and primary colorectal cancers (CRC) that differ in their metastatic potential. Methods: Using an earlier established multi-gene proliferation signature (GPS), proliferative levels were analysed in 73 primary CRCs and 27 liver metastases. Results: Compared with primary CRCs, we observed a significantly lower expression of the GPS in liver metastases and confirmed their lower proliferative levels by quantitative RT–PCR and Ki-67 immunostaining. No difference could be detected in apoptotic indices as assessed by M30 immunostaining, indicating that the net growth rate is lower in metastases relative to primary tumours. Notably, relapsed primaries or those with established metastases had significantly lower proliferative activity than CRCs that were non-metastatic and did not relapse. Conclusion: Our results suggest that slow proliferation is a biological characteristic of both liver metastases and those primary tumours with the ability to metastasise. The delineation of the mechanisms underlying the inverse association between proliferation and CRC aggressiveness may be important for the development of new therapeutic strategies.
Collapse
|
476
|
Aneuploidy and improved growth are coincident but not causal in a yeast cancer model. PLoS Biol 2009; 7:e1000161. [PMID: 19636358 PMCID: PMC2708349 DOI: 10.1371/journal.pbio.1000161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/16/2009] [Indexed: 11/19/2022] Open
Abstract
Aneuploidy is a hallmark of cancer cells and is assumed to play a causative role. This relationship is dissected in a yeast, with results that show that anueploidy can be removed, but cells maintain their proliferative advantage. Cancer cells have acquired mutations that alter their growth. Aneuploidy that typify cancer cells are often assumed to contribute to the abnormal growth characteristics. Here we test the idea of a link between aneuploidy and mutations allowing improved growth, using Saccharomyces cerevisiae containing a mcm4 helicase allele that was shown to cause cancer in mice. Yeast bearing this mcm4 allele are prone to undergoing a “hypermutable phase” characterized by a changing karyotype, ultimately yielding progeny with improved growth properties. When such progeny are returned to a normal karyotype by mating, their improved growth remains. Genetic analysis shows their improved growth is due to mutations in just a few loci. In sum, the effects of the mcm4 allele in mice are recapitulated in yeast, and the aneuploidy is not required to maintain improved growth. Aneuploidy, an abnormality in chromosome number and structure, occurs commonly in cancers and has been suggested to be required to maintain accelerated cell proliferation. However, this hypothesis remains untested as it is not possible to selectively remove the acquired aneuploidy in cells that already have altered growth. Using a yeast model bearing mcm4Chaos3, an allele that causes mammary tumors in mice, these technical hurdles in animal cells can be overcome. We show that aneuploidy is not responsible for accelerated proliferation in yeast but mutations in just a few loci are. This study provides an excellent example of how a complex disease can be dissected in a simple model organism, and that the information extracted from yeast may be used to guide mammalian studies.
Collapse
|
477
|
Abstract
Impaired mitotic checkpoint signaling can both promote and suppress tumors. The mitotic checkpoint targets Cdc20, the specificity factor of the ubiquitin ligase that promotes anaphase by targeting cyclin B and securin for destruction. In this issue, Li et al. (2009. J. Cell Biol. doi:10.1083/jcb.200904020) use gene replacement to produce mice expressing a Cdc20 mutant that cannot be inhibited by the mitotic checkpoint. In addition to the expected aneuploidy, these animals have a high tumor incidence that is likely caused by persistent aneuploidy coupled with nonmitotic functions of mutant Cdc20.
Collapse
Affiliation(s)
- Beth A A Weaver
- Department of Pharmacology, University of Wisconsin-Madison, Madison, WI 53562, USA.
| | | |
Collapse
|
478
|
Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 2009; 10:478-87. [PMID: 19546858 PMCID: PMC3154738 DOI: 10.1038/nrm2718] [Citation(s) in RCA: 674] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mitotic checkpoint is a major cell cycle control mechanism that guards against chromosome missegregation and the subsequent production of aneuploid daughter cells. Most cancer cells are aneuploid and frequently missegregate chromosomes during mitosis. Indeed, aneuploidy is a common characteristic of tumours, and, for over 100 years, it has been proposed to drive tumour progression. However, recent evidence has revealed that although aneuploidy can increase the potential for cellular transformation, it also acts to antagonize tumorigenesis in certain genetic contexts. A clearer understanding of the tumour suppressive function of aneuploidy might reveal new avenues for anticancer therapy.
Collapse
Affiliation(s)
- Andrew J. Holland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0670, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0670, USA
| |
Collapse
|
479
|
Abstract
Autosomal dominant polycystic kidney disease is the most prevalent, potentially lethal monogenic disorder. It has large inter- and intra-familial variability explained to a large extent by its genetic heterogeneity and modifier genes. An increased understanding of its underlying genetic, molecular, and cellular mechanisms and a better appreciation of its progression and systemic manifestations have laid out the foundation for the development of clinical trials and potentially effective therapies. The purpose of this review is to update the core of knowledge in this area with recent publications that have appeared during 2006-2009.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
480
|
Abstract
Aneuploidy is a characteristic of cancer, with greater than 90% of all solid tumors in humans carrying an aberrant karyotype. Yet, whether or how this condition contributes to tumorigenesis is not understood. Here we summarize our recent findings on the effects of aneuploidy on cell physiology and proliferation. These studies suggest that aneuploidy puts significant stress on the cell, which responds to this condition in what can be viewed as an aneuploidy stress response. We will discuss how our results may bear on our understanding of the role of this condition in tumorigenesis and how they may provide new opportunities for treatment of the disease.
Collapse
Affiliation(s)
- Bret R. Williams
- David H. Koch Institute for Integrative Cancer Research Howard Hughes Medical Institute Massachusetts Institute of Technology, E17-233 40 Ames Street Cambridge, MA 02139 USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research Howard Hughes Medical Institute Massachusetts Institute of Technology, E17-233 40 Ames Street Cambridge, MA 02139 USA
| |
Collapse
|
481
|
Zyss D, Gergely F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol 2009; 19:334-46. [PMID: 19570677 DOI: 10.1016/j.tcb.2009.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 01/01/2023]
Abstract
The regulation of centrosome number and function underlies bipolar mitotic spindle formation and genetic integrity. Cancer cells both in culture and in situ exhibit a wide range of centrosome abnormalities. Here, we briefly review advances in our understanding of the pathways that govern normal centrosome function and outline the potential causes and consequences of their deregulation in disease. There is ample observational but little experimental evidence to support the conventional model that centrosome dysfunction causes genomic instability and, as a result, cancer. This model has been challenged by recent studies that have uncovered evidence of a direct link between centrosome function in asymmetric cell division and tumourigenesis. Thus, it is timely to discuss the provocative idea that, in certain tissues, abnormal centrosomes drive malignant transformation not by generating genomic instability but by deregulating asymmetric cell division.
Collapse
Affiliation(s)
- Deborah Zyss
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | |
Collapse
|
482
|
Mineri R, Pavelka N, Fernandez-Vizarra E, Ricciardi-Castagnoli P, Zeviani M, Tiranti V. How do human cells react to the absence of mitochondrial DNA? PLoS One 2009; 4:e5713. [PMID: 19492094 PMCID: PMC2683933 DOI: 10.1371/journal.pone.0005713] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(-) and A549, which had been entirely depleted of mtDNA (rho(o) cells), and compared it with that of corresponding undepleted parental cells (rho(+) cells). RESULTS Our data indicate that absence of mtDNA is associated with: i) a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii) a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii) a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment. CONCLUSIONS Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o) cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA.
Collapse
Affiliation(s)
- Rossana Mineri
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Norman Pavelka
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Erika Fernandez-Vizarra
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Paola Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| |
Collapse
|
483
|
Ganmore I, Smooha G, Izraeli S. Constitutional aneuploidy and cancer predisposition. Hum Mol Genet 2009; 18:R84-93. [PMID: 19297405 DOI: 10.1093/hmg/ddp084] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition.
Collapse
|
484
|
Abstract
Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies.
Collapse
Affiliation(s)
- Ji Luo
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nicole L. Solimini
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
485
|
Chandhok NS, Pellman D. A little CIN may cost a lot: revisiting aneuploidy and cancer. Curr Opin Genet Dev 2009; 19:74-81. [PMID: 19195877 DOI: 10.1016/j.gde.2008.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 01/05/2023]
Abstract
Despite over 100 years of study, the role of aneuploidy in cancer remains poorly understood. This review highlights the advances in understanding the causes and consequences of aneuploidy. Recent work has illuminated ways in which aneuploidy could have either tumor-promoting or tumor-suppressing effects, similar to what is known for other forms of genetic instability such as telomere attrition [Maser RS, DePinho RA: Connecting chromosomes, crisis, and cancer. Science 2002, 297:565-569]. We explore the possibility that aneuploidy could be just another type of 'mutation', with potential beneficial and deleterious effects, depending on the chromosomes involved and the specific selective pressures the cells experience. We also discuss the potential therapeutic implications of changes in physiology associated with aneuploidy.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
486
|
Abstract
Aneuploidy, an abnormal chromosome number, is a frequent characteristic of malignant cells, leading to the suggestion that aneuploidy drives tumorigenesis. In a recent issue of Science, Williams et al. identified a paradoxical relationship between aneuploidy and its linkage to tumorigenesis: chromosome gains in nontransformed cells are antiproliferative, despite frequently occurring in human tumors.
Collapse
Affiliation(s)
- Beth A. Weaver
- Department of Pharmacology, 3630 Medical Sciences Center, University of Wisconsin, 1300 University Avenue, Madison, WI 53706
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Departments of Cellular and Molecular Medicine and Neurosciences, University of California at San Diego, La Jolla, CA 92093-6070
| |
Collapse
|
487
|
Affiliation(s)
- Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|