451
|
Mahanta S, Prathap S, Ban DK, Paul S. Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
452
|
Zinc oxide-curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative Staphylococci. 3 Biotech 2017; 7:238. [PMID: 28698997 DOI: 10.1007/s13205-017-0861-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Zinc oxide nanoparticles and curcumin are excellent antimicrobial agents. They have the potential to be used as alternative to antibiotics in wound infection management. In this study, ZnO-curcumin nanocomposite was synthesized and characterized. Physical adsorption of the nanocomposite onto collagen skin wound dressing was conducted and structural investigation was carried out by SEM. Antimicrobial assay, minimum inhibitory concentration (MIC), and viability assays of different concentrations of nanocomposite loaded collagen membrane were conducted against clinically isolated methicillin-resistant coagulase-negative Staphylococci (MRCoNS), such as S. epidermidis, S. hemolyticus, and S. saprophyticus. The nanocomposite showed excellent anti-CoNS activity on time kill assay with the MIC value of 195 µg/mL against S. epidermidis, S. hemolyticus and 390 µg/mL against S. saprophyticus. The nanocomposite loaded collagen membrane also showed excellent in vitro antistaphylococcal activity. This study may lead to the development of antibiotic alternate strategies to control and limit the MRCoNS in wound-related infections.
Collapse
|
453
|
Soni D, Gandhi D, Tarale P, Bafana A, Pandey RA, Sivanesan S. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells. Biol Trace Elem Res 2017; 178:218-227. [PMID: 28058665 DOI: 10.1007/s12011-016-0921-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/25/2016] [Indexed: 10/20/2022]
Abstract
In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).
Collapse
Affiliation(s)
- Deepika Soni
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Prashant Tarale
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - R A Pandey
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| |
Collapse
|
454
|
Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, Satish A, Amruthesh KN, Sudarshana MS. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog 2017; 110:620-629. [PMID: 28778822 DOI: 10.1016/j.micpath.2017.07.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023]
Abstract
Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.The bio-fabricated ZnO-NPs were of high purity with an average size of ∼76 nm analyzed through Dynamic Light Scattering (DLS) analysis supporting the findings of XRD. The SEM images confirmed the same with agglomeration of smaller nanoparticles. The composition of aqueous leaf extract and ZnO-NPs was explored with Fourier Transform Infrared Spectroscopy (FT-IR). The plant extract as well as bio-fabricated ZnO-NPs offered significant inhibition against Gram-positive (B. subtilis and Staph. aureus) and Gram-negative (P. aeruginosa and E. coli) bacteria. The minimum inhibitory concentration (MIC) of bio-fabricated ZnO-NPs and plant extract was found between 4.8 and 625 μg/ml against test pathogens, which was authenticated with live and dead cell analysis. Apart from antibacterial potentiality, antimitotic activity was also observed with a mitotic index of 75.42% (ID50 0.40 μg mL-1) and 61.41% (ID50 0.58 μg mL-1) in ZnO-NPs and plant extract, respectively. The results affirm that plant extract and its mediated ZnO-NPs possess biological properties.
Collapse
Affiliation(s)
- C Mahendra
- Tissue Culture and Biotechnology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - M Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - G Manasa
- Tissue Culture and Biotechnology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Pooja Ponnamma
- Tissue Culture and Biotechnology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - M R Abhilash
- Department of Environmental Science, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - T R Lakshmeesha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - A Satish
- Department of Studies in Food Science and Nutrition, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - K N Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - M S Sudarshana
- Tissue Culture and Biotechnology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
455
|
Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol 2017; 106:11-19. [PMID: 28774805 DOI: 10.1016/j.ijbiomac.2017.07.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/06/2017] [Accepted: 07/28/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study is to design biomimetic organically modified montmorillonite clay (OMMT) supported chitosan/hydroxyapatite-zinc oxide (CTS/HAP-ZnO) nanocomposites (ZnCMH I-III) with improved mechanical and biological properties compared to previously reported CTS/OMMT/HAP composite. Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the composition and surface morphology of the prepared nanocomposites. Strong antibacterial properties against both Gram-positive and Gram-negative bacterial strains were established for ZnCMH I-III. pH and blood compatibility study revealed that ZnCMH I-III should be nontoxic to the human body. Cytocompatibility of these nanocomposites with human osteoblastic MG-63 cells was also established. Experimental findings suggest that addition of 5wt% of OMMT into CTS/HAP-ZnO (ZnCMH I) gives the best mechanical strength and water absorption capacity. Addition of 0.1wt% of ZnO nanoparticles into CTS-OMMT-HAP significantly enhanced the tensile strengths of ZnCMH I-III compared to previously reported CTS-OMMT-HAP composite. In absence of OMMT, control sample (ZnCH) also showed reduced tensile strength, antibacterial effect and cytocompatibility with osteoblastic cell compared to ZnCMH I. Considering all of the above-mentioned studies, it can be proposed that ZnCMH I nanocomposite has a great potential to be applied in bone tissue engineering.
Collapse
Affiliation(s)
- Arundhati Bhowmick
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sovan Lal Banerjee
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Nilkamal Pramanik
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Piyali Jana
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Tapas Mitra
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Arumugam Gnanamani
- Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, Tamil Nadu, India
| | - Manas Das
- Department of Chemical Engineering, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Patit Paban Kundu
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India; Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
456
|
Ahmadkhani L, Akbarzadeh A, Abbasian M. Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1052-1063. [PMID: 28754064 DOI: 10.1080/21691401.2017.1360323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A drug delivery system based on dual responsive units was developed. An appealing pH- and thermo-responsive triblock terpolymer as the drug carrier was synthesized by RAFT polymerization of N-isopropyl acrylamide and methacrylic acid monomers using PEG-RAFT agent. The Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe salts. Synthesized samples were characterized by FT-IR, XRD, GPC, SEM and TEM. The dual responsive behaviour and self-assembly of the triblock terpolymers in aqueous solution were investigated using UV-vis transmittance and DLS. Based on the results of DLS and TEM, the average size of micelles was 170, 125 and 30 nm. The triblock terpolymer was used as a chemotherapy drug carrier and doxorubicin as a model drug. The release rate of the drug at two different temperatures (37 °C and 42 °C) and pHs (5.8 and 7.4) was studied. The in vitro cytotoxicity assay of free doxorubicin and drug-loaded magnetic nanoparticles was studied. The MTT assay exhibited that these polymers are biocompatible and no toxicity. As well, IC50 of the DOX-loaded triblock terpolymer in MTT test demonstrated that these systems could be suitable for the treatment of cancer.
Collapse
Affiliation(s)
- Lida Ahmadkhani
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| | - Abolfazl Akbarzadeh
- b National Institute For Medical Research Development (Nimad) , Tehran , Iran.,c Universal Scientific Education and Research Network (USERN) , Tabriz , Iran.,d Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mojtaba Abbasian
- a Department of Chemistry , Payame Noor University , Tehran , Iran
| |
Collapse
|
457
|
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109:780-796. [PMID: 28705729 DOI: 10.1016/j.fct.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
Nanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Numerous toxicology studies have demonstrated that exposure to nanomaterials (NMs) might pose serious risks to humans. Epigenetic modifications, representing a non-genotoxic mechanism of toxicant-induced health effects, are becoming recognized as playing a potential causative role in the aetiology of many diseases including cancer. This review i) provides an overview of recent advances in medical applications of NMs and ii) summarizes current evidence on their possible epigenetic toxicity. To discern potential health risks of NMs, since current data are mostly based upon in vitro and animal models, a better understanding of functional relationships between NM exposure, epigenetic deregulation and phenotype is required.
Collapse
Affiliation(s)
- Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU- Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
458
|
The potential protective role of taurine against experimental allergic inflammation. Life Sci 2017; 184:18-24. [PMID: 28694089 DOI: 10.1016/j.lfs.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/21/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022]
Abstract
AIMS Taurine has been widely evaluated as a potential therapeutic agent in chronic inflammatory disorders and various infections. However, the potential role of taurine in regulating allergic inflammatory responses is currently unknown. MATERIALS AND METHODS The present study was designed to evaluate the in vitro effects of taurine on the levels of thymic stromal lymphopoietin (TSLP) and other pro-inflammatory cytokines and activation of caspase-1 and nuclear factor (NF)-κB as well as the phosphorylations of c-Jun N-terminal kinase (JNK) and p38 in phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-triggered human mast cell line, HMC-1 cells. Furthermore, we assessed the therapeutic effects of taurine on ovalbumin (OVA)-induced allergic rhinitis (AR) animal models. KEY FINDINGS AND SIGNIFICANCE Here, the obtained results showed that taurine dose-dependently inhibited the production and mRNA expression of TSLP and pro-inflammatory cytokines in HMC-1 cells exposed to PMACI. Taurine attenuated the phosphorylation of JNK and p38 in activated HMC-1 cells. Moreover, taurine brought a significant inhibition of the activities of NF-κB and caspase-1. In an OVA-induced AR animal model, the increased levels of nose rubbing, histamine, immunoglobulin E, TSLP, and interleukin IL-1β were dramatically reduced by the administration of taurine. In summary, taurine could serve as potential novel remedy of allergic inflammatory disorders.
Collapse
|
459
|
Chuang HC, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, Lee CH, Pan CH, Chen KY, Lee KY, Hsiao TC, Cheng TJ. Pulmonary pathobiology induced by zinc oxide nanoparticles in mice: A 24-hour and 28-day follow-up study. Toxicol Appl Pharmacol 2017; 327:13-22. [DOI: 10.1016/j.taap.2017.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
|
460
|
Pabjańczyk-Wlazło E, Król P, Krucińska I, Chrzanowski M, Puchalski M, Szparaga G, Kadłubowski S, Boguń M. Bioactive nanofibrous structures based on hyaluronic acid. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ewelina Pabjańczyk-Wlazło
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Paulina Król
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Izabella Krucińska
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Michał Chrzanowski
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Michał Puchalski
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Grzegorz Szparaga
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| | - Sławomir Kadłubowski
- Institute of Applied Radiation Chemistry; Lodz University of Technology; Lodz Poland
| | - Maciej Boguń
- Department of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; Lodz Poland
| |
Collapse
|
461
|
Shahraki S, Shiri F, Saeidifar M. Synthesis, characterization, in silico ADMET prediction, and protein binding analysis of a novel zinc(II) Schiff-base complex: Application of multi-spectroscopic and computational techniques. J Biomol Struct Dyn 2017; 36:1666-1680. [DOI: 10.1080/07391102.2017.1334595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center , Karaj, Iran
| |
Collapse
|
462
|
Eltayeb A, Daniels S, McGlynn E. Enhanced Optical Properties of ZnO and CeO 2-coated ZnO Nanostructures Achieved Via Spherical Nanoshells Growth On A Polystyrene Template. Sci Rep 2017. [PMID: 28623305 PMCID: PMC5473917 DOI: 10.1038/s41598-017-03905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this paper, ZnO, CeO2 and CeO2-coated ZnO nanostructures were synthesised by simple and efficient low temperature wet chemical methods on Si (100) and quartz substrates. The ZnO films were prepared by a drop coating deposition method. This was then combined with a thin layer of the redox active material CeO2 to form CeO2-coated ZnO films. Spherical ZnO nanoshell structures and CeO2-coated ZnO nanoshells have been prepared using polystyrene (PS) sphere monolayer templates. The structural properties and morphologies of the nanostructures were analysed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The nanostructure compositions are studied in more detail using secondary ion mass spectroscopy (SIMS). The optical properties of the nanostructures were measured using ultraviolet-visible (UV-Vis) absorption spectroscopy in order to ascertain the effects of the nanoshell structures and the whispering gallery modes associated with these structures on the optical properties of the deposits. Our data show UV and visible light absorption was very significantly enhanced due to this nanostructuring.
Collapse
Affiliation(s)
- Asmaa Eltayeb
- School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Stephen Daniels
- School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Enda McGlynn
- School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
463
|
Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:730-739. [DOI: 10.1080/21691401.2017.1337025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abolfazl Bayrami
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shadi Parvinroo
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
464
|
Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0418-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
465
|
Venkateasan A, Prabakaran R, Sujatha V. Phytoextract-mediated synthesis of zinc oxide nanoparticles using aqueous leaves extract of Ipomoea pes-caprae (L).R.br revealing its biological properties and photocatalytic activity. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0018-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
466
|
Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, Sahu HK, Panda BB. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System. Antioxidants (Basel) 2017; 6:antiox6020035. [PMID: 28524089 PMCID: PMC5488015 DOI: 10.3390/antiox6020035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 01/24/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.
Collapse
Affiliation(s)
- Kamal K Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - Dambaru Golari
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - A Venugopal
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| | - V Mohan M Achary
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ganngam Phaomei
- Material Chemistry Laboratory, Department of Chemistry, Berhampur University, Berhampur 760007, Odisha, India.
| | - Narasimham L Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Hrushi K Sahu
- Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakum, Tamil Nadu 603102, India.
| | - Brahma B Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760007, Odisha, India.
| |
Collapse
|
467
|
Gehrke T, Scherzad A, Ickrath P, Schendzielorz P, Hagen R, Kleinsasser N, Hackenberg S. Zinc oxide nanoparticles antagonize the effect of Cetuximab on head and neck squamous cell carcinoma in vitro. Cancer Biol Ther 2017; 18:513-518. [PMID: 28494171 DOI: 10.1080/15384047.2017.1323598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are being used in many cosmetic products and have been shown to induce tumor-selective cell death in human head and neck squamous cell carcinoma (HNSCC) in vitro. Cetuximab is a monoclonal antibody directed against the epidermal growth factor receptor (EGFR), whose effectiveness for HNSCC, alone or in combination with cytostatic drugs, has been demonstrated intensively in the last decades. Nanoparticles are known to interact with protein structures and thus may influence their functionality. The aim of the current study was to evaluate the effect of ZnO-NPs on the antitumor properties of Cetuximab in HNSCC in vitro. Two HNSCC cell lines (FaDu and HLaC-78) were treated with 0.1, 1 or 10 μM Cetuximab as well as 0, 0.1 or 1 μg/ml ZnO-NP. Qualitative assessment of ZnO-NP was conducted via transmission electron microscopy (TEM) and immunofluorescence staining. Evaluation was done via the MTT-assay after 24, 48 and 72 hours of incubation with Cetuximab and ZnO-NPs. ZnO-NPs were shown to antagonize the anti-tumor effects of Cetuximab in a time-dependent as well as dose-dependent way. These findings suggest an inhibitory interaction of ZnO-NPs with Cetuximab, which warrants further investigation.
Collapse
Affiliation(s)
- Thomas Gehrke
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Agmal Scherzad
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Pascal Ickrath
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Philipp Schendzielorz
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Rudolf Hagen
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Norbert Kleinsasser
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| | - Stephan Hackenberg
- a Department of Otorhinolaryngology , Head and Neck Surgery, University Hospital Wuerzburg , Germany
| |
Collapse
|
468
|
Gnanavel V, Palanichamy V, Roopan SM. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:133-138. [PMID: 28501691 DOI: 10.1016/j.jphotobiol.2017.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/05/2017] [Accepted: 05/01/2017] [Indexed: 01/28/2023]
Abstract
The eco-friendly synthesis of nanoparticles through green route from plant extracts have renowned a wide range of application in the field of modern science, due to increased drug efficacy and less toxicity in the nanosized mediated drug delivery model. In the present study, our research groups have biosynthesized the stable and cost effective copper oxide nanoparticles (CuO NPs) from the leaves of (Ormocarpum cochinchinense) O. cochinchinense. The synthesis of crystalline CuO NPs from the leaf extract of O. cochinchinense were confirmed by various analytical techniques like UV-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) pattern. Further the synthesized CuO NPs were screened for anticancer activity on human colon cancer cell lines (HCT-116) by MTT (3-(4,5-dimethyl-2-tiazolyl)-2,5-diphenyl-2-tetrazolium bromide) assay. The obtained result inferred that the synthesized CuO NPs demonstrated high anticancer cytotoxicity on human colon cancer cell lines (HCT-116) with IC50 value of 40μgmL-1 were discussed briefly in this manuscript.
Collapse
Affiliation(s)
- V Gnanavel
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | - V Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| | - Selvaraj Mohana Roopan
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
469
|
Milani N, Sbardella M, Ikeda N, Arno A, Mascarenhas B, Miyada V. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
470
|
Shaaban MI, Shaker MA, Mady FM. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnology 2017; 15:29. [PMID: 28399890 PMCID: PMC5387208 DOI: 10.1186/s12951-017-0262-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 02/05/2023] Open
Abstract
Background Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. Results The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2–3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. Conclusions These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.
Collapse
Affiliation(s)
- Mona I Shaaban
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, PO Box 30040, Al Madina, Al Munawara, Saudi Arabia.,Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohamed A Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, PO Box 30040, Al Madina, Al Munawara, Saudi Arabia. .,Pharmaceutics Department, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Fatma M Mady
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, PO Box 30040, Al Madina, Al Munawara, Saudi Arabia.,Pharmaceutics Department, Faculty of Pharmacy, El-Minia University, El-Minia, Egypt
| |
Collapse
|
471
|
Quaranta V, Hellström M, Behler J. Proton-Transfer Mechanisms at the Water-ZnO Interface: The Role of Presolvation. J Phys Chem Lett 2017; 8:1476-1483. [PMID: 28296415 DOI: 10.1021/acs.jpclett.7b00358] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The dissociation of water is an important step in many chemical processes at solid surfaces. In particular, water often spontaneously dissociates near metal oxide surfaces, resulting in a mixture of H2O, H+, and OH- at the interface. Ubiquitous proton-transfer (PT) reactions cause these species to dynamically interconvert, but the underlying mechanisms are poorly understood. Here, we develop and use a reactive high-dimensional neural-network potential based on density functional theory data to elucidate the structural and dynamical properties of the interfacial species at the liquid-water-metal-oxide interface, using the nonpolar ZnO(101̅0) surface as a prototypical case. Molecular dynamics simulations reveal that water dissociation and recombination proceed via two types of PT reactions: (i) to and from surface oxide and hydroxide anions ("surface-PT") and (ii) to and from neighboring adsorbed hydroxide ions and water molecules ("adlayer-PT"). We find that the adlayer-PT rate is significantly higher than the surface-PT rate. Water dissociation is, for both types of PT, governed by a predominant presolvation mechanism, i.e., thermal fluctuations that cause the adsorbed water molecules to occasionally accept a hydrogen bond, resulting in a decreased PT barrier and an increased dissociation rate as compared to when no hydrogen bond is present. Consequently, we are able to show that hydrogen bond fluctuations govern PT events at the water-metal-oxide interface in a way similar to that in acidic and basic aqueous bulk solutions.
Collapse
Affiliation(s)
- Vanessa Quaranta
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , D-44780 Bochum, Germany
| | - Matti Hellström
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , D-44780 Bochum, Germany
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , D-44780 Bochum, Germany
| |
Collapse
|
472
|
Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Demir V, Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2017; 32:1213-1225. [PMID: 27464841 PMCID: PMC5274611 DOI: 10.1002/tox.22318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Zinc nanoparticles (ZnNPs) are among the least investigated NPs and thus their toxicological effects are not known. In this study, tilapia (Oreochromis niloticus) were exposed to 1 and 10 mg/L suspensions of small size (SS, 40-60 nm) and large size (LS, 80-100 nm) ZnNPs for 14 days under semi-static conditions. Total Zn levels in the intestine, liver, kidney, gill, muscle tissue, and brain were measured. Blood serum glucose (GLU), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH) were examined to elucidate the physiological disturbances induced by ZnNPs. Organ pathologies were examined for the gills, liver, and kidney to identify injuries associated with exposure. Significant accumulation was observed in the order of intestine, liver, kidney, and gills. Zn levels exhibited time- and concentration-dependent increase in the organs. Accumulation in kidney was also dependent on particle size; NPs SS-ZnNPs were trapped more effectively than LS-ZnNPs. No significant accumulation occurred in the brain (p > 0.05) while Zn levels in muscle tissue increased only marginally (p ≥ 0.05). Significant disturbances were noted in serum GOT and LDH (p < 0.05). The GPT levels fluctuated and were not statistically different from those of controls (p > 0.05). Histopathological tubular deformations and mononuclear cell infiltrations were observed in kidney sections. In addition, an increase in melano-macrophage aggregation intensity was identified on the 7th day in treatments exposed to LS-ZnNPs. Mononuclear cell infiltrations were identified in liver sections for all treatments. Both ZnNPs caused basal hyperplasia in gill sections. Fusions appeared in the gills after the 7th day in fish treated with 10 mg/L suspensions of SS-ZnNPs. In addition, separations in the secondary lamella epithelia were observed. The results indicated that exposure to ZnNPs could lead to disturbances in blood biochemistry and cause histopathological injuries in the tissues of O. niloticus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1213-1225, 2017.
Collapse
Affiliation(s)
- Hasan Kaya
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Müge Duysak
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mehmet Akbulut
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Sevdan Yılmaz
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mert Gürkan
- Faculty of Arts and Sciences, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, 39217, USA
| | - Veysel Demir
- Engineering Faculty, Department of Environmental Engineering, Tunceli University, Tunceli, 62000, Turkey
| | - Mehmet Ateş
- Engineering Faculty, Department of Bioengineering, Tunceli University, Tunceli, 62000, Turkey
| |
Collapse
|
473
|
Almansour MI, Alferah MA, Shraideh ZA, Jarrar BM. Zinc oxide nanoparticles hepatotoxicity: Histological and histochemical study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:124-130. [PMID: 28236584 DOI: 10.1016/j.etap.2017.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 05/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in industry and cosmetic products with promising investment in medical diagnosis and treatment. However, these particles may reveal a high potential risk for human health with no information about hepatotoxicity that might be associated with their exposure. The present work was carried out to investigate the histological and histochemical alterations induced in the hepatic tissues by naked 35nm ZnO NPs. Male Wistar albino rats were exposed to ZnO NPs at a daily dose of 2mg/kg for 21days. Liver biopsies from all rats under study were subjected to histopathological examinations. In comparison with the control rats, the following histological and histochemical alterations were demonstrated in the hepatic tissues of rats exposed to ZnO NPs: sinusoidal dilatation, Kupffer cells hyperplasia, lobular and portal triads inflammatory cells infiltration, necrosis, hydropic degeneration, hepatocytes apoptosis, anisokaryosis, karyolysis, nuclear membrane irregularity, glycogen content depletion and hemosidrosis. The findings of the present work might indicate that ZnO NPs have potential oxidative stress in the hepatic tissues that may affect the function of the liver. More work is needed to elucidate the toxicity and pathogenesis of zinc oxide nanoparticles on the vital organs.
Collapse
Affiliation(s)
| | - Mosaid A Alferah
- Biology Department, College of Science-Onizah, Qassim University, Saudi Arabia.
| | - Ziad A Shraideh
- Department of Biological Sciences, College of Science, The University of Jordan, Jordan.
| | - Bashir M Jarrar
- Department of Biological Sciences, College of Science, Jerash University, Jordan.
| |
Collapse
|
474
|
Gopala Krishna P, Paduvarahalli Ananthaswamy P, Trivedi P, Chaturvedi V, Bhangi Mutta N, Sannaiah A, Erra A, Yadavalli T. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1026-1033. [PMID: 28415385 DOI: 10.1016/j.msec.2017.02.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity.
Collapse
Affiliation(s)
- Prashanth Gopala Krishna
- Department of Chemistry, Sir M. Visvesvaraya Institute of Technology, Bengaluru 562 157, India; Research and Development Centre, Bharathiar University, Coimbatore 641 046, India
| | - Prashanth Paduvarahalli Ananthaswamy
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, India; Department of Chemistry, Sai Vidya Institute of Technology, Bengaluru 560 064, India.
| | - Priyanka Trivedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226031, India
| | - Vinita Chaturvedi
- Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226031, India.
| | | | - Ananda Sannaiah
- Department of Chemistry, University of Mysore, Mysuru 560 006, India
| | - Amani Erra
- Department of Internal Medicine, Presence Saint Joseph Hospital, Chicago, IL 60657, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago 60612, USA
| |
Collapse
|
475
|
Li F, Mei H, Xie X, Zhang H, Liu J, Lv T, Nie H, Gao Y, Jia L. Aptamer-Conjugated Chitosan-Anchored Liposomal Complexes for Targeted Delivery of Erlotinib to EGFR-Mutated Lung Cancer Cells. AAPS JOURNAL 2017; 19:814-826. [PMID: 28233244 DOI: 10.1208/s12248-017-0057-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
Abstract
Lung cancer is the leading cancer and has the highest death rate. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib has had a promising response in lung cancer therapy. Unfortunately, individuals with TKI-resistant EGFR mutations often develop acquired resistance against erlotinib. To overcome this resistance, in the present study, we developed liposomes anchored with anti-EGFR aptamer (Apt)-conjugated chitosan (Apt-Cs) as stable carriers to deliver erlotinib to the target. We loaded erlotinib into Apt-Cs-anchored liposomal complexes (Apt-CL-E) and characterized the physicochemistry of Apt-CL-E. The nanoparticles showed good biostability and a binding specificity for EGFR-mutated cancer cells guided by the Apt. The specific binding facilitated the uptake of Apt-CL-E into EGFR-mutated cancer cells. A cytotoxicity study showed an advantage of Apt-CL-E over their nontargeted liposomal counterparts in delivering erlotinib to EGFR-mutated cancer cells, resulting in cell cycle arrest and apoptosis. These results provide a good platform for future in vivo animal studies with Apt-CL-E.
Collapse
Affiliation(s)
- Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Hao Mei
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Huijuan Zhang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Tingting Lv
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Huifang Nie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China.,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, 350002, Fujian, China. .,Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350002, China.
| |
Collapse
|
476
|
Evaluation of folic acid tagged aminated starch/ZnO coated iron oxide nanoparticles as targeted curcumin delivery system. Carbohydr Polym 2017; 157:391-399. [DOI: 10.1016/j.carbpol.2016.09.087] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023]
|
477
|
Chakraborti S, Chakraborty S, Saha S, Manna A, Banerjee S, Adhikary A, Sarwar S, Hazra TK, Das T, Chakrabarti P. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic Biol Med 2017; 103:35-47. [PMID: 27940348 DOI: 10.1016/j.freeradbiomed.2016.11.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Department of Biochemistry, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Samik Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Shilpi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Argha Manna
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Arghya Adhikary
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Shamila Sarwar
- Department of Biochemistry, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India
| | - Tapas K Hazra
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1079, United States
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India.
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 C.I.T. Scheme, VIIM, Kolkata 700054, India.
| |
Collapse
|
478
|
Alaraby M, Hernández A, Marcos R. Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in drosophila melanogaster. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:46-55. [PMID: 28079919 DOI: 10.1002/em.22068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
The biological reactivity of metal and metal oxide nanomaterials is attributed to their redox properties, which would explain their pro- or anti-cancer properties depending on exposure circumstances. In this sense, copper oxide nanoparticles (CuONP) have been proposed as a potential anti-tumoral agent. The aim of this study was to assess if CuONP can exert antigenotoxic effects using Drosophila melanogaster as an in vivo model. Genotoxicity was induced by two well-known genotoxic compounds, namely potassium dichromate (PD) and ethyl methanesulfonate (EMS). The wing-spot assay and the comet assay were used as biomarkers of genotoxic effects. In addition, changes in the expression of Ogg1 and Sod genes were determined. The effects of CuONP cotreatment were compared with those induced by copper sulfate (CS), an agent releasing copper ions. Using the wing-spot assay, CuONP and CS were not able to reduce the genotoxic effects of EMS exposure, but had the ability to decrease the effects induced by PD, reducing the frequency of mutant twin-spots that arise from mitotic recombination. In addition, CuONP and CS were able to reduce the DNA damage induced by PD as determined by the comet assay. In general, similar qualitative antigenotoxic effects were obtained with both copper compounds. The antigenotoxic effects of environmentally relevant and non-toxic doses of CuONP and CS may be explained by their ability to partially restore the expression levels of the repair gene Ogg1 and the antioxidant gene Cu,ZnSod, both of which are inhibited by PD treatment. Environ. Mol. Mutagen. 58:46-55, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
479
|
Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. JOURNAL OF NANOMATERIALS 2017; 2017:1-14. [DOI: 10.1155/2017/8510342] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.
Collapse
Affiliation(s)
- Ayesha Naveed Ul Haq
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Akhtar Nadhman
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
- Institute of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Ghulam Mustafa
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Imran Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| |
Collapse
|
480
|
Li WJ, Chen YT, Huang PH, Yang TL, Huang JJ. Cancer cell identification by bi-color ZnO and TiO 2 nanowires. JOURNAL OF BIOPHOTONICS 2017; 10:92-97. [PMID: 26748587 DOI: 10.1002/jbio.201500202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/28/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Semiconductor nanocomposites provide advantages beyond the capability of typical fluorescent materials for cancer detection. In this work, nanowire-based probes with dual color channels are employed to demonstrate the capacity of cancer cell detection. Purple emitting ZnO/antibody probes are applied to detect cancer cells and meanwhile TiO2 /antibody probes with green light emission are applied to identify normal fibroblast cells. A series of quantitative analyses are conducted to verify the correlation between the concentrations of ZnO and TiO2 probes, cell numbers, and peak intensities of the PL spectra. The results provide a quantitative reference for developing nanowire-based cancel cell probes.
Collapse
Affiliation(s)
- Wei-Jen Li
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Po-Hao Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei 100, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei 100, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
- Department of Electrical Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
481
|
Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 2016; 10:11-21. [PMID: 28096662 PMCID: PMC5207451 DOI: 10.2147/nsa.s117018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.
Collapse
Affiliation(s)
- ES Bronze-Uhle
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - BC Costa
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - VF Ximenes
- Department of Chemistry, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - PN Lisboa-Filho
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| |
Collapse
|
482
|
Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller MR, Matyjaszewski K. Preparation of Well-Defined Poly(styrene-co-acrylonitrile)/ZnO Hybrid Nanoparticles by an Efficient Ligand Exchange Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13207-13213. [PMID: 27951696 DOI: 10.1021/acs.langmuir.6b03827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(styrene-co-acrylonitrile) (PSAN)-capped ZnO nanoparticles (NPs) were synthesized by a "ligand exchange" method. First, octylamine (OA)-capped ZnO NPs were prepared by reaction of OA and zinc 2-ethylhexanoate (Zn(EH)2). Then PSAN polymer ligands were synthesized by activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) and were efficiently exchanged with OA ligands on the ZnO particle surface benefiting from the relatively low boiling point of OA (175 °C). The morphology, content of ZnO, and grafting density of the nanocomposite were well controlled by altering the ratio between OA and polymer ligands as well as the molecular weight of PSAN-NH2 used in the exchange reaction. The resulting ZnO/polymer nanocomposites were stable in THF with narrow size distributions and varying grafting densities from 0.9 to 2.5 nm-2. With excess amount of polymer ligands, individual dispersed ZnO NPs were observed. However, with a limited amount of ligands, NPs clusters were formed, as confirmed by TEM and DLS.
Collapse
Affiliation(s)
- Zongyu Wang
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Clare Mahoney
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhao Lu
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rachel Ferebee
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danli Luo
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry and ‡Department of Materials Science & Engineering, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
483
|
Paino IMM, J Gonçalves F, Souza FL, Zucolotto V. Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32699-32705. [PMID: 27934178 DOI: 10.1021/acsami.6b11950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured zinc oxide (ZnO) materials have been intensively studied because of their potential applications in cancer therapies. However, a better comprehension of the toxicity of the flower-like ZnO nanostructures toward cancer cells is still needed. In this study, we investigate the cytotoxicity of a ZnO flower-like nanostructure produced at low temperature via aqueous solution in human cervical carcinoma (HeLa) cells and noncancerous cell-line murine fibroblast (L929) cells. Nanotoxicology effects were analyzed to study apoptosis and necrosis processes, reactive oxygen species production, and cellular uptake. Cells remained incubated for 24 h in concentrations of 0.1, 1.0, and 10.0 μg mL-1 ZnO nanoparticles (NPs), with the estimated rods length varying from 1.7 ± 0.4 to 2.3 ± 0.4 μm, synthesized at different times (4, 2, and 0.5 h) by an aqueous solution method. The cytotoxic response observed in noncancerous and cancer cells showed that all of the ZnO NPs synthesized by an aqueous solution exhibited enhanced toxicology effects in cancer cells. ZnO flower-nanostructures exhibited a higher cytotoxic against cancer HeLa cells, in comparison to the noncancerous cell line L929. The cytotoxic response of ZnO NPs at 0.5, 2, and 4 h in L929 cells was not statistically significant. This ability may be of clinical interest because of the effectiveness of ZnO NPs to distinguish between normal and cancer cells in cancer therapy.
Collapse
Affiliation(s)
- Iêda M M Paino
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , São Carlos, São Paulo, Brazil
| | | | - Flavio L Souza
- Federal University of ABC-UFABC , Santo André, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , São Carlos, São Paulo, Brazil
| |
Collapse
|
484
|
Bisht G, Rayamajhi S, KC B, Paudel SN, Karna D, Shrestha BG. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3). NANOSCALE RESEARCH LETTERS 2016; 11:537. [PMID: 27914092 PMCID: PMC5135709 DOI: 10.1186/s11671-016-1734-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).
Collapse
Affiliation(s)
- Gunjan Bisht
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Post Box 6250, Kathmandu, Nepal
| | - Sagar Rayamajhi
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Biplab KC
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | | - Deepak Karna
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
485
|
Wahba NS, Shaban SF, Kattaia AAA, Kandeel SA. Efficacy of zinc oxide nanoparticles in attenuating pancreatic damage in a rat model of streptozotocin-induced diabetes. Ultrastruct Pathol 2016; 40:358-373. [DOI: 10.1080/01913123.2016.1246499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
486
|
Ban DK, Paul S. Nano Zinc Oxide Inhibits Fibrillar Growth and Suppresses Cellular Toxicity of Lysozyme Amyloid. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31587-31601. [PMID: 27801574 DOI: 10.1021/acsami.6b11549] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deposition of amyloid fibers has been a common pathological event in many neurodegenerations, such as Alzheimer's disease, Parkinson's disease, and Prion disease. Although various therapeutic interventions have been reported, nanoparticles have recently been considered as possible inhibitors of amyloid fibrillation. Here, we reported the effect of three different forms of zinc oxide nanoparticles (ZnONP): uncapped (ZnONPuncap), starch-capped (ZnONPST), and self-assembled (ZnONPassmb) (average sizes of 10, 30, and 163 nm, respectively), having a core size of 10-15 nm, in the amyloid growth of hen egg white lysozyme (HEWL). We monitored the amyloid growth by electron microscopy as well as Thioflavin-T (ThT) measurement. We observed that ZnONP demonstrated a dose-dependent inhibition of fibrillar amyloid growth of HEWL, with the greatest effect being exhibited by ZnONPST. Such inhibition was also associated with a decrease in cross β-sheet amount, surface hydrophobicity as well as increase of stability of proteins. Furthermore, we observed that ZnONPST prolonged the nucleation phase and shortened the elongation phase of HEWL amyloid growth. Although pure amyloid caused profound cellular toxicity in both mouse carcinoma N2a and normal cells such as human keratinocytes HaCaT cells, amyloid formed in the presence of ZnONP showed much reduced cellular toxicity. We also observed that the inhibition of amyloid growth was effective when ZnONP was administered during the lag phase. When our amyloid inhibition results were compared with a well-known inhibitor curcumin, we observed that ZnONPST demonstrated a better inhibitory effect than curcumin. Overall, here, we reported the inhibitory activity of three different forms of ZnONP to amyloid fibrillation of HEWL and amyloid-mediated cytotoxicity to different extents, while starch-capped ZnONP showed the highest fibrillation inhibitory effect.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela-769008, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela-769008, Odisha, India
| |
Collapse
|
487
|
Abdelkarem HM, Fadda LM, Kaml OR. Alleviation of bone markers in rats induced nano-zinc oxide by qurecetin and α-lipolic acid. Toxicol Mech Methods 2016; 26:692-699. [PMID: 27785948 DOI: 10.1080/15376516.2016.1236424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to evaluate the potential protective effect of qurecetin (Qur) and α-lipolic acid (ALA) to modulate the perturbation of bone turnover which is induced by nano-zinc oxide (n-ZnO). Rats were fasted overnight and randomly divided into two groups: G1, normal healthy animals and the other rats were administered zinc oxide nanoparticles orally by guava in a dose of 600 mg/kg body weight/d for 5 sequential days in Wistar albino male rats. N-ZnO-exposed animals were randomly sub-divided into three groups: G2, n-ZnO-exposed animals; G3, n-ZnO-exposed animals co-treated with Qur (200 mg/kg daily); and G4, n-ZnO-exposed animals co-treated with ALA (200 mg/kg). Qur and ALA were administered orally by guava daily for three sequential weeks from the beginning of the experiment. The results revealed a significant reduction of nitiric oxide (NO) and serum level and comet assay in n-ZnO exposure rats after treatment of Qur and ALA. It was found the alteration of pro-inflammatory markers (tumor necrosis factor alpha; TNF-α, interleukin-6; IL-6 and C-reactive protein; CRP), bone alkaline phosphatase (B-ALP, bone formation marker), and C-terminal peptide type I collagen (CTx, bone resorption marker) levels compared with the normal group. Co-administration of Qur and ALA in n-ZnO-exposed rats significantly alleviated the mentioned alterations of biochemical parameters. These results suggest that Qur and ALA as antioxidant agents may be a candidate for preventive and treatment applications of impaired bone markers induced bone loss caused by nano-particles of metal oxide.
Collapse
Affiliation(s)
- Hala M Abdelkarem
- a Nutrition Department , National Research Center , Dokki , Cairo , Egypt
| | - Laila M Fadda
- b Pharmaceutical Department, Faculty of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Omyma R Kaml
- c Biochemistry Department , National Organization for Drug Control and Research (NODCAR) , Giza , Egypt
| |
Collapse
|
488
|
Kamble S, Utage B, Mogle P, Kamble R, Hese S, Dawane B, Gacche R. Evaluation of Curcumin Capped Copper Nanoparticles as Possible Inhibitors of Human Breast Cancer Cells and Angiogenesis: a Comparative Study with Native Curcumin. AAPS PharmSciTech 2016; 17:1030-41. [PMID: 26729534 DOI: 10.1208/s12249-015-0435-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
Synthesis of metal nanoparticles for improving therapeutic index and drug delivery is coming up as an attractive strategy in the mainstream of cancer therapeutic research. In the present study, curcumin-capped copper nanoparticles (CU-NPs) were evaluated as possible inhibitors of in vivo angiogenesis, pro-angiogenic cytokines involved in promoting tumor angiogenesis along with inhibition of cell proliferation and migration of breast cancer cell line MDA-MB-231. The antiangiogenic potential was assessed using in vivo chorioallantoic membrane (CAM) model. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)-based cytotoxicity assay was used to assess the effect of CU-NPs against proliferation of breast cancer cell line. The wound healing migration assay was used to evaluate the effects of CU-NPs on the migration ability of breast cancer cell line. Native curcumin (CU) was used as a reference compound for comparison purpose. The result of the present investigation indicates that CU-NPs could not demonstrate impressive antiangiogenic or anticancer activities significantly as compared to native CU. The possible mechanisms of experimental outcomes are discussed in the light of the methods of nanoparticle synthesis in concert with the current state of the art literature.
Collapse
|
489
|
Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 2016; 83:1365-1378. [DOI: 10.1016/j.biopha.2016.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
|
490
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
491
|
Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G, Degan P, Meschini S. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol In Vitro 2016; 35:169-79. [DOI: 10.1016/j.tiv.2016.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
|
492
|
Gao F, Ma N, Zhou H, Wang Q, Zhang H, Wang P, Hou H, Wen H, Li L. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes. Int J Nanomedicine 2016; 11:3859-74. [PMID: 27570453 PMCID: PMC4986971 DOI: 10.2147/ijn.s107021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ningjie Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huan Wen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
493
|
Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae : Variation in response depends on biotype. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1499-509. [DOI: 10.1016/j.nano.2016.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
|
494
|
Song W, Tang X, Li Y, Sun Y, Kong J, Qingguang R. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy. IET Nanobiotechnol 2016; 10:178-83. [PMID: 27463786 DOI: 10.1049/iet-nbt.2015.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.
Collapse
Affiliation(s)
- Wenshuang Song
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Xiaoling Tang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Yong Li
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Yang Sun
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Jilie Kong
- Departments of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ren Qingguang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
495
|
Bhunia AK, Kamilya T, Saha S. Temperature Dependent and Kinetic Study of the Adsorption of Bovine Serum Albumin to ZnO Nanoparticle Surfaces. ChemistrySelect 2016. [DOI: 10.1002/slct.201600446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amit K. Bhunia
- Department of Physics & Technophysics; Vidyasagar University; Paschim Medinipur -721102 India
- Department of Physics; Government General Degree College at Gopiballabpur-II, Beliaberh; Paschim Medinipur- 721517 India
| | - Tapanendu Kamilya
- Department of Physics; Narajole Raj College; Paschim Medinipur- 721211 India
| | - Satyajit Saha
- Department of Physics & Technophysics; Vidyasagar University; Paschim Medinipur -721102 India
| |
Collapse
|
496
|
Wingett D, Louka P, Anders CB, Zhang J, Punnoose A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol Sci Appl 2016; 9:29-45. [PMID: 27486313 PMCID: PMC4956064 DOI: 10.2147/nsa.s99747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ZnO nanoparticles (NPs) have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS) was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic properties for controlling NP toxicity and illustrate an approach for engineering NPs with desired properties for potential use in biological applications.
Collapse
Affiliation(s)
- Denise Wingett
- Department of Biological Sciences; Biomolecular Sciences PhD Program, Boise State University, Boise, ID; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA
| | | | | | - Jianhui Zhang
- Department of Physics, Boise State University, Boise, ID, USA
| | - Alex Punnoose
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID; Department of Physics, Boise State University, Boise, ID, USA
| |
Collapse
|
497
|
Ganguly BN, Verma V, Chatterjee D, Satpati B, Debnath S, Saha P. Study of Gallium Oxide Nanoparticles Conjugated with β-Cyclodextrin: An Application To Combat Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17127-37. [PMID: 27331869 DOI: 10.1021/acsami.6b04807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioactive nanomaterials, namely, gallium oxyhydroxide GaO(OH), also surface-conjugated GaO(OH) with a giant sugar molecule β-cyclodextrin (CD), have been prepared through a simple wet chemical route such that the same could be suitably used in biomedical diagnostics as well as therapeutic applications. Several physical methods were used for their characterization: powder X-ray diffraction pattern of GaO(OH) NPs for their grain size determination, optical spectroscopic absorption (UV-vis and FT-IR), and fluorescence properties of these NPs to ascertain surface conjugation and also their wide band-gap properties. Besides these, morphological properties of these NPs were studied by transmission electron microscopic (TEM) investigation, justifying the elemental constitution through energy dispersive X-ray analysis (EDX). Further, biological cellular uptake of these nanoparticles have been demonstrated on cancerous HeLa cells and reported with total fetal effect after 72 h, with CD templated GaO(OH) nanoparticles, a fact that has not been reported so far.
Collapse
Affiliation(s)
| | - Vivek Verma
- IISER-Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | | - Biswarup Satpati
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata 700064, India
| | - Sushanta Debnath
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata 700064, India
| | - Partha Saha
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
498
|
Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D. A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats. Hum Exp Toxicol 2016; 35:1286-1304. [DOI: 10.1177/0960327116629530] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to characterize the zinc oxide nanoparticles (ZnO-NPs) and their bulk counterpart in suspensions and to access the impact of their acute oral toxicity at doses of 300 and 2000 mg/kg in healthy female Wistar rats. The hematological, biochemical, and urine parameters were accessed at 24 and 48 h and 14 days posttreatment. The histopathological evaluations of tissues were also performed. The distribution of zinc content in liver, kidney, spleen, plasma, and excretory materials (feces and urine) at 24 and 48 h and 14 days posttreatment were accessed after a single exposure at dose of 2000 mg/kg body weight. The elevated level of alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were observed in ZnO-NPs at a dose of 2000 mg/kg at all time points. There was a decrease in iron levels in all the treated groups at 24 h posttreatment as compared to control groups but returned to their normal level at 14 days posttreatment. The hematological parameters red blood cells, hemoglobin, hematocrit, platelets, and haptoglobin were reduced at 48 h posttreatment at a dose of 2000 mg/kg ZnO-NPs and showed hemolytic condition. All the treated groups were comparable to control group at the end of 14 days posttreatment. The zinc concentration in the kidney, liver, plasma, feces, and urine showed a significant increase in both groups as compared to control. This study explained that ZnO-NPs produced more toxicological effect as compared to their bulk particles as evidenced through alteration in some hemato-biochemical parameters and with few histopathological lesions in liver and kidney tissues.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- Biochemistry Laboratory, GLP Test Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mahadeo Kumar
- Biochemistry Laboratory, GLP Test Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Nasreen Ghazi Ansari
- Metal Analysis Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Abhishek Kumar Jain
- Nanomaterial Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Nidhi Arjaria
- Electron Microscopy Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Dhirendra Singh
- Central Pathology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
499
|
Chandrasekaran M, Pandurangan M. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells. Biol Trace Elem Res 2016; 172:148-154. [PMID: 26563419 DOI: 10.1007/s12011-015-0562-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
Abstract
The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.
Collapse
|
500
|
DeLong RK, Curtis CB. Toward RNA nanoparticle vaccines: synergizing RNA and inorganic nanoparticles to achieve immunopotentiation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27312869 DOI: 10.1002/wnan.1415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/08/2022]
Abstract
Traditionally, vaccines have been composed of live attenuated or killed microorganisms. Alternatively, individual protein subunits or other molecular components of the microorganism can serve as the antigen and trigger an antibody response by the immune system. The immune system is a coordinated molecular and cellular response that works in concert to check the spread of infection. In the past decade, there has been much progress on DNA vaccines. DNA vaccination includes using the coding segments of a viral or bacterial genome to generate an immune response. However, the potential advantage of combining an RNA molecule with inorganic nanoparticle delivery should be considered, with the goal to achieve immuno-synergy between the two and to overcome some of the current limitations of DNA vaccines and traditional vaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1415. doi: 10.1002/wnan.1415 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Robert K DeLong
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Chandler B Curtis
- Department of Biomedical Science, Missouri State University, Springfield, MO, USA
| |
Collapse
|