451
|
Lee J, Werth VP, Hall RP, Eming R, Fairley JA, Fajgenbaum DC, Harman KE, Jonkman MF, Korman NJ, Ludwig RJ, Murrell DF, Musette P, Naik HB, Sadik CD, Yamagami J, Yale ML, Payne AS. Perspective From the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Front Med (Lausanne) 2018; 5:306. [PMID: 30467542 PMCID: PMC6236000 DOI: 10.3389/fmed.2018.00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
The 5th Scientific Conference of the International Pemphigus and Pemphigoid Foundation (IPPF), “Pemphigus and Pemphigoid: A New Era of Clinical and Translational Science” was held in Orlando, Florida, on May 15–16, 2018. Scientific sessions covered recent, ongoing, and future clinical trials in pemphigus and bullous pemphigoid, disease activity and quality of life instruments, and the IPPF Natural History Study. Furthermore, the meeting provided an opportunity to hear firsthand from patients, investigators, and industry about their experience enrolling for clinical trials.
Collapse
Affiliation(s)
- Jinmin Lee
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States.,Corporal Michael J. Crescenz VAMC, Philadelphia, PA, United States
| | - Russell P Hall
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Janet A Fairley
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
| | - David C Fajgenbaum
- Orphan Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karen E Harman
- Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, United Kingdom
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Neil J Korman
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Ralf J Ludwig
- Department of Dermatology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Dedee F Murrell
- Department of Dermatology, University of New South Wales, Sydney, NSW, Australia
| | - Philippe Musette
- Department of Dermatology, Rouen University Hospital, Rouen, France
| | - Haley B Naik
- Program for Clinical Research, Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jun Yamagami
- Department of Dermatology, Keio University, Tokyo, Japan
| | - Marc L Yale
- International Pemphigus and Pemphigoid Foundation, Sacramento, CA, United States
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
452
|
Bucktrout SL, Bluestone JA, Ramsdell F. Recent advances in immunotherapies: from infection and autoimmunity, to cancer, and back again. Genome Med 2018; 10:79. [PMID: 30376867 PMCID: PMC6208073 DOI: 10.1186/s13073-018-0588-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For at least 300 years the immune system has been targeted to improve human health. Decades of work advancing immunotherapies against infection and autoimmunity paved the way for the current explosion in cancer immunotherapies. Pathways targeted for therapeutic intervention in autoimmune diseases can be modulated in the opposite sense in malignancy and infectious disease. We discuss the basic principles of the immune response, how these are co-opted in chronic infection and malignancy, and how these can be harnessed to treat disease. T cells are at the center of immunotherapy. We consider the complexity of T cell functional subsets, differentiation states, and extrinsic and intrinsic influences in the design, success, and lessons from immunotherapies. The integral role of checkpoints in the immune response is highlighted by the rapid advances in FDA approvals and the use of therapeutics that target the CTLA-4 and PD-1/PD-L1 pathways. We discuss the distinct and overlapping mechanisms of CTLA-4 and PD-1 and how these can be translated to combination immunotherapy treatments. Finally, we discuss how the successes and challenges in cancer immunotherapies, such as the collateral damage of immune-related adverse events following checkpoint inhibition, are informing treatment of autoimmunity, infection, and malignancy.
Collapse
Affiliation(s)
- Samantha L Bucktrout
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| | - Jeffrey A Bluestone
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.,Diabetes Center, University of California, San Francisco, San Francisco, CA, 94129, USA
| | - Fred Ramsdell
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| |
Collapse
|
453
|
Hu Q, Sun W, Wang J, Ruan H, Zhang X, Ye Y, Shen S, Wang C, Lu W, Cheng K, Dotti G, Zeidner JF, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng 2018; 2:831-840. [PMID: 31015615 DOI: 10.1038/s41551-018-0310-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Patients with acute myeloid leukaemia who relapse following therapy have few treatment options and face poor outcomes. Immune checkpoint inhibition, for example, by antibody-mediated programmed death-1 (PD-1) blockade, is a potent therapeutic modality that improves treatment outcomes in acute myeloid leukaemia. Here, we show that systemically delivered blood platelets decorated with anti-PD-1 antibodies (aPD-1) and conjugated to haematopoietic stem cells (HSCs) suppress the growth and recurrence of leukaemia in mice. Following intravenous injection into mice bearing leukaemia cells, the HSC-platelet-aPD-1 conjugate migrated to the bone marrow and locally released aPD-1, significantly enhancing anti-leukaemia immune responses, and increasing the number of active T cells, production of cytokines and chemokines, and survival time of the mice. This cellular conjugate also promoted resistance to re-challenge with leukaemia cells. Taking advantage of the homing capability of HSCs and in situ activation of platelets for the enhanced delivery of a checkpoint inhibitor, this cellular combination-mediated drug delivery strategy can significantly augment the therapeutic efficacy of checkpoint blockade.
Collapse
Affiliation(s)
- Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Wujin Sun
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Huitong Ruan
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.,Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Xudong Zhang
- Department of Bioengineering, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, and School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Zeidner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, and School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, USA. .,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA. .,Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
454
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
455
|
Abstract
Clinical trials with chimeric antigen receptor (CAR) T-cell therapy in oncology have been promising. The spectrum of this novel therapy is being expanded to include autoimmunity. It ensures "targeted treatment," resulting in more selective outcomes, fewer toxic effects, and a permanent restoration of immune system imbalance. The preliminary results of preclinical and clinical studies support the application of CAR therapy in autoimmunity, especially in regulating adverse autoimmune responses. This novel therapy should be considered for the treatment of autoimmune diseases and further clinical studies should be conducted to study all aspects of this treatment modality.
Collapse
Affiliation(s)
- Amber Tahir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
456
|
Hyper- N-glycosylated SAMD14 and neurabin-I as driver autoantigens of primary central nervous system lymphoma. Blood 2018; 132:2744-2753. [PMID: 30249786 DOI: 10.1182/blood-2018-03-836932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
To address the role of chronic antigenic stimulation in primary central nervous system lymphoma (PCNSL), we searched for autoantigens and identified sterile α-motif domain containing protein 14 (SAMD14) and neural tissue-specific F-actin binding protein I (neurabin-I) as autoantigenic targets of the B-cell receptors (BCRs) from 8/12 PCNSLs. In the respective cases, SAMD14 and neurabin-I were atypically hyper-N-glycosylated (SAMD14 at ASN339 and neurabin-I at ASN1277), explaining their autoimmunogenicity. SAMD14 and neurabin-I induced BCR pathway activation and proliferation of aggressive lymphoma cell lines transfected with SAMD14- and neurabin-I-reactive BCRs. Moreover, the BCR binding epitope of neurabin-I conjugated to truncated Pseudomonas exotoxin-killed lymphoma cells expressing the respective BCRs. These results support the role of chronic antigenic stimulation by posttranslationally modified central nervous system (CNS) driver autoantigens in the pathogenesis of PCNSL, serve as an explanation for their CNS tropism, and provide the basis for a novel specific treatment approach.
Collapse
|
457
|
Siddiqi HF, Staser KW, Nambudiri VE. Research Techniques Made Simple: CAR T-Cell Therapy. J Invest Dermatol 2018; 138:2501-2504.e1. [PMID: 30243656 DOI: 10.1016/j.jid.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023]
Abstract
Chimeric antigen receptor (CAR) and chimeric autoantibody receptor T-cell therapy hold great promise in the treatment of cancer and autoimmune disease, respectively. This powerful technique involves genetically engineering T lymphocytes to enable selective destruction of disease-causing cells. In the current approach, a patient's T cells are genetically engineered to express an antigen-specific antibody fragment fused to activating cytoplasmic T-cell signaling domains. After ex vivo activation and genetic modification of a patient's own T cells, the individually tailored CAR T cells are then infused into the patient for the selective destruction of cells bearing the targeted antigen. CAR T cells directed against the CD19 antigen expressed on B lymphoma cells have shown remarkable clinical efficacy in the treatment of refractory lymphoma, with two anti-CD19 CAR-T products recently gaining approval from the US Food and Drug Administration. For dermatological disease, preliminary studies have shown efficacy of CAR T cells in targeting melanoma cells and the pathogenic B cells in pemphigus vulgaris. Despite its great promise, current clinical CAR T-cell (or CAR-T) therapy carries a high risk of cytokine release syndrome, a potentially fatal systemic inflammatory response that can be manifest in cutaneous findings. For the dermatologist, the rapid clinical emergence of CAR-T therapy promises to treat and cure a variety of dermatological conditions, but it also requires an astute awareness of potential cutaneous complications in the increasing number of patients undergoing CAR-T therapy.
Collapse
Affiliation(s)
- Haziq F Siddiqi
- Brigham and Women's Hospital, Department of Dermatology, Harvard Medical School, Boston, MA
| | - Karl W Staser
- Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Vinod E Nambudiri
- Brigham and Women's Hospital, Department of Dermatology, Harvard Medical School, Boston, MA.
| |
Collapse
|
458
|
Abstract
Pemphigus and pemphigoid are characterized as autoimmune blistering diseases in which immunoglobulin G autoantibodies cause blisters and erosions of the skin or mucosa or both. Recently, understanding of the pathophysiology of pemphigus and pemphigoid has been furthered by genetic analyses, characterization of autoantibodies and autoreactive B cells, and elucidation of cell–cell adhesion between keratinocytes. For the management of pemphigus and pemphigoid, the administration of systemic corticosteroids still represents the standard treatment strategy; however, evidence of the efficacy of therapies not involving corticosteroids, such as those employing anti-CD20 antibodies, is increasing. The goal should be to develop antigen-specific immune suppression-based treatments.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
459
|
Abstract
Primary biliary cholangitis is an archetypal autoimmune disease that causes cholestasis, fibrosis, and liver failure. Ursodeoxycholic acid and obeticholic acid are approved for its treatment. Not all patients respond, some are intolerant, many have ongoing symptoms, and new therapies are required. Herein we describe drugs in development and potential future biological targets. We consider compounds acting on the farnesoid X receptor/fibroblast growth factor 19 pathway, fibrates and other agonists of the peroxisome proliferator-activated receptor family, transmembrane-G-protein-receptor-5 agonists, and several immunological agents. We also consider the roles of bile acid reuptake inhibitors, nalfurafine, and fibrates in pruritus management.
Collapse
Affiliation(s)
- Gwilym J Webb
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Gideon M Hirschfield
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
460
|
Zhang AH, Yoon J, Kim YC, Scott DW. Targeting Antigen-Specific B Cells Using Antigen-Expressing Transduced Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1434-1441. [PMID: 30021767 DOI: 10.4049/jimmunol.1701800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Abstract
Controlling immune responses in autoimmunity and to biotherapeutics is an unmet need. In hemophilia, for example, up to one third of patients receiving therapeutic factor VIII (FVIII) infusions develop neutralizing Abs termed "inhibitors." To address this problem in a mouse model of hemophilia A, we used an Ag-specific regulatory T cell (Treg) approach in which we created a novel B cell-targeting chimeric receptor composed of an FVIII Ag domain linked with the CD28-CD3ζ transmembrane and signaling domains. We termed these "BAR" for B cell-targeting Ab receptors. CD4+CD25hiCD127low human Tregs were retrovirally transduced to express a BAR containing the immunodominant FVIII C2 or A2 domains (C2- and A2-BAR). Such BAR-Tregs specifically suppressed the recall Ab response of spleen cultures from FVIII-immunized mice in vitro and completely prevented anti-FVIII Ab development in response to FVIII immunization. Mechanistic studies with purified B cells and T cells from tolerized or control recipients demonstrated that the FVIII-specific B cells were directly suppressed or anergized, whereas the T cell response remained intact. Taken together, we report in this study a successful proof-of-principle strategy using Ag-expressing Tregs to directly target specific B cells, an approach which could be adapted to address other adverse immune responses as well.
Collapse
Affiliation(s)
- Ai-Hong Zhang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jeongheon Yoon
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
461
|
Salter AI, Pont MJ, Riddell SR. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 2018; 131:2621-2629. [PMID: 29728402 PMCID: PMC6032892 DOI: 10.1182/blood-2018-01-785840] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
The ability to harness a patient's immune system to target malignant cells is now transforming the treatment of many cancers, including hematologic malignancies. The adoptive transfer of T cells selected for tumor reactivity or engineered with natural or synthetic receptors has emerged as an effective modality, even for patients with tumors that are refractory to conventional therapies. The most notable example of adoptive cell therapy is with T cells engineered to express synthetic chimeric antigen receptors (CARs) that reprogram their specificity to target CD19. CAR T cells have shown remarkable antitumor activity in patients with refractory B-cell malignancies. Ongoing research is focused on understanding the mechanisms of incomplete tumor elimination, reducing toxicities, preventing antigen escape, and identifying suitable targets and strategies based on established and emerging principles of synthetic biology for extending this approach to other hematologic malignancies. This review will discuss the current status, challenges, and potential future applications of CAR T-cell therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Alexander I Salter
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| | - Margot J Pont
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
462
|
Sicard A, Levings MK, Scott DW. Engineering therapeutic T cells to suppress alloimmune responses using TCRs, CARs, or BARs. Am J Transplant 2018; 18:1305-1311. [PMID: 29603617 PMCID: PMC5992079 DOI: 10.1111/ajt.14747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 01/25/2023]
Abstract
Adoptive cell therapy with therapeutic T cells has become one of the most promising strategies to stimulate or suppress immune responses. Using virus-mediated genetic manipulation, the antigen specificity of T cells can now be precisely redirected. Tailored specificity has not only overcome technical limitations and safety concerns but also considerably broadened the spectrum of therapeutic applications. Different T cell-engineering strategies have now become available to suppress alloimmune responses. We first provide an overview of the allorecognition pathways and effector mechanisms that are responsible for alloimmune injuries in the setting of vascularized organ transplantation. We then discuss the potential to use different T cell-engineering approaches to suppress alloimmune responses. Specifically, expression of allospecific T cell receptors, single-chain chimeric antigen receptors, or antigen domains recognized by B cell receptors (B cell antibody receptors) in regulatory or cytotoxic T cells are considered. The ability of these strategies to control the direct or indirect pathways of allorecognition and the cellular or humoral alloimmune responses is discussed. An intimate understanding of the complex interplay that occurs between the engineered T cells and the alloimmune players is a necessary prerequisite for the design of safe and successful strategies for precise immunomodulation in transplantation.
Collapse
Affiliation(s)
- Antoine Sicard
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Surgery, University of British Columbia, Vancouver, BC, Canada,Department of Nephrology, University Hospital of Nice, Nice and CNRS, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| | - Megan K. Levings
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - David W. Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
463
|
Montagna Symposium 2017-Precision Dermatology: Next Generation Prevention, Diagnosis, and Treatment. J Invest Dermatol 2018; 138:1243-1248. [PMID: 29550416 DOI: 10.1016/j.jid.2018.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023]
|
464
|
Abstract
Pemphigus vulgaris (PV) is a life-threatening disease belonging to the pemphigus group of autoimmune intra-epidermal bullous diseases of the skin and mucosae. The therapeutic management of PV remains challenging and, in some cases, conventional therapy is not adequate to induce clinical remission. The cornerstone of PV treatment remains systemic corticosteroids. Although very effective, long-term corticosteroid administration is characterized by substantial adverse effects. Corticosteroid-sparing adjuvant therapies have been employed in the treatment of PV, aiming to reduce the necessary cumulative dose of corticosteroids. Specifically, immunosuppressive agents such as azathioprine and mycophenolate mofetil are widely used in PV. More recently, high-dose intravenous immunoglobulins, immunoadsorption, and rituximab have been established as additional successful therapeutic options. This review covers both conventional and emerging therapies in PV. In addition, it sheds light on potential future treatment strategies for this disease.
Collapse
Affiliation(s)
- Khalaf Kridin
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
465
|
Didona D, Di Zenzo G. Humoral Epitope Spreading in Autoimmune Bullous Diseases. Front Immunol 2018; 9:779. [PMID: 29719538 PMCID: PMC5913575 DOI: 10.3389/fimmu.2018.00779] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune blistering diseases are characterized by autoantibodies against structural adhesion proteins of the skin and mucous membranes. Extensive characterization of their autoantibody targets has improved understanding of pathogenesis and laid the basis for the study of antigens/epitopes diversification, a process termed epitope spreading (ES). In this review, we have reported and discussed ES phenomena in autoimmune bullous diseases and underlined their functional role in disease pathogenesis. A functional ES has been proposed: (1) in bullous pemphigoid patients and correlates with the initial phase of the disease, (2) in pemphigus vulgaris patients with mucosal involvement during the clinical transition to a mucocutaneous form, (3) in endemic pemphigus foliaceus, underlining its role in disease pathogenesis, and (4) in numerous cases of disease transition associated with an intermolecular diversification of immune response. All these findings could give useful information to better understand autoimmune disease pathogenesis and to design antigen/epitope specific therapeutic approaches.
Collapse
Affiliation(s)
- Dario Didona
- Clinic for Dermatology and Allergology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
466
|
La/SSB chimeric autoantibody receptor modified NK92MI cells for targeted therapy of autoimmune disease. Clin Immunol 2018; 192:40-49. [PMID: 29673902 DOI: 10.1016/j.clim.2018.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
It has been long sought to specifically eliminate B-cell clones that generate autoreactive antibodies, while sparing the immune system when combating autoimmune disease. Although it was impossible to achieve this goal before, newly developed techniques have made it feasible today. Autoantibodies against La/SSB were involved in several autoimmune diseases. Here, we aimed to introduce La/SSB epitope-based chimeric autoantibody receptors (CAAR) into NK92MI cells enabled it to destroy the corresponding La/SSB-specific B cell receptor (BCR) -bearing lymphoma cells (LaA-BCR-Romas, LaA-BCR-Maver-1, and LaA-BCR-Jurkat cells). Such cell lines could eliminate a part of the B-cells in the blood of patients positive for anti-La/SSB antibodies. The CAAR we used in this study was constructed by fusing fragments from the nucleus protein, La/SSB, with the TCR signaling molecules, CD28, CD137, and CD3ζ. Thus, this method could specifically destroy the La/SSB autoreactive B-cell clones. Our results might provide a new strategy to combat antibody-mediated autoimmune diseases.
Collapse
|
467
|
Musette P, Bouaziz JD. B Cell Modulation Strategies in Autoimmune Diseases: New Concepts. Front Immunol 2018; 9:622. [PMID: 29706952 PMCID: PMC5908887 DOI: 10.3389/fimmu.2018.00622] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/13/2018] [Indexed: 12/04/2022] Open
Abstract
B cells are major effector cells in autoimmunity through antibody production, T cell help and pro-inflammatory cytokine production. Major advances have been made in human B cell biology knowledge using rituximab and type II new anti-CD20 antibodies, anti-CD19 antibodies, anti-CD22 antibodies, autoantigen specific B cell depleting therapy (chimeric antigen receptor T cells), and B cell receptor signaling inhibition (Bruton’s tyrosine kinase inhibitors). However, in certain circumstances B cell depleting therapy may lead to the worsening of the autoimmune disease which is in accordance with the existence of a regulatory B cell population. Current concepts and future directions for B cell modulating therapies in autoimmune diseases with a special focus on pemphigus are discussed.
Collapse
Affiliation(s)
- Philippe Musette
- Dermatology Department, INSERM U976, Rouen University Hospital, Rouen, France
| | - Jean David Bouaziz
- Dermatology Department, INSERM U976, Saint Louis University Hospital, Paris, France
| |
Collapse
|
468
|
Köhl U, Arsenieva S, Holzinger A, Abken H. CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications. Hum Gene Ther 2018; 29:559-568. [PMID: 29620951 DOI: 10.1089/hum.2017.254] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells is attracting growing interest for the treatment of malignant diseases. Early trials with anti-CD19 CAR T cells have achieved spectacular remissions in B-cell leukemia and lymphoma, so far refractory, very recently resulting in the Food and Drug Administration approval of CD19 CAR T cells for therapy. With further applications and increasing numbers of patients, the reproducible manufacture of high-quality clinical-grade CAR T cells is becoming an ever greater challenge. New processing techniques, quality-control mechanisms, and logistic developments are required to meet both medical needs and regulatory restrictions. This paper summarizes the state-of-the-art in manufacturing CAR T cells and the current challenges that need to be overcome to implement this type of cell therapy in the treatment of a variety of malignant diseases and in a greater number of patients.
Collapse
Affiliation(s)
- Ulrike Köhl
- 1 Institute of Cellular Therapeutics , Hannover Medical School, Hannover, Germany.,2 Institute of Clinical Immunology, University Hospital Leipzig , Leipzig, Germany.,3 Fraunhofer Institute for Cell Therapy and Immunology , Leipzig, Germany
| | - Stanislava Arsenieva
- 1 Institute of Cellular Therapeutics , Hannover Medical School, Hannover, Germany.,2 Institute of Clinical Immunology, University Hospital Leipzig , Leipzig, Germany.,3 Fraunhofer Institute for Cell Therapy and Immunology , Leipzig, Germany
| | - Astrid Holzinger
- 4 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany.,5 Department I for Internal Medicine, University Hospital Cologne , Cologne, Germany
| | - Hinrich Abken
- 4 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany.,5 Department I for Internal Medicine, University Hospital Cologne , Cologne, Germany
| |
Collapse
|
469
|
Milleson V. Prioritizing Facts and Values in Immunotherapy Trial Selection: Some Further Guidance. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2018; 18:76-78. [PMID: 29621460 DOI: 10.1080/15265161.2018.1444821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
470
|
Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S, Reinhard L, Koch-Nolte F, Stahl RAK, Tomas NM. The Most N-Terminal Region of THSD7A Is the Predominant Target for Autoimmunity in THSD7A-Associated Membranous Nephropathy. J Am Soc Nephrol 2018; 29:1536-1548. [PMID: 29555830 DOI: 10.1681/asn.2017070805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) has been identified as a pathogenic autoantigen in membranous nephropathy (MN). However, the THSD7A epitopes targeted by patient autoantibodies are unknown.Methods We performed an in silico analysis of the THSD7A multidomain structure, expressed the folded domains in HEK293 cells, and tested for domain reactivity with 31 serum samples from patients with THSD7A-associated MN using Western and native blotting. Immunogenicity of the antigen domains was further investigated by cDNA immunization of rabbits and mice.Results We characterized the extracellular topology of THSD7A as a tandem string of 21 thrombospondin type 1 domains. Overall, 28 serum samples (90%) recognized multiple epitope domains along the molecule. Detailed epitope mapping revealed that the complex consisting of the first and second N-terminal domains (amino acids 48-192) was recognized by 27 of 31 patient serum samples (87%). Serum recognizing one or two epitope domains showed lower anti-THSD7A antibody levels than serum recognizing three or more epitope domains. During follow-up, a loss of epitope recognition was observed in seven of 16 patients, and it was accompanied by decreasing antibody levels and remission of proteinuria. In four of 16 patients, epitope recognition patterns changed during follow-up. Notably, immunization experiments in rabbits and mice revealed that induced antibodies, like patient autoantibodies, preferentially bound to the most N-terminal domains of THSD7A.Conclusions Our data show that the immune response in THSD7A-associated MN is polyreactive and that autoantibodies predominantly target the most N-terminal part of THSD7A.
Collapse
Affiliation(s)
| | | | - Anna M Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
471
|
Biswas M, Kumar SRP, Terhorst C, Herzog RW. Gene Therapy With Regulatory T Cells: A Beneficial Alliance. Front Immunol 2018; 9:554. [PMID: 29616042 PMCID: PMC5868074 DOI: 10.3389/fimmu.2018.00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs) are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based) antigen receptors (CARs) in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.
Collapse
Affiliation(s)
- Moanaro Biswas
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Roland W Herzog
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
472
|
Saudemont A, Jespers L, Clay T. Current Status of Gene Engineering Cell Therapeutics. Front Immunol 2018; 9:153. [PMID: 29459866 PMCID: PMC5807372 DOI: 10.3389/fimmu.2018.00153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
Ex vivo manipulations of autologous patient’s cells or gene-engineered cell therapeutics have allowed the development of cell and gene therapy approaches to treat otherwise incurable diseases. These modalities of personalized medicine have already shown great promises including product commercialization for some rare diseases. The transfer of a chimeric antigen receptor or T cell receptor genes into autologous T cells has led to very promising outcomes for some cancers, and particularly for hematological malignancies. In addition, gene-engineered cell therapeutics are also being explored to induce tolerance and regulate inflammation. Here, we review the latest gene-engineered cell therapeutic approaches being currently explored to induce an efficient immune response against cancer cells or viruses by engineering T cells, natural killer cells, gamma delta T cells, or cytokine-induced killer cells and to modulate inflammation using regulatory T cells.
Collapse
Affiliation(s)
| | | | - Timothy Clay
- GlaxoSmithKline, Collegeville, PA, United States
| |
Collapse
|
473
|
Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 2018; 14:317-324. [PMID: 29377003 PMCID: PMC6035732 DOI: 10.1038/nchembio.2565] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
Chimeric antigen receptor (CAR)-expressing T cells targeting surface-bound tumor antigens have yielded promising clinical outcomes, with two CD19 CAR-T cell therapies recently receiving FDA approval for the treatment of B-cell malignancies. The adoption of CARs for the recognition of soluble ligands, a distinct class of biomarkers in physiology and disease, could considerably broaden the utility of CARs in disease treatment. In this study, we demonstrate that CAR-T cells can be engineered to respond robustly to diverse soluble ligands, including the CD19 ectodomain, GFP variants, and transforming growth factor beta (TGF-β). We additionally show that CAR signaling in response to soluble ligands relies on ligand-mediated CAR dimerization and that CAR responsiveness to soluble ligands can be fine-tuned by adjusting the mechanical coupling between the CAR's ligand-binding and signaling domains. Our results support a role for mechanotransduction in CAR signaling and demonstrate an approach for systematically engineering immune-cell responses to soluble, extracellular ligands.
Collapse
|
474
|
Abstract
Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an "ideal" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.
Collapse
Affiliation(s)
- Matthew J Brenner
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Jang Hwan Cho
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Nicole M L Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
475
|
Roybal KT, Lim WA. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annu Rev Immunol 2018; 35:229-253. [PMID: 28446063 DOI: 10.1146/annurev-immunol-051116-052302] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.
Collapse
Affiliation(s)
- Kole T Roybal
- Parker Institute for Cancer Immunotherapy, Department of Microbiology and Immunology, University of California, San Francisco, California 94143;
| | - Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158;
| |
Collapse
|
476
|
Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359:359/6372/eaan4672. [DOI: 10.1126/science.aan4672] [Citation(s) in RCA: 680] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After almost 30 years of promise tempered by setbacks, gene therapies are rapidly becoming a critical component of the therapeutic armamentarium for a variety of inherited and acquired human diseases. Gene therapies for inherited immune disorders, hemophilia, eye and neurodegenerative disorders, and lymphoid cancers recently progressed to approved drug status in the United States and Europe, or are anticipated to receive approval in the near future. In this Review, we discuss milestones in the development of gene therapies, focusing on direct in vivo administration of viral vectors and adoptive transfer of genetically engineered T cells or hematopoietic stem cells. We also discuss emerging genome editing technologies that should further advance the scope and efficacy of gene therapy approaches.
Collapse
|
477
|
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol 2018; 54:1-25. [DOI: 10.1007/s12016-017-8662-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
478
|
|
479
|
Schiller HB, Mayr CH, Leuschner G, Strunz M, Staab-Weijnitz C, Preisendörfer S, Eckes B, Moinzadeh P, Krieg T, Schwartz DA, Hatz RA, Behr J, Mann M, Eickelberg O. Deep Proteome Profiling Reveals Common Prevalence of MZB1-Positive Plasma B Cells in Human Lung and Skin Fibrosis. Am J Respir Crit Care Med 2017; 196:1298-1310. [PMID: 28654764 DOI: 10.1164/rccm.201611-2263oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Analyzing the molecular heterogeneity of different forms of organ fibrosis may reveal common and specific factors and thus identify potential future therapeutic targets. OBJECTIVES We sought to use proteome-wide profiling of human tissue fibrosis to (1) identify common and specific signatures across end-stage interstitial lung disease (ILD) cases, (2) characterize ILD subgroups in an unbiased fashion, and (3) identify common and specific features of lung and skin fibrosis. METHODS We collected samples of ILD tissue (n = 45) and healthy donor control samples (n = 10), as well as fibrotic skin lesions from localized scleroderma and uninvolved skin (n = 6). Samples were profiled by quantitative label-free mass spectrometry, Western blotting, or confocal imaging. MEASUREMENTS AND MAIN RESULTS We determined the abundance of more than 7,900 proteins and stratified these proteins according to their detergent solubility profiles. Common protein regulations across all ILD cases, as well as distinct ILD subsets, were observed. Proteomic comparison of lung and skin fibrosis identified a common upregulation of marginal zone B- and B1-cell-specific protein (MZB1), the expression of which identified MZB1+/CD38+/CD138+/CD27+/CD45-/CD20- plasma B cells in fibrotic lung and skin tissue. MZB1 levels correlated positively with tissue IgG and negatively with diffusing capacity of the lung for carbon monoxide. CONCLUSIONS Despite the presumably high molecular and cellular heterogeneity of ILD, common protein regulations are observed, even across organ boundaries. The surprisingly high prevalence of MZB1-positive plasma B cells in tissue fibrosis warrants future investigations regarding the causative role of antibody-mediated autoimmunity in idiopathic cases of organ fibrosis, such as idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Herbert B Schiller
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany.,2 German Center for Lung Research (DZL), Germany
| | - Christoph H Mayr
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany
| | - Gabriela Leuschner
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany.,3 Department of Internal Medicine V and
| | - Maximilian Strunz
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany
| | - Claudia Staab-Weijnitz
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany.,2 German Center for Lung Research (DZL), Germany
| | - Stefan Preisendörfer
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany
| | - Beate Eckes
- 4 Department of Dermatology, University of Cologne, Cologne, Germany
| | - Pia Moinzadeh
- 4 Department of Dermatology, University of Cologne, Cologne, Germany
| | - Thomas Krieg
- 4 Department of Dermatology, University of Cologne, Cologne, Germany
| | - David A Schwartz
- 5 Division of Respiratory Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Rudolf A Hatz
- 6 Center for Thoracic Surgery, Munich Lung Transplant Group, University Hospital Grosshadern, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Jürgen Behr
- 2 German Center for Lung Research (DZL), Germany.,3 Department of Internal Medicine V and.,7 Asklepios Clinics Munich-Gauting, Comprehensive Pneumology Center, Munich, Germany; and
| | - Matthias Mann
- 8 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, German Research Center for Environmental Health, Munich, Germany.,2 German Center for Lung Research (DZL), Germany.,7 Asklepios Clinics Munich-Gauting, Comprehensive Pneumology Center, Munich, Germany; and
| |
Collapse
|
480
|
Richman SA, Nunez-Cruz S, Moghimi B, Li LZ, Gershenson ZT, Mourelatos Z, Barrett DM, Grupp SA, Milone MC. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol Res 2017; 6:36-46. [PMID: 29180536 DOI: 10.1158/2326-6066.cir-17-0211] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/10/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023]
Abstract
The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)-modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties in vivo We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2+ human neuroblastoma xenograft in vivo However, this enhanced antitumor efficacy in vivo was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction. The encephalitis was localized to the cerebellum and basal regions of the brain that display low amounts of GD2. Our results highlight the challenges associated with target antigens that exhibit shared expression on critical normal tissues. Despite the success of GD2-specific antibody therapies in the treatment of neuroblastoma, the fatal neurotoxicity of GD2-specific CAR T-cell therapy observed in our studies suggests that GD2 may be a difficult target antigen for CAR T-cell therapy without additional strategies that can control CAR T-cell function within the CNS. Cancer Immunol Res; 6(1); 36-46. ©2017 AACR.
Collapse
Affiliation(s)
- Sarah A Richman
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Babak Moghimi
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lucy Z Li
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zachary T Gershenson
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
481
|
Chen J, Zheng Q, Hammers CM, Ellebrecht CT, Mukherjee EM, Tang HY, Lin C, Yuan H, Pan M, Langenhan J, Komorowski L, Siegel DL, Payne AS, Stanley JR. Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell Rep 2017; 18:237-247. [PMID: 28052253 DOI: 10.1016/j.celrep.2016.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
In autoantibody-mediated diseases such as pemphigus, serum antibodies lead to disease. Genetic analysis of B cells has allowed characterization of antibody repertoires in such diseases but would be complemented by proteomic analysis of serum autoantibodies. Here, we show using proteomic analysis that the serum autoantibody repertoire in pemphigus is much more polyclonal than that found by genetic studies of B cells. In addition, many B cells encode pemphigus autoantibodies that are not secreted into the serum. Heavy chain variable gene usage of serum autoantibodies is not shared among patients, implying targeting of the coded proteins will not be a useful therapeutic strategy. Analysis of autoantibodies in individual patients over several years indicates that many antibody clones persist but the proportion of each changes. These studies indicate a dynamic and diverse autoantibody response not revealed by genetic studies and explain why similar overall autoantibody titers may give variable disease activity.
Collapse
Affiliation(s)
- Jing Chen
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qi Zheng
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph M Hammers
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric M Mukherjee
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Proteomics Facility, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Chenyan Lin
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huijie Yuan
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meng Pan
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jana Langenhan
- Institute of Experimental Immunology, Euroimmun, Seekamp 31, 23560 Lübeck, Germany
| | - Lars Komorowski
- Institute of Experimental Immunology, Euroimmun, Seekamp 31, 23560 Lübeck, Germany
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, 510 Stellar-Chance Laboratories, 422 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S Payne
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Stanley
- Department of Dermatology, 1008 BRB, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
482
|
Affiliation(s)
- Frank Antonicelli
- Laboratory of Dermatology, UFR of Medicine, University of Reims Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
483
|
Scott DW. From IgG Fusion Proteins to Engineered-Specific Human Regulatory T Cells: A Life of Tolerance. Front Immunol 2017; 8:1576. [PMID: 29181011 PMCID: PMC5693857 DOI: 10.3389/fimmu.2017.01576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023] Open
Abstract
Recent efforts have concentrated on approaches to expand and “specify” human regulatory T cells (Tregs) and to apply them to modulate adverse immune responses in autoimmunity and hemophilia. We have used retroviral transduction of specific T-cell receptor, single chain Fv, or antigen domains in Tregs to achieve this goal. Each of these approaches have advantages and disadvantages. Results with these engineered T cells and evolution of the research developments and paths that led to the development of specific regulatory approaches for tolerance are summarized.
Collapse
Affiliation(s)
- David W Scott
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
484
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
485
|
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017; 545:423-431. [PMID: 28541315 DOI: 10.1038/nature22395] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Michel Sadelain
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle Rivière
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
486
|
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 2017; 57:172-184. [PMID: 28940642 DOI: 10.1002/mus.25973] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey T Guptill
- Department of Neurology, Neuromuscular Section, Duke University Medical Center, Durham, North Carolina, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
487
|
Adair PR, Kim YC, Zhang AH, Yoon J, Scott DW. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision. Front Immunol 2017; 8:1117. [PMID: 28983300 PMCID: PMC5613123 DOI: 10.3389/fimmu.2017.01117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022] Open
Abstract
Human regulatory CD4+ T cells (Tregs) are potent immunosuppressive lymphocytes responsible for immune tolerance and homeostasis. Since the seminal reports identifying Tregs, vast research has been channeled into understanding their genesis, signature molecular markers, mechanisms of suppression, and role in disease. This research has opened the doors for Tregs as a potential therapeutic for diseases and disorders such as multiple sclerosis, type I diabetes, transplantation, and immune responses to protein therapeutics, like factor VIII. Seminal clinical trials have used polyclonal Tregs, but the frequency of antigen-specific Tregs among polyclonal populations is low, and polyclonal Tregs may risk non-specific immunosuppression. Antigen-specific Treg therapy, which uses genetically modified Tregs expressing receptors specific for target antigens, greatly mitigates this risk. Building on the principles of T-cell receptor cloning, chimeric antigen receptors (CARs), and a novel CAR derivative, called B-cell antibody receptors, our lab has developed different types of antigen-specific Tregs. This review discusses the current research and optimization of gene-modified antigen-specific human Tregs in our lab in several disease models. The preparations and considerations for clinical use of such Tregs also are discussed.
Collapse
Affiliation(s)
- Patrick R Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ai-Hong Zhang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeongheon Yoon
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
488
|
Parvathaneni K, Abdeladhim M, Pratt KP, Scott DW. Hemophilia A inhibitor treatment: the promise of engineered T-cell therapy. Transl Res 2017; 187. [PMID: 28651073 PMCID: PMC5582018 DOI: 10.1016/j.trsl.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemophilia A is a bleeding disorder caused by mutations in the gene encoding factor VIII (FVIII), a cofactor protein that is essential for normal blood clotting. Approximately, 1 in 3 patients with severe hemophilia A produce neutralizing antibodies (inhibitors) that block its biologic function in the clotting cascade. Current efforts to eliminate inhibitors consist of repeated FVIII injections under what is termed an "ITI" protocol (Immune Tolerance Induction). However, this method is extremely costly and approximately 30% of patients undergoing ITI do not achieve peripheral tolerance. Human T regulatory cells (Tregs) have been proposed as a new strategy to treat this antidrug antibody response, as well as other diseases. Polyclonal Tregs are nonspecific and could potentially cause general immunosuppression. Novel approaches to induce tolerance to FVIII include the use of engineered human and mouse antigen-specific Tregs, or alternatively antigen-specific cytotoxic cells, to delete, anergize, or kill FVIII-specific lymphocytes. In this review, we discuss the current state of engineered T-cell therapies, and we describe the recent progress in applying these therapies to induce FVIII-specific tolerance.
Collapse
Affiliation(s)
- Kalpana Parvathaneni
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Md
| | - Maha Abdeladhim
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Md
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Md
| | - David W Scott
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Md.
| |
Collapse
|
489
|
Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun 2017; 8:389. [PMID: 28855514 PMCID: PMC5577173 DOI: 10.1038/s41467-017-00505-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Therapies based on immune cells have been applied for diseases ranging from cancer to diabetes. However, the viral and electroporation methods used to create cytoreagents are complex and expensive. Consequently, we develop targeted mRNA nanocarriers that are simply mixed with cells to reprogram them via transient expression. Here, we describe three examples to establish that the approach is simple and generalizable. First, we demonstrate that nanocarriers delivering mRNA encoding a genome-editing agent can efficiently knock-out selected genes in anti-cancer T-cells. Second, we imprint a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encode a key transcription factor of memory formation. Third, we show how mRNA nanocarriers can program hematopoietic stem cells with improved self-renewal properties. The simplicity of the approach contrasts with the complex protocols currently used to program therapeutic cells, so our methods will likely facilitate manufacturing of cytoreagents.Current widely used viral and electroporation methods for creating therapeutic cell-based products are complex and expensive. Here, the authors develop targeted mRNA nanocarriers that can transiently program gene expression by simply mixing them with cells, to improve their therapeutic potential.
Collapse
|
490
|
Abstract
Efforts to understand autoimmunity have been pursued relentlessly for several decades. It has become apparent that the immune system evolved multiple mechanisms for controlling self-reactivity, and defects in one or more of these mechanisms can lead to a breakdown of tolerance. Among the multitude of lesions associated with disease, the most common seem to affect peripheral tolerance rather than central tolerance. The initial trigger for both systemic autoimmune disorders and organ-specific autoimmune disorders probably involves the recognition of self or foreign molecules, especially nucleic acids, by innate sensors. Such recognition, in turn, triggers inflammatory responses and the engagement of previously quiescent autoreactive T cells and B cells. Here we summarize the most prominent autoimmune pathways and identify key issues that require resolution for full understanding of pathogenic autoimmunity.
Collapse
|
491
|
Abstract
Chimeric antigen receptor T cell (CAR T) therapy recently won its first U.S. Food and Drug Administration approval for use in the treatment of patients aged 3-25 with relapsed or refractory acute lymphoblastic leukemia. CAR T cell therapy is the first approved gene therapy in the USA, and brings with it a new paradigm in cancer therapeutics. Advances in design and manufacturing of CAR T cells have led to dramatic improvements in outcomes for patients with B cell malignancies. As clinical trial experience with CAR T cells grows, adverse events associated with CAR T cell therapy are becoming better understood. Increasing amounts of data suggest that CAR T cell therapy can lead to both dramatic clinical responses and to life-threatening cytokine release syndrome. As more patients are treated with CAR T cells, specialists from a multitude of fields will be involved in monitoring for and/or managing toxicity. Major obstacles in the field include expanding the promise of CAR T cells into other more challenging tumor types, such as myeloid malignancies and solid tumors. In addition to uses in oncology, this review will look to other potential applications of this technology to nonmalignant disease.
Collapse
|
492
|
Landmann S, Preuss N, Behn U. Self-tolerance and autoimmunity in a minimal model of the idiotypic network. J Theor Biol 2017; 426:17-39. [DOI: 10.1016/j.jtbi.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
493
|
Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 2017; 13:525-537. [DOI: 10.1038/nrrheum.2017.107] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
494
|
Abstract
In patients with membranous nephropathy, alkylating agents (cyclophosphamide or chlorambucil) alone or in combination with steroids achieve remission of nephrotic syndrome more effectively than conservative treatment or steroids alone, but can cause myelotoxicity, infections, and cancer. Calcineurin inhibitors can improve proteinuria, but are nephrotoxic. Most patients relapse after treatment withdrawal and can become treatment dependent, which increases the risk of nephrotoxicity. The discovery of nephritogenic autoantibodies against podocyte M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain- containing protein 7A (THSD7A) antigens provides a clear pathophysiological rationale for interventions that specifically target B-cell lineages to prevent antibody production and subepithelial deposition. The anti-CD20 monoclonal antibody rituximab is safe and achieves remission of proteinuria in approximately two-thirds of patients with membranous nephropathy. In those with PLA2R-related disease, remission can be predicted by anti-PLA2R antibody depletion and relapse by antibody re-emergence into the circulation. Thus, integrated evaluation of serology and proteinuria could guide identification of affected patients and treatment with individually tailored protocols. Nonspecific and toxic immunosuppressive regimens will fall out of use. B-cell modulation by rituximab and second-generation anti-CD20 antibodies (or plasma cell-targeted therapy in anti-CD20 resistant forms of disease) will lead to a novel therapeutic paradigm for patients with membranous nephropathy.
Collapse
|
495
|
Singh N, Hofmann TJ, Gershenson Z, Levine BL, Grupp SA, Teachey DT, Barrett DM. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy 2017; 19:867-880. [PMID: 28506444 PMCID: PMC6676485 DOI: 10.1016/j.jcyt.2017.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 has demonstrated remarkable success in targeting B-cell malignancies but is often complicated by serious systemic toxicity in the form of cytokine release syndrome (CRS). CRS symptoms are primarily mediated by interleukin 6 (IL-6), and clinical management has focused on inhibition of IL-6 signaling. The cellular source and function of IL-6 in CRS remain unknown. METHODS Using co-culture assays and data from patients on our clinical CAR T-cell trials, we investigated the cellular source of IL-6, as well as other CRS-associated cytokines, during CAR T-cell activation. We also explored the effect that IL-6 has on T-cell function. RESULTS We demonstrated that IL-6 is secreted by monocyte-lineage cells in response to CAR T-cell activation in a contact-independent mechanism upon T-cell engagement of target leukemia. We observed that the presence of antigen-presenting cell-derived IL-6 has no impact on CAR T-cell transcriptional profiles or cytotoxicity. Finally, we confirm that CAR T cells do not secrete IL-6 in vivo during clinical CRS. DISCUSSION These findings suggest that IL-6 blockade will not affect CD19 CAR T-cell-driven anti-leukemic cytotoxicity, permitting enhanced control of CRS while maintaining CAR T-cell efficacy.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Ted J Hofmann
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Zachary Gershenson
- Department of Cellular and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA; Department of Pathology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA
| |
Collapse
|
496
|
Abstract
Lentivirus-mediated transduction of autologous T cells with a chimeric antigen receptor (CAR) to confer a desired epitope specificity as a targeted immunotherapy for cancer has been among the first human gene therapy techniques to demonstrate widespread therapeutic efficacy. Other approaches to using gene therapy to enhance antitumor immunity have been less specific and less effective. These have included amplification, marking, and cytokine transduction of tumor infiltrating lymphocytes, recombinant virus-based expression of tumor antigens as a tumor vaccine, and transduction of antigen-presenting cells with tumor antigens. Unlike any of those methods, the engineering of CAR T cells combine specific monoclonal antibody gene sequences to confer epitope specificity and other T-cell receptor and activation domains to create a self-contained single vector approach to produce a very specific antitumor response, as is seen with CD19-directed CAR T cells used to treat CD19-expressing B-cell malignancies. Recent success with these therapies is the culmination of a long step-wise iterative process of improvement in the design of CAR vectors. This review aims to summarize this long series of advances in the development of effective CAR vector since their initial development in the 1990s, and to describe emerging approaches to design that promise to enhance and widen the human gene therapy relevance of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Olivia Wilkins
- 1 Department of Biology, Wheaton College , Norton, Massachusetts
| | - Allison M Keeler
- 1 Department of Biology, Wheaton College , Norton, Massachusetts.,2 Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Terence R Flotte
- 2 Department of Pediatrics and Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
497
|
Sanz I. New Perspectives in Rheumatology: May You Live in Interesting Times: Challenges and Opportunities in Lupus Research. Arthritis Rheumatol 2017; 69:1552-1559. [PMID: 28371318 DOI: 10.1002/art.40109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Iñaki Sanz
- Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
498
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
499
|
Affiliation(s)
- Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, D-23538, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
500
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|