451
|
Jeggo PA, Taccioli GE, Jackson SP. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 1995; 17:949-57. [PMID: 8526889 DOI: 10.1002/bies.950171108] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
All organisms possess mechanisms to repair double strand breaks (dsbs) generated in their DNA by damaging agents. Site-specific dsbs are also introduced during V(D)J recombination. Four complementation groups of radiosensitive rodent mutants are defective in the repair of dsbs, and are unable to carry out V(D)J recombination effectively. The immune defect in Severe Combined Immunodeficient (scid) mice also results from an inability to undergo effective V(D)J recombination, and scid cell lines display a repair defect and belong to one of these complementation groups. These findings indicate a mechanistic overlap between the processes of DNA repair and V(D)J recombination. Recently, two of the genes defined by these complementation groups have been identified and shown to encode components of DNA-dependent protein kinase (DNA-PK). We review here the three fields which have become linked by these findings, and discuss the involvement of DNA-PK in dsb rejoining and in V(D)J recombination.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
452
|
Kabotyanski EB, Zhu C, Kallick DA, Roth DB. Hairpin opening by single-strand-specific nucleases. Nucleic Acids Res 1995; 23:3872-81. [PMID: 7479030 PMCID: PMC307304 DOI: 10.1093/nar/23.19.3872] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA molecules with covalently sealed (hairpin) ends are probable intermediates in V(D)J recombination. According to current models hairpin ends are opened to produce short single-stranded extensions that are thought to be precursors of a particular type of extra nucleotides, termed P nucleotides, which are frequently present at recombination junctions. Nothing is known about the activities responsible for hairpin opening. We have used two single-strand-specific nucleases to explore the effects of loop sequence on the hairpin opening reaction. Here we show that a variety of hairpin ends are opened by P1 nuclease and mung bean nuclease (MBN) to leave short, 1-2 nt single-stranded extensions. Analysis of 22 different hairpin sequences demonstrates that the terminal 4 nt of the hairpin loop strongly influence the sites of cleavage. Correlation of the nuclease digestion patterns with structural (NMR) data for some of the hairpin loops studied here provides new insights into the structural features recognized by these enzymes.
Collapse
Affiliation(s)
- E B Kabotyanski
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
453
|
Ganguly T, Iliakis G. A cell-free assay using cytoplasmic cell extracts to study rejoining of radiation-induced DNA double-strand breaks in human cell nuclei. Int J Radiat Biol 1995; 68:447-57. [PMID: 7594971 DOI: 10.1080/09553009514551411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe a cell-free assay that can be employed to study rejoining of radiation-induced DNA double-strand breaks (dsbs) under in vitro conditions. The assay uses nuclei prepared from irradiated, agarose-embedded human A549 cells as substrate and cytoplasmic cell extracts prepared from exponentially growing HeLa cells as the source of enzymes. We demonstrate that rejoining of dsbs is absolutely dependent on cell extract and that, under optimal reaction conditions, it proceeds to an extent similar to that observed in intact cells, albeit with about six times longer half time. Dsb rejoining in this assay requires Mg2+ and is inhibited by high concentrations of either K+ or Na+. The assay should provide means for the biochemical characterization of the enzymology of eukaryotic cell DNA repair under conditions that retain chromatin structure. The assay can also be adapted to study repair of other types of damage induced in the DNA by ionizing or non-ionizing radiations, as well as by diverse chemical agents.
Collapse
Affiliation(s)
- T Ganguly
- Thomas Jefferson University, Department of Radiation Oncology, Philadelphia, PA 19107, USA
| | | |
Collapse
|
454
|
Jackson SP, Jeggo PA. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci 1995; 20:412-5. [PMID: 8533154 DOI: 10.1016/s0968-0004(00)89090-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two processes involving DNA double-strand breaks (DSBs) are the repair of DNA damage induced by ionizing radiation, and V(D)J recombination, the genomic rearrangement that creates antigen-receptor diversity in vertebrates. Recent evidence indicates that DNA-dependent protein kinase (DNA-PK), which is activated by DNA ends, is a central component of both the DNA DSB repair and V(D)J recombination machineries.
Collapse
|
455
|
Boubnov NV, Weaver DT. scid cells are deficient in Ku and replication protein A phosphorylation by the DNA-dependent protein kinase. Mol Cell Biol 1995; 15:5700-6. [PMID: 7565721 PMCID: PMC230820 DOI: 10.1128/mcb.15.10.5700] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell mutants of the Ku nuclear DNA-binding complex are ionizing radiation sensitive and show V(D)J recombination defects. Ku binds and activates a catalytic subunit of DNA-dependent protein kinase (DNA-PK), although the substrates for DNA-PK are unknown. We found that scid cell extracts were deficient in Ku phosphorylation by DNA-PK. Human chromosome 8-complemented scid cells, containing the human DNA-PK catalytic subunit, restored Ku phosphorylation. Likewise, radiation-induced RPA hyperphosphorylation was not completed in scid cells compared with control or chromosome 8-reconstituted cells. Thus, the inactivity of DNA-PK is likely responsible for the repair and recombination defects in scid cells.
Collapse
Affiliation(s)
- N V Boubnov
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
456
|
Leu TM, Schatz DG. rag-1 and rag-2 are components of a high-molecular-weight complex, and association of rag-2 with this complex is rag-1 dependent. Mol Cell Biol 1995; 15:5657-70. [PMID: 7565717 PMCID: PMC230816 DOI: 10.1128/mcb.15.10.5657] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite the essential and synergistic functions of the rag-1 and rag-2 proteins in V(D)J recombination and lymphocyte development, little is known about the biochemical properties of the two proteins. We have developed cell lines expressing high levels of the rag proteins and specific, sensitive immunological reagents for their detection, and we have examined the physical properties of the rag proteins in vitro and their subcellular localizations in vivo. rag-1 is tightly associated with nuclear structures, requires a high salt concentration to maintain its solubility, and is a component of large, heterogeneously sized complexes. Furthermore, the presence of rag-1 alters the behavior of rag-2, conferring on it properties similar to those of rag-1 and changing its distribution in the nucleus. We demonstrate that rag-1 and rag-2 are present in the same complex by coimmunoprecipitation, and we provide evidence that these complexes contain more molecules of rag-2 than of rag-1. The demonstration of intracellular complexes containing rag-1 and rag-2 raises the possibility that interaction between these proteins is necessary for their biological function.
Collapse
Affiliation(s)
- T M Leu
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | |
Collapse
|
457
|
Abstract
Repairing chromosome breaks is essential to cell survival. A major lethal effect of ionizing radiation (IR) damage is the creation of double-strand DNA breaks. Recently, a number of mammalian cell mutants that are sensitive to IR damage have been described, revealing a unique repair pathway. The DNA-dependent protein kinase (DNA-PK) is necessary for double-strand-break repair and lymphoid V(D)J recombination. DNA-PK consists of three subunits: the Ku autoantigen heterodimer and a kinase (DNA-PKCS) that is deficient in mouse scid mutant cells.
Collapse
Affiliation(s)
- D T Weaver
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
458
|
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | |
Collapse
|
459
|
Verhaegh GW, Jongmans W, Morolli B, Jaspers NG, van der Schans GP, Lohman PH, Zdzienicka MZ. A novel type of X-ray-sensitive Chinese hamster cell mutant with radioresistant DNA synthesis and hampered DNA double-strand break repair. Mutat Res 1995; 337:119-29. [PMID: 7565860 DOI: 10.1016/0921-8777(95)00017-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been shown that the Chinese hamster cell mutant V-C8 is sensitive to different DNA damaging agents, such as mitomycin C (MMC), alkylating agents, UV light, and X-rays. We found that V-C8 is also sensitive to the following radiomimetic agents: bleomycin (approximately 2-fold, based on D10 values), H2O2 (approximately 2-fold), streptonigrin (approximately 11-fold), and etoposide (approximately 8-fold). Two independent spontaneous MMC-resistant revertants isolated from V-C8 cells show a level of cell killing by X-rays, EMS, and UV light which is similar to that of wild-type cells, suggesting that the observed pattern of cross-sensitivity of V-C8 cells to a wide spectrum of DNA damaging agents results from a single mutation. V-C8 cells also display radioresistant DNA synthesis following gamma-irradiation which, however, remained almost unchanged in the V-C8 revertants. The measurement of the level and rate of repair of DNA single- and double-strand breaks (SSBs and DSBs, respectively) by the DNA elution technique showed that the V-C8 mutant has a slower repair of DSBs induced by gamma-rays. The described unique phenotype of V-C8 cells suggested that V-C8 represents a novel type of mutant amongst X-ray-sensitive hamster cell mutants. To confirm this, complementation analysis with other X-ray-sensitive mutants was performed. V-C8 cells were fused with EM9, XR-1, xrs5, sxi-1, V-3, V-E5, irs3, and BLM2 mutant cells, representing different complementation groups. All the obtained hybrids regained X-ray resistance (or bleomycin resistance in the case of V-C8/BLM2 hybrids) similar to that of wild-type cells, indicating that V-C8 represents a new complementation group. The results presented indicate that V-C8 is defective in a gene involved in a pathway operating in the responses to different DNA damaging agents in mammalian cells.
Collapse
Affiliation(s)
- G W Verhaegh
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
460
|
Dar ME, Jorgensen TJ. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res 1995; 23:3224-30. [PMID: 7545284 PMCID: PMC307181 DOI: 10.1093/nar/23.16.3224] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.
Collapse
Affiliation(s)
- M E Dar
- Department of Radiation Medicine, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007-2197, USA
| | | |
Collapse
|
461
|
Sipley JD, Menninger JC, Hartley KO, Ward DC, Jackson SP, Anderson CW. Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. Proc Natl Acad Sci U S A 1995; 92:7515-9. [PMID: 7638222 PMCID: PMC41370 DOI: 10.1073/pnas.92.16.7515] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The DNA-activated serine/threonine protein kinase (DNA-PK) is composed of a large (approximately 460 kDa) catalytic polypeptide (DNA-PKcs) and Ku, a heterodimeric DNA-binding component (p70/p80) that targets DNA-PKcs to DNA. A 41-kbp segment of the DNA-PKcs gene was isolated, and a 7902-bp segment was sequenced. The sequence contains a polymorphic Pvu II restriction enzyme site, and comparing the sequence with that of the cDNA revealed the positions of nine exons. The DNA-PKcs gene was mapped to band q11 of chromosome 8 by in situ hybridization. This location is coincident with that of XRCC7, the gene that complements the DNA double-strand break repair and V(D)J recombination defects (where V is variable, D is diversity, and J is joining) of hamster V3 and murine severe combined immunodeficient (scid) cells.
Collapse
Affiliation(s)
- J D Sipley
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
462
|
Affiliation(s)
- M E Conley
- Dept of Pediatrics, University of Tennessee, Memphis, USA
| |
Collapse
|
463
|
van Gent DC, McBlane JF, Ramsden DA, Sadofsky MJ, Hesse JE, Gellert M. Initiation of V(D)J recombination in a cell-free system. Cell 1995; 81:925-34. [PMID: 7781069 DOI: 10.1016/0092-8674(95)90012-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells performing V(D)J recombination make specific cuts in DNA at recombination signal sequences. Here, we show that nuclear extracts of pre-B cell lines carry out this specific cleavage. The products of cleavage are the same as found previously in thymocytes: full-length, blunt, 5'-phosphorylated signal ends, and covalently sealed (hairpin) coding ends. A complete signal sequence is required. Recombinant RAG1 protein greatly increases activity and complements an inactive extract from a RAG1 (-/-) pre-B cell line. When the extracts are fractionated, cleavage activity correlates with the presence of RAG2 protein. These results suggest that RAG1 and RAG2 are components of the V(D)J recombinase.
Collapse
Affiliation(s)
- D C van Gent
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
464
|
Chang Y, Bosma GC, Bosma MJ. Development of B cells in scid mice with immunoglobulin transgenes: implications for the control of V(D)J recombination. Immunity 1995; 2:607-16. [PMID: 7796294 DOI: 10.1016/1074-7613(95)90005-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inability of scid pro-B cells to progress to the pre-B and B cell stages is believed to be caused by a defective recombinase activity that fails to resolve chromosomal breaks resulting from attempted V(D)J recombination. In support of this model, we report that certain immunoglobulin transgenes, specifically those which strongly inhibit endogenous VH-to-DJH and V kappa-to-J kappa rearrangement in wild-type mice, allow scid pro-B cells to progress to the pre-B and B cell stages. This rescue of scid B cell differentiation is associated with a dramatic reduction in expression of the recombination activation genes, RAG1 and RAG2, and with reduced transcription of the kappa locus.
Collapse
Affiliation(s)
- Y Chang
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
465
|
Abstract
V(D)J recombination is a major source of antigen receptor diversity and represents the only known form of site-specific DNA rearrangement in vertebrates. V(D)J recombination is initiated by specific DNA cleavage at recombinational signal sequences and requires components of the general machinery used for double-strand (DS)-break repair. The involvement of DS cleavage and repair mechanisms suggests that V(D)J recombination might be coupled to the cell cycle, as introduction or persistence of DS breaks during DNA replication or mitosis could interfere with faithful transmission of genetic information to daughter cells. Here, Weei-Chin Lin and Stephen Desiderio review recent evidence indicating that this is indeed the case and consider some biological implications of this linkage.
Collapse
Affiliation(s)
- W C Lin
- Dept of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
466
|
Zdzienicka MZ. Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutat Res 1995; 336:203-13. [PMID: 7739608 DOI: 10.1016/0921-8777(95)00003-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Z Zdzienicka
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, University of Leiden, The Netherlands
| |
Collapse
|
467
|
Abstract
The repair of double-stranded breaks in DNA and the recombination of antibody gene V(D)J segments share a common pathway involving the Ku protein, which binds DNA ends, and its associated protein kinase.
Collapse
Affiliation(s)
- D B Roth
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
468
|
Peterson SR, Kurimasa A, Oshimura M, Dynan WS, Bradbury EM, Chen DJ. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells. Proc Natl Acad Sci U S A 1995; 92:3171-4. [PMID: 7724535 PMCID: PMC42127 DOI: 10.1073/pnas.92.8.3171] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.
Collapse
Affiliation(s)
- S R Peterson
- Life Sciences Division, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
469
|
Foray N, Arlett CF, Malaise EP. Dose-rate effect on induction and repair rate of radiation-induced DNA double-strand breaks in a normal and an ataxia telangiectasia human fibroblast cell line. Biochimie 1995; 77:900-5. [PMID: 8824771 DOI: 10.1016/0300-9084(95)90010-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using pulsed-field gel electrophoresis (PGFE), we measured DNA double-strand breaks (DSB) in a normal human fibroblast and in a cell line derived from a patient suffering from ataxia telangiectasia (AT), a syndrome associated with a hypersensitivity to ionizing radiation. Initial DSB levels assessed after irradiation at 4 degrees C are similar in both cell lines. The DSB repair rate was measured after 30 Gy delivered at 4 degrees C and followed by an incubation at 37 degrees C for 24 h. In AT cells, the DSB repair rate is faster between 0.5 and 9 h and slower between 9 and 24 h. In addition, the DSB levels were measured after irradiation at 37 degrees C at 0.01 Gy min-1 (5-40 Gy). The shape of the curves was curvilinear and a plateau was reached at 10 Gy in the control. After an irradiation at 37 degrees C, DSB levels were significantly higher in AT cells than in the normal fibroblast cells. A model was developed assuming that DSB induction is independent of temperature and that DSB repair rate is independent of dose-rate and dose. This model was used to predict the 37 degrees C DSB data on the basis of the 4 degrees C data. Experimental data and predictions are in agreement, thus validating the above assumptions. It is suggested that, even for extreme situations such as 30 Gy delivered at 4 degrees C or 30 Gy delivered at 37 degrees C at 0.01 Gy min-1, DSB induction and repair are identical. Our results could be interpreted assuming an heterogeneity of DSB. A small fraction of DSB is slowly repaired. This fraction is lower in control than in AT cells. By protracting repair time, the 37 degrees C low-dose rate experiments permit a cleaner distinction between AT and control cells.
Collapse
Affiliation(s)
- N Foray
- Laboratoire de Radiobiologie Cellulaire, Institut Gustave Roussy, Villejuif, France
| | | | | |
Collapse
|