451
|
Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, Fuchs CS, Willett WC, Richter JM, Chan AT. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology 2013; 145:970-7. [PMID: 23912083 PMCID: PMC3805714 DOI: 10.1053/j.gastro.2013.07.050] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Increased intake of dietary fiber has been proposed to reduce the risk of inflammatory bowel disease (Crohn's disease [CD] and ulcerative colitis [UC]). However, few prospective studies have examined associations between long-term intake of dietary fiber and risk of incident CD or UC. METHODS We collected and analyzed data from 170,776 women, followed up over 26 years, who participated in the Nurses' Health Study, followed up for 3,317,425 person-years. Dietary information was prospectively ascertained via administration of a validated semiquantitative food frequency questionnaire every 4 years. Self-reported CD and UC were confirmed through review of medical records. Cox proportional hazards models, adjusting for potential confounders, were used to calculate hazard ratios (HRs). RESULTS We confirmed 269 incident cases of CD (incidence, 8/100,000 person-years) and 338 cases of UC (incidence, 10/100,000 person-years). Compared with the lowest quintile of energy-adjusted cumulative average intake of dietary fiber, intake of the highest quintile (median of 24.3 g/day) was associated with a 40% reduction in risk of CD (multivariate HR for CD, 0.59; 95% confidence interval, 0.39-0.90). This apparent reduction appeared to be greatest for fiber derived from fruits; fiber from cereals, whole grains, or legumes did not modify risk. In contrast, neither total intake of dietary fiber (multivariate HR, 0.82; 95% confidence interval, 0.58-1.17) nor intake of fiber from specific sources appeared to be significantly associated with risk of UC. CONCLUSIONS Based on data from the Nurses' Health Study, long-term intake of dietary fiber, particularly from fruit, is associated with lower risk of CD but not UC. Further studies are needed to determine the mechanisms that mediate this association.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M, Shao L, Rajashekara G, Saif LJ. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS One 2013; 8:e76962. [PMID: 24098572 PMCID: PMC3788735 DOI: 10.1371/journal.pone.0076962] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022] Open
Abstract
The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea.
Collapse
Affiliation(s)
- Anastasia N. Vlasova
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| | - Kuldeep S. Chattha
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Sukumar Kandasamy
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhe Liu
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Malak Esseili
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Lulu Shao
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Gireesh Rajashekara
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Linda J. Saif
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| |
Collapse
|
453
|
Frémont M, Coomans D, Massart S, De Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 2013; 22:50-6. [PMID: 23791918 DOI: 10.1016/j.anaerobe.2013.06.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/05/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease. We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer. The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations. In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation).
Collapse
Affiliation(s)
- Marc Frémont
- R.E.D Laboratories NV, Z-1 Researchpark 100, 1731 Zellik, Belgium.
| | | | | | | |
Collapse
|
454
|
Abstract
Easy access to next generation sequencing has enabled the rapid analysis of complex microbial populations. To take full advantage of these technologies, animal models enabling the manipulation of human microbiomes and the study of the impact of such perturbations on the host are needed. To this aim we are developing experimentally tractable and clinically relevant pig models of the human adult and infant gastro-intestinal tract. The intestine of germ-free piglets was populated with human adult or infant fecal microbial populations, and the piglets were maintained on solid or milk diet, respectively. Amplicons of 16S rRNA V6 region were deep-sequenced to monitor to what extent the transplanted human microbiomes changed in the pig. Within 24 h of transfer of human fecal microbiome to pigs, bacterial microbiomes rich in Proteobacteria emerged. These populations evolved toward a more diverse composition rich in Bacteroidetes and Firmicutes. In the experiment where infant microbiome was used, the phylogenetic composition of the transplanted bacterial population converged toward that of the human inoculum. A majority of sequences belonged to a relatively small number of operational taxonomic units, whereas at the other end of the abundance spectrum, a large number of rare and transient OTUs were detected. Analysis of fecal and colonic microbiomes originating from the same animal indicate that feces closely replicate the colonic microbiome. We conclude that the pig intestine can be colonized with human fecal microbiomes to generate a realistic model of the human GI tract.
Collapse
|
455
|
Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III - convergence toward clinical trials. Gut Pathog 2013; 5:4. [PMID: 23497650 PMCID: PMC3605358 DOI: 10.1186/1757-4749-5-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/10/2013] [Indexed: 12/14/2022] Open
Abstract
Rapid scientific and technological advances have allowed for a more detailed understanding of the relevance of intestinal microbiota, and the entire body-wide microbiome, to human health and well-being. Rodent studies have provided suggestive evidence that probiotics (e.g. lactobacillus and bifidobacteria) can influence behavior. More importantly, emerging clinical studies indicate that the administration of beneficial microbes, via supplementation and/or fecal microbial transplant (FMT), can influence end-points related to mood state (glycemic control, oxidative status, uremic toxins), brain function (functional magnetic resonance imaging fMRI), and mental outlook (depression, anxiety). However, despite the advances in the area of gastro-biological psychiatry, it becomes clear that there remains an urgent need to explore the value of beneficial microbes in controlled clinical investigations. With the history explored in this series, it is fair to ask if we are now on the cusp of major clinical breakthroughs, or are we merely in the quicksand of Autointoxication II?
Collapse
Affiliation(s)
- Alison C Bested
- Complex Chronic Diseases Program, BC Women’s Hospital and Health Centre, B223A-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Alan C Logan
- CAMNR, 775 Blithedale Avenue Suite 364, Mill Valley, CA 94941, USA
| | - Eva M Selhub
- Harvard Medical School and Massachusetts General Hospital, 40 Crescent St., Suite 201, Waltham, MA, 02453, USA
| |
Collapse
|
456
|
Sepp E, Lõivukene K, Julge K, Voor T, Mikelsaar M. The association of gut microbiota with body weight and body mass index in preschool children of Estonia. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2013; 24:19231. [PMID: 24009544 PMCID: PMC3758928 DOI: 10.3402/mehd.v24i0.19231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/14/2022]
Abstract
Background The gut microbiota has been shown to affect both fat storage and energy harvesting, suggesting that it plays a direct role in the development of obesity. The aim of this study was to investigate whether intestinal colonization by particular species/groups of the intestinal microbiota is related to body weight values in Estonian preschool children born in different years during the entire 1990s. Methods Body weight, height, body mass index (BMI), and quantitative composition of cultivable gut microbiota (staphylococci, enterococci, streptococci, enterobacteria, lactobacilli, anaerobic gram-positive cocci, bifidobacteria, eubacteria, bacteroides, clostridia, and candida) were studied in 51 healthy 5-year-old children (40 were born between 1993 and 94 and 11 were born between 1996 and 97). Results At the age of 5 years, median weight was 19.5 kg and median BMI was 15.3 kg/m2. Significantly higher BMI (p=0.006) was found in 5-year-old children born in late versus early 1990s during the development of socioeconomic situation of Estonia (2% rise in gross domestic product). The counts of the different gut bacteria did not show any association with weight and BMI in the 5-year-old children. However, the BMI values were in positive correlation with a relative share of anaerobic gram-positive bacteria, for example, bifidobacteria when adjusted for sex and year of birth (adj R2=0.459, p=0.026) and eubacteria (adj R2=0.484, p=0.014) in the community of cultured intestinal microbiota. The relative share of bacteroides showed a negative correlation with the childrens’ weight (adj R2=− 0.481, p=0.015). Conclusion The body weight indices of preschool children of the general population are associated with the proportion of anaerobic intestinal microbiota and can be predicted by sex and particular socioeconomic situation from birth to 5 years of age.
Collapse
Affiliation(s)
- Epp Sepp
- Department of Microbiology, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
457
|
Ghosh S, DeCoffe D, Brown K, Rajendiran E, Estaki M, Dai C, Yip A, Gibson DL. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 2013; 8:e55468. [PMID: 23405155 PMCID: PMC3566198 DOI: 10.1371/journal.pone.0055468] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/23/2012] [Indexed: 01/03/2023] Open
Abstract
Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses resulting in sepsis. We conclude that as an anti-inflammatory agent, ω-3 PUFA supplementation during infection may prove detrimental when host inflammatory responses are critical for survival.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Daniella DeCoffe
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ethendhar Rajendiran
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ashley Yip
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- * E-mail:
| |
Collapse
|
458
|
Brown K, DeCoffe D, Molcan E, Gibson DL. Correction: Brown, K., et al. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients 2012, 4, 1095–1119. Nutrients 2012. [PMCID: PMC3509505 DOI: 10.3390/nu4111552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | - Deanna L. Gibson
- Author to whom correspondence should be addressed; ; Tel.: +1-250-807-8790; Fax: +1-250-807-8005
| |
Collapse
|