451
|
Lee LK, Medzikovic L, Eghbali M, Eltzschig HK, Yuan X. The Role of MicroRNAs in Acute Respiratory Distress Syndrome and Sepsis, From Targets to Therapies: A Narrative Review. Anesth Analg 2020; 131:1471-1484. [PMID: 33079870 PMCID: PMC8532045 DOI: 10.1213/ane.0000000000005146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a significant cause of morbidity and mortality in the intensive care unit (ICU) and is characterized by lung epithelial and endothelial cell injury, with increased permeability of the alveolar-capillary membrane, leading to pulmonary edema, severe hypoxia, and difficulty with ventilation. The most common cause of ARDS is sepsis, and currently, treatment of ARDS and sepsis has consisted mostly of supportive care because targeted therapies have largely been unsuccessful. The molecular mechanisms behind ARDS remain elusive. Recently, a number of microRNAs (miRNAs) identified through high-throughput screening studies in ARDS patients and preclinical animal models have suggested a role for miRNA in the pathophysiology of ARDS. miRNAs are small noncoding RNAs ranging from 18 to 24 nucleotides that regulate gene expression via inhibition of the target mRNA translation or by targeting complementary mRNA for early degradation. Unsurprisingly, some miRNAs that are differentially expressed in ARDS overlap with those important in sepsis. In addition, circulatory miRNA may be useful as biomarkers or as targets for pharmacologic therapy. This can be revolutionary in a syndrome that has neither a measurable indicator of the disease nor a targeted therapy. While there are currently no miRNA-based therapies targeted for ARDS, therapies targeting miRNA have reached phase II clinical trials for the treatment of a wide range of diseases. Further studies may yield a unique miRNA profile pattern that serves as a biomarker or as targets for miRNA-based pharmacologic therapy. In this review, we discuss miRNAs that have been found to play a role in ARDS and sepsis, the potential mechanism of how particular miRNAs may contribute to the pathophysiology of ARDS, and strategies for pharmacologically targeting miRNA as therapy.
Collapse
Affiliation(s)
- Lisa K. Lee
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Holger K. Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| |
Collapse
|
452
|
Witek Ł, Janikowski T, Gabriel I, Bodzek P, Olejek A. Analysis of microRNA regulating cell cycle-related tumor suppressor genes in endometrial cancer patients. Hum Cell 2020; 34:564-569. [PMID: 33123872 PMCID: PMC7900021 DOI: 10.1007/s13577-020-00451-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022]
Abstract
Endometrial cancer remains the most common malignancy of the female genital system in developed countries. Tumor suppressor genes are responsible for controlling the cells fate in the cell cycle and preventing cancerogenesis. Gene expression affects cancer progression and is modulated by microRNAs defined as both tumor suppressors and oncogenes. These molecules indirectly regulate multiple processes like cell proliferation, differentiation and apoptosis. The aim of this study was to analyze miRNAs expression that can regulate the activity of tumor suppressor genes related to the cell cycle in patients with endometrioid endometrial cancer. The study group consisted of 12 samples that met the inclusion criteria from a total of 48 obtained. The 12 samples were used to analyze microRNA expression. Complementary miRNAs were identified using TargetScan Database and statistical analysis. MicroRNAs were determined for the tumor suppressor genes: CYR61, WT1, TSPYL5, HNRNPA0, BCL2L1 and BAK1. All the miRNAs were complementary to the described target genes based on TargetScan Database. There were five miRNAs differentially expressed that can regulate tumor suppressor genes related to the cell cycle. The distinguished miRNAs: mir-340-3p, mir-1236-5p, mir-874-3p, mir-873-5p.2 and mir-548-5p were differentially expressed in endometrial cancer in comparison to the control. Among the distinguished miRNAs, the most promising is mir-874-3p, which may have an important role in endometrial adenocarcinoma proliferation.
Collapse
Affiliation(s)
- Łukasz Witek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Bytom, Poland
| | | | - Iwona Gabriel
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Bytom, Poland
| | - Piotr Bodzek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Bytom, Poland
| | - Anita Olejek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Bytom, Poland
| |
Collapse
|
453
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
454
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
455
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
456
|
Lim S, Kim Y, Lee SB, Kang HG, Kim DH, Park JW, Chung D, Kong H, Yoo KH, Kim Y, Han W, Chun KH, Park JH. Inhibition of Chk1 by miR-320c increases oxaliplatin responsiveness in triple-negative breast cancer. Oncogenesis 2020; 9:91. [PMID: 33041328 PMCID: PMC7548284 DOI: 10.1038/s41389-020-00275-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Checkpoint kinase 1 (Chk1) expression is enhanced in most cancers owing to oncogenic activation and constant replicative stress. Chk1 inactivation is a promising cancer therapy, as its inactivation leads to genomic instability, chromosomal catastrophe, and cancer cell death. Herein, we observed that miR-320c, downregulated in triple-negative breast cancer (TNBC) patients, can target Chk1. In addition, downregulated miR-320c expression was associated with poor overall survival in TNBC patients. As Chk1 was associated with the DNA damage response (DDR), we investigated the effect of miR-320c on DDR in TNBC cells. To induce DNA damage, we used platinum-based drugs, especially oxaliplatin, which is most effective with miR-320c. We observed that overexpression of miR-320c in TNBC regulated the oxaliplatin responsiveness by mediating DNA damage repair through the negative regulation of Chk1 in vitro. Furthermore, using a xenograft model, a combination of miR-320c mimic and oxaliplatin effectively inhibited tumor progression. These investigations indicate the potential of miR-320c as a marker of oxaliplatin responsiveness and a therapeutic target to increase the efficacy of chemotherapy in TNBC.
Collapse
Affiliation(s)
- Sera Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Won Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Daeun Chung
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyunkyung Kong
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
457
|
Amanullah M, Yu M, Sun X, Luo A, Zhou Q, Zhou L, Hou L, Wang W, Lu W, Liu P, Lu Y. MDEHT: a multivariate approach for detecting differential expression of microRNA isoform data in RNA-sequencing studies. Bioinformatics 2020; 36:2657-2664. [PMID: 31930386 PMCID: PMC7203753 DOI: 10.1093/bioinformatics/btaa015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/15/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Motivation miRNA isoforms (isomiRs) are produced from the same arm as the archetype miRNA with a few nucleotides different at 5 and/or 3 termini. These well-conserved isomiRs are functionally important and have contributed to the evolution of miRNA genes. Accurate detection of differential expression of miRNAs can bring new insights into the cellular function of miRNA and a further improvement in miRNA-based diagnostic and prognostic applications. However, very few methods take isomiR variations into account in the analysis of miRNA differential expression. Results To overcome this challenge, we developed a novel approach to take advantage of the multidimensional structure of isomiR data from the same miRNAs, termed as a multivariate differential expression by Hotelling’s T2 test (MDEHT). The utilization of the information hidden in isomiRs enables MDEHT to increase the power of identifying differentially expressed miRNAs that are not marginally detectable in univariate testing methods. We conducted rigorous and unbiased comparisons of MDEHT with seven commonly used tools in simulated and real datasets from The Cancer Genome Atlas. Our comprehensive evaluations demonstrated that the MDEHT method was robust among various datasets and outperformed other commonly used tools in terms of Type I error rate, true positive rate and reproducibility. Availability and implementation The source code for identifying and quantifying isomiRs and performing miRNA differential expression analysis is available at https://github.com/amanzju/MDEHT. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Md Amanullah
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Mengqian Yu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiwei Sun
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Aoran Luo
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Qing Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Liyuan Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Ling Hou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Wei Wang
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Weiguo Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.,Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province and Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
458
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
459
|
Nedoluzhko A, Gruzdeva N, Sharko F, Rastorguev S, Zakharova N, Kostyuk G, Ushakov V. The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells 2020; 9:E2238. [PMID: 33020462 PMCID: PMC7601372 DOI: 10.3390/cells9102238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, single-stranded, most frequently non-coding RNA (ncRNA) molecules that play a significant role in gene expression regulation. Circular RNAs can affect microRNA functionality, interact with RNA-binding proteins (RBPs), translate proteins by themselves, and directly or indirectly modulate gene expression during different cellular processes. The affected expression of circRNAs, as well as their targets, can trigger a cascade of events in the genetic regulatory network causing pathological conditions. Recent studies have shown that altered circular RNA expression patterns could be used as biomarkers in psychiatric diseases, including schizophrenia (SZ); moreover, circular RNAs together with other cell molecules could provide new insight into mechanisms of this disorder. In this review, we focus on the role of circular RNAs in the pathogenesis of SZ and analyze their biomarker and therapeutic potential in this disorder.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Faculty of Biosciences and Aquaculture, Nord University, PB 1490. 8049 Bodø, Norway
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Natalia Gruzdeva
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33/2, 119071 Moscow, Russia
| | - Sergey Rastorguev
- National Research Center “Kurchatov Institute”, 1st Akademika Kurchatova Square, 123182 Moscow, Russia; (N.G.); (F.S.); (S.R.)
| | - Natalia Zakharova
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
| | - Vadim Ushakov
- Mental-Health Clinic No. 1 Named after N.A. Alexeev, Moscow Healthcare Department, Zagorodnoye Highway, 2, 115191 Moscow, Russia; (N.Z.); (G.K.); (V.U.)
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Leninskiye Gory, 119899 Moscow, Russia
| |
Collapse
|
460
|
Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020; 41:755-775. [PMID: 32893005 PMCID: PMC7470715 DOI: 10.1016/j.tips.2020.08.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic RNA molecules possess high potential for treating medical conditions if they can successfully reach the target cell upon administration. However, unmodified RNA molecules are rapidly degraded and cleared from the circulation. In addition, their large size and negative charge complicates their passing through the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient intracellular delivery of intact RNA molecules to the tissue of interest without inducing adverse effects. Here, we outline the recent developments in therapeutic RNA delivery and discuss the wide potential in manipulating the function of cells with RNAs. The focus is not only on the variety of delivery strategies but also on the versatile nature of RNA and its wide applicability. This wide applicability is especially interesting when considering the modular nature of nucleic acids. An optimal delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel,Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel,Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel,Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
461
|
Bhattacharyya P, Biswas SC. Small Non-coding RNAs: Do They Encode Answers for Controlling SARS-CoV-2 in the Future? Front Microbiol 2020; 11:571553. [PMID: 33072032 PMCID: PMC7530945 DOI: 10.3389/fmicb.2020.571553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus responsible for the current COVID-19 (coronavirus disease 2019) pandemic, which has hit the world since December 2019. It has spread to about 216 countries worldwide, affecting more than 21.7 million people so far. Although clinical trials of a number of promising antiviral drugs and vaccines against COVID-19 are underway, it is hard to predict how successful these drug- or vaccine-based therapeutics are eventually going to be in combating COVID-19 because most of such therapeutic strategies have failed against human coronaviruses such as SARS-CoV and MERS-CoV (Middle East respiratory syndrome coronavirus) responsible for similar pandemics in the past. In that context, we would like to bring to scientific attention another group of endogenous regulatory molecules, the small non-coding RNAs, especially the microRNAs, which are found to regulate critical cellular pathways in a number of disease conditions, including RNA viral infections. This review will focus on understanding the effect of altered microRNA expression during coronavirus-mediated infections and how it may provide clues for further exploring the pathogenesis of SARS-CoV-2, with a view of developing RNAi-based therapeutics and biomarkers against COVID-19.
Collapse
Affiliation(s)
- Pallabi Bhattacharyya
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhas C Biswas
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
462
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
463
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
464
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
465
|
Sardar R, Satish D, Birla S, Gupta D. Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon 2020; 6:e04658. [PMID: 32844125 PMCID: PMC7439967 DOI: 10.1016/j.heliyon.2020.e04658] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
We have performed an integrative analysis of SARS-CoV-2 genome sequences from different countries. Apart from mutational analysis, we have predicted host antiviral miRNAs targeting virus genes, PTMs in the virus proteins and antiviral peptides. A comparison of the analyses with other coronavirus genomes has been performed, wherever possible. Our analysis confirms unique features in the SARS-CoV-2 genomes absent in other evolutionarily related coronavirus family genomes, which presumably confer unique infection, transmission and virulence capabilities to the virus. For understanding the crucial factors involved in host-virus interactions, we have performed Bioinformatics aided analysis integrated with experimental data related to other corona viruses. We have identified 42 conserved miRNAs that can potentially target SARS-CoV-2 genomes. Interestingly, out of these, 3 are previously reported to exhibit antiviral activity against other respiratory viruses. Gene expression analysis of known host antiviral factors reveals significant over-expression of IFITM3 and down regulation of cathepsins during SARS-CoV-2 infection, suggesting its active role in pathogenesis and delayed immune response. We also predicted antiviral peptides which can be used in designing peptide based drugs against SARS-CoV-2. Our analysis explores the functional impact of the virus mutations on its proteins and interaction of its genes with host antiviral mechanisms.
Collapse
Affiliation(s)
- Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Deepshikha Satish
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| | - Shweta Birla
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
466
|
Potentials of miR-15/16 targeting cancer stem cell pathways: Novel implication in cancer chemotherapy. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
467
|
Mirzaei R, Mohammadzadeh R, Mirzaei H, Sholeh M, Karampoor S, Abdi M, Alikhani MY, Kazemi S, Ahmadyousefi Y, Jalalifar S, Yousefimashouf R. Role of microRNAs in Staphylococcus aureus infection: Potential biomarkers and mechanism. IUBMB Life 2020; 72:1856-1869. [PMID: 32516518 DOI: 10.1002/iub.2325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus is known as a common pathogen that colonizes 30% of healthy humans. Additionally, this bacterium can cause a number of serious infections, that is, endocarditis, bacteremia, pneumonia, wound, skin infections, and tissue abscesses. A variety of cellular and molecular pathways and targets are involved in response against S. aureus. Among them, microRNAs (miRNAs) have crucial roles in response against S. aureus. In this regard, it has been shown that these molecules exert their regulatory roles via modulating a wide range of events, such as inflammatory reactions, host innate, and adaptive immunity. Current works have provided insight into the crucial involvement of miRNAs in immune defense toward Staphylococcal infections. Herein, we highlighted the current findings on the deregulation of different miRNAs in S. aureus-infected cells. Moreover, we summarized the mechanisms and targets of miRNAs in S. aureus infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
468
|
Abstract
Heart failure (HF) remains a major cause of death and disability worldwide. Currently, B-type natriuretic peptide and N-terminal pro-brain natriuretic peptide are diagnostic biomarkers used in HF. Although very sensitive, they are not specific enough and do not allow the prediction or early diagnosis of HF. Many ongoing studies focus on determining the underlying cause and understanding the mechanisms of HF on the cellular level. MicroRNAs (miRNAs) are non-coding RNAs which control the majority of cellular processes and therefore are considered to have a potential clinical application in HF. In this review, we aim to provide synthesized information about miRNAs associated with ejection fraction, HF etiology, diagnosis, and prognosis, as well as outline therapeutic application of miRNAs in HF. Further, we discuss methodological challenges associated with the analysis of miRNAs and provide recommendations for defining a study population, collecting blood samples, and selecting detection methods to study miRNAs in a reliable and reproducible way. This review is intended to be an accessible tool for clinicians interested in the field of miRNAs and HF.
Collapse
|
469
|
Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed Pharmacother 2020; 131:110655. [PMID: 32853909 DOI: 10.1016/j.biopha.2020.110655] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbance of endoplasmic reticulum (ER) homeostasis triggered by the accumulation of unfolded proteins and advanced glycation end-products (AGEs) plays a major role in pathophysiology of diabetic nephropathy. Activation of receptor for AGEs (RAGE) stimulates NADPH oxidase-mediated reactive oxygen species (ROS) production, leading to ER stress, inflammation, glomerular hypertrophy, podocyte injury, and renal fibrosis. A growing body of evidence indicates that non-coding RNAs (ncRNAs) could rescue ER stress and renal inflammation by the epigenetic modification. This review summarizes ncRNA regulation in AGE/RAGE signaling-mediated ER stress, and discusses the opportunities and challenges of ncRNA-loaded extracellular vesicle therapy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
470
|
Sardar R, Satish D, Birla S, Gupta D. Dataset of mutational analysis, miRNAs targeting SARS-CoV-2 genes and host gene expression in SARS-CoV and SARS-CoV-2 infections. Data Brief 2020; 32:106207. [PMID: 32864402 PMCID: PMC7442128 DOI: 10.1016/j.dib.2020.106207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022] Open
Abstract
The identification of host-miRNAs targeting mutated virus genes is crucial to understand the miRNA mediated host-defense mechanism in virus infections. To understand the mechanism in COVID-19 infections, we collected genome sequences of SARS-CoV-2 with its metadata from the GISAID database (submitted till April 2020) and identified mutational changes in the sequences. The dataset consists of genes with mutation event count and entropy scores. We predicted host-miRNAs targeting the genes in the genomes and compared it with that in related viral species. We have identified 2284 miRNAs targeting MERS genomes, 2074 miRNAs targeting SARS genomes, and 1599 miRNAs targeting SARS-CoV-2 genomes, identified using the miRNA target prediction software miRanda. The host miRNAs targeting SARS-CoV-2 genes were further validated to be anti-viral miRNAs and their role in respiratory diseases through a literature survey, which helped in the identification of 42 conserved antiviral miRNAs. The data could be used to validate the anti-viral role of the predicted miRNAs and design miRNA-based therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India.,Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Deepshikha Satish
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| | - Shweta Birla
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
471
|
Daveri E, Vergani E, Shahaj E, Bergamaschi L, La Magra S, Dosi M, Castelli C, Rodolfo M, Rivoltini L, Vallacchi V, Huber V. microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Front Immunol 2020; 11:1214. [PMID: 32793185 PMCID: PMC7387687 DOI: 10.3389/fimmu.2020.01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano La Magra
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Dosi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
472
|
Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci 2020; 259:118239. [PMID: 32784058 DOI: 10.1016/j.lfs.2020.118239] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
AIMS MicroRNAs (miRs) are key modulators of cellular processes such as proliferation, apoptosis, as well as anti-cancer immune responses. Here, we evaluated the role of miR-424-5p in breast cancer (BC) and investigated its effects on T cell-related immune response. MAIN METHODS BC tissues and cell lines were prepared and the expression of miR-424-5p and PD-L1, as well as the underlying molecular pathways, were assessed via qRT-PCR and western blotting. The MTT assay and flow cytometry were used to assess the effect of miR-424-5p on proliferation, apoptosis, autophagy, and cell cycle progression. The co-culture of T cells with MDA-MB-231 was performed for evaluating the role of miR-424-5p in rescuing T cell exhaustion. KEY FINDINGS The results indicated the down-regulation of miR-424-5p and up-regulation of PD-L1 expression in BC tissue specimens. MiR-424-5p transfection into PD-L1 overexpressing MDA-MB-231 cells decreased the expression of PD-L1. Also, miR-424-5p could reduce MDA-MB-231 cell viability through modulating apoptosis and autophagy pathways. Furthermore, miR-424-5p transfection leads to decreased colony formation and increased cell number at the G2/M phase. Western blot analysis illustrated that miR-424-5p could exert its anti-proliferative effect via modulating PTEN/PI3K/AKT/mTOR pathway. Moreover, it was demonstrated that suppression of PD-L1 by miR-424-5p could participate in regulating the expression of effector cytokines in T cells. SIGNIFICANCE MiR-424-5p could be considered as a potential tumor-suppressor miR in regulating BC cellular growth, apoptosis, and T cell-related immune response through targeting PD-L1, and its downstream mediators. Therefore, we recognized miR-424-5p as a promising candidate for miR restoration therapy in BC patients.
Collapse
|
473
|
Ciszkowicz E, Porzycki P, Semik M, Kaznowska E, Tyrka M. MiR-93/miR-375: Diagnostic Potential, Aggressiveness Correlation and Common Target Genes in Prostate Cancer. Int J Mol Sci 2020; 21:E5667. [PMID: 32784653 PMCID: PMC7460886 DOI: 10.3390/ijms21165667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of miRNAs has a fundamental role in the initiation, development and progression of prostate cancer (PCa). The potential of miRNA in gene therapy and diagnostic applications is well documented. To further improve miRNAs' ability to distinguish between PCa and benign prostatic hyperplasia (BPH) patients, nine miRNA (-21, -27b, -93, -141, -205, -221, -182, -375 and let-7a) with the highest reported differentiation power were chosen and for the first time used in comparative studies of serum and prostate tissue samples. Spearman correlations and response operating characteristic (ROC) analyses were applied to assess the capability of the miRNAs present in serum to discriminate between PCa and BPH patients. The present study clearly demonstrates that miR-93 and miR-375 could be taken into consideration as single blood-based non-invasive molecules to distinguish PCa from BPH patients. We indicate that these two miRNAs have six common, PCa-related, target genes (CCND2, MAP3K2, MXI1, PAFAH1B1, YOD1, ZFYVE26) that share the molecular function of protein binding (GO:0005515 term). A high diagnostic value of the new serum derived miR-182 (AUC = 0.881, 95% confidence interval, CI = 0.816-0.946, p < 0.0001, sensitivity and specificity were 85% and 79%, respectively) is also described.
Collapse
Affiliation(s)
- Ewa Ciszkowicz
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Paweł Porzycki
- Department of Urology, Municipal Hospital in Rzeszów, 35-241 Rzeszów, Poland;
| | - Małgorzata Semik
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| | - Ewa Kaznowska
- Faculty of Medicine, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Mirosław Tyrka
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (M.S.); (M.T.)
| |
Collapse
|
474
|
Mitsis T, Pierouli K, Diakou KL, Papakonstantinou E, Bacopoulou F, Chrousos GP, Vlachakis D. Exosomics. ACTA ACUST UNITED AC 2020; 26. [PMID: 32832420 PMCID: PMC7440046 DOI: 10.14806/ej.26.0.934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles have been the focus of a large number of studies in the past five years. Exosomes, a subgroup of extracellular vesicles, are of particularly high interest because they partake in a wide number of biological pathways. Produced by a variety of cells, exosomes have an important role in both physiological and pathological conditions. Exosome cargo heavily defines the vesicles’ unique characteristics, and the cargo with the most intriguing prospects in its’ biomedical applications is the non-coding RNAs. Non-coding RNAs, and specifically microRNAs are implicated in the regulation of many biological processes and have been associated with numerous diseases. Exosomes containing such important cargo can be used as biomarkers, therapeutic biomaterials, or even drug carriers. The potential media use of exosomes seems promising. However, some obstacles should be overcome before their clinical application. Synthetic exosome-like biomolecules may be a solution, but their production is still in their beginning stages. This review provides concise information regarding the current trends in exosome studies.
Collapse
Affiliation(s)
- Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Kalliopi Lo Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
475
|
Jana S, Krishna M, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Therapeutic targeting of miRNA-216b in cancer. Cancer Lett 2020; 484:16-28. [DOI: 10.1016/j.canlet.2020.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
|
476
|
Abstract
PURPOSE OF REVIEW Regulatory T cells (Tregs) are critical contributors to immune homeostasis and their dysregulation can lead to the loss of immune tolerance and autoimmune diseases like type 1 diabetes (T1D). Recent studies have highlighted microRNAs (miRNAs) as important regulators of the immune system, by fine-tuning relevant genes in various immune cell types. In this review article, we discuss recent insights into miRNA regulation of immune tolerance and activation. Specifically, we discuss how the dysregulation of miRNAs in T cells contributes to their aberrant function and the onset of islet autoimmunity, as well as their potential as targets of novel intervention strategies to interfere with autoimmune activation. RECENT FINDINGS Several studies have shown that the dysregulation of individual miRNAs in T cells can contribute to impaired immune tolerance, contributing to onset and progression of islet autoimmunity. Importantly, the targeting of these miRNAs, including miR-92a, miR-142-3p and miR-181a, resulted in relevant effects on downstream pathways, improved Treg function and reduced islet autoimmunity in murine models. miRNAs are critical regulators of immune homeostasis and the dysregulation of individual miRNAs in T cells contributes to aberrant T cell function and autoimmunity. The specific targeting of individual miRNAs could improve Treg homeostasis and therefore limit overshooting T cell activation and islet autoimmunity.
Collapse
Affiliation(s)
- Martin G. Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, 80939 Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Ingolstaedter Landstrasse 1, 85764 Munich-, Neuherberg, Germany
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, 80939 Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Ingolstaedter Landstrasse 1, 85764 Munich-, Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| |
Collapse
|
477
|
Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol 2020; 10:1271. [PMID: 32850386 PMCID: PMC7399632 DOI: 10.3389/fonc.2020.01271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
478
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
479
|
Saleh R, Toor SM, Sasidharan Nair V, Elkord E. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Front Immunol 2020; 11:1469. [PMID: 32760400 PMCID: PMC7371937 DOI: 10.3389/fimmu.2020.01469] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
A balance between co-inhibitory and co-stimulatory signals in the tumor microenvironment (TME) is critical to suppress tumor development and progression, primarily via maintaining effective immunosurveillance. Aberrant expression of immune checkpoints (ICs), including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can create an immune-subversive environment, which helps tumor cells to evade immune destruction. Recent studies showed that epigenetic modifications play critical roles in regulating the expression of ICs and their ligands in the TME. Reports showed that the promoter regions of genes encoding ICs/IC ligands can undergo inherent epigenetic alterations, such as DNA methylation and histone modifications (acetylation and methylation). These epigenetic aberrations can significantly contribute to the transcriptomic upregulation of ICs and their ligands. Epigenetic therapeutics, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert these epigenetic anomalies acquired during the progression of disease. These discoveries have established a promising therapeutic modality utilizing the combination of epigenetic and immunotherapeutic agents to restore the physiological epigenetic profile and to re-establish potent host immunosurveillance mechanisms. In this review, we highlight the roles of epigenetic modifications on the upregulation of ICs, focusing on tumor development, and progression. We discuss therapeutic approaches of epigenetic modifiers, including clinical trials in various cancer settings and their impact on current and future anti-cancer therapies.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
480
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
481
|
Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. TRANSLATIONAL MEDICINE OF AGING 2020; 4:81-85. [PMID: 32835152 PMCID: PMC7341035 DOI: 10.1016/j.tma.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Borja-Gonzalez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Jose C Casas-Martinez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Brian McDonagh
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Institute of Aging and Chronic Disease & The Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Aging, CIMA, University of Liverpool, Liverpool, L7 8TJ, UK
| |
Collapse
|
482
|
Wong GL, Abu Jalboush S, Lo HW. Exosomal MicroRNAs and Organotropism in Breast Cancer Metastasis. Cancers (Basel) 2020; 12:E1827. [PMID: 32646059 PMCID: PMC7408921 DOI: 10.3390/cancers12071827] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy for women in which one in eight women will be diagnosed with the disease in their lifetime. Despite advances made in treating primary breast cancer, there is still no effective treatment for metastatic breast cancer. Consequently, metastatic breast cancer is responsible for 90% of breast cancer-related deaths while only accounting for approximately one third of all breast cancer cases. To help develop effective treatments for metastatic breast cancer, it is important to gain a deeper understanding of the mechanisms by which breast cancer metastasizes, particularly, those underlying organotropism towards brain, bone, and lungs. In this review, we will primarily focus on the roles that circulating exosomal microRNAs (miRNAs) play in organotropism of breast cancer metastasis. Exosomes are extracellular vesicles that play critical roles in intercellular communication. MicroRNAs can be encapsulated in exosomes; cargo-loaded exosomes can be secreted by tumor cells into the tumor microenvironment to facilitate tumor-stroma interactions or released to circulation to prime distant organs for subsequent metastasis. Here, we will summarize our current knowledge on the biogenesis of exosomes and miRNAs, mechanisms of cargo sorting into exosomes, the exosomal miRNAs implicated in breast cancer metastasis, and therapeutic exosomal miRNAs.
Collapse
Affiliation(s)
- Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (G.L.W.); (S.A.J.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
483
|
Montague-Cardoso K, Malcangio M. The role of microRNAs in neurons and neuroimmune communication in the dorsal root ganglia in chronic pain. Neurosci Lett 2020; 735:135230. [PMID: 32621949 DOI: 10.1016/j.neulet.2020.135230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Despite being a life-restricting condition, chronic pain remains poorly treated. A better understanding of the underlying mechanisms of chronic pain and thence development of innovative targets is therefore essential. Recently we have started to elucidate the importance of the role of microRNAs (miRs) in preclinical chronic pain. miRs are small, non-coding RNAs that regulate genes including those involved in nociceptive signalling. MiRs can exert their effects both intracellularly and extracellularly, the latter of which requires that they are released either as naked species or packaged in exosomes. Here we discuss changes in miR expression that occur in the dorsal root ganglia in murine models of chronic pain. We consider the downstream targets of changes in miR expression, including voltage-gated ion channels, as well as discuss extracellular consequences such as changes in macrophage phenotype that constitute of means by which neuron-immune cell crosstalk occurs. Such miR-mediated intracellular communication could provide a novel target for the treatment of chronic pain, which would be most effective if tailored to the specific cause of pain. Indeed, we conclude by reviewing evidence for the involvement of miRs in clinical cases of chronic pain, supporting the notion that tailored, miR-targeted therapies could prove to be an effective new strategy for the treatment of chronic pain clinically.
Collapse
Affiliation(s)
| | - Marzia Malcangio
- Wolfson CARD, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
484
|
Monteleone NJ, Lutz CS. miR-708-5p targets oncogenic prostaglandin E2 production to suppress a pro-tumorigenic phenotype in lung cancer cells. Oncotarget 2020; 11:2464-2483. [PMID: 32655834 PMCID: PMC7335672 DOI: 10.18632/oncotarget.27614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Many cancers maintain an inflammatory microenvironment to promote their growth. Lung cancer is of particular importance, as it is the deadliest cancer worldwide. One inflammatory pathway commonly dysregulated in cancer is the metabolism of arachidonic acid (AA) by Cyclooxygenase-2 (COX-2) and microsomal Prostaglandin E Synthase 1 (mPGES-1) into Prostaglandin E2 (PGE2). While researchers have identified PGE2's pro-tumorigenic functions, the mechanisms governing overexpression of COX-2 and mPGES-1 are incompletely understood. MicroRNAs (miRNAs) are important post-transcriptional regulators commonly dysregulated in cancer. Interestingly, miR-708-5p (miR-708) is predicted to target both COX-2 and mPGES-1. In this study, we show that high miR-708 expression is associated with survival rates in lung squamous cell carcinoma patients. miR-708 also represses PGE2 production by suppressing both COX-2 and mPGES-1 expression in lung cancer cells. miR-708 regulation of COX-2 and mPGES-1 is mediated through targeting of their 3' untranslated regions (UTRs). Moreover, miR-708 decreases proliferation, survival, and migration of lung cancer cells, which can be partially attributed to miR-708's inhibition of PGE2 signaling. Lastly, we identify novel miR-708 predicted targets and possible regulators of miR-708 expression in lung cancer. Collectively, these data demonstrate that dysregulated miR-708 expression contributes to exacerbated PGE2 production, leading to an enhanced pro-tumorigenic phenotype in lung cancer cells.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
485
|
Wang X, Feng Y, Zhang P, Chen H, Bai J, Wang F, He A. miR-582-5p serves as an antioncogenic biomarker in intermediate risk AML with normal cytogenetics and could inhibit proliferation and induce apoptosis of leukemia cells. Cell Biol Int 2020; 44:2021-2030. [PMID: 32543749 DOI: 10.1002/cbin.11408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022]
Abstract
Numerous studies confirmed that aberrant microRNA (miRNA) expression contributes to cancer development and progression. We carried out this study to explore the expression profile of miRNAs in intermediate risk acute myeloid leukemia (AML) and locate certain miRNAs as biomarkers. We profiled differentially expressed miRNAs by performing miRNA sequencing analysis in the patients' samples. Bioinformatic analysis showed the most significantly expressed genes mostly involved in cellular component organization, cell differentiation, and cell development. Reverse-transcription polymerase chain reaction validated the expression of miR-582-5p in different groups of AML samples. It was confirmed that miR-582-5p was downregulated in newly diagnosed AML and relapse/refractory AML compared with CR AML or controls. Among intermediate risk AML patients with normal cytogenetics, a lower level of miR-582-5p is correlated with an unfavorable outcome, and a shorter overall survival. Gain- and loss-of-function experiments revealed that miR-582-5p could inhibit proliferation, suppress migration, and invasion ability and induce apoptosis of leukemia cells. Furthermore, overexpression of miR-582-5p can increase sensitivity of cells to Ara-C. In conclusion, miR-582-5p can serve as an antioncogenic biomarker in intermediate risk AML with normal cytogenetics for risk classification and outcome prediction. These results showed a novel role for miR-582-5p in predicting the prognosis and promoting the tumor growth of AML.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuandong Feng
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peihua Zhang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Chen
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fangxia Wang
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Hematology Department, National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
486
|
Khaw PT, Bouremel Y, Brocchini S, Henein C. The control of conjunctival fibrosis as a paradigm for the prevention of ocular fibrosis-related blindness. "Fibrosis has many friends". Eye (Lond) 2020; 34:2163-2174. [PMID: 32587389 DOI: 10.1038/s41433-020-1031-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
The processes involved in ocular fibrosis after disease or ocular tissue injury, including surgery play an important part in the development or failure of treatment of most blinding diseases. Ocular fibrosis is one of the biggest areas of unmet need in ophthalmology. Effective anti-scarring therapies could potentially revolutionise the management of many diseases like glaucoma worldwide. The response of a quiescent or activated conjunctiva to glaucoma surgery and aqueous flow with different stimulatory components and the response to different interventions and future therapeutics is a paradigm for scarring prevention in other parts of the eye and orbit. Evolution in our understanding of molecular and cellular mechanisms in ocular fibrosis is leading to the introduction of new and re-purposed therapeutic agents, targeting a wide range of key processes. This review provides current and futures perspectives on different approaches to conjunctival fibrosis following glaucoma surgery and highlights the challenges faced in implementing these therapies with maximal effect and minimal side effects.
Collapse
Affiliation(s)
- Peng Tee Khaw
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK. .,UCL Institute of Ophthalmology, London, UK.
| | - Yann Bouremel
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,UCL Institute of Ophthalmology, London, UK.,UCL School of Pharmacy, London, UK
| | - Stephen Brocchini
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,UCL Institute of Ophthalmology, London, UK.,UCL School of Pharmacy, London, UK
| | - Christin Henein
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,UCL Institute of Ophthalmology, London, UK.,UCL School of Pharmacy, London, UK
| |
Collapse
|
487
|
Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020; 36:101607. [PMID: 32593128 PMCID: PMC7322687 DOI: 10.1016/j.redox.2020.101607] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that do not encode for proteins and play key roles in the regulation of gene expression. miRNAs are involved in a comprehensive range of biological processes such as cell cycle control, apoptosis, and several developmental and physiological processes. Oxidative stress can affect the expression levels of multiple miRNAs and, conversely, miRNAs may regulate the expression of redox sensors, alter critical components of the cellular antioxidants, interact with the proteasome, and affect DNA repair systems. The number of publications identifying redox-sensitive miRNAs has increased significantly over the last few years, and some miRNA targets such as Nrf2, SIRT1 and NF-κB have been identified. The complex interplay between miRNAs and ROS is discussed together with their role in myocardial ischemia-reperfusion injury and the potential use of circulating miRNAs as biomarkers of myocardial infarction. Detailed knowledge of redox-sensitive miRNAs is needed to be able to effectively use individual compounds or sets of miRNA-modulating compounds to improve the health-related outcomes associated with different diseases.
Collapse
Affiliation(s)
- Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda Diagonal 643, 08028, Barcelona, Spain.
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA; Department of Physiology, Neurobiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
488
|
Chauhan SJ, Thyagarajan A, Sahu RP. Functional Significance of Mirna-149 in Lung Cancer: Can it be Utilized as a Potential Biomarker or a Therapeutic Target? AUSTIN JOURNAL OF MEDICAL ONCOLOGY 2020; 7:1048. [PMID: 38628497 PMCID: PMC11019914 DOI: 10.26420/austinjmedoncol.2020.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Accumulating evidence has documented the significance of miR-149 as a promising tumor-suppressive non-coding RNA that play critical roles in regulating genes involved in cancer growth and metastasis. Notably, the ability of miR-149 to be utilized as a potential biomarker in the diagnosis/prognosis or a therapeutic target has also been explored using various cellular and preclinical models, as well as in clinical settings of lung cancer. While the applicability of miR-149 in assessing tumor progression has been suggested, its potential in predicting treatment outcomes is needed to be verified in diverse settings of lung cancer patients. The current review presents an overview of the functional significance of miR-149 with ongoing challenges in non-small cell lung cancer.
Collapse
Affiliation(s)
- S J Chauhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - A Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| | - R P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, USA
| |
Collapse
|
489
|
Skafi N, Fayyad-Kazan M, Badran B. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression. Gene 2020; 754:144888. [PMID: 32544493 DOI: 10.1016/j.gene.2020.144888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The development and progression of different pathologies including, cancer, are associated with suppressed immune responses. This restrained immune activity could be associated with the activation of different immune checkpoint pathways that mediate immunosuppressive functions. Therapeutic Protocols based on abolishing the activity of immune check points provided a promising potential for treating cancer. Among the distinct known immune checkpoints, PD-1/PD-L1 and CTLA-4, are the most studied and have been the focus for development of different blocking agents. Monoclonal antibodies that can block PD-1, PD-L1 or CTLA4 have been approved for treatment of different cancers. MicroRNAs (miRNAs), short non-coding regulatory RNA molecules, could repress mRNA expression at a post-transcriptional level. Many miRNAs have been reported to modulate the expression of CTLA-4 and PD-1/PD-L1, either directly or indirectly, in multiple pathological cases, mainly cancer. In this review, after a brief introduction about T cell activation and immune checkpoints, the miRNAs regulating the expression of CTLA-4 and PD-1/PD-L1 are discussed with highlights on their role in cancer. Many of these miRNAs could serve as novel treatments in different types of cancer as detailed throughout the review.
Collapse
Affiliation(s)
- Najwa Skafi
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
490
|
García-Guede Á, Vera O, Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development. Antioxidants (Basel) 2020; 9:antiox9060468. [PMID: 32492865 PMCID: PMC7346131 DOI: 10.3390/antiox9060468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.
Collapse
Affiliation(s)
- Álvaro García-Guede
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| | - Inmaculada Ibáñez-de-Caceres
- Epigenetics Laboratory, INGEMM, Hospital La PAZ. 28046 Madrid, Spain; (Á.G.-G.); (I.I.-d.-C.)
- Experimental Therapies and Novel Biomarkers in Cancer, Instituto de Investigación Sanitaria del Hospital La Paz. IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
491
|
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol 2020; 15:261-278. [PMID: 32451752 PMCID: PMC7283209 DOI: 10.1007/s11523-020-00717-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs represent a significant proportion of the human genome. After having been considered as 'junk' for a long time, non-coding RNAs are now well established as playing important roles in maintaining cellular homeostasis and functions. Some non-coding RNAs show cell- and tissue-specific expression patterns and are specifically deregulated under pathological conditions (e.g. cancer). Therefore, non-coding RNAs have been extensively studied as potential biomarkers in the context of different diseases with a focus on microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for several years. Since their discovery, miRNAs have attracted more attention than lncRNAs in research studies; however, both families of non-coding RNAs have been established to play an important role in gene expression control, either as transcriptional or post-transcriptional regulators. Both miRNAs and lncRNAs can regulate key genes involved in the development of cancer, thus influencing tumour growth, invasion, and metastasis by increasing the activation of oncogenic pathways and limiting the expression of tumour suppressors. Furthermore, miRNAs and lncRNAs are also emerging as important mediators in drug-sensitivity and drug-resistance mechanisms. In the light of these premises, a number of pre-clinical and early clinical studies are exploring the potential of non-coding RNAs as new therapeutics. The aim of this review is to summarise the latest knowledge of the use of miRNAs and lncRNAs as therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Salati
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Milko B Mirchev
- Clinic of Gastroenterology, Medical University, Varna, Bulgaria
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
492
|
Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020; 10:810. [PMID: 32547948 PMCID: PMC7273922 DOI: 10.3389/fonc.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Metastasis, the spread of cancer cells from a primary tumor to a secondary site, represents one of the hallmarks of malignancies and the leading cause of cancer-related death. The process of metastasis is a result of the interaction of genetic heterogeneity, abnormal metabolism, and tumor microenvironments. On the other hand, metabolic reprogramming, another malignancy hallmark, refers to the ability of cancer cells to alter metabolic and nutrient acquisition modes in order to support the energy demands for accomplishing the rapid growth, dissemination, and colonization. Cancer cells remodel metabolic patterns to supplement nutrients for their metastasis and also undergo metabolic adjustments at different stages of metastasis. Genes and signaling pathways involved in tumor metabolic reprogramming crosstalk with those participating in metastasis. Non-coding RNAs are a group of RNA molecules that do not code proteins but have pivotal biological functions. Some of microRNAs and lncRNAs, which are the two most extensively studied non-coding RNAs, have been identified to participate in regulating metabolic remodeling of glucose, lipid, glutamine, oxidative phosphorylation, and mitochondrial respiration, as well as the process of metastasis involving cell motility, transit in the circulation and growth at a new site. This article reviews recent progress on non-coding RNAs operating in the crosstalk between tumor metabolic reprogramming and metastasis, particularly those influencing metastasis through regulating metabolism, and the underlying mechanisms of how they exert their regulatory functions.
Collapse
Affiliation(s)
- Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
493
|
Brites D. Regulatory function of microRNAs in microglia. Glia 2020; 68:1631-1642. [PMID: 32463968 DOI: 10.1002/glia.23846] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Microglia are CNS-resident cells involved in immune surveillance and maintenance of intercellular homeostasis, while also contributing to neurologic pathologies. MicroRNAs (miRNAs) are a class of small (~22 nucleotides) single-stranded noncoding RNAs that participate in gene regulation at the post-transcriptional level. miRNAs typically bind to the untranslated region (3' UTR) of RNAs. It has been shown that miRNAs are important players in controlling inflammation and that their abnormal expression is linked to cancer and ageing, and to the onset and progression of neurodegenerative disease. Furthermore, miRNAs participate in intercellular trafficking. Thus, miRNAs are released from cells in a free form, bound to proteins or packaged within extracellular vesicles (EVs), exerting paracrine and long distance signaling. In this review, recent findings on the role of miRNAs as drivers of microglia phenotypic changes and their cotribution in neurological disease are addressed. MAIN POINTS: miRNAs have a key role in microglia function/dysfunction, polarization, and restoration. Microglia are both a source and recipient of extracellular vesicles (EVs) containing miRNAs. Extracellular miRNAs may be found as soluble (free and EV cargo) and protein complexes.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
494
|
Salerno AG, van Solingen C, Scotti E, Wanschel ACBA, Afonso MS, Oldebeken SR, Spiro W, Tontonoz P, Rayner KJ, Moore KJ. LDL Receptor Pathway Regulation by miR-224 and miR-520d. Front Cardiovasc Med 2020; 7:81. [PMID: 32528976 PMCID: PMC7256473 DOI: 10.3389/fcvm.2020.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr +/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.
Collapse
Affiliation(s)
- Alessandro G Salerno
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Coen van Solingen
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Elena Scotti
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amarylis C B A Wanschel
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Milessa S Afonso
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Scott R Oldebeken
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Westley Spiro
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
495
|
Chen S, Xu M, Zhao J, Shen J, Li J, Liu Y, Cao G, Ma J, He W, Chen X, Shan T. MicroRNA-4516 suppresses pancreatic cancer development via negatively regulating orthodenticle homeobox 1. Int J Biol Sci 2020; 16:2159-2169. [PMID: 32549762 PMCID: PMC7294951 DOI: 10.7150/ijbs.45933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal human cancers without efficient therapeutic strategy. MicoRNAs (miRNAs) are a group of small non-coding RNAs involved in multiple biological processes including tumor development and progression. In this study, we investigated the expression and function of miR-4516 in pancreatic cancer. MiR-4516 was low-expressed in pancreatic cancer tissues and cell lines. Overexpression of miR-4516 inhibited pancreatic cancer cell proliferation, migration and invasion, while promoted cell apoptosis in vitro. Further, overexpression of miR-4516 suppressed xenograft pancreatic tumor growth in vivo. Bioinformatics analysis was performed and miR-4516 was predicted to negatively regulate orthodenticle homeobox 1 (OTX1) expression by binding to its 3'-UTR. Consistently, OTX1 was highly expressed in pancreatic cancer tissues and cell lines. Knockdown of OTX1 expression suppressed pancreatic cancer cell migration and invasion, with down-regulated MMP2 and MMP9 expression. Moreover, we demonstrated that miR-4516 regulated pancreatic cancer cell growth, migration, invasion and apoptosis via targeting OTX1. Overexpression of OTX1 could partially abrogate the inhibitory effect of miR-4516. Taken together, we conclude that miR-4516 could function as a tumor suppressor via targeting OTX1. These findings suggest that miR-4516/OTX1 axis might be a novel therapeutic target for miRNA-based therapy for pancreatic cancer patients.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Jing Zhao
- School of Science, Xi'an Jiaotong University, PR China
| | - Jiaqi Shen
- School of Life Science, Xiamen University, PR China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Weizhou He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, PR China
| |
Collapse
|
496
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
497
|
Potential of stem cell therapy in intracerebral hemorrhage. Mol Biol Rep 2020; 47:4671-4680. [PMID: 32415506 DOI: 10.1007/s11033-020-05457-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/11/2020] [Indexed: 01/01/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a common disease associated with high mortality and morbidity. The treatment of patients with ICH includes medical and surgical interventions. New areas of surgical intervention have been focused on the evacuation of hematoma through minimally invasive neurosurgery. In contrast, there have been no significant advances in the development of medical interventions for functional recovery after ICH. Stem cells exert multiple therapeutic functions and have emerged as a promising treatment strategy. Herein, we summarized the pathophysiology of ICH and its treatment targets, and we introduced the therapeutic mechanisms of stem cells (e.g. neutrotrophy and neuroregeneration). Moreover, we reviewed and summarized the experimental designs of the preclinical studies, including the types of cells and the timing and routes of stem cell administration. We further listed and reviewed the completed/published and ongoing clinical trials supporting the safety and efficacy of stem cell therapy in ICH. The limitations of translating preclinical studies into clinical trials and the objectives of future studies were discussed. In conclusion, current literatures showed that stem cell therapy is a promising treatment in ICH and further translation research on judiciously selected group of patients is warranted before it can be extensively applied in clinical practice.
Collapse
|
498
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
499
|
Lavin DP, Tiwari VK. Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front Oncol 2020; 10:554. [PMID: 32477926 PMCID: PMC7235173 DOI: 10.3389/fonc.2020.00554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is the process whereby a polarized epithelial cell ceases to maintain cell-cell contacts, loses expression of characteristic epithelial cell markers, and acquires mesenchymal cell markers and properties such as motility, contractile ability, and invasiveness. A complex process that occurs during development and many disease states, EMT involves a plethora of transcription factors (TFs) and signaling pathways. Whilst great advances have been made in both our understanding of the progressive cell-fate changes during EMT and the gene regulatory networks that drive this process, there are still gaps in our knowledge. Epigenetic modifications are dynamic, chromatin modifying enzymes are vast and varied, transcription factors are pleiotropic, and signaling pathways are multifaceted and rarely act alone. Therefore, it is of great importance that we decipher and understand each intricate step of the process and how these players at different levels crosstalk with each other to successfully orchestrate EMT. A delicate balance and fine-tuned cooperation of gene regulatory mechanisms is required for EMT to occur successfully, and until we resolve the unknowns in this network, we cannot hope to develop effective therapies against diseases that involve aberrant EMT such as cancer. In this review, we focus on data that challenge these unknown entities underlying EMT, starting with EMT stimuli followed by intracellular signaling through to epigenetic mechanisms and chromatin remodeling.
Collapse
Affiliation(s)
| | - Vijay K. Tiwari
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
500
|
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H, Zhao S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 2020; 20:349-359. [PMID: 32399814 DOI: 10.1007/s10238-020-00627-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with a length of 18-22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Adel Izmailov
- Regional Clinical Oncology Center, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001. .,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|