451
|
Yan W, Cao Y, Zhen P, Ji D, Chai J, Xue K, Dai H, Wang W. Decreased autophagy of vascular smooth muscle cells was involved in hyperhomocysteinemia-induced vascular ageing. Clin Exp Pharmacol Physiol 2021; 48:524-533. [PMID: 33325046 DOI: 10.1111/1440-1681.13442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/20/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Ageing and hyperhomocysteinemia (HHcy) are important risk factors for cardiovascular diseases (CVDs). HHcy affects the occurrence of vascular diseases in the elderly. So far, the mechanism of HHcy-induced vascular ageing remains largely unknown. Autophagy level is significantly reduced in the ageing process, and restoring impaired autophagy to a normal state may be one of the possible ways to extend the expected longevity and lifespan in the future. In this study, we established the HHcy rat model by feeding a 2.5% methionine diet. Small animal ultrasound and the tail-cuff method indicated that the vascular pulse wave velocity (PWV) and pulse pressure (PP) of HHcy rats were increased significantly compared with the control group. Vascular morphology and structure have been changed in HHcy rats, including lumen dilation, increased collagen fibre deposition and increased p53/p21/p16 expression. In vitro, under the stimulation of homocysteine (500 μmol/L, 24 hours), the rat vascular smooth muscle cells (VSMCs) presented senescence, which was characterized by the increased expression of ageing-related markers, such as p16, p21 and p53 as well as increased senescence-associated beta-galactosidase (SA-β-gal) activity. Meanwhile, the autophagy level was decreased both in vivo and in vitro, shown as the increased level of autophagy substrate p62 and the reduced level of autophagy marker LC3 II/I in the thoracic aorta of HHcy rats and in Hcy-treated VSMCs, respectively. The senescence phenotype of VSMCs was reversed by increased autophagy levels induced by rapamycin. Our findings indicate that decreased autophagy of VSMCs is involved in hyperhomocysteinemia-induced vascular ageing.
Collapse
Affiliation(s)
- Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Panpan Zhen
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
452
|
Duong MT, Nasrallah IM, Wolk DA, Chang CCY, Chang TY. Cholesterol, Atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential Mechanisms and Therapy. Front Aging Neurosci 2021; 13:647990. [PMID: 33841127 PMCID: PMC8026881 DOI: 10.3389/fnagi.2021.647990] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are a common cause of cognitive decline, yet limited therapies exist. This cerebrovascular disease results in neurodegeneration via acute, chronic, local, and systemic mechanisms. The etiology of VCID is complex, with a significant impact from atherosclerosis. Risk factors including hypercholesterolemia and hypertension promote intracranial atherosclerotic disease and carotid artery stenosis (CAS), which disrupt cerebral blood flow and trigger ischemic strokes and VCID. Apolipoprotein E (APOE) is a cholesterol and phospholipid carrier present in plasma and various tissues. APOE is implicated in dyslipidemia and Alzheimer disease (AD); however, its connection with VCID is less understood. Few experimental models for VCID exist, so much of the present information has been drawn from clinical studies. Here, we review the literature with a focus on the clinical aspects of atherosclerotic cerebrovascular disease and build a working model for the pathogenesis of VCID. We describe potential intermediate steps in this model, linking cholesterol, atherosclerosis, and APOE with VCID. APOE4 is a minor isoform of APOE that promotes lipid dyshomeostasis in astrocytes and microglia, leading to chronic neuroinflammation. APOE4 disturbs lipid homeostasis in macrophages and smooth muscle cells, thus exacerbating systemic inflammation and promoting atherosclerotic plaque formation. Additionally, APOE4 may contribute to stromal activation of endothelial cells and pericytes that disturb the blood-brain barrier (BBB). These and other risk factors together lead to chronic inflammation, atherosclerosis, VCID, and neurodegeneration. Finally, we discuss potential cholesterol metabolism based approaches for future VCID treatment.
Collapse
Affiliation(s)
- Michael Tran Duong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ilya M Nasrallah
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ta-Yuan Chang
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
453
|
Mainali S, Darsie ME. Neurologic and Neuroscientific Evidence in Aged COVID-19 Patients. Front Aging Neurosci 2021; 13:648662. [PMID: 33833676 PMCID: PMC8021699 DOI: 10.3389/fnagi.2021.648662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic continues to prevail as a catastrophic wave infecting over 111 million people globally, claiming 2. 4 million lives to date. Aged individuals are particularly vulnerable to this disease due to their fraility, immune dysfunction, and higher rates of medical comorbidities, among other causes. Apart from the primary respiratory illness, this virus is known to cause multi-organ dysfunction including renal, cardiac, and neurologic injuries, particularly in the critically-ill cohorts. Elderly patients 65 years of age or older are known to have more severe systemic disease and higher rates of neurologic complications. Morbidity and mortality is very high in the elderly population with 6–930 times higher likelihood of death compared to younger cohorts, with the highest risk in elderly patients ≥85 years and especially those with medical comorbidities such as hypertension, diabetes, heart disease, and underlying respiratory illness. Commonly reported neurologic dysfunctions of COVID-19 include headache, fatigue, dizziness, and confusion. Elderly patients may manifest atypical presentations like fall or postural instability. Other important neurologic dysfunctions in the elderly include cerebrovascular diseases, cognitive impairment, and neuropsychiatric illnesses. Elderly patients with preexisting neurologic diseases are susceptibility to severe COVID-19 infection and higher rates of mortality. Treatment of neurologic dysfunction of COVID-19 is based on existing practice standards of specific neurologic condition in conjunction with systemic treatment of the viral illness. The physical, emotional, psychologic, and financial implications of COVID-19 pandemic have been severe. Long-term data are still needed to understand the lasting effects of this devastating pandemic.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Marin E Darsie
- Department of Emergency Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin Hospitals and Clinics, Madison, WI, United States
| |
Collapse
|
454
|
Sasaki Y, Ikeda Y, Uchikado Y, Akasaki Y, Sadoshima J, Ohishi M. Estrogen Plays a Crucial Role in Rab9-Dependent Mitochondrial Autophagy, Delaying Arterial Senescence. J Am Heart Assoc 2021; 10:e019310. [PMID: 33719502 PMCID: PMC8174372 DOI: 10.1161/jaha.120.019310] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background The risk of cardiovascular disease is known to increase after menopause. Mitochondria, which undergo quality control via mitochondrial autophagy, play a crucial role in the regulation of cellular senescence. The aim of this study was to investigate whether the effect of estrogen‐mediated protection from senescence on arteries is attributed to the induction of mitochondrial autophagy. Methods and Results We used human umbilical vein cells, vascular smooth muscle cells, and 12‐week‐old female C57BL/6 mice. The administration of 17β‐estradiol (E2) to cells inhibited cellular senescence and mitochondrial dysfunction. Furthermore, E2 increased mitochondrial autophagy, maintaining mitochondrial function, and retarding cellular senescence. Of note, E2 did not modulate LC3 (light chain 3), and ATG7 (autophagy related 7) deficiency did not suppress mitochondrial autophagy in E2‐treated cells. Conversely, E2 increased the colocalization of Rab9 with LAMP2 (lysosomal‐associated membrane protein 2) signals. The E2‐mediated effects on mitochondrial autophagy were abolished by the knockdown of either Ulk1 or Rab9. These results suggest that E2‐mediated mitochondrial autophagy is associated with Rab9‐dependent alternative autophagy. E2 upregulated SIRT1 (sirtuin 1) and activated LKB1 (liver kinase B1), AMPK (adenosine monophosphate‐activated protein kinase), and Ulk1, indicating that the effect of E2 on the induction of Rab9‐dependent alternative autophagy is mediated by the SIRT1/LKB1/AMPK/Ulk1 pathway. Compared with the sham‐operated mice, ovariectomized mice showed reduced mitochondrial autophagy and accelerated mitochondrial dysfunction and arterial senescence; these detrimental alterations were successfully rescued by the administration of E2. Conclusions We showed that E2‐induced mitochondrial autophagy plays a crucial role in the delay of vascular senescence. The Rab9‐dependent alternative autophagy is behind E2‐induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Yuichi Sasaki
- Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Yoshihiro Uchikado
- Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Yuichi Akasaki
- Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan
| |
Collapse
|
455
|
Lunder M, Janić M, Šabovič M. Treating Arterial Ageing in Patients with Diabetes: From Mechanisms to Effective Drugs. Int J Mol Sci 2021; 22:ijms22062796. [PMID: 33801956 PMCID: PMC8001638 DOI: 10.3390/ijms22062796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a major healthcare problem. It is not only characterized by hyperglycemia and chronic complications, but in longer lasting diabetes and a longer living population, it is also associated with accelerated arterial ageing, which importantly contributes to cardiovascular complications. The accelerated arterial ageing in patients with diabetes should be considered separately from arterial ageing in patients without diabetes. Basic and clinical research have allowed better insight into the mechanisms of arterial ageing. In a simplified mechanistic way, it could be considered that the three tightly connected cornerstone characteristics of arterial ageing in patients with diabetes are: phenotypic presentation as endothelial dysfunction and arterial stiffness, and the underlying basic ageing-facilitating mechanism represented as the impaired expression of genetic longevity pathways. Currently, specific drugs for preventing/treating arterial ageing are not available. Therefore, we aimed to review the capacity of available drugs, particularly antidiabetic drugs, to interfere with the arterial ageing process. In the near future, these characteristics could help to guide therapy in patients with diabetes. Overall, it appears that arterial ageing could become a new target in diabetes. The expanding knowledge regarding the capability of antidiabetic drugs and other available drugs to inhibit/delay arterial aging is therefore essential.
Collapse
Affiliation(s)
- Mojca Lunder
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia; (M.L.); (M.J.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Miodrag Janić
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia; (M.L.); (M.J.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mišo Šabovič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-15228032; Fax: +386-15228070
| |
Collapse
|
456
|
Li Q, Xiao Z, Wang Y, Liu X, Liu H, Luo Z, Zheng S. Alterations of long non-coding RNA and mRNA profiles associated with extracellular matrix homeostasis and vascular aging in rats. Bioengineered 2021; 12:832-843. [PMID: 33645431 PMCID: PMC8806258 DOI: 10.1080/21655979.2021.1889129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular aging has been closely associated with various cardiovascular disorders; however, its molecular mechanism remains poorly understood. In our study, RNA sequencing was utilized to explore the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in the thoracic aortas of young (3 weeks) and old (16 weeks) rats. Functional categorization of differentially expressed mRNAs was evaluated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, and lncRNA–microRNA–mRNA networks was constructed using Cytoscape software. In addition, three upregulated and three downregulated lncRNAs were further confirmed by quantitative reverse transcriptase-polymerase chain reaction. A total of 36 lncRNAs and 922 mRNAs were differential expression in the thoracic aortas of young and older rats. In addition, we found differentially expressed mRNAs that were enriched in multiple biological processes and signaling pathways associated with angiogenesis, such as extracellular matrix–receptor interaction and adenosine 3ʹ,5ʹ-monophosphate-activated protein kinase (AMPK) signaling. Moreover, AABR07013558.1, AABR07014823.1, and AABR07031489.1 were upregulated and ABR07053849.3, AABR07067310.2, and AC111292.1 were downregulated in the thoracic aortas of older rats compared with the young ones. Therefore, our findings provide several potential lncRNAs and mRNAs and signaling pathways related to vascular aging, which provide new clue for underlying the improvement of vascular aging.
Collapse
Affiliation(s)
- Qianqin Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Yongsheng Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Zhiwen Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China
| |
Collapse
|
457
|
Collard D, Nurmohamed NS, Kaiser Y, Reeskamp LF, Dormans T, Moeniralam H, Simsek S, Douma R, Eerens A, Reidinga AC, Elbers PWG, Beudel M, Vogt L, Stroes ESG, van den Born BJH. Cardiovascular risk factors and COVID-19 outcomes in hospitalised patients: a prospective cohort study. BMJ Open 2021; 11:e045482. [PMID: 33619201 PMCID: PMC7902321 DOI: 10.1136/bmjopen-2020-045482] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Recent reports suggest a high prevalence of hypertension and diabetes in COVID-19 patients, but the role of cardiovascular disease (CVD) risk factors in the clinical course of COVID-19 is unknown. We evaluated the time-to-event relationship between hypertension, dyslipidaemia, diabetes and COVID-19 outcomes. DESIGN We analysed data from the prospective Dutch CovidPredict cohort, an ongoing prospective study of patients admitted for COVID-19 infection. SETTING Patients from eight participating hospitals, including two university hospitals from the CovidPredict cohort were included. PARTICIPANTS Admitted, adult patients with a positive COVID-19 PCR or high suspicion based on CT-imaging of the thorax. Patients were followed for major outcomes during the hospitalisation. CVD risk factors were established via home medication lists and divided in antihypertensives, lipid-lowering therapy and antidiabetics. PRIMARY AND SECONDARY OUTCOMES MEASURES The primary outcome was mortality during the first 21 days following admission, secondary outcomes consisted of intensive care unit (ICU) admission and ICU mortality. Kaplan-Meier and Cox regression analyses were used to determine the association with CVD risk factors. RESULTS We included 1604 patients with a mean age of 66±15 of whom 60.5% were men. Antihypertensives, lipid-lowering therapy and antidiabetics were used by 45%, 34.7% and 22.1% of patients. After 21-days of follow-up; 19.2% of the patients had died or were discharged for palliative care. Cox regression analysis after adjustment for age and sex showed that the presence of ≥2 risk factors was associated with increased mortality risk (HR 1.52, 95% CI 1.15 to 2.02), but not with ICU admission. Moreover, the use of ≥2 antidiabetics and ≥2 antihypertensives was associated with mortality independent of age and sex with HRs of, respectively, 2.09 (95% CI 1.55 to 2.80) and 1.46 (95% CI 1.11 to 1.91). CONCLUSIONS The accumulation of hypertension, dyslipidaemia and diabetes leads to a stepwise increased risk for short-term mortality in hospitalised COVID-19 patients independent of age and sex. Further studies investigating how these risk factors disproportionately affect COVID-19 patients are warranted.
Collapse
Affiliation(s)
- Didier Collard
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom Dormans
- Department of Intensive Care, Zuyderland Medical Centre Sittard-Geleen, Sittard-Geleen, The Netherlands
| | - Hazra Moeniralam
- Internal Medicine, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Suat Simsek
- Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Renee Douma
- Internal Medicine, Flevoziekenhuis, Almere, Flevoland, The Netherlands
| | - Annet Eerens
- Oncology, Treant Healthcare Group, Amsterdam, The Netherlands
| | - Auke C Reidinga
- Intensive Care, Martini Ziekenhuis, Groningen, Groningen, The Netherlands
| | - Paul W G Elbers
- Department of Intensive Care, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Nephrology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H van den Born
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
458
|
Morais Filho ABD, Rego TLDH, Mendonça LDL, Almeida SSD, Nóbrega MLD, Palmieri TDO, Giustina GZD, Melo JP, Pinheiro FI, Guzen FP. The physiopathology of spontaneous hemorrhagic stroke: a systematic review. Rev Neurosci 2021; 32:631-658. [PMID: 33594841 DOI: 10.1515/revneuro-2020-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022]
Abstract
Hemorrhagic stroke (HS) is a major cause of death and disability worldwide, despite being less common, it presents more aggressively and leads to more severe sequelae than ischemic stroke. There are two types of HS: Intracerebral Hemorrhage (ICH) and Subarachnoid Hemorrhage (SAH), differing not only in the site of bleeding, but also in the mechanisms responsible for acute and subacute symptoms. This is a systematic review of databases in search of works of the last five years relating to the comprehension of both kinds of HS. Sixty two articles composed the direct findings of the recent literature and were further characterized to construct the pathophysiology in the order of events. The road to the understanding of the spontaneous HS pathophysiology is far from complete. Our findings show specific and individual results relating to the natural history of the disease of ICH and SAH, presenting common and different risk factors, distinct and similar clinical manifestations at onset or later days to weeks, and possible complications for both.
Collapse
|
459
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
460
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
461
|
Zhang L, Zheng J, Tie X, Lin T, Yang W, Li Z, Zou Y, Guan G, Liu P, Luo W, Li Z. Pterostilbene and its nicotinate derivative ameliorated vascular endothelial senescence and elicited endothelium-dependent relaxations via activation of sirtuin 1. Can J Physiol Pharmacol 2021; 99:900-909. [PMID: 33529089 DOI: 10.1139/cjpp-2020-0583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cell senescence is a leading cause of age-associated diseases and cardiovascular diseases. Interventions and therapies targeting endothelial cell senescence and dysfunction would have important clinical implications. This study evaluated the effect of 10 resveratrol analogues, including pterostilbene (Pts) and its derivatives, against endothelial senescence and dysfunction. All the tested compounds at the concentrations from 10-9 M to 10-6 M did not show cytotoxicity in endothelial cells by MTT assay. Among the 10 resveratrol analogues, Pts and Pts nicotinate attenuated the expression of senescence-associated β-galactosidase, downregulated p21 and p53, and increased the production of nitric oxide (NO) in both angiotensin II - and hydrogen peroxide - induced endothelial senescence models. In addition, Pts and Pts nicotinate elicited endothelium-dependent relaxations, which were attenuated in the presence of endothelial NO synthase (eNOS) inhibitor L-NAME or sirtuin 1 (SIRT1) inhibitor sirtinol. Pts and Pts nicotinate did not alter SIRT1 expression but enhanced its activity. Both Pts and Pts nicotinate have high binding activities with SIRT1, according to surface plasmon resonance results and the molecular docking analysis. Inhibition of SIRT1 by sirtinol reversed the anti-senescent effects of Pts and Pts nicotinate. Moreover, Pts and Pts nicotinate shared similar ADME (absorption, distribution, metabolism, excretion) profiles and physiochemical properties. This study suggests that the Pts and Pts nicotinate ameliorate vascular endothelial senescence and elicit endothelium-dependent relaxations via activation of SIRT1. These two compounds may be potential drugs for the treatment of cardiovascular diseases related to endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jianwei Zheng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xin Tie
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tong Lin
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wanqi Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziqing Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guimei Guan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenwei Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
462
|
Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol 2021; 320:H549-H562. [PMID: 33306445 PMCID: PMC8082790 DOI: 10.1152/ajpheart.00726.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-β, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin β1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zongbo Chen
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
463
|
Sabbatinelli J, Ramini D, Giuliani A, Recchioni R, Spazzafumo L, Olivieri F. Connecting vascular aging and frailty in Alzheimer's disease. Mech Ageing Dev 2021; 195:111444. [PMID: 33539904 DOI: 10.1016/j.mad.2021.111444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Aging plays an important role in the etiology of the most common age-related diseases (ARDs), including Alzheimer's disease (AD). The increasing number of AD patients and the lack of disease-modifying drugs warranted intensive research to tackle the pathophysiological mechanisms underpinning AD development. Vascular aging/dysfunction is a common feature of almost all ARDs, including cardiovascular (CV) diseases, diabetes and AD. To this regard, interventions aimed at modifying CV outcomes are under extensive investigation for their pleiotropic role in ameliorating and slowing down cognitive impairment in middle-life and elderly individuals. Evidence from observational and clinical studies confirm the notion that the earlier the interventions are conducted, the most favorable are the effects on cognitive function. Therefore, epidemiological research should focus on the early detection of deviations from a healthy cognitive aging trajectory, through the stratification of adult individuals according to the rate of aging. Here, we review the interplay between vascular and cognitive dysfunctions associated with aging, to disentangle the complex mechanisms underpinning the development and progression of neurodegenerative disorders, with a specific focus on AD.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Liana Spazzafumo
- Epidemiologic Observatory, Regional Health Agency, Regione Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
464
|
Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 2021; 43:125-136. [PMID: 33011936 PMCID: PMC8050119 DOI: 10.1007/s11357-020-00280-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to lead to the development of cerebral microbleeds (CMBs), which are associated with long term cognitive decline and gait disturbances in patients. The elderly is one of the most vulnerable parts of the population to suffer TBI. Importantly, ageing is known to exacerbate microvascular fragility and to promote the formation of CMBs. In this overview, the effect of ageing is discussed on the development and characteristics of TBI-related CMBs, with special emphasis on CMBs associated with mild TBI. Four cases of TBI-related CMBs are described to illustrate the concept that ageing exacerbates the deleterious microvascular effects of TBI and that similar brain trauma may induce more CMBs in old patients than in young ones. Recommendations are made for future prospective studies to establish the mechanistic effects of ageing on the formation of CMBs after TBI, and to determine long-term consequences of CMBs on clinically relevant outcome measures including cognitive performance, gait and balance function.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Horvath
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Balint Kornyei
- Department of Radiology, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Peter Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
465
|
Leyden E, Hanson P, Halder L, Rout L, Cherry I, Shuttlewood E, Poole D, Loveder M, Abraham J, Kyrou I, Randeva HS, Lam FT, Menon V, Barber TM. Older age does not influence the success of weight loss through the implementation of lifestyle modification. Clin Endocrinol (Oxf) 2021; 94:204-209. [PMID: 33089545 PMCID: PMC7821294 DOI: 10.1111/cen.14354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Age is sometimes a barrier for acceptance of patients into a hospital-based obesity service. Our aim was to explore the effect of age on the ability to lose weight through lifestyle interventions, implemented within a hospital-based obesity service. DESIGN Retrospective study. PATIENTS We included a cohort of randomly selected patients with morbid obesity (n = 242), who attended our hospital-based obesity service during 2005-2016 and received only lifestyle weight loss interventions. MEASUREMENTS Primary outcome measures were percentage weight loss (%WL) and percentage reduction in body mass index (%rBMI) following implemented lifestyle interventions. Data were stratified according to patient age at referral: group 1 (age < 60 years, n = 167) and group 2 (age ≥ 60 years, n = 75). Weight loss was compared between groups, and correlations with age at referral were explored. RESULTS The duration of hospital-based weight loss interventions ranged between 1 and 143 months (mean: 38.9 months; SD: 32.3). Baseline BMI at referral differed significantly between groups 1 and 2 (49.7 kgm-2 [SD: 8.7] vs 46.9 kgm-2 [SD: 6.1], respectively; P < .05). Following implemented lifestyle interventions, between groups 1 and 2 there were no differences in %WL (6.9% [SD: 16.7] vs 7.3% [SD: 11.60], respectively; P = NS) or %rBMI (8.1% [SD: 14.9] vs 7.8% [SD: 11.7], respectively; p = NS). Overall, there was no significant correlation between patient age at referral and %WL (r = -.13, p = NS). CONCLUSIONS Older age does not influence the success of weight loss through the implementation of lifestyle modification within a hospital-based obesity service. Therefore, age per se should not influence clinical decisions regarding acceptance of patients to hospital-based obesity services.
Collapse
Affiliation(s)
- Eimear Leyden
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Petra Hanson
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Louise Halder
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Lucy Rout
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Ishbel Cherry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Emma Shuttlewood
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Donna Poole
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Mark Loveder
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Jenny Abraham
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Ioannis Kyrou
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
- Aston Medical Research InstituteAston Medical SchoolAston UniversityBirminghamUK
| | - Harpal S. Randeva
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - FT Lam
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Vinod Menon
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| | - Thomas M. Barber
- Division of Biomedical SciencesWarwick Medical SchoolClinical Sciences Research LaboratoriesUniversity Hospitals Coventry and WarwickshireCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and MetabolismUniversity Hospitals Coventry and WarwickshireCoventryUK
| |
Collapse
|
466
|
Deshpande A, Jamilpour N, Jiang B, Michel P, Eskandari A, Kidwell C, Wintermark M, Laksari K. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin 2021; 30:102573. [PMID: 33578323 PMCID: PMC7875826 DOI: 10.1016/j.nicl.2021.102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/01/2023]
Abstract
Accurate segmentation of cerebral vasculature and a quantitative assessment of its morphology is critical to various diagnostic and therapeutic purposes and is pertinent to studying brain health and disease. However, this is still a challenging task due to the complexity of the vascular imaging data. We propose an automated method for cerebral vascular segmentation without the need of any manual intervention as well as a method to skeletonize the binary segmented map to extract vascular geometric features and characterize vessel structure. We combine a Hessian-based probabilistic vessel-enhancing filtering with an active-contour-based technique to segment magnetic resonance and computed tomography angiograms (MRA and CTA) and subsequently extract the vessel centerlines and diameters to calculate the geometrical properties of the vasculature. Our method was validated using a 3D phantom of the Circle-of-Willis region, demonstrating 84% mean Dice similarity coefficient (DSC) and 85% mean Pearson's correlation coefficient (PCC) with minimal modified Hausdorff distance (MHD) error (3 surface pixels at most), and showed superior performance compared to existing segmentation algorithms upon quantitative comparison using DSC, PCC and MHD. We subsequently applied our algorithm to a dataset of 40 subjects, including 1) MRA scans of healthy subjects (n = 10, age = 30 ± 9), 2) MRA scans of stroke patients (n = 10, age = 51 ± 15), 3) CTA scans of healthy subjects (n = 10, age = 62 ± 12), and 4) CTA scans of stroke patients (n = 10, age = 68 ± 11), and obtained a quantitative comparison between the stroke and normal vasculature for both imaging modalities. The vascular network in stroke patients compared to age-adjusted healthy subjects was found to have a significantly (p < 0.05) higher tortuosity (3.24 ± 0.88 rad/cm vs. 7.17 ± 1.61 rad/cm for MRA, and 4.36 ± 1.32 rad/cm vs. 7.80 ± 0.92 rad/cm for CTA), higher fractal dimension (1.36 ± 0.28 vs. 1.71 ± 0.14 for MRA, and 1.56 ± 0.05 vs. 1.69 ± 0.20 for CTA), lower total length (3.46 ± 0.99 m vs. 2.20 ± 0.67 m for CTA), lower total volume (61.80 ± 18.79 ml vs. 34.43 ± 22.9 ml for CTA), lower average diameter (2.4 ± 0.21 mm vs. 2.18 ± 0.07 mm for CTA), and lower average branch length (4.81 ± 1.97 mm vs. 8.68 ± 2.03 mm for MRA), respectively. We additionally studied the change in vascular features with respect to aging and imaging modality. While we observed differences between features as a result of aging, statistical analysis did not show any significant differences, whereas we found that the number of branches were significantly different (p < 0.05) between the two imaging modalities (201 ± 73 for MRA vs. 189 ± 69 for CTA). Our segmentation and feature extraction algorithm can be applied on any imaging modality and can be used in the future to automatically obtain the 3D segmented vasculature for diagnosis and treatment planning as well as to study morphological changes due to stroke and other cerebrovascular diseases (CVD) in the clinic.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Biomedical Engineering, University of Arizona, United States
| | - Nima Jamilpour
- Department of Biomedical Engineering, University of Arizona, United States
| | - Bin Jiang
- Department of Radiology, Stanford University, United States
| | - Patrik Michel
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ashraf Eskandari
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Chelsea Kidwell
- Department of Neurology, University of Arizona, United States
| | - Max Wintermark
- Department of Radiology, Stanford University, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, United States; Department of Aerospace and Mechanical Engineering, University of Arizona, United States.
| |
Collapse
|
467
|
Toya T, Ahmad A, Attia Z, Cohen-Shelly M, Ozcan I, Noseworthy PA, Lopez-Jimenez F, Kapa S, Lerman LO, Friedman PA, Lerman A. Vascular Aging Detected by Peripheral Endothelial Dysfunction Is Associated With ECG-Derived Physiological Aging. J Am Heart Assoc 2021; 10:e018656. [PMID: 33455414 PMCID: PMC7955452 DOI: 10.1161/jaha.120.018656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background An artificial intelligence algorithm that detects age using the 12-lead ECG has been suggested to signal "physiologic age." This study aimed to investigate the association of peripheral microvascular endothelial function (PMEF) as an index of vascular aging, with accelerated physiologic aging gauged by ECG-derived artificial intelligence-estimated age. Methods and Results This study included 531 patients who underwent ECG and a noninvasive PMEF assessment using reactive hyperemia peripheral arterial tonometry. Abnormal PMEF was defined as reactive hyperemia peripheral arterial tonometry index ≤2.0. Accelerated or delayed physiologic aging was calculated by the Δ age (ECG-derived artificial intelligence-estimated age minus chronological age), and the association between Δ age and PMEF as well as its impact on composite major adverse cardiovascular events were investigated. Δ age was higher in patients with abnormal PMEF than in patients with normal PMEF (2.3±7.8 versus 0.5±7.7 years; P=0.01). Reactive hyperemia peripheral arterial tonometry index was negatively associated with Δ age after adjustment for cardiovascular risk factors (standardized β coefficient, -0.08; P=0.048). The highest quartile of Δ age was associated with an increased risk of major adverse cardiovascular events compared with the first quartile of Δ age in patients with abnormal PMEF, even after adjustment for cardiovascular risk factors (hazard ratio, 4.72; 95% CI, 1.24-17.91; P=0.02). Conclusions Vascular aging detected by endothelial function is associated with accelerated physiologic aging, as assessed by the artificial intelligence-ECG Δ age. Patients with endothelial dysfunction and the highest quartile of accelerated physiologic aging have a marked increase in risk for cardiovascular events.
Collapse
Affiliation(s)
- Takumi Toya
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN.,Division of Cardiology National Defense Medical College Tokorozawa Saitama Japan
| | | | - Zachi Attia
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | | | - Ilke Ozcan
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | | | | | - Suraj Kapa
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension Mayo Clinic Rochester MN
| | - Paul A Friedman
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | - Amir Lerman
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| |
Collapse
|
468
|
Kusumoto D, Seki T, Sawada H, Kunitomi A, Katsuki T, Kimura M, Ito S, Komuro J, Hashimoto H, Fukuda K, Yuasa S. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun 2021; 12:257. [PMID: 33431893 PMCID: PMC7801636 DOI: 10.1038/s41467-020-20213-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022] Open
Abstract
Advances in deep learning technology have enabled complex task solutions. The accuracy of image classification tasks has improved owing to the establishment of convolutional neural networks (CNN). Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Furthermore, it is a potential therapeutic target. Specific molecular markers are used to identify senescent cells. Moreover senescent cells show unique morphology, which can be identified. We develop a successful morphology-based CNN system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells by senescence probability output from pre-trained CNN optimised for the classification of cellular senescence, Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo). Deep-SeSMo correctly evaluates the effects of well-known anti-senescent reagents. We screen for drugs that control cellular senescence using a kinase inhibitor library by Deep-SeSMo-based drug screening and identify four anti-senescent drugs. RNA sequence analysis reveals that these compounds commonly suppress senescent phenotypes through inhibition of the inflammatory response pathway. Thus, morphology-based CNN system can be a powerful tool for anti-senescent drug screening. Cellular senescence is a hallmark of ageing and is important for the pathogenesis of ageing-related diseases. Here, the authors develop a morphology-based deep learning system to identify senescent cells and a quantitative scoring system to evaluate the state of endothelial cells to evaluate the effects of anti-senescent reagents.
Collapse
Affiliation(s)
- Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Center for Preventive Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomohisa Seki
- Department of Healthcare Information Management, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiromune Sawada
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Kunitomi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Toshiomi Katsuki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mai Kimura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shogo Ito
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jin Komuro
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Center for Preventive Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
469
|
Abstract
Human society is experiencing a serious aging process. Age-related arteriosclerotic cardiovascular diseases (ASCVD) are the most common cause of deaths around the world and bring a huge burden on the whole society. Vascular aging-related pathological alterations of the vasculature play an important role in the pathogenesis of ASCVD and morbidity and mortality of older adults. In this review, we describe the progress of clinical evaluation of vascular aging in humans, including functional evaluation, structural assessment, and cellular molecular markers. The significance of detection for vascular aging is highlighted, and we call for close attention to the evaluation for a better quality of life in the elderly population.
Collapse
|
470
|
Young AP, Zhu J, Bagher AM, Denovan-Wright EM, Howlett SE, Kelly MEM. Endothelin B receptor dysfunction mediates elevated myogenic tone in cerebral arteries from aged male Fischer 344 rats. GeroScience 2021; 43:1447-1463. [PMID: 33403617 DOI: 10.1007/s11357-020-00309-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The human brain requires adequate cerebral blood flow to meet the high demand for nutrients and to clear waste products. With age, there is a chronic reduction in cerebral blood flow in small resistance arteries that can eventually limit proper brain function. The endothelin system is a key mediator in the regulation of cerebral blood flow, but the contributions of its constituent receptors in the endothelial and vascular smooth muscle layers of cerebral arteries have not been well defined in the context of aging. We isolated posterior cerebral arteries from young and aged Fischer 344 rats, as well as ETB receptor knock-out rats and mounted the vessels in plexiglass pressure myograph chambers to measure myogenic tone in response to increasing pressure and targeted pharmacological treatments. We used an ETA receptor antagonist (BQ-123), an ETB receptor antagonist (BQ-788), endothelin-1, an endothelin-1 synthesis inhibitor (phosphoramidon), and vessel denudation to dissect the roles of each receptor in aging vasculature. Aged rats exhibited a higher myogenic tone than young rats, and the tone was sensitive to the ETA antagonist, BQ-123, but insensitive to the ETB antagonist, BQ-788. By contrast, the tone in the vessels from young rats was raised by BQ-788 but unaffected by BQ-123. When the endothelial layer that is normally enriched with ETB1 receptors was removed from young vessels, myogenic tone increased. However, denudation of the endothelial layer did not influence vessels from aged animals. This indicated that endothelial ETB1 receptors were not functional in the vessels from aged rats. There was also an increase in ETA receptor expression with age, whereas ETB receptor expression remained constant between young and aged animals. These results demonstrate that in young vessels, ETB1 receptors maintain a lower myogenic tone, but in aged vessels, a loss of ETB receptor activity allows ETA receptors in vascular smooth muscle cells to raise myogenic tone. Our findings have potentially important clinical implications for treatments to improve cerebral perfusion in older adults with diseases characterized by reduced cerebral blood flow.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jiequan Zhu
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
471
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
472
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|
473
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
474
|
Crumpler R, Roman RJ, Fan F. Capillary Stalling: A Mechanism of Decreased Cerebral Blood Flow in AD/ADRD. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:149-153. [PMID: 35028643 PMCID: PMC8754422 DOI: 10.33696/neurol.2.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementias (ADRD) are debilitating conditions that are highly associated with aging populations, especially those with comorbidities such as diabetes and hypertension. In addition to the classical pathological findings of AD, such as beta-amyloid (Aβ) accumulation and tau hyperphosphorylation, vascular dysfunction is also associated with the progression of the disease. Vascular dysfunction in AD is associated with decreased cerebral blood flow (CBF). Impaired CBF is an early and persistent symptom of AD/ADRD and is thought to be associated with deficient autoregulation and neurovascular coupling. Another recently elucidated mechanism that contributes to cerebral hypoperfusion is capillary stalling, or the temporary arrest of capillary blood flow usually precipitated by a stalled leukocyte or constriction of actin-containing capillary pericytes. Stalled capillaries are associated with decreased CBF and impaired cognitive performance. AD/ADRD are associated with chronic, low-level inflammation, which contributes to capillary stalling by increased cell adhesion molecules, circulating leukocytes, and reactive oxygen species production. Recent research has shed light on potential targets to decrease capillary stalling in AD mice. Separate inhibition of Ly6G and VEGF-A has been shown to decrease capillary stalling and increase CBF in AD mice. These results suggest that targeting stalled capillaries could influence the outcome of AD and potentially be a target for future therapies.
Collapse
Affiliation(s)
- Reece Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
475
|
Simonet S, Gosgnach W, Billou L, Lucats L, Royere E, Crespo C, Lapret I, Ragonnet L, Moreau K, Vayssettes-Courchay C, Berson P, Bourguignon MP. GTP-cyclohydrolase deficiency induced peripheral and deep microcirculation dysfunction with age. Microvasc Res 2021; 133:104078. [PMID: 32980388 DOI: 10.1016/j.mvr.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023]
Abstract
The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.
Collapse
Affiliation(s)
- Serge Simonet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Willy Gosgnach
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lucie Billou
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Laurence Lucats
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Emilie Royere
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Christine Crespo
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Isabelle Lapret
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lea Ragonnet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Kevin Moreau
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | | - Pascal Berson
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | |
Collapse
|
476
|
Soleimanzad H, Montaner M, Ternier G, Lemitre M, Silvestre JS, Kassis N, Giacobini P, Magnan C, Pain F, Gurden H. Obesity in Midlife Hampers Resting and Sensory-Evoked Cerebral Blood Flow in Mice. Obesity (Silver Spring) 2021; 29:150-158. [PMID: 33174382 DOI: 10.1002/oby.23051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of a high-fat diet (HFD) and aging on resting and activity-dependent cerebral blood flow (CBF). METHODS To run a comparison between obese and age-matched control animals, 6-week-old mice were fed either with regular chow or an HFD for 3 months or 8 months. Glucose tolerance and insulin sensitivity were assessed for metabolic phenotyping. Resting and odor-evoked CBF at the microvascular scale in the olfactory bulb (OB) was investigated by multiexposure speckle imaging. Immunolabeling-enabled imaging of solvent-cleared organs was used to analyze vascular density. The ejection fraction was studied by using cardioechography. Olfactory sensitivity was tested by using a buried-food test. RESULTS Glucose intolerance and compromised odor-evoked CBF were observed in obese mice in the younger group. Prolonged HFD feeding triggered insulin resistance and stronger impairment in activity-dependent CBF. Aging had a specific negative impact on resting CBF. There was no decrease in vascular density in the OB of obese mice, although cardiac function was impaired at both ages. In addition, decreased olfactory sensitivity was observed only in the older, middle-aged obese mice. CONCLUSIONS OB microvasculature in obese mice showed a specific functional feature characterized by impaired sensory-evoked CBF and a specific deleterious effect of aging on resting CBF.
Collapse
Affiliation(s)
- Haleh Soleimanzad
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Mireia Montaner
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Gaëtan Ternier
- Université de Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Mathilde Lemitre
- Université de Paris, Paris Cardiovascular Research Center (PARCC), INSERM, Paris, France
| | | | - Nadim Kassis
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Paolo Giacobini
- Université de Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Christophe Magnan
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Frédéric Pain
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Hirac Gurden
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| |
Collapse
|
477
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
478
|
Tyrrell DJ, Blin MG, Song J, Wood SC, Goldstein DR. Aging Impairs Mitochondrial Function and Mitophagy and Elevates Interleukin 6 Within the Cerebral Vasculature. J Am Heart Assoc 2020; 9:e017820. [PMID: 33225820 PMCID: PMC7763766 DOI: 10.1161/jaha.120.017820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/22/2020] [Indexed: 01/26/2023]
Abstract
Background The blood-brain barrier (BBB) is critical for cerebrovascular health. Although aging impairs the integrity of the BBB, the mechanisms behind this phenomenon are not clear. As mitochondrial components activate inflammation as mitochondria become dysfunctional, we examined how aging impacts cerebrovascular mitochondrial function, mitophagy, and inflammatory signaling; and whether any alterations correlate with BBB function. Methods and Results We isolated cerebral vessels from young (2-3 months of age) and aged (18-19 months of age) mice and found that aging led to increases in the cyclin-dependent kinase inhibitor 1 senescence marker with impaired mitochondrial function, which correlated with aged mice exhibiting increased BBB leak compared with young mice. Cerebral vessels also exhibited increased expression of mitophagy proteins Parkin and Nix with aging. Using mitophagy reporter (mtKeima) mice, we found that the capacity to increase mitophagy from baseline within the cerebral vessels on rotenone treatment was reduced with aging. Aging within the cerebral vessels also led to the upregulation of the stimulator of interferon genes and increased interleukin 6 (IL-6), a cytokine that alters mitochondrial function. Importantly, exogenous IL-6 treatment of young cerebral vessels upregulated mitophagy and Parkin and impaired mitochondrial function; whereas inhibiting IL-6 in aged cerebral vessels reduced Parkin expression and increased mitochondrial function. Furthermore, treating cerebral vessels of young mice with mitochondrial N-formyl peptides upregulated IL-6, increased Parkin, and reduced Claudin-5, a tight junction protein integral to BBB integrity. Conclusions Aging alters the cerebral vasculature to impair mitochondrial function and mitophagy and increase IL-6 levels. These alterations may impair BBB integrity and potentially reduce cerebrovascular health with aging.
Collapse
Affiliation(s)
| | - Muriel G. Blin
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Jianrui Song
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Sherri C. Wood
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Daniel R. Goldstein
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMI
- Institute of GerontologyUniversity of MichiganAnn ArborMI
| |
Collapse
|
479
|
Czakó C, Kovács T, Ungvari Z, Csiszar A, Yabluchanskiy A, Conley S, Csipo T, Lipecz A, Horváth H, Sándor GL, István L, Logan T, Nagy ZZ, Kovács I. Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience 2020; 42:1499-1525. [PMID: 33011937 PMCID: PMC7732888 DOI: 10.1007/s11357-020-00252-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment and dementia are major medical, social, and economic public health issues worldwide with significant implications for life quality in older adults. The leading causes are Alzheimer's disease (AD) and vascular cognitive impairment/dementia (VCID). In both conditions, pathological alterations of the cerebral microcirculation play a critical pathogenic role. Currently, the main pathological biomarkers of AD-β-amyloid peptide and hyperphosphorylated tau proteins-are detected either through cerebrospinal fluid (CSF) or PET examination. Nevertheless, given that they are invasive and expensive procedures, their availability is limited. Being part of the central nervous system, the retina offers a unique and easy method to study both neurodegenerative disorders and cerebral small vessel diseases in vivo. Over the past few decades, a number of novel approaches in retinal imaging have been developed that may allow physicians and researchers to gain insights into the genesis and progression of cerebromicrovascular pathologies. Optical coherence tomography (OCT), OCT angiography, fundus photography, and dynamic vessel analyzer (DVA) are new imaging methods providing quantitative assessment of retinal structural and vascular indicators-such as thickness of the inner retinal layers, retinal vessel density, foveal avascular zone area, tortuosity and fractal dimension of retinal vessels, and microvascular dysfunction-for cognitive impairment and dementia. Should further studies need to be conducted, these retinal alterations may prove to be useful biomarkers for screening and monitoring dementia progression in clinical routine. In this review, we seek to highlight recent findings and current knowledge regarding the application of retinal biomarkers in dementia assessment.
Collapse
Affiliation(s)
- Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Kovács
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Hajnalka Horváth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Trevor Logan
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
480
|
Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 2020; 64:101189. [PMID: 32998063 PMCID: PMC7710623 DOI: 10.1016/j.arr.2020.101189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the upcoming decades. Yet, there are no current preventative or therapeutic treatments available against the development and progression of VCI. Therefore, there is a pressing need to better understand the pathophysiology underlying these conditions, for the development of novel tools and interventions to improve cerebrovascular health and delay the onset of VCI. There is strong epidemiological and experimental evidence that lifestyle factors, including nutrition and dietary habits, significantly affect cerebrovascular health and thereby influence the pathogenesis of VCI. Here, recent evidence is presented discussing the effects of lifestyle interventions against age-related diseases which in turn, inspired novel research aimed at investigating the possible beneficial effects of dietary interventions for the prevention of cognitive decline in older adults.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nathan Price
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
481
|
Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol 2020; 11:585655. [PMID: 33362768 PMCID: PMC7756147 DOI: 10.3389/fimmu.2020.585655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.
Collapse
Affiliation(s)
- Banghao Jian
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
482
|
Gutlapalli SD, Kondapaneni V, Toulassi IA, Poudel S, Zeb M, Choudhari J, Cancarevic I. The Effects of Resveratrol on Telomeres and Post Myocardial Infarction Remodeling. Cureus 2020; 12:e11482. [PMID: 33329978 PMCID: PMC7735524 DOI: 10.7759/cureus.11482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
Post myocardial infarction (MI) remodeling is the term used to define the changes in cardiac musculature after sustaining an ischemic injury. These changes decrease myocardial function and ultimately lead to heart failure. We review the contributing factors to post-MI remodeling, its association with telomere biology, as well as a myriad of other factors affecting aging and telomere length in relation to cardiovascular health. The main focus is on the effects of resveratrol in the cardiovascular system and its potential for therapeutic use in preventing long-term cardiovascular morbidity and mortality. We tried to answer important questions regarding the potential for resveratrol as a therapeutic drug to prevent adverse post-MI remodeling. In our search, we gathered 62 studies and narrowed our data down to 44 studies. The database used was PubMed, and the keywords used are "Resveratrol", "Telomere", "Post Myocardial Infarction". All the studies were carefully screened for relevant articles regarding our topic manually, Articles related to a positive association between resveratrol and its anti-aging, cardioprotective effects have been included in our study, as we could not find any articles in our search which showed a negative correlation. Our review concluded that resveratrol had pro-telomerase effects which could counter the development of adverse post-MI remodeling. Therefore resveratrol could be a useful therapeutic add-on drug to prevent cardiovascular disease. It is essential that further research including observational and large-scale clinical trials should be conducted to increase our understanding of the efficacy and viability of these novel therapeutic interventions.
Collapse
Affiliation(s)
- Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Varshitha Kondapaneni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ijeoma A Toulassi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sujan Poudel
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mehwish Zeb
- Pediatrics, Khyber Teaching Hospital, Peshawar, PAK
| | - Jinal Choudhari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
483
|
Gupta MD, Miglani M, Bansal A, Jain V, Arora S, Kumar S, Virani SS, Kalra A, Yadav R, Pasha Q, Yusuf J, Mukhopadhyay S, Tyagi S, Girish MP. Telomere length in young patients with acute myocardial infarction without conventional risk factors: A pilot study from a South Asian population. Indian Heart J 2020; 72:619-622. [PMID: 33357657 PMCID: PMC7772611 DOI: 10.1016/j.ihj.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/06/2020] [Accepted: 11/07/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is need to identify novel markers that lead to an early occurrence of myocardial infarction (MI) in young South Asian population. This population has different risk profile as compared with others. Telomere length is known to be a marker of aging, and shorter telomeres have been reported in cardiovascular diseases (CVDs). We aimed to identify the association of telomere length in young nonsmokers and non-diabetic MI patients. METHODS In a case-control study of 154 subjects (n = 77 cases (ages 18-45 years, non-diabetic, non-smoker patients with MI) and n = 77, age and sex matched healthy controls), DNA extraction from peripheral blood leukocytes was carried out and the relative telomere length was estimated by quantitative PCR. The results were adjusted with various demographic parameters like age, gender and body mass index (BMI). The correlation studies were carried out between telomere length, sex and type of MI. RESULTS The relative telomere length was significantly shorter in young MI patients (31-45 years) compared with matched healthy controls (p < 0.0001). Interestingly, in a gender-based comparison, the female patients had shorter telomere length (p < 0.01). CONCLUSION In this pilot study, we found that the telomere length was shorter among young, non-diabetic, non-smoker MI patients as compared with similar young controls without MI in a South Asian cohort. Thus, telomere length may be a potential screening tool for young patients who don't have conventional risk factors. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mohit D Gupta
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India.
| | | | - Ankit Bansal
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India
| | - Vardhmaan Jain
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sameer Arora
- Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sameer Kumar
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India
| | - Salim S Virani
- Michael E. DeBakey Veterans Affairs Medical Center & Baylor College of Medicine, Houston, TX, USA
| | - Ankur Kalra
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA; Section of Cardiovascular Research, Heart, Vascular and Thoracic Department, Cleveland Clinic Akron General, Akron, Ohio, USA
| | - Rakesh Yadav
- All India Institute of Medical Sciences, New Delhi, India
| | - Q Pasha
- Institute of Genomics and Integrative Biology, India
| | - Jamal Yusuf
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India
| | | | - Sanjay Tyagi
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India
| | - M P Girish
- GB Pant Institute of Post Graduate Education and Research, New Delhi, India
| |
Collapse
|
484
|
|
485
|
Regnault V, Challande P, Pinet F, Li Z, Lacolley P. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc Res 2020; 117:1841-1858. [PMID: 33206947 DOI: 10.1093/cvr/cvaa318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
This review seeks to provide an update of the mechanisms of vascular cell senescence, from newly identified molecules to arterial ageing phenotypes, and finally to present a computational approach to connect these selected proteins in biological networks. We will discuss current key signalling and gene expression pathways by which these focus proteins and networks drive normal and accelerated vascular ageing. We also review the possibility that senolytic drugs, designed to restore normal cell differentiation and function, could effectively treat multiple age-related vascular diseases. Finally, we discuss how cell senescence is both a cause and a consequence of vascular ageing because of the possible feedback controls between identified networks.
Collapse
Affiliation(s)
- Véronique Regnault
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| | - Pascal Challande
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 4 place Jussieu, 75005 Paris, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Zhenlin Li
- Sorbonne Université, CNRS, INSERM, IBPS, Biological Adaptation and Aging, Paris, France
| | - Patrick Lacolley
- Université de Lorraine, INSERM, DCAC, 9 avenue de la forêt de Haye, CS 50184, 54000 Nancy, France
| |
Collapse
|
486
|
Fukami H, Morinaga J, Okadome Y, Nishiguchi Y, Iwata Y, Kanki T, Nakagawa T, Izumi Y, Kakizoe Y, Kuwabara T, Horiguchi H, Sato M, Kadomatsu T, Miyata K, Tajiri T, Oike Y, Mukoyama M. Circulating angiopoietin-like protein 2 levels and arterial stiffness in patients receiving maintenance hemodialysis: A cross-sectional study. Atherosclerosis 2020; 315:18-23. [PMID: 33197687 DOI: 10.1016/j.atherosclerosis.2020.10.890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic low-grade inflammation is receiving much attention as a critical pathology that induces various aging phenotypes, a concept known as "inflammaging". Uremic patients undergoing hemodialysis therapy show vascular aging phenotypes characterized by greater arterial stiffness and calcification compared to healthy controls of the same generation. In the current study, we investigated whether levels of inflammaging markers in the circulation were associated with vascular aging phenotypes in hemodialysis patients, as estimated by the cardio-ankle vascular index (CAVI). METHODS We conducted a multicenter cross-sectional study of 412 patients receiving hemodialysis and evaluated the relationship between circulating hs-CRP or ANGPTL2 levels, as markers of inflammaging, and CAVI. RESULTS Of 412 patients, 376 were analyzed statistically. While circulating hs-CRP levels had no significant association with CAVI, generalized linear models revealed that high circulating ANGPTL2 levels were significantly associated with increasing CAVI after adjustment for classical metabolic factors and hemodialysis-related parameters [β 0.63 (95%CI 0.07-1.18)]. Exploratory analysis revealed that high circulating ANGPTL2 levels were also strongly associated with increased CAVI, particularly in patients with conditions of increased vascular mechanical stress, such elevated blood pressure [β 1.00 (95%CI 0.23-1.76)], elevated pulse pressure [β 0.75 (95%CI 0.52-0.98)], or excess body fluid [β 1.25 (95%CI 0.65-1.84)]. CONCLUSIONS We conclude that circulating levels of ANGPTL2 rather than hs-CRP are positively associated with CAVI in the uremic population and that ANGPTL2 could be a unique marker of progression of vascular aging in patients receiving hemodialysis.
Collapse
Affiliation(s)
- Hirotaka Fukami
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan; Department of Clinical Investigation, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yasunobu Iwata
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tomoko Kanki
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Tetsuya Tajiri
- Medical Corporation, Jinseikai, 2-3-10 Toshima-nishi Higashi-ku, Kumamoto, Kumamoto, 861-8043, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| |
Collapse
|
487
|
Gioscia-Ryan RA, Clayton ZS, Zigler MC, Richey JJ, Cuevas LM, Rossman MJ, Battson ML, Ziemba BP, Hutton DA, VanDongen NS, Seals DR. Lifelong voluntary aerobic exercise prevents age- and Western diet- induced vascular dysfunction, mitochondrial oxidative stress and inflammation in mice. J Physiol 2020; 599:911-925. [PMID: 33103241 DOI: 10.1113/jp280607] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS The results of the present study establish the temporal pattern of age-related vascular dysfunction across the adult lifespan in sedentary mice consuming a non-Western diet, and the underlying mechanisms The results demonstrate that consuming a Western diet accelerates and exacerbates vascular ageing across the lifespan in sedentary mice They also show that lifelong voluntary aerobic exercise has remarkable protective effects on vascular function throughout the lifespan, in the setting of ageing alone, as well as ageing compounded by Western diet consumption Overall, the results indicate that amelioration of mitochondrial oxidative stress and inflammation are key mechanisms underlying the voluntary aerobic exercise-associated preservation of vascular function across the lifespan in both the presence and absence of a Western dietary pattern ABSTRACT: Advancing age is the major risk factor for cardiovascular diseases, driven largely by vascular endothelial dysfunction (impaired endothelium-dependent dilatation, EDD) and aortic stiffening (increased aortic pulse wave velocity, aPWV). In humans, vascular ageing occurs in the presence of differences in diet and physical activity, but the interactive effects of these factors are unknown. We assessed carotid artery EDD and aPWV across the lifespan in mice consuming standard (normal) low-fat chow (NC) or a high-fat/high-sucrose Western diet (WD) in the absence (sedentary, SED) or presence (voluntary wheel running, VWR) of aerobic exercise. Ageing impaired nitric oxide-mediated EDD (peak EDD 88 ± 12% 6 months P = 0.003 vs. 59 ± 9% 27 months NC-SED), which was accelerated by WD (60 ± 18% 6 months WD-SED). In NC mice, aPWV increased 32% with age (423 ± 13 cm/s at 24 months P < 0.001 vs. 321 ± 12 cm/s at 6 months) and absolute values were an additional ∼10% higher at any age in WD mice (P = 0.042 vs. NC-SED). Increases in aPWV with age in NC and WD mice were associated with 30-65% increases in aortic intrinsic wall stiffness (6 vs. 19-27 months, P = 0.007). Lifelong aerobic exercise prevented age- and WD-related vascular dysfunction across the lifespan, and this protection appeared to be mediated by mitigation of vascular mitochondrial oxidative stress and inflammation. Our results depict the temporal impairment of vascular function over the lifespan in mice, acceleration and exacerbation of that dysfunction with WD consumption, the remarkable protective effects of voluntary aerobic exercise, and the underlying mechanisms.
Collapse
Affiliation(s)
- Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - James J Richey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Lauren M Cuevas
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Micah L Battson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas S VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
488
|
Gao Y, Galis ZS. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2020; 41:179-185. [PMID: 33086867 DOI: 10.1161/atvbaha.120.314346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditionally, much research effort has been invested into focusing on disease, understanding pathogenic mechanisms, identifying risk factors, and developing effective treatments. A few recent studies unraveling the basis for absence of disease, including cardiovascular disease, despite existing risk factors, a phenomenon commonly known as resilience, are adding new knowledge and suggesting novel therapeutic approaches. Given the central role of endothelial function in cardiovascular health, we herein provide a number of considerations that warrant future research and considering a paradigm shift toward identifying the molecular underpinnings of endothelial resilience.
Collapse
Affiliation(s)
- Yunling Gao
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zorina S Galis
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
489
|
Experimental murine arteriovenous fistula model to study restenosis after transluminal angioplasty. Lab Anim (NY) 2020; 49:320-334. [PMID: 33082594 DOI: 10.1038/s41684-020-00659-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
Abstract
Percutaneous transluminal angioplasty (PTA) is a very common interventional treatment for treating stenosis in arteriovenous fistula (AVF) used for hemodialysis vascular access. Restenosis occurs after PTA, resulting in vascular lumen loss and a decrease in blood flow. Experimental animal models have been developed to study the pathogenesis of stenosis, but there is no restenosis model after PTA of stenotic AVF in mice. Here, we describe the creation of a murine model of restenosis after angioplasty of a stenosis in an AVF. The murine restenosis model has several advantages, including the rapid development of restenotic lesions in the vessel after angioplasty and the potential to evaluate endovascular and perivascular therapeutics for treating restenosis. The protocol includes a detailed description of the partial nephrectomy procedure to induce chronic kidney disease, the AVF procedure for development of de novo stenosis and the angioplasty treatment associated with progression of restenosis. We monitored the angioplasty-treated vessel for vascular patency and hemodynamic changes for a period of 28 d using ultrasound. Vessels were collected at different time points and processed for histological analysis and immunostaining. This angioplasty model, which can be performed with basic microvascular surgery skills, could be used to identify potential endovascular and perivascular therapies to reduce restenosis after angioplasty procedures.
Collapse
|
490
|
Sorets AG, Rosch JC, Duvall CL, Lippmann ES. Caveolae-Mediated Transport at the Injured Blood-Brain Barrier as an Underexplored Pathway for Central Nervous System Drug Delivery. Curr Opin Chem Eng 2020; 30:86-95. [PMID: 32953427 DOI: 10.1016/j.coche.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drug delivery to the central nervous system (CNS) is generally hindered by the selectivity of the blood-brain barrier (BBB). However, there is strong evidence that the integrity of the BBB is compromised under certain pathological conditions, potentially providing a window to deliver drugs to injured brain regions. Recent studies suggest that caveolae-mediated transcytosis, a transport pathway suppressed in the healthy BBB, becomes elevated as an immediate response to ischemic stroke and at early stages of aging, where it may precede irreversible neurological damage. This article reviews early-stage caveolar transcytosis as a novel and promising drug delivery opportunity. We propose that albumin-binding and nanoparticle approaches have the potential to leverage this window of transcellular BBB disruption for trafficking therapeutic agents into the CNS.
Collapse
Affiliation(s)
- Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
491
|
Lv Y, Zhao W, Yu L, Yu JG, Zhao L. Angiotensin-Converting Enzyme Gene D/I Polymorphism in Relation to Endothelial Function and Endothelial-Released Factors in Chinese Women. Front Physiol 2020; 11:951. [PMID: 33041838 PMCID: PMC7526498 DOI: 10.3389/fphys.2020.00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Many studies have investigated the relationship between angiotensin-converting enzyme (ACE) D/I polymorphism and cardiovascular disease or endothelial dysfunction; however, hardly any of these studies has taken aging or menopause into consideration. Furthermore, despite that many studies have examined the regulatory effects of endothelial-released factors (ERFs) on endothelial function, no study has evaluated the relationship between ERFs and endothelial function with respect to ACE D/I polymorphism and menopause status. To answer these questions, 391 healthy Chinese women over a wide range of ages (22-75 years) were enrolled and divided into pre-menopause group and post-menopause group. After ACE D/I genotype being identified, the women were then classified into either DI/II or DD genotype. Flow-mediated dilatation (FMD) of brachial endothelium and plasma levels of ERFs: nitric oxide (NO), endothelin-1 (ET-1), and angiotensin II (Ang II) were measured. The results showed that frequencies of ACE D/I genotypes were in accordance with the Hardy-Weinberg equilibrium, and the frequency of I allele was higher than D allele. In pre-menopause group, FMD was significantly higher in women of DI/II than DD (P = 0.032), and age-dependent in both genotypes (DD, P = 0.0472; DI/II, P < 0.0001). In post-menopause group, FMD was similar between women of DI/II and DD, and age-dependent only in women of DI/II (P < 0.0001). In pre-menopause group, Ang II level was significantly higher in women of DD than DI/II (P = 0.029), and FMD was significantly correlated with all ERFs in women of DD (NO, P = 0.032; ET-1, P = 0.017; Ang II, P = 0.002), but only with Ang II in women of DI/II (P = 0.026). In post-menopause group, no significant difference was observed in any ERF between women of DI/II and DD, and FMD was only significantly correlated with ET-1 in women of DD (P = 0.010). In summary, FMD in women of DI/II was superior to DD in pre-menopause and more age-dependent than DD in post-menopause, and FMD was closely associated with ERFs. In conclusion, Chinese women of DI/II seem to have lower risk than DD in pre-menopause, but similar risk as DD in post-menopause in developing cardiovascular disease.
Collapse
Affiliation(s)
- Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | | | - Laikang Yu
- Department of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
492
|
Lee HY, Kim HK, Hoang TH, Yang S, Kim HR, Chae HJ. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction. Redox Biol 2020; 37:101727. [PMID: 33010578 PMCID: PMC7530295 DOI: 10.1016/j.redox.2020.101727] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23–24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1α phosphorylation and XBP-1 splicing and were transiently increased, but IRE1α sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway “the UPR; IRE1α phosphorylation and XBP-1 splicing and the UPR failure; IRE1α cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Hyun-Kyoung Kim
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - The-Hiep Hoang
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, 152, Republic of Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea; School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea.
| |
Collapse
|
493
|
Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol 2020; 18:58-68. [PMID: 32918047 PMCID: PMC7484613 DOI: 10.1038/s41569-020-0431-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
The number of old people is rising worldwide, and advancing age is a major risk factor for atherosclerotic cardiovascular disease. However, the mechanisms underlying this phenomenon remain unclear. In this Review, we discuss vascular intrinsic and extrinsic mechanisms of how ageing influences the pathology of atherosclerosis. First, we focus on factors that are extrinsic to the vasculature. We discuss how ageing affects the development of myeloid cells leading to the expansion of certain myeloid cell clones and induces changes in myeloid cell functions that promote atherosclerosis via inflammation, including a potential role for IL-6. Next, we describe vascular intrinsic factors by which ageing promotes atherogenesis - in particular, the effects on mitochondrial function. Studies in mice and humans have shown that ageing leads to a decline in vascular mitochondrial function and impaired mitophagy. In mice, ageing is associated with an elevation in the levels of the inflammatory cytokine IL-6 in the aorta, which participates in a positive feedback loop with the impaired vascular mitochondrial function to accelerate atherogenesis. We speculate that vascular and myeloid cell ageing synergize, via IL-6 signalling, to accelerate atherosclerosis. Finally, we propose future avenues of clinical investigation and potential therapeutic approaches to reduce the burden of atherosclerosis in old people.
Collapse
Affiliation(s)
- Daniel J Tyrrell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA. .,Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
494
|
Bersini S, Schulte R, Huang L, Tsai H, Hetzer MW. Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. eLife 2020; 9:54383. [PMID: 32896271 PMCID: PMC7478891 DOI: 10.7554/elife.54383] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular dysfunctions are a common feature of multiple age-related diseases. However, modeling healthy and pathological aging of the human vasculature represents an unresolved experimental challenge. Here, we generated induced vascular endothelial cells (iVECs) and smooth muscle cells (iSMCs) by direct reprogramming of healthy human fibroblasts from donors of different ages and Hutchinson-Gilford Progeria Syndrome (HGPS) patients. iVECs induced from old donors revealed upregulation of GSTM1 and PALD1, genes linked to oxidative stress, inflammation and endothelial junction stability, as vascular aging markers. A functional assay performed on PALD1 KD VECs demonstrated a recovery in vascular permeability. We found that iSMCs from HGPS donors overexpressed bone morphogenetic protein (BMP)−4, which plays a key role in both vascular calcification and endothelial barrier damage observed in HGPS. Strikingly, BMP4 concentrations are higher in serum from HGPS vs. age-matched mice. Furthermore, targeting BMP4 with blocking antibody recovered the functionality of the vascular barrier in vitro, hence representing a potential future therapeutic strategy to limit cardiovascular dysfunction in HGPS. These results show that iVECs and iSMCs retain disease-related signatures, allowing modeling of vascular aging and HGPS in vitro.
Collapse
Affiliation(s)
- Simone Bersini
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Paul F. Glenn Center for Biology of Aging Research at The Salk Institute, La Jolla, United States
| | - Roberta Schulte
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core (IGC), The Salk Institute for Biological Studies, La Jolla, United States
| | - Hannah Tsai
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
495
|
Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat Commun 2020; 11:4413. [PMID: 32887883 PMCID: PMC7474063 DOI: 10.1038/s41467-020-18249-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovascular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation-dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which prominently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed transcriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. Blood–brain barrier dysfunction occurs in ageing and in neurodegenerative diseases. Here, the authors use scRNA-seq to identify transcriptomic changes in endothelial cell subtypes in the aged mouse brain, some of which may generalize to human and can be reversed by treatment with a GLP-1R agonist.
Collapse
|
496
|
Qiu Y, Liu Y, Liu X, Tao J. Novel update of interventional strategies of vascular aging in humans. Aging Med (Milton) 2020; 3:146-150. [PMID: 33103033 PMCID: PMC7574638 DOI: 10.1002/agm2.12124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
China is the country with the largest elderly population in the world. Age‐related ischemic vascular disease is on a rapidly increasing trend and has brought a huge burden on the whole society. Vascular aging, characterized by vascular dysfunction and aging of the vasculature, plays a key role in the pathogenesis of ischemic vascular disease, morbidity, and mortality of the elderly. This review describes mechanisms and depicts the novel interventional strategies of vascular aging. We propose the significance of vascular aging for early detection, early prevention, and early treatment of age‐related ischemic disease and effective improvement of the quality of life in the elderly population. Finally, future directions to develop novel interventions targeting ischemic disease are presented to prevent age‐related vascular pathologies.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of Hypertension and Vascular Disease The First Affiliated Hospital of Sun Yat-sen University Guangzhou China.,National Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease Guangzhou China.,Key Laboratory on Assisted Circulation Ministry of Health Guangzhou China
| | - Yuanya Liu
- Department of Hypertension and Vascular Disease The First Affiliated Hospital of Sun Yat-sen University Guangzhou China.,National Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease Guangzhou China.,Key Laboratory on Assisted Circulation Ministry of Health Guangzhou China
| | - Xiaoling Liu
- Department of Hypertension and Vascular Disease The First Affiliated Hospital of Sun Yat-sen University Guangzhou China.,National Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease Guangzhou China.,Key Laboratory on Assisted Circulation Ministry of Health Guangzhou China
| | - Jun Tao
- Department of Hypertension and Vascular Disease The First Affiliated Hospital of Sun Yat-sen University Guangzhou China.,National Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease Guangzhou China.,Key Laboratory on Assisted Circulation Ministry of Health Guangzhou China
| |
Collapse
|
497
|
Noninvasive Testing for Diagnosis of Stable Coronary Artery Disease in the Elderly. Int J Mol Sci 2020; 21:ijms21176263. [PMID: 32872444 PMCID: PMC7503866 DOI: 10.3390/ijms21176263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Efficient diagnostic approaches to detect coronary artery disease (CAD) in elderly patients are necessary to ensure optimal and timely treatment. The population of suspected CAD patients older than 70 years is especially vulnerable and constantly growing. Finding the optimal diagnostic approach is challenging due to certain features of this population, such as high prevalence of comorbidities, existing contraindications to exercise tests or cognitive decline, which hinders correct assessment of the patient's situation. Moreover, some symptoms of CAD can have variable significance in the elderly compared to younger adult groups. In this review, we present current recommendations of the United States (US) and European cardiologists' associations and discuss their applicability for diagnostics in the elderly population. Exercise electrocardiogram (ECG) and exercise stress echocardiography (SE) tests are not feasible for a substantial proportion of elderly patients. Coronary computed tomography angiography (CTA) appears to be an attractive alternative for such patients, but is not universally applicable; for instance, it is problematic in patients with significant calcification of the vessels. Moreover, more studies are needed to compare the results delivered by CTA to those of other diagnostic methods. Future efforts should be focused on comparative studies to better understand the limits and advantages of different diagnostic methods and their combinations. It is possible that some of the currently used diagnostic criteria could be improved to better accommodate the needs of the elderly population.
Collapse
|
498
|
Global transcriptional downregulation of TREX and nuclear trafficking machinery as pan-senescence phenomena: evidence from human cells and tissues. Exp Mol Med 2020; 52:1351-1359. [PMID: 32859952 PMCID: PMC8080647 DOI: 10.1038/s12276-020-00490-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleocytoplasmic trafficking (NCT) of macromolecules is a fundamental process in eukaryotes that requires tight controls to maintain proper cell functions. Downregulation of the classical NCT pathway in senescent cells has been reported. However, whether this is a hallmark that exists across all types of cellular senescence remains unknown, and whether the mRNA export machinery is altered during senescence has not been demonstrated. Here, we show that the global transcriptomic downregulation of both the TREX (transcription-export) machinery and classical NLS-dependent protein transport machinery is a hallmark of varying types of senescence. A gene set-based approach using 25 different studies showed that the TREX-NCT gene set displays distinct common downregulated patterns in senescent cells versus its expression in their nonsenescent counterparts regardless of the senescence type, such as replicative senescence (RS), tumor cell senescence (TCS), oncogene-induced senescence (OIS), stem cell senescence (SCS), progeria and endothelial cell senescence (ECS). Similar patterns of TREX-NCT gene downregulation were also shown in two large human tissue genomic databases, the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We also found that early-stage cancer tissues show consistent age-related patterns of TREX-NCT enrichment, suggesting the potential significance of TREX-NCT genes in determining cell fate in the early stage of tumorigenesis. Moreover, human cancer tissues exhibit an opposite TREX-NCT enrichment pattern with aging, indicating that deviation from age-related changes in TREX-NCT genes may provide a novel but critical clue for the age-dependent pathogenesis of cancer and increase in cancer incidence with aging. Proteins that move genetic information out of the nucleus and into the rest of the cell may be important in aging, and serve as markers of early-stage cancer. DNA is stored in the cell’s nucleus, and the messages which it encodes must be exported from the nucleus for gene expression. Aging is thought to be linked to a decrease in this export, but the exact mechanism remains unclear. Sung Young Kim, Konkuk University School of Medicine, Seoul, South Korea, and co-workers investigated key nuclear export proteins in healthy, cancerous, and aging cells. They found that nuclear export is strongly decreased in aging cells and shows distinctive patterns in very-early-stage cancer cells. These results shed further light on the cellular basis of aging, and may provide novel biomarkers for early cancer detection.
Collapse
|
499
|
Bossù P, Toppi E, Sterbini V, Spalletta G. Implication of Aging Related Chronic Neuroinflammation on COVID-19 Pandemic. J Pers Med 2020; 10:E102. [PMID: 32858874 PMCID: PMC7563730 DOI: 10.3390/jpm10030102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, leads to a respiratory syndrome and other manifestations. Most affected people show no or mild symptoms, but the risk of severe disease and death increases in older people. Here, we report a narrative review on selected studies targeting aging-related chronic neuroinflammation in the COVID-19 pandemic. A hyperactivation of the innate immune system with elevated levels of pro-inflammatory cytokines occurs during severe COVID-19, pointing to an important role of the innate immune dysregulation in the disease outcome. Aging is characterized by a general condition of low-grade inflammation, also connected to chronic inflammation of the brain (neuroinflammation), which is involved in frailty syndrome and contributes to several age-associated diseases, including neurodegenerative and neuropsychiatric disorders. Since neuroinflammation can be induced or worsened by the virus infection itself, as well as by stressful conditions like those linked to the recent pandemic, the role of neuroinflammatory mechanisms could be central in a vicious circle leading to an increase in the mortality risk in aged COVID-19 patients. Furthermore, triggered neuroinflammatory pathways and consequent neurodegenerative and neuropsychiatric conditions might be potential long-term complications of COVID-19. In order to provide insights to help clinicians in identifying patients who progress to a more severe case of the disease, this review underlines the potential implications of aging-related neuroinflammation in COVID-19 pandemic.
Collapse
Affiliation(s)
- Paola Bossù
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Elisa Toppi
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Valentina Sterbini
- Experimental Neuropsycho-Biology Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via del Fosso d Fiorano 64, 00143 Rome, Italy; (E.T.); (V.S.)
| | - Gianfranco Spalletta
- Neuropsychiatry Lab, Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Via Adeatina 306, 00179 Rome, Italy;
| |
Collapse
|
500
|
Potential mechanisms underlying the association between single nucleotide polymorphism (BRAP and ALDH2) and hypertension among elderly Japanese population. Sci Rep 2020; 10:14148. [PMID: 32843694 PMCID: PMC7447746 DOI: 10.1038/s41598-020-71031-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
Minor allele frequency (MAF) of rs3782886 (BRAP) and rs671 (ALDH2) are reported to be inversely associated with blood pressure. Another study revealed that hematopoietic activity which is evaluated by reticulocytes could influenced on hypertension status partly by indicating activity of endothelial maintenance. Therefore, to evaluate the association between genetic factor and hypertension, influence of hematopoietic activity should be considered. A multi-faced analysis was performed in a simple general elderly population model (1,313 older Japanese aged 60–98 years). Participants were stratified by median values of reticulocytes (5.21 × 104 cells/μL for men and 4.65 × 104 cells/μL for women). Independent of known cardiovascular risk factors, MAF of rs3782886 and rs671 are significantly inversely associated with hypertension for participants with high hematopoietic activity (high reticulocytes level) (fully adjusted odds ratio (ORs) were 0.72 (0.55, 0.96) for rs3782886 and 0.72 (0.54, 0.96) for rs671) but not for low reticulocytes count (the corresponding values were 1.05 (0.79, 1.39) and 1.08 (0.81, 1.45), respectively). Hematopoietic activity evaluated by reticulocytes levels could influence on the association between single nucleotide polymorphism (rs3782886 and rs671) and hypertension. Those results were efficient tool to clarify the part of the mechanism that underlying the association between genetic factor and hypertension.
Collapse
|