451
|
Rhoads RP, Baumgard LH, El-Kadi SW, Zhao LD. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Roles for insulin-supported skeletal muscle growth. J Anim Sci 2017; 94:1791-802. [PMID: 27285676 DOI: 10.2527/jas.2015-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basic principles governing skeletal muscle growth and development, from a cellular point of view, have been realized for several decades. Skeletal muscle is marked by the capacity for rapid hypertrophy and increases in protein content. Ultimately, skeletal muscle growth is controlled by 2 basic means: 1) myonuclear accumulation stemming from satellite cell (myoblast) proliferation and 2) the balance of protein synthesis and degradation. Each process underlies the rapid changes in lean tissue accretion evident during fetal and neonatal growth and is particularly sensitive to nutritional manipulation. Although multiple signals converge to alter skeletal muscle mass, postprandial changes in the anabolic hormone insulin link feed intake with enhanced rates of protein synthesis in the neonate. Indeed, a consequence of insulin-deficient states such as malnutrition is reduced myoblast activity and a net loss of body protein. A well-characterized mechanism mediating the anabolic effect of insulin involves the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling pathway. Activation of mTOR leads to translation initiation control via the phosphorylation of downstream targets. Modulation of this pathway by insulin, as well as by other hormones and nutrients, accounts for enhanced protein synthesis leading to efficient lean tissue accretion and rapid skeletal muscle gain in the growing animal. Dysfunctional insulin activity during fetal and neonatal stages likely alters growth through cellular and protein synthetic capacities.
Collapse
|
452
|
Mahjoubi E, Amanlou H, Hossein Yazdi M, Aghaziarati N, Noori GR, Vahl CI, Bradford BJ, Baumgard LH. A supplement containing multiple types of gluconeogenic substrates alters intake but not productivity of heat-stressed Afshari lambs. J Anim Sci 2017; 94:2497-505. [PMID: 27285926 DOI: 10.2527/jas.2015-9697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thirty-two Afshari lambs were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments to evaluate a nutritional supplement designed to provide multiple gluconeogenic precursors during heat stress (HS). Lambs were housed in thermal neutral (TN) conditions and fed ad libitum for 8 d to obtain covariate data (period 1 [P1]) for the subsequent experimental period (period 2 [P2]). During P2, which lasted 9 d, half of the lambs were subjected to HS and the other 16 lambs were maintained in TN conditions but pair fed (PFTN) to the HS lambs. Half of the lambs in each thermal regime were fed (top-dressed) 100 g/d of a feed supplement designed to provide gluconeogenic precursors (8 lambs in HS [heat stress with Glukosa {HSG}] and 8 lambs in PFTN [pair-fed thermal neutral with Glukosa]) and the other lambs in both thermal regimes were fed only the basal control diet (HS without Glukosa [HSC] and pair-fed thermal neutral without Glukosa). Heat stress decreased DMI (14%) and by design there were no differences between the thermal treatments, but HSG lambs had increased DMI (7.5%; < 0.05) compared with the HSC lambs. Compared with PFTN lambs, rectal temperature and skin temperature at the rump, shoulder, and legs of HS lambs were increased ( < 0.05) at 0700 and 1400 h. Rectal temperature at 1400 h decreased for HSG lambs (0.15 ± 0.03°C; < 0.05) compared with HSC lambs. Despite similar DMI between thermal treatments, ADG for HS and PFTN lambs in P2 was decreased 55 and 85%, respectively, compared with lambs in P1 ( < 0.01). Although the prefeeding glucose concentration was not affected by thermal treatment or diet, HSG lambs had increased postfeeding glucose concentration compared with HSC lambs ( < 0.05). In contrast to the glucose responses, circulating insulin was influenced only by thermal treatment; HS lambs had increased insulin concentration ( < 0.01) before feeding and decreased concentration ( < 0.05) after feeding compared with PFTN lambs. Heat-stressed lambs had decreased NEFA concentration before feeding ( < 0.01) but not after feeding relative to PFTN lambs. Although this nutritional strategy did not affect ADG, the lower rectal temperature in HSG lambs indicates that dietary inclusion of a mixture of glucogenic precursors can potentially benefit animal health during HS.
Collapse
|
453
|
Min L, Zhao S, Tian H, Zhou X, Zhang Y, Li S, Yang H, Zheng N, Wang J. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1149-1158. [PMID: 27904969 PMCID: PMC5486771 DOI: 10.1007/s00484-016-1283-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Heat stress (HS) negatively affects various industries that rely on animal husbandry, particularly the dairy industry. A better understanding of metabolic responses in HS dairy cows is necessary to elucidate the physiological mechanisms of HS and offer a new perspective for future research. In this paper, we review the current knowledge of responses of body metabolism (lipid, carbohydrate, and protein), endocrine profiles, and bovine mammary epithelial cells during HS. Furthermore, we summarize the metabolomics and proteomics data that have revealed the metabolite profiles and differentially expressed proteins that are a feature of HS in dairy cows. Analysis of metabolic changes and "omics" data demonstrated that HS is characterized by reduced lipolysis, increased glycolysis, and catabolism of amino acids in dairy cows. Here, analysis of the impairment of immune function during HS and of the inflammation that arises after long-term HS might suggest new strategies to ameliorate the effects of HS in dairy production.
Collapse
Affiliation(s)
- Li Min
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - He Tian
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xu Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Songli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
454
|
Gao S, Guo J, Quan S, Nan X, Fernandez MS, Baumgard L, Bu D. The effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy Sci 2017; 100:5040-5049. [DOI: 10.3168/jds.2016-11913] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
|
455
|
Kumar J, Madan AK, Kumar M, Sirohi R, Yadav B, Reddy AV, Swain DK. Impact of season on antioxidants, nutritional metabolic status, cortisol and heat shock proteins in Hariana and Sahiwal cattle. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1332842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jitender Kumar
- Department of Veterinary Physiology, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - Arun Kumar Madan
- Department of Veterinary Physiology, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - Muneender Kumar
- Department of Animal Nutrition, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - Rajneesh Sirohi
- Department of LPM, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - A. Vidyasagar Reddy
- Department of Veterinary Physiology, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, College of Veterinary Sciences and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
| |
Collapse
|
456
|
Qu H, Yan H, Lu H, Donkin SS, Ajuwon KM. Heat stress in pigs is accompanied by adipose tissue-specific responses that favor increased triglyceride storage. J Anim Sci 2017; 94:1884-96. [PMID: 27285686 DOI: 10.2527/jas.2015-0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heat stress (HS) negatively affects all aspects of performance in pigs. Although certain tissue-specific responses in the liver, skeletal muscle, and intestine are known, there is paucity of information on responses within the adipose tissue. Therefore, the objective of this study was to delineate adipose tissue responses during HS in pigs. Thirty crossbred (Ossabaw × Duroc × Landrace) pigs were assigned to 3 treatments for 7 d. Treatments were 1) control and libitum fed (CON) with room temperature set at 20°C ± 1°C, 2) pair fed (PF) with room temperature as the CON treatment but pair fed to HS pigs, and 3) HS with room temperature 35°C ± 1°C and ad libitum access to feed. Compared with CON pigs, HS pigs had decreased feed intake and elevated skin temperature and respiration rate ( < 0.01). Blood urea nitrogen was higher ( = 0.01) in HS pigs compared with CON pigs only in males. In both subcutaneous and mesenteric adipose tissue, mRNA abundance of phosphoenolpyruvate carboxykinase (PCK1) was more elevated ( < 0.01) in HS groups compared with the CON and PF groups. Heat stress also caused increased heat shock protein 70 (HSP70; = 0.067) and CCAT/enhancer-binding homologous protein (CHOP) content ( < 0.05) in the mesenteric fat compared with the CON treatment. In conclusion, induction of PCK1 expression in adipose tissue by HS suggests elevated glyceroneogenesis might be involved in the increased fat storage in pigs under HS.
Collapse
|
457
|
Kvidera S, Dickson M, Abuajamieh M, Snider D, Fernandez MVS, Johnson J, Keating A, Gorden P, Green H, Schoenberg K, Baumgard L. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J Dairy Sci 2017; 100:4113-4127. [DOI: 10.3168/jds.2016-12349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
|
458
|
Kumar S, Bass BE, Bandrick M, Loving CL, Brockmeier SL, Looft T, Trachsel J, Madson DM, Thomas M, Casey TA, Frank JW, Stanton TB, Allen HK. Fermentation products as feed additives mitigate some ill-effects of heat stress in pigs. J Anim Sci 2017; 95:279-290. [PMID: 28177370 DOI: 10.2527/jas.2016.0662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat stress (HS) may result in economic losses to pig producers across the USA and worldwide. Despite significant advancements in management practices, HS continues to be a challenge. In this study, an in-feed antibiotic (carbadox, CBX) and antibiotic alternatives ( [XPC], and [SGX] fermentation products) were evaluated in a standard pig starter diet as mitigations against the negative effects of HS in pigs. A total of 100 gilts were obtained at weaning (6.87 ± 0.82 kg BW, 19.36 ± 0.72 d of age) and randomly assigned to dietary treatments (2 rooms/treatment, 2 pens/room, 6 to 7 pigs/pen). After 4 wk of dietary acclimation, half of the pigs in each dietary group (1 room/dietary treatment) were exposed to repeated heat stress conditions (RHS; daily cycles of 19 h at 25°C and 5 h at 40°C, repeated for 9 d), and the remaining pigs were housed at constant thermal neutral temperature (25°C, [NHS]). Pigs subjected to RHS had elevated skin surface temperature ( < 0.05; average 41.7°C) and respiration rate ( < 0.05; 199 breaths per minute (bpm) during HS, and overall reduced ( < 0.05) BW, ADG, ADFI, and G:F regardless of dietary treatment. Independent of diet, RHS pigs had significantly shorter ( < 0.05) jejunum villi on d 3 and d 9 compared to NHS pigs. Heat stress resulted in decreased villus height to crypt depth ratio (V:C) in pigs fed with control diet with no added feed additive (NON) and CBX diets at d 3, whereas the pigs fed diets containing XPC or SGX showed no decrease. Transcriptional expression of genes involved in cellular stress (, , , ), tight junction integrity (, , ), and immune response (, , and ) were measured in the ileum mucosa. Pigs in all dietary treatments subjected to RHS had significantly higher ( < 0.05) transcript levels of and , and an upward trend ( < 0.07) of mRNA expression. RHS pigs had higher ( < 0.05) transcript levels of and in NON diet, in XPC and CBX diets, and in SGX diet compared to the respective diet-matched pigs in the NHS conditions. Neither RHS nor diet affected peripheral natural killer () cell numbers or NK cell lytic activity. In conclusion, pigs subjected to RHS had decreased performance, and supplementation with fermentation products in the feed (XPC and SGX) protected pigs from injury to the jejunum mucosa.
Collapse
|
459
|
Laporta J, Fabris T, Skibiel A, Powell J, Hayen M, Horvath K, Miller-Cushon E, Dahl G. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. J Dairy Sci 2017; 100:2976-2984. [DOI: 10.3168/jds.2016-11993] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/03/2016] [Indexed: 11/19/2022]
|
460
|
Effects of betaine and heat stress on lactation and postweaning reproductive performance of sows. ACTA ACUST UNITED AC 2017. [DOI: 10.15232/pas.2016-01571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
461
|
Liu F, Celi P, Cottrell JJ, Chauhan SS, Leury BJ, Dunshea FR. Effects of a short-term supranutritional selenium supplementation on redox balance, physiology and insulin-related metabolism in heat-stressed pigs. J Anim Physiol Anim Nutr (Berl) 2017; 102:276-285. [PMID: 28299856 DOI: 10.1111/jpn.12689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022]
Abstract
Heat stress (HS) disrupts redox balance and insulin-related metabolism. Supplementation with supranutritional amounts of selenium (Se) may enhance glutathione peroxidase (GPX) activity and reduce oxidative stress, but may trigger insulin resistance. Therefore, the aim of this experiment was to investigate the effects of a short-term high Se supplementation on physiology, oxidative stress and insulin-related metabolism in heat-stressed pigs. Twenty-four gilts were fed either a control (0.20 ppm Se) or a high Se (1.0 ppm Se yeast, HiSe) diet for 2 weeks. Pigs were then housed in thermoneutral (20°C) or HS (35°C) conditions for 8 days. Blood samples were collected to study blood Se and oxidative stress markers. An oral glucose tolerance test (OGTT) was conducted on day 8 of thermal exposure. The HS conditions increased rectal temperature and respiration rate (both p < .001). The HiSe diet increased blood Se by 12% (p < .05) and ameliorated the increase in rectal temperature (p < .05). Heat stress increased oxidative stress as evidenced by a 48% increase in plasma advanced oxidized protein products (AOPPs; p < .05), which may be associated with the reductions in plasma biological antioxidant potential (BAP) and erythrocyte GPX activity (both p < .05). The HiSe diet did not alleviate the reduction in plasma BAP or increase in AOPPs observed during HS, although it tended to increase erythrocyte GPX activity by 13% (p = .068). Without affecting insulin, HS attenuated lipid mobilization, as evidenced by a lower fasting NEFA concentration (p < .05), which was not mitigated by the HiSe diet. The HiSe diet increased insulin AUC, suggesting it potentiated insulin resistance, although this only occurred under TN conditions (p = .066). In summary, HS induced oxidative stress and attenuated lipid mobilization in pigs. The short-term supranutritional Se supplementation alleviated hyperthermia, but did not protect against oxidative stress in heat-stressed pigs.
Collapse
Affiliation(s)
- F Liu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - P Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,DSM Nutritional Products, Columbia, MD, USA
| | - J J Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - S S Chauhan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - B J Leury
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
462
|
Fragomeni BO, Lourenco DAL, Tsuruta S, Andonov S, Gray K, Huang Y, Misztal I. Modeling response to heat stress in pigs from nucleus and commercial farms in different locations in the United States. J Anim Sci 2017; 94:4789-4798. [PMID: 27898949 DOI: 10.2527/jas.2016-0536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to analyze the impact of seasonal losses due to heat stress in different environments and genetic group combinations. Data were available for 2 different swine populations: purebred Duroc animals raised in nucleus farms in Texas and North Carolina and crosses of Duroc and F females (Landrace × Large White) raised in commercial farms in Missouri and North Carolina; pedigrees provided links between animals from different states. Traits included BW at harvest age for purebred animals and HCW for crossbred animals. Weather data were collected at airports located close to the farms. Heat stress was quantified by a heat load function, defined by the units of temperature-humidity of temperature-humidity index (THI) greater than a certain threshold for 30 to 70 d before phenotype collection. Heat stress responses were quantified by a linear regression of phenotype on heat load. The greatest coefficient of determination occurred with a length of 30 d before phenotype measurements for all states and genetic groups. In the crossbreed data, THI thresholds were 67 in Missouri and 72 in North Carolina. For pure breeds, heat load had the best fit for THI thresholds greater than 70 in North Carolina, although differences in coefficient of determinations were negligible. On the other hand, no optimal THI threshold existed in Texas. In this study, heat stress had a greater impact in commercial farms than in nucleus farms and the effect of heat stress on weight varied by year and state.
Collapse
|
463
|
Kvidera S, Horst E, Abuajamieh M, Mayorga E, Fernandez MS, Baumgard L. Glucose requirements of an activated immune system in lactating Holstein cows. J Dairy Sci 2017; 100:2360-2374. [DOI: 10.3168/jds.2016-12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/06/2016] [Indexed: 12/31/2022]
|
464
|
Nagayach R, Gupta U, Prakash A. Expression profiling of hsp70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
465
|
Liu F, Cottrell JJ, Wijesiriwardana U, Kelly FW, Chauhan SS, Pustovit RV, Gonzales-Rivas PA, DiGiacomo K, Leury BJ, Celi P, Dunshea FR. Effects of chromium supplementation on physiology, feed intake, and insulin related metabolism in growing pigs subjected to heat stress. Transl Anim Sci 2017; 1:116-125. [PMID: 32704634 PMCID: PMC7205331 DOI: 10.2527/tas2017.0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Improving insulin sensitivity may reduce impacts of heat stress (HS) in pigs by facilitating heat dissipation. Chromium (Cr) has been reported to improve insulin sensitivity in pigs. Therefore, the aim of this experiment was to investigate whether Cr supplementation can mitigate HS in growing pigs. Thirty-six gilts were randomly assigned to 2 diets containing 0 (control) or 400 ppb Cr. After 14 d the supplemented pigs were allocated to either 8 d thermoneutral (20°C constant; TN) or cyclic HS (35°C, 0900 h to 1700 h) conditions and continued their respective diet (n = 9 per group). Growth performance was recorded during the 14-d supplementation period. The physiological responses to HS were monitored by measuring respiration rate, rectal temperature, blood gas chemistry, and feed intake during thermal exposure. Kinetics of plasma glucose, insulin and NEFA were studied by intravenous glucose tolerance test (IVGTT) on d 8 of thermal treatment. Results showed Cr alleviated the HS-increased rectal temperature (P < 0.05) and respiration rate (P < 0.01) at 1300 h and 1600 h during thermal exposure. However, Cr did not mitigate the reduction in average daily feed intake which was reduced by 35% during HS or the HS-induced respiratory alkalosis. Chromium tended to increase average daily gain (0.86 vs. 0.95 kg, P = 0.070) during the 14-d supplementation under TN conditions before thermal exposure, which might be associated with the potential of Cr in improving overall insulin sensitivity, as evidenced by a reduced insulin resistance index calculated by Homeostatic Model Assessment (HOMA-IR; 0.65 vs. 0.51, P = 0.013) and a tendency of reduced fasting plasma insulin concentration (1.97 vs. 1.67 μU/mL, P = 0.094). Heat stress decreased the acute insulin releasing rate (P = 0.012) and consequently slowed glucose clearance rate (P = 0.035) during IVGTT. Besides, HS enlarged the values of area under the curve of NEFA during IVGTT (P < 0.01), indicating a reduced lipid mobilization. In conclusion, HS reduced insulin response to IVGTT. Chromium supplementation exhibited a potential in improving insulin sensitivity and mitigating HS symptoms in growing pigs.
Collapse
Affiliation(s)
- F Liu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - J J Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - U Wijesiriwardana
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - F W Kelly
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - S S Chauhan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - R V Pustovit
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - P A Gonzales-Rivas
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - K DiGiacomo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - B J Leury
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - P Celi
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| |
Collapse
|
466
|
Srikanth K, Kwon A, Lee E, Chung H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 2017; 22:29-42. [PMID: 27848120 PMCID: PMC5225057 DOI: 10.1007/s12192-016-0739-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the genes and pathways that respond to heat stress in Holstein bull calves exposed to severe ranges of temperature and humidity. A total of ten animals from 4 to 6 months of age were subjected to heat stress at 37 °C and 90 % humidity for 12 h. Skin and rectal temperatures were measured before and after heat stress; while no correlation was found between them before heat stress, a moderate correlation was detected after heat stress, confirming rectal temperature to be a better barometer for monitoring heat stress. RNAseq analysis identified 8567 genes to be differentially regulated, out of which 465 genes were significantly upregulated (≥2-fold, P < 0.05) and 49 genes were significantly downregulated (≤2-fold, P < 0.05) in response to heat stress. Significant terms and pathways enriched in response to heat stress included chaperones, cochaperones, cellular response to heat stress, phosphorylation, kinase activation, immune response, apoptosis, Toll-like receptor signaling pathway, Pi3K/AKT activation, protein processing in endoplasmic reticulum, interferon signaling, pathways in cancer, estrogen signaling pathway, and MAPK signaling pathway. The differentially expressed genes were validated by quantitative real-time PCR analysis, which confirmed the tendency of the expression. The genes and pathways identified in this analysis extend our understanding of transcriptional response to heat stress and their likely functioning in adapting the animal to hyperthermic stress. The identified genes could be used as candidate genes for association studies to select and breed animals with improved heat tolerance.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Jeollabuk-do, 565-851, Korea
| | - Anam Kwon
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Jeollabuk-do, 565-851, Korea
| | - Eunjin Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Jeollabuk-do, 565-851, Korea
| | - Hoyoung Chung
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Jeollabuk-do, 565-851, Korea.
| |
Collapse
|
467
|
Garner JB, Douglas M, Williams SRO, Wales WJ, Marett LC, DiGiacomo K, Leury BJ, Hayes BJ. Responses of dairy cows to short-term heat stress in controlled-climate chambers. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an16472] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present research was to describe the physiological and production responses of lactating dairy cows during and after sudden exposure to temperate-climate heat-wave conditions, compared with cows in thermoneutral conditions. Twelve lactating multiparous Holstein–Friesian dairy cows were housed in controlled-climate chambers for 4 days. Six were exposed to a short-term temperature and humidity challenge (THc, diurnal temperature and humidity fluctuations inducing moderate heat stress; temperature humidity index 74–84) and six cows were exposed to thermoneutral conditions (THn, temperatur humidity index 55–61). Cows were also measured during a 7-day pre-experimental and 14-day post-experimental period. Physiological indicators of heat stress were measured, including rectal and vaginal temperature and respiration rate, which indicated that the THc in controlled-climate chambers induced moderate heat stress. The cows exposed to the 4-day THc reduced their milk yield by 53% and their dry-matter intake by 48%, compared with the cows in the THn treatment. Milk yield of THc cows returned to pre-experimental milk yield by Day 7 and dry-matter intake by Day 4 of the post-experimental period. The short-term heat challenge induced metabolic adaptations by mobilising adipose tissue, as indicated by increased non-esterified fatty acids, and amino acids from skeletal muscle, as indicated by increased urea nitrogen to compensate for reduced nutrient intake and increased energy expenditure. Endocrine responses included greater prolactin concentrations, which is associated with thermoregulation and water metabolism. The cows exposed to THc displayed production and physical responses that facilitated lower metabolic heat production and greater heat dissipation in an attempt to maintain homeostasis during the short-term heat exposure. These results indicated that the conditions imposed on the cows in the controlled-climate chambers were sufficient to induce heat-stress responses and adversely affected production in the lactating dairy cow, and the delay between the return to normal feed intake and milk yield following the heat challenge suggests a period of metabolic recovery was occurring.
Collapse
|
468
|
Nabenishi H, Yamazaki A. Effects of temperature-humidity index on health and growth performance in Japanese black calves. Trop Anim Health Prod 2016; 49:397-402. [PMID: 27943126 DOI: 10.1007/s11250-016-1207-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023]
Abstract
We evaluated the relationship between the temperature-humidity index (THI) and health and growth performance in Japanese black calves in Japan. Data were collected from medical records of 19,313 Japanese black calves aged up to 3 months for correlation analysis with THI from July 2008 to June 2011. Data were also collected on the market weights of 57,144 Japanese black calves, and we calculated the body weight gain (BWG) of each calf based on body weight and age in days at the calf market. Analysis for the relationship between disease incidence and THI demonstrated a negative correlation (r = -0.54, p < 0.01). In addition, the mean disease incidence at THI of ≤50 was significantly higher than that at THI of ≥71. Analysis for the relationship between growth performance in calves and THI revealed that a lower THI during the month of birth was associated with a lower BWG at the calf market and that BWG with THI of ≤70 was significantly lower than that with THI of ≥71 (p < 0.05). In contrast, a higher mean THI during the third month after birth was associated with a lower BWG at the calf market, and BWG with THI of >75 was significantly lower than that with THI of ≤50 or THI ranging from 56 to 60 (p < 0.05). These results indicate that Japanese black calves are susceptible to a cold environment immediately after birth, whereas they are susceptible to a heat environment 3 months after birth.
Collapse
Affiliation(s)
- Hisashi Nabenishi
- Laboratory of Animal Feeding and Management, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23, Towada, Aomori, 034-8628, Japan.
| | - Atusi Yamazaki
- Laboratory of Animal Feeding and Management, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
469
|
Elucidating a molecular mechanism that the deterioration of porcine meat quality responds to increased cortisol based on transcriptome sequencing. Sci Rep 2016; 6:36589. [PMID: 27833113 PMCID: PMC5105143 DOI: 10.1038/srep36589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
Stress response is tightly linked to meat quality. The current understanding of the intrinsic mechanism of meat deterioration under stress is limited. Here, male piglets were randomly assigned to cortisol and control groups. Our results showed that when serum cortisol level was significantly increased, the meat color at 1 h postmortem, muscle bundle ratio, apoptosis rate, and gene expression levels of calcium channel and cell apoptosis including SERCA1, IP3R1, BAX, Bcl-2, and Caspase-3, were notably increased. However, the value of drip loss at 24 h postmortem and serum CK were significantly decreased. Additionally, a large number of differentially expressed genes (DEGs) in GC regulation mechanism were screened out using transcriptome sequencing technology. A total of 223 DEGs were found, including 80 up-regulated genes and 143 down-regulated genes. A total of 204 genes were enriched in GO terms, and 140 genes annotated into in KEGG database. Numerous genes were primarily involved in defense, inflammatory and wound responses. This study not only identifies important genes and signalling pathways that may affect the meat quality but also offers a reference for breeding and feeding management to provide consumers with better quality pork products.
Collapse
|
470
|
Kellner TA, Baumgard LH, Prusa KJ, Gabler NK, Patience JF. Does heat stress alter the pig's response to dietary fat?1. J Anim Sci 2016; 94:4688-4703. [DOI: 10.2527/jas.2016-0756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
471
|
Johnson J, Martin K, Pohler K, Stewart K. Effects of rapid temperature fluctuations prior to breeding on reproductive efficiency in replacement gilts. J Therm Biol 2016; 61:29-37. [DOI: 10.1016/j.jtherbio.2016.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 01/26/2023]
|
472
|
Wang L, Urriola PE, Luo ZH, Rambo ZJ, Wilson ME, Torrison JL, Shurson GC, Chen C. Metabolomics revealed diurnal heat stress and zinc supplementation-induced changes in amino acid, lipid, and microbial metabolism. Physiol Rep 2016; 4:4/1/e12676. [PMID: 26755737 PMCID: PMC4760408 DOI: 10.14814/phy2.12676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heat stress (HS) dramatically disrupts the events in energy and nutrient metabolism, many of which requires zinc (Zn) as a cofactor. In this study, metabolic effects of HS and Zn supplementation were evaluated by examining growth performance, blood chemistry, and metabolomes of crossbred gilts fed with ZnNeg (no Zn supplementation), ZnIO (120 ppm ZnSO4), or ZnAA (60 ppm ZnSO4 + 60 ppm zinc amino acid complex) diets under diurnal HS or thermal‐neutral (TN) condition. The results showed that growth performance was reduced by HS but not by Zn supplementation. Among measured serum biochemicals, HS was found to increase creatinine but decrease blood urea nitrogen (BUN) level. Metabolomic analysis indicated that HS greatly affected diverse metabolites associated with amino acid, lipid, and microbial metabolism, including urea cycle metabolites, essential amino acids, phospholipids, medium‐chain dicarboxylic acids, fatty acid amides, and secondary bile acids. More importantly, many changes in these metabolite markers were correlated with both acute and adaptive responses to HS. Relative to HS‐induced metabolic effects, Zn supplementation‐associated effects were much more limited. A prominent observation was that ZnIO diet, potentially through its influences on microbial metabolism, yielded different responses to HS compared with two other diets, which included higher levels of short‐chain fatty acids (SCFAs) in cecal fluid and higher levels of lysine in the liver and feces. Overall, comprehensive metabolomic analysis identified novel metabolite markers associated with HS and Zn supplementation, which could guide further investigation on the mechanisms of these metabolic effects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Zhao-Hui Luo
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | | | | | | | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
473
|
Koch F, Lamp O, Eslamizad M, Weitzel J, Kuhla B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS One 2016; 11:e0160912. [PMID: 27513961 PMCID: PMC4981427 DOI: 10.1371/journal.pone.0160912] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production simultaneously reducing endogenous heat production.
Collapse
Affiliation(s)
- Franziska Koch
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ole Lamp
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Schleswig Holstein Chamber of Agriculture, Department of Animal production, Futterkamp, Blekendorf, Germany
| | - Mehdi Eslamizad
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Animal Science, Campus of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Joachim Weitzel
- Institute of Reproductive Biology, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibnitz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
474
|
Faylon MP, Baumgard LH, Rhoads RP, Spurlock DM. Effects of acute heat stress on lipid metabolism of bovine primary adipocytes. J Dairy Sci 2016; 98:8732-40. [PMID: 26433410 DOI: 10.3168/jds.2015-9692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/01/2015] [Indexed: 12/24/2022]
Abstract
Heat stress (HS) affects numerous physiological processes including nutrient partitioning and lipid metabolism. Objectives of this study were to evaluate how acute HS affects lipid metabolism in subcutaneous adipose tissue of dairy cattle. Adipose tissue biopsies were performed on Holstein cows for bovine primary adipocyte isolation and cultured at either 42°C (HS) or 37°C (thermal neutral, TN). Adipocytes were incubated with increasing isoproterenol (ISO), and with increasing concentrations of insulin in the presence of ISO to evaluate changes in lipolysis. Incorporation of radioactive acetate into lipids was measured as an indicator of lipogenesis. Abundance and phosphorylation of several lipolytic and lipogenic proteins were also measured. Adipocytes exposed to HS had an elevated maximal response to ISO and were more sensitive to lipolytic stimulation by ISO compared with cells cultured at TN. Thermal treatment did not affect the antilipolytic effects of insulin in the presence of ISO. Lipogenesis measured as acetate incorporation was not altered by HS, but a temperature by insulin interaction was observed for the regulation of acetyl CoA carboxylase, such that the presence of insulin resulted in a reduction in phosphorylation of acetyl CoA carboxylase in adipocytes cultured at TN but not HS conditions. Results of this study demonstrate that acute HS has a direct effect on the regulation of lipolysis and the rate-limiting enzyme of lipogenesis in isolated bovine adipocytes.
Collapse
Affiliation(s)
- M P Faylon
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - D M Spurlock
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
475
|
Cao L, Tang J, Li Q, Xu J, Jia G, Liu G, Chen X, Shang H, Cai J, Zhao H. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells. Biol Trace Elem Res 2016; 172:354-360. [PMID: 26706036 DOI: 10.1007/s12011-015-0604-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS.
Collapse
Affiliation(s)
- Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Qiang Li
- Sichuan Provincial General Station for Animal Husbandry, Chengdu, 610041, China
| | - Jingyang Xu
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
476
|
Min L, Cheng J, Zhao S, Tian H, Zhang Y, Li S, Yang H, Zheng N, Wang J. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows. J Proteomics 2016; 146:99-108. [PMID: 27321583 DOI: 10.1016/j.jprot.2016.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. BIOLOGICAL SIGNIFICANCE Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research.
Collapse
Affiliation(s)
- Li Min
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - He Tian
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Songli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
477
|
Aleena J, Pragna P, Archana P, Sejian V, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien E, Varma G, Bhatta R. Significance of Metabolic Response in Livestock for Adapting to
Heat Stress Challenges. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajas.2016.224.234] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
478
|
Johnson JS, Sanz Fernandez MV, Seibert JT, Ross JW, Lucy MC, Safranski TJ, Elsasser TH, Kahl S, Rhoads RP, Baumgard LH. In utero heat stress increases postnatal core body temperature in pigs. J Anim Sci 2016; 93:4312-22. [PMID: 26440331 DOI: 10.2527/jas.2015-9112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.
Collapse
|
479
|
Steele MA, Penner GB, Chaucheyras-Durand F, Guan LL. Development and physiology of the rumen and the lower gut: Targets for improving gut health. J Dairy Sci 2016; 99:4955-4966. [DOI: 10.3168/jds.2015-10351] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023]
|
480
|
Al-Dawood A. Effect of heat stress on adipokines and some blood metabolites in goats from Jordan. Anim Sci J 2016; 88:356-363. [DOI: 10.1111/asj.12636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Amani Al-Dawood
- National Center for Agricultural Research and Extension (NCARE); Baq'a Jordan
| |
Collapse
|
481
|
Ganesan S, Reynolds C, Hollinger K, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1288-96. [PMID: 27009052 DOI: 10.1152/ajpregu.00494.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Carmen Reynolds
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Katrin Hollinger
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Sarah C Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa; and
| |
Collapse
|
482
|
Das R, Sailo L, Verma N, Bharti P, Saikia J, Imtiwati, Kumar R. Impact of heat stress on health and performance of dairy animals: A review. Vet World 2016; 9:260-8. [PMID: 27057109 PMCID: PMC4823286 DOI: 10.14202/vetworld.2016.260-268] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 01/03/2023] Open
Abstract
Sustainability in livestock production system is largely affected by climate change. An imbalance between metabolic heat production inside the animal body and its dissipation to the surroundings results to heat stress (HS) under high air temperature and humid climates. The foremost reaction of animals under thermal weather is increases in respiration rate, rectal temperature and heart rate. It directly affect feed intake thereby, reduces growth rate, milk yield, reproductive performance, and even death in extreme cases. Dairy breeds are typically more sensitive to HS than meat breeds, and higher producing animals are, furthermore, susceptible since they generates more metabolic heat. HS suppresses the immune and endocrine system thereby enhances susceptibility of an animal to various diseases. Hence, sustainable dairy farming remains a vast challenge in these changing climatic conditions globally.
Collapse
Affiliation(s)
- Ramendra Das
- Department of Animal Genetics & Breeding, Indian Council of Agricultural Research - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Lalrengpuii Sailo
- Division of Animal Genetics, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Izatnagar - 243 122, Uttar Pradesh, India
| | - Nishant Verma
- Department of Animal Genetics & Breeding, Indian Council of Agricultural Research - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Pranay Bharti
- Department of Livestock Production & Management, Indian Council of Agricultural Research - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Jnyanashree Saikia
- Department of Animal Genetics & Breeding, College of Veterinary Sciences & Animal Husbandry, Agartala - 799 008, Tripura, India
| | - Imtiwati
- Department of Livestock Production & Management, College of Veterinary Sciences & Animal Husbandry, Agartala - 799 008, Tripura, India
| | - Rakesh Kumar
- Department of Animal Genetics & Breeding, Indian Council of Agricultural Research - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
483
|
Xie G, Cole LC, Zhao LD, Skrzypek MV, Sanders SR, Rhoads ML, Baumgard LH, Rhoads RP. Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows. J Dairy Sci 2016; 99:4032-4042. [PMID: 26971163 DOI: 10.3168/jds.2015-10464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each period, but the phosphorylation ratio (abundance of phosphorylated protein:abundance of total protein) of AKT was decreased in P2 for TNPF animals, but not during WFHS. These results indicate that mild systemic insulin resistance during HS may be related to reduced nutrient intake but skeletal muscle and liver insulin signaling remains unchanged.
Collapse
Affiliation(s)
- G Xie
- Department of Animal and Poultry Science, Virginia Tech University, Blacksburg 24061
| | - L C Cole
- Department of Animal Science, University of Arizona, Tucson 85721
| | - L D Zhao
- Department of Animal and Poultry Science, Virginia Tech University, Blacksburg 24061
| | - M V Skrzypek
- Department of Animal Science, University of Arizona, Tucson 85721
| | - S R Sanders
- Department of Animal Science, University of Arizona, Tucson 85721
| | - M L Rhoads
- Department of Animal and Poultry Science, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50014
| | - R P Rhoads
- Department of Animal and Poultry Science, Virginia Tech University, Blacksburg 24061.
| |
Collapse
|
484
|
Schären M, Seyfang GM, Steingass H, Dieho K, Dijkstra J, Hüther L, Frahm J, Beineke A, von Soosten D, Meyer U, Breves G, Dänicke S. The effects of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J Dairy Sci 2016; 99:3549-3565. [PMID: 26898273 DOI: 10.3168/jds.2015-10450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
To investigate the effect of the change from a concentrate and silage-based ration (total mixed ration, TMR) to a pasture-based ration, a 10-wk trial (wk 1-10) was performed, including 10 rumen- and duodenum-fistulated German Holstein dairy cows (182±24 d in milk, 23.5±3.5kg of milk/d; mean ± standard deviation). The cows were divided in either a pasture group (PG, n=5) or a confinement group (CG, n=5). The CG stayed on a TMR-based ration (35% corn silage, 35% grass silage, 30% concentrate; dry matter basis), whereas the PG was gradually transitioned from a TMR to a pasture-based ration (wk 1: TMR only; wk 2: 3 h/d on pasture wk 3 and 4: 12 h/d on pasture wk 5-10: pasture only). Ruminal pH, volatile fatty acids (VFA), NH3-N, and lipopolysaccharide (LPS) concentrations were measured in rumen fluid samples collected medially and ventrally on a weekly basis. Ruminal pH was continuously recorded during 1 to 4 consecutive days each week using ruminal pH measuring devices. In wk 1, 5, and 10, rumen contents were evacuated and weighed, papillae were collected from 3 locations in the rumen, and subsequently a VFA absorption test was performed. In the PG, mean rumen pH and molar acetate proportions decreased, and molar butyrate proportions increased continuously over the course of the trial, which can most likely be ascribed to an increased intake of rapidly fermentable carbohydrates. During the first weeks on a full grazing ration (wk 5-7), variation of rumen pH decreased, and in wk 5 a lower rumen content, papillae surface area, and potential for VFA absorption were observed. In wk 8 to 10, variation of rumen pH and total VFA concentrations increased again, and acetate/propionate ratio decreased. In wk-10 rumen content, papillae area and VFA absorption characteristics similar to initial levels were observed. Although continuous rumen pH assessments and LPS concentrations did not reveal an increased risk for subacute rumen acidosis (SARA) during the adaption period, histopathology of rumen papillae and potential for VFA absorption indicated a possible risk for rumen health. An increased risk for SARA was observed in wk 9 and 10 in the PG, but rumen LPS concentrations and histopathology were not adversely affected. Results of the present study suggest that after behavioral and metabolic adaptation to the transition from a TMR to a pasture-based ration, no adverse effects on rumen morphology and absorption capacity occurred, although rumen pH after adaptation to pasture indicated increased risk of SARA.
Collapse
Affiliation(s)
- M Schären
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - G M Seyfang
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - H Steingass
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - K Dieho
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, the Netherlands
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University, De Elst 1, 6708WD Wageningen, the Netherlands
| | - L Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - A Beineke
- Institute of Pathology, University of Veterinary Medicine Hanover, Bünteweg 17, 30559 Hannover, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| | - U Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany.
| | - G Breves
- Department of Physiology, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany
| |
Collapse
|
485
|
Dahl GE, Tao S, Monteiro APA. Effects of late-gestation heat stress on immunity and performance of calves. J Dairy Sci 2016; 99:3193-3198. [PMID: 26805989 DOI: 10.3168/jds.2015-9990] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
Abstract
Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters the health, growth, and ultimate performance of dairy calves. Thus, it is critical to effectively manage heat stress of dry cows to avoid negative effects on the calf.
Collapse
Affiliation(s)
- G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - A P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| |
Collapse
|
486
|
Gangloff EJ, Holden KG, Telemeco RS, Baumgard LH, Bronikowski AM. Hormonal and metabolic responses to upper temperature extremes in divergent life-history ecotypes of a garter snake. J Exp Biol 2016; 219:2944-2954. [DOI: 10.1242/jeb.143107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023]
Abstract
Extreme temperatures constrain organismal physiology and impose both acute and chronic effects. Additionally, temperature-induced hormone-mediated stress response pathways and energetic trade-offs are important drivers of life-history variation. This study employs an integrative approach to quantify acute physiological responses to high temperatures in divergent life-history ecotypes of the western terrestrial garter snake (Thamnophis elegans). Using wild-caught animals, we measured oxygen consumption rate and physiological markers of hormonal stress response, energy availability, and anaerobic respiration in blood plasma across five ecologically relevant temperatures (24, 28, 32, 35, and 38° C; 3-hour exposure). Corticosterone, insulin, and glucose concentrations all increased with temperature, but with different thermal response curves, suggesting that high temperatures differently affect energy-regulation pathways. Additionally, oxygen consumption rate increased without plateau and lactate concentration did not increase with temperature, challenging the recent hypothesis that oxygen limitation sets upper thermal tolerance limits. Finally, animals had similar physiological thermal responses to high-temperature exposure regardless of genetic background, suggesting that local adaptation has not resulted in fixed differences between ecotypes. Together, these results identify some of the mechanisms by which higher temperatures alter hormonal-mediated energy balance in reptiles and potential limits to the flexibility of this response.
Collapse
Affiliation(s)
- Eric J. Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rory S. Telemeco
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Present Address: Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Lance H. Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
487
|
Yazdi MH, Mirzaei-Alamouti HR, Amanlou H, Mahjoubi E, Nabipour A, Aghaziarati N, Baumgard LH. Effects of heat stress on metabolism, digestibility, and rumen epithelial characteristics in growing Holstein calves. J Anim Sci 2016; 94:77-89. [DOI: 10.2527/jas.2015-9364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
488
|
Menegassi SRO, Pereira GR, Dias EA, Koetz C, Lopes FG, Bremm C, Pimentel C, Lopes RB, da Rocha MK, Carvalho HR, Barcellos JOJ. The uses of infrared thermography to evaluate the effects of climatic variables in bull's reproduction. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:151-157. [PMID: 26049285 DOI: 10.1007/s00484-015-1013-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1%), summer (57.6%), and autumn (64.5%) showed difference compared to winter (73.0%; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.
Collapse
Affiliation(s)
| | - Gabriel Ribas Pereira
- Centre for Studies and Research in Agribusiness - CEPAN, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, n.: 7.712, 91540-000, Porto Alegre, RS, Brazil.
| | - Eduardo Antunes Dias
- Centre for Studies and Research in Agribusiness - CEPAN, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, n.: 7.712, 91540-000, Porto Alegre, RS, Brazil
| | - Celso Koetz
- College of Veterinary Medicine, University of Northern Paraná, 86041-120, Londrina, PR, Brazil
| | - Flávio Guiselli Lopes
- College of Veterinary Medicine, University of Northern Paraná, 86041-120, Londrina, PR, Brazil
| | - Carolina Bremm
- Animal Production Department, FEPAGRO, 90130-060, Porto Alegre, RS, Brazil
| | - Concepta Pimentel
- University of Brasília and INCT Pecuária, 70910-900, Brasília, DF, Brazil
| | - Rubia Branco Lopes
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | - Marcela Kuczynski da Rocha
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | - Helena Robattini Carvalho
- Department of Animal Science, Federal University of Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | | |
Collapse
|
489
|
Johnson JS, Sanz Fernandez MV, Gutierrez NA, Patience JF, Ross JW, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard LH. Effects of in utero heat stress on postnatal body composition in pigs: I. Growing phase. J Anim Sci 2015; 93:71-81. [PMID: 25568358 DOI: 10.2527/jas.2014-8354] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmentally induced heat stress (HS) negatively influences production variables in agriculturally important species. However, the extent to which HS experienced in utero affects nutrient partitioning during the rapid lean tissue accretion phase of postnatal growth is unknown. Study objectives were to compare future whole-body tissue accretion rates in pigs exposed to differing in utero and postnatal thermal environments when lean tissue deposition is likely maximized. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 12) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 30.8 ± 0.2 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 30.3 ± 0.2 kg BW) were euthanized as an initial slaughter group (ISG). Following the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 34.1 ± 0.5 kg BW) and IUHS (n = 12 gilts and 12 barrows; 33.3 ± 0.3 kg BW) were exposed to constant HS (34.1 ± 2.4°C) or TN (21.5 ± 2.0°C) conditions until they reached 61.5 ± 0.8 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased (P < 0.01) during postnatal HS compared to TN (39.4 vs. 39.0°C and 94 vs. 49 breaths per minute, respectively). Regardless of in utero environment, postnatal HS reduced (P < 0.01) feed intake (2.06 vs. 2.37 kg/d) and ADG (0.86 vs. 0.98 kg/d) compared to TN conditions. Postnatal HS did not alter water, protein, and ash accretion rates but reduced lipid accretion rates (198 vs. 232 g/d; P < 0.04) compared to TN-reared pigs. In utero environment had no effect on future tissue deposition rates; however, IUHS pigs from the ISG had reduced liver weight (P < 0.04; 17.9%) compared to IUTN controls. In summary, postnatal HS reduced adipose tissue accretion rates, but IUHS did not appear to impact either lean or adipose tissue accretion during this specific growth phase.
Collapse
Affiliation(s)
- J S Johnson
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - N A Gutierrez
- Department of Animal Science, Iowa State University, Ames 50011
| | - J F Patience
- Department of Animal Science, Iowa State University, Ames 50011
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames 50011
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames 50011
| | - M C Lucy
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - T J Safranski
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
490
|
Johnson JS, Sanz Fernandez MV, Patience JF, Ross JW, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard LH. Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase. J Anim Sci 2015; 93:82-92. [PMID: 25568359 DOI: 10.2527/jas.2014-8355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The detrimental effects of heat stress (HS) on animal productivity have been well documented. However, whether in utero HS interacts with a future thermal insult to alter tissue deposition during the finishing phase of pig growth is unknown. Study objectives were to compare the subsequent rate and quantity of whole-body tissue accretion in pigs exposed to differing in utero and postnatal thermal environments. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 11) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 62.4 ± 0.7 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 61.9 ± 0.8 kg BW) were euthanized as part of an initial slaughter group (ISG). After the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 66.1 ± 1.0 kg BW) and IUHS (n = 12 gilts and 12 barrows; 63.4 ± 0.7 kg BW) were exposed to constant HS (34.4 ± 1.8°C) or TN (22.7 ± 2.5°C) conditions until they reached 80.5 ± 1.5 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased during postnatal HS compared to TN (39.6 vs. 39.3°C and 92 vs. 58 breaths per minute, respectively; P < 0.01). Postnatal HS decreased (P < 0.01) feed intake (2.13 vs. 2.65 kg/d) and ADG (0.70 vs. 0.94 kg/d) compared to TN conditions, but neither variable was influenced by in utero environment. Whole-body protein and lipid accretion rates were reduced in HS pigs compared to TN controls (126 vs. 164 g/d and 218 vs. 294 g/d, respectively; P < 0.04). Independent of postnatal environments, IUHS reduced future protein accretion rates (16%; P < 0.01) and tended to increase lipid accretion rates (292 vs. 220 g/d; P < 0.07) compared to IUTN controls. The ratio of lipid to protein accretion rates increased (95%; P < 0.01) in IUHS pigs compared to IUTN controls. In summary, the future hierarchy of tissue accretion is altered by IUHS, and this modified nutrient partitioning favors adipose deposition at the expense of skeletal muscle during this specific phase of growth.
Collapse
Affiliation(s)
- J S Johnson
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - J F Patience
- Department of Animal Science, Iowa State University, Ames 50011
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames 50011
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames 50011
| | - M C Lucy
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - T J Safranski
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
491
|
Johnson JS, Abuajamieh M, Victoria Sanz Fernandez M, Seibert JT, Stoakes SK, Keating AF, Ross JW, Selsby JT, Rhoads RP, Baumgard LH. The impact of in utero heat stress and nutrient restriction on progeny body composition. J Therm Biol 2015; 53:143-50. [PMID: 26590467 DOI: 10.1016/j.jtherbio.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/03/2023]
Abstract
We recently demonstrated that in utero heat stress (IUHS) alters future tissue accretion in pigs, but whether this is a conserved response among species, is due to the direct effects of heat stress (HS) or mediated by reduced maternal feed intake (FI) is not clear. Study objectives were to compare the quantity and rate of tissue accretion in rats exposed to differing in utero thermal environments while eliminating the confounding effect of dissimilar maternal FI. On d3 of gestation, pregnant Sprague-Dawley rats (189.0±5.9g BW) were exposed to thermoneutral (TN; 22.2±0.1°C; n=8), or HS conditions (cyclical 30 to 34°C; n=8) until d18 of gestation. A third group was pair-fed to HS dams in TN conditions (PFTN; 22.2±0.1°C; n=8) from d4 to d19 of gestation. HS increased dam rectal temperature (p=0.01; 1.3°C) compared to TN and PFTN mothers, and reduced FI (p=0.01; 33%) compared to TN ad libitum fed controls. Although litter size was similar (p=0.97; 10.9 pups/litter), pup birth weight was reduced (p=0.03; 15.4%) in HS compared to PFTN and TN dams. Two male pups per dam [n=8 in utero TN (IUTN); n=8 IUHS; n=8 in utero PFTN (IUPFTN)] were selected from four dams per treatment based on similar gestation length, and body composition was determined using dual-energy x-ray absorptiometry (DXA) on d26, d46, and d66 of postnatal life. Whole-body fat content increased (p=0.01; 11.2%), and whole-body lean tissue decreased (p=0.01; 2.6%) in IUPFTN versus IUTN and IUHS offspring. Whole-body composition was similar between IUHS and IUTN offspring. Epididymal fat pad weight increased (p=0.03; 21.6%) in IUPFTN versus IUHS offspring. In summary and in contrast to pigs, IUHS did not impact rodent body composition during this stage of growth; however, IUPFTN altered the future hierarchy of tissue accretion.
Collapse
Affiliation(s)
- Jay S Johnson
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Mohannad Abuajamieh
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | | | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Sara K Stoakes
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg, VA, 24061 United States
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011 United States.
| |
Collapse
|
492
|
Cruzen S, Pearce S, Baumgard L, Gabler N, Huff-Lonergan E, Lonergan S. Proteomic changes to the sarcoplasmic fraction of predominantly red or white muscle following acute heat stress. J Proteomics 2015; 128:141-53. [DOI: 10.1016/j.jprot.2015.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
493
|
Moreira TF, Facury Filho EJ, Meneses RM, Mendonça FLM, Lima JAM, Carvalho AU. Energetic status of crossbreed dairy cows during transition period in two different seasons. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-8287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACTWe used 31 crossbreed dairy cows to compare the energetic profile in summer and winter. Blood samples were taken weekly prepartum, at calving and on days 2, 5, 10, 15, 21 and 30 postpartum. All metabolic indicators analyzed were influenced by the physiological status. The glucose concentrations were higher during winter while the triglyceride concentrations and lactate dehydrogenase (LDH) were higher in the summer. The season influenced the concentrations of cholesterol, AST and GGT, showing a different pattern between summer and winter. Non-esterified fatty acids (NEFA) and beta-hidroxibutirate (BHB) were not influenced by the season. Cows that calved during winter had a greater body condition score (BCS) and lost more BCS until calving. During summer, 32.26% of the animals and 29.03% during winter had NEFA concentrations above the optimum level and 22.58% of the animals in summer and 19.35% in the winter had subclinical ketosis at some point during the transition period, making then more susceptible to diseases.
Collapse
|
494
|
Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (Berl) 2015; 100:401-12. [PMID: 26250521 DOI: 10.1111/jpn.12379] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
Elevated ambient temperatures affect animal production and welfare. Animal's reduced production performances during heat stress were traditionally thought to result from the decreased feed intake. However, it has recently been shown that heat stress disturbs the steady state concentrations of free radicals, resulting in both cellular and mitochondrial oxidative damage. Indeed, heat stress reorganizes the use of the body resources including fat, protein and energy. Heat stress reduces the metabolic rates and alters post-absorptive metabolism, regardless of the decreased feed intake. Consequently, growth, production, reproduction and health are not priorities any more in the metabolism of heat-stressed animals. The drastic effects of heat stress depend on its duration and severity. This review clearly describes about biochemical, cellular and metabolic changes that occur during thermal stress in farm animals.
Collapse
Affiliation(s)
- I Belhadj Slimen
- Department of Animal, Food and Halieutic Resources, National Agronomic Institute of Tunisia, Mahragene city, Tunisia.,Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, La Marsa, Tunisia
| | - T Najar
- Department of Animal, Food and Halieutic Resources, National Agronomic Institute of Tunisia, Mahragene city, Tunisia.,Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, La Marsa, Tunisia
| | - A Ghram
- Laboratory of Microbiology, Pasteur Institute of Tunisia, Mahragene city, Tunisia
| | - M Abdrrabba
- Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, La Marsa, Tunisia
| |
Collapse
|
495
|
Sanz Fernandez MV, Stoakes SK, Abuajamieh M, Seibert JT, Johnson JS, Horst EA, Rhoads RP, Baumgard LH. Heat stress increases insulin sensitivity in pigs. Physiol Rep 2015; 3:3/8/e12478. [PMID: 26243213 PMCID: PMC4562564 DOI: 10.14814/phy2.12478] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proper insulin homeostasis appears critical for adapting to and surviving a heat load. Further, heat stress (HS) induces phenotypic changes in livestock that suggest an increase in insulin action. The current study objective was to evaluate the effects of HS on whole-body insulin sensitivity. Female pigs (57 ± 4 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 21°C) and were fed ad libitum. During period 2, pigs were exposed to: (i) constant HS conditions (32°C) and fed ad libitum (n = 6), or (ii) TN conditions and pair-fed (PFTN; n = 6) to eliminate the confounding effects of dissimilar feed intake. A hyperinsulinemic euglycemic clamp (HEC) was conducted on d3 of both periods; and skeletal muscle and adipose tissue biopsies were collected prior to and after an insulin tolerance test (ITT) on d5 of period 2. During the HEC, insulin infusion increased circulating insulin and decreased plasma C-peptide and nonesterified fatty acids, similarly between treatments. From period 1 to 2, the rate of glucose infusion in response to the HEC remained similar in HS pigs while it decreased (36%) in PFTN controls. Prior to the ITT, HS increased (41%) skeletal muscle insulin receptor substrate-1 protein abundance, but did not affect protein kinase B or their phosphorylated forms. In adipose tissue, HS did not alter any of the basal or stimulated measured insulin signaling markers. In summary, HS increases whole-body insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
| | - Sara K Stoakes
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jay S Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
496
|
Shahzad K, Akbar H, Vailati-Riboni M, Basiricò L, Morera P, Rodriguez-Zas S, Nardone A, Bernabucci U, Loor J. The effect of calving in the summer on the hepatic transcriptome of Holstein cows during the peripartal period. J Dairy Sci 2015; 98:5401-13. [DOI: 10.3168/jds.2015-9409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
|
497
|
Hossein Yazdi M, Amanlou H, Mirzaei-Alamouti H, Harkinezhad M, Nabipour A, Mahjoubi E, Aghaziarati N, Noori G, Baumgard L. Effects of a supplement containing multiple types of gluconeogenic precursors on production and metabolism in Holstein bull calves during heat stress. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
498
|
Castro-Costa A, Salama A, Moll X, Aguiló J, Caja G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in nonlactating dairy goats. J Dairy Sci 2015; 98:4646-58. [DOI: 10.3168/jds.2014-8819] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/31/2015] [Indexed: 11/19/2022]
|
499
|
Turk R, Podpečan O, Mrkun J, Flegar-Meštrić Z, Perkov S, Zrimšek P. The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows. Reprod Domest Anim 2015; 50:595-603. [PMID: 25996438 DOI: 10.1111/rda.12534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
Abstract
Heat stress is a major factor contributing to low fertility of dairy cows with a great economic impact in dairy industry. Heat-stressed dairy cows usually have reduced nutrient intake, resulting in a higher degree of negative energy balance (NEB). The aim of this study was to investigate the seasonal thermal effect on lipid metabolism, antioxidant activity and reproductive performance in dairy cows. Thirty-two healthy dairy heifers were included in the study. According to the ambient temperature, animals were divided into two groups: winter (N = 14) and summer season (N = 18). Metabolic parameters, paraoxonase-1 (PON1) activity and total antioxidant status (TAS) were monitored at the time of insemination (basal values) and from 1 week before until 8 weeks after calving. Number of services per conception and calving-to-conception (CC) interval were calculated from the farm recording data. Serum triglyceride, non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) concentrations were significantly increased after calving in summer compared to winter, indicating higher degree of NEB in cows during summer. PON1 activity was significantly decreased after calving in both summer and winter group. TAS concentration was significantly lower in summer than that in winter. A significantly higher number of services were needed for conception in summer compared to winter, and CC interval was significantly longer in summer than that in winter as well. Additionally, reproductive performance significantly correlated with the severity of NEB, suggesting that lipid mobilization and lower antioxidant status contributed to poor reproduction ability in dairy cows during hot months.
Collapse
Affiliation(s)
- R Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - O Podpečan
- Savinian Veterinary Policlinic, Žalec, Slovenia.,Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - J Mrkun
- Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Z Flegar-Meštrić
- Department of Medical Biochemistry and Laboratory Medicine, "Merkur" University Hospital, Zagreb, Croatia
| | - S Perkov
- Department of Medical Biochemistry and Laboratory Medicine, "Merkur" University Hospital, Zagreb, Croatia
| | - P Zrimšek
- Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
500
|
Lamp O, Derno M, Otten W, Mielenz M, Nürnberg G, Kuhla B. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows. PLoS One 2015; 10:e0125264. [PMID: 25938406 PMCID: PMC4418699 DOI: 10.1371/journal.pone.0125264] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/22/2015] [Indexed: 11/18/2022] Open
Abstract
High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.
Collapse
Affiliation(s)
- Ole Lamp
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Derno
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Manfred Mielenz
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Gerd Nürnberg
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|