501
|
Liang H, Bai Y, Li Y, Richardson A, Ward WF. PGC-1alpha-induced mitochondrial alterations in 3T3 fibroblast cells. Ann N Y Acad Sci 2007; 1100:264-79. [PMID: 17460188 DOI: 10.1196/annals.1395.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome proliferation activator receptor (PPAR) gamma-coactivator 1alpha (PGC-1alpha), a transcription coactivator, functions as a master regulator of a wide array of metabolic and physiological processes and is an essential factor in the process of mitochondrial biogenesis. Transfection of NIH 3T3 fibroblasts with a mouse cDNA for PGC-1alpha led to the induction of markers of mitochondrial biogenesis, that is, mitochondrial transcription factor A (mtTFA), cytochrome c, and mitochondrial DNA (mtDNA). Mitochondrial biogenesis-associated net protein synthesis appears to be accomplished by a reduction in the rate of mitochondrial protein degradation with little or no change in the rate of protein synthesis. Overexpression of PGC-1alpha did not adversely affect cellular proliferation. Cellular ATP levels were increased in the transfected cells and they were more resistant to oxidative stress than the control nontransfected 3T3 cells. This resistance to oxidative stress was manifested by both an improved viability and the maintenance of mitochondrial membrane potential in the transfected cells when exposed to t-butyl hydroperoxide (t-BOOH). It therefore appears that PGC-1alpha overexpression stimulates mitochondrial biogenesis in 3T3 cells making them more resistant to oxidative stressors.
Collapse
Affiliation(s)
- Huiyun Liang
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
502
|
Wang X, Chai H, Yao Q, Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defic Syndr 2007; 44:493-9. [PMID: 17245228 DOI: 10.1097/qai.0b013e3180322542] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly active antiretroviral therapy incorporating protease inhibitors (PIs) is successful in controlling HIV infection and has dramatically improved the prognosis of HIV-infected patients. The therapeutic benefit of long-term use of HIV PIs is compromised by an increased risk of cardiovascular disease, however, including metabolic syndrome and endothelial dysfunction. Although clinical evidence strongly suggests an association of the use of HIV PIs with endothelial dysfunction, the underlying molecular mechanisms have not been fully elucidated yet. In this review, we describe recent advances in the molecular mechanisms of PI-induced endothelial dysfunction. The available evidence demonstrates that certain HIV PIs could induce endothelial dysfunction, including a decrease of endothelium-dependent vasorelaxation, inhibition of the nitric oxide synthase system, increase of oxidative stress, and activation of mitogen-activated protein kinases. HIV infection itself may also induce endothelial dysfunction and injury. These new discoveries provide a better understanding of the molecular mechanisms of the interaction between HIV PIs and vascular cells and may suggest potential approaches to control HIV PI-associated cardiovascular complications.
Collapse
Affiliation(s)
- Xinwen Wang
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
503
|
Rohas LM, St-Pierre J, Uldry M, Jäger S, Handschin C, Spiegelman BM. A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A 2007; 104:7933-8. [PMID: 17470778 PMCID: PMC1876550 DOI: 10.1073/pnas.0702683104] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
Maintenance of ATP levels is a critical feature of all cells. Mitochondria are responsible for most ATP synthesis in eukaryotes. We show here that mammalian cells respond to a partial chemical uncoupling of mitochondrial oxidative phosphorylation with a decrease in ATP levels, which recovers over several hours to control levels. This recovery occurs through an increased expression of the transcriptional coactivator peroxisome proliferator-activated receptor-coactivator 1alpha (PGC-1alpha) and mitochondrial genes. Cells and animals lacking PGC-1alpha lose this compensatory mechanism and cannot defend their ATP levels or increase mitochondrial gene expression in response to reduced oxidative phosphorylation. The induction of PGC-1alpha and its mitochondrial target genes is triggered by a burst of intracellular calcium, which causes an increase in cAMP-response-element-binding protein and transducer of regulated cAMP-response-element-binding proteins actions on the PGC-1alpha promoter. These data illustrate a fundamental transcriptional cycle that provides homeostatic control of cellular ATP. In light of this compensatory system that limits the toxicity of mild uncoupling, the use of chemical uncoupling of mitochondria as a means of treating obesity should be re-evaluated.
Collapse
Affiliation(s)
- Lindsay M. Rohas
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Julie St-Pierre
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Marc Uldry
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Sibylle Jäger
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Christoph Handschin
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Bruce M. Spiegelman
- Dana–Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
504
|
Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 2007; 17:292-301. [PMID: 17475497 DOI: 10.1016/j.tcb.2007.04.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/07/2007] [Accepted: 04/16/2007] [Indexed: 12/13/2022]
Abstract
Metabolic programs controlling energy homeostasis are governed at the transcriptional level by the integrated action of several transcription factors. Among these, nuclear receptors including peroxisome proliferator-activated receptors, estrogen-related receptors or thyroid hormone receptors play prominent roles by adapting gene expression programs to the endocrine and metabolic context that they sense via their ligand-binding domain. Coregulators assist nuclear receptors to positively or negatively influence the transcription of target genes, and thereby comprise an integral part of the transcriptional circuitry. This review focuses on how coregulators, including PGC-1 and p160 coactivators, Sirt-1, RIP140 and NCoR corepressors, control the balance between energy storage and expenditure, with a particular emphasis on how these proteins integrate physiological stimuli in vivo. The general picture that emerges indicates that these coregulators are metabolic switches, which convergently regulate metabolic pathways through their pleiotropic interactions with nuclear receptors and other transcription factors.
Collapse
Affiliation(s)
- Jérôme N Feige
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | | |
Collapse
|
505
|
Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007; 11:407-20. [PMID: 17482131 DOI: 10.1016/j.ccr.2007.04.001] [Citation(s) in RCA: 693] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 01/22/2007] [Accepted: 04/02/2007] [Indexed: 02/01/2023]
Abstract
Many cancer cells are characterized by increased glycolysis and decreased respiration, even under aerobic conditions. The molecular mechanisms underlying this metabolic reprogramming are unclear. Here we show that hypoxia-inducible factor 1 (HIF-1) negatively regulates mitochondrial biogenesis and O(2) consumption in renal carcinoma cells lacking the von Hippel-Lindau tumor suppressor (VHL). HIF-1 mediates these effects by inhibiting C-MYC activity via two mechanisms. First, HIF-1 binds to and activates transcription of the MXI1 gene, which encodes a repressor of C-MYC transcriptional activity. Second, HIF-1 promotes MXI-1-independent, proteasome-dependent degradation of C-MYC. We demonstrate that transcription of the gene encoding the coactivator PGC-1beta is C-MYC dependent and that loss of PGC-1beta expression is a major factor contributing to reduced respiration in VHL-deficient renal carcinoma cells.
Collapse
Affiliation(s)
- Huafeng Zhang
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
506
|
Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A 2007; 104:5223-8. [PMID: 17360356 PMCID: PMC1829290 DOI: 10.1073/pnas.0611623104] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta) is believed to control mitochondrial oxidative energy metabolism by activating specific target transcription factors including estrogen-related receptors and nuclear respiratory factor 1, yet its physiological role is not yet clearly understood. To define its function in vivo, we generated and characterized mice lacking the functional PGC-1beta protein [PGC-1beta knockout (KO) mice]. PGC-1beta KO mice are viable and fertile and show no overt phenotype under normal laboratory conditions. However, the KO mice displayed an altered expression in a large number of nuclear-encoded genes governing mitochondrial and metabolic functions in multiple tissues including heart, skeletal muscle, brain, brown adipose tissue, and liver. In contrast to PGC-1alpha KO mice that are reportedly hyperactive, PGC-1beta KO mice show greatly decreased activity during the dark cycle. When acutely exposed to cold, the KO mice developed abnormal hypothermia and morbidity. Furthermore, high-fat feeding induced hepatic steatosis and increased serum triglyceride and cholesterol levels in the KO mice. These results suggest that PGC-1beta in mouse plays a nonredundant role in controlling mitochondrial oxidative energy metabolism.
Collapse
Affiliation(s)
- Junichiro Sonoda
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Isaac R. Mehl
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ling-Wa Chong
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Russell R. Nofsinger
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ronald M. Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
507
|
Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Mäkelä TP, Schneider MD. Ménage-à-trois 1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab 2007; 5:129-42. [PMID: 17276355 DOI: 10.1016/j.cmet.2007.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 12/11/2006] [Accepted: 01/12/2007] [Indexed: 12/13/2022]
Abstract
The Cdk7/cyclin H/ménage-à-trois 1 (MAT1) heterotrimer has proposed functions in transcription as the kinase component of basal transcription factor TFIIH and is activated in adult hearts by Gq-, calcineurin-, and biomechanical stress-dependent pathways for hypertrophic growth. Using cardiac-specific Cre, we have ablated MAT1 in myocardium. Despite reduced Cdk7 activity, MAT1-deficient hearts grew normally, but fatal heart failure ensued at 6-8 weeks. By microarray profiling, quantitative RT-PCR, and western blotting at 4 weeks, genes for energy metabolism were found to be suppressed selectively, including targets of peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1). Cardiac metabolic defects were substantiated in isolated perfused hearts and isolated mitochondria. In culture, deleting MAT1 with Cre disrupted PGC-1 function: PGC-1alpha failed to activate PGC-1-responsive promoters and nuclear receptors, GAL4-PGC-1alpha was functionally defective, and PGC-1beta was likewise deficient. PGC-1 bound to both MAT1 and Cdk7 in coprecipitation assays. Thus, we demonstrate a requirement for MAT1 in the operation of PGC-1 coactivators that control cell metabolism.
Collapse
Affiliation(s)
- Motoaki Sano
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Villena JA, Hock MB, Chang WY, Barcas JE, Giguère V, Kralli A. Orphan nuclear receptor estrogen-related receptor alpha is essential for adaptive thermogenesis. Proc Natl Acad Sci U S A 2007; 104:1418-23. [PMID: 17229846 PMCID: PMC1783094 DOI: 10.1073/pnas.0607696104] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Survival of organisms requires the ability to adapt to changes in the environment. Adaptation of oxidative metabolism is essential for meeting increased energy demands in response to stressors, such as exposure to cold temperatures or increased physical activity. Adaptive changes in metabolism are often achieved at the level of gene expression, and nuclear receptors have prevalent roles in mediating such responses. Estrogen-related receptor alpha (ERRalpha) was the first orphan nuclear receptor to be identified, and yet its physiologic function remains unknown. Here, we show that mice lacking ERRalpha are unable to maintain body temperature when exposed to cold. Surprisingly, the inability to adapt to cold is not due to defects in the acute transcriptional induction of genes important for thermogenesis. Rather, we show that ERRalpha is needed for the high levels of mitochondrial biogenesis and oxidative capacity characteristic of brown adipose tissue (BAT), and thus for providing the energy necessary for thermogenesis. ERRalpha fulfills this role by acting directly at genes important for mitochondrial function, parallel to other factors controlling mitochondrial gene expression, such as NRF1 and NRF2/GABPA. Our findings demonstrate that ERRalpha is a key regulator of mitochondrial biogenesis and oxidative metabolism, and essential for adaptive thermogenesis.
Collapse
Affiliation(s)
- Josep A. Villena
- *Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - M. Benjamin Hock
- *Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | - Vincent Giguère
- Molecular Oncology Group, McGill University Health Centre, Montréal, QC, Canada H3A 1A1
| | - Anastasia Kralli
- *Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
- To whom correspondence should be addressed at:
Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037. E-mail:
| |
Collapse
|
509
|
Rodríguez-Cuenca S, Monjo M, Gianotti M, Proenza AM, Roca P. Expression of mitochondrial biogenesis-signaling factors in brown adipocytes is influenced specifically by 17beta-estradiol, testosterone, and progesterone. Am J Physiol Endocrinol Metab 2007; 292:E340-6. [PMID: 16954335 DOI: 10.1152/ajpendo.00175.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of mitochondrial biogenesis in brown adipose tissue (BAT), as part of the thermogenesis program, is a complex process that requires the integration of multiple transcription factors to orchestrate mitochondrial and nuclear gene expression. Despite the knowledge of the role of sex hormones on BAT physiology, little is known about the effect of these hormones on the mitochondrial biogenic program. The aim of this study was to determine the effect of testosterone, 17beta-estradiol, and progesterone on the expression of nuclear factors involved in the control of mitochondrial biogenesis and thermogenic function such as ppargamma, pgc1alpha, nrf1, gabpa, and tfam, and also an inhibitor of PI3K-Akt pathway, recently found to be involved in the control of mitochondrial recruitment (pten). For this purpose, an in vitro assay using cell-cultured brown adipocytes was used to address the role of steroid hormones, progesterone, testosterone, and 17beta-estradiol on the mRNA expression of these factors by real-time PCR. Thus 17beta-estradiol seemed to exert a dual effect, activating the PI3K-Akt pathway by inhibiting pten mRNA expression and also inhibiting nrf1 and tfam mRNA expression. Progesterone seemed to positively stimulate mitochondriogenesis and BAT differentiation by increasing the mRNA expression of the gabpa-tfam axis and ppargamma, respectively, but also exerted a negative output by increasing pten mRNA levels. Finally, testosterone inhibited the transcription of pgc1alpha, the master factor involved in UCP1 expression and mitochondrial biogenesis. In conclusion, our results support the idea that sex hormones have direct effects on different mediators of the mitochondriogenesis program.
Collapse
Affiliation(s)
- S Rodríguez-Cuenca
- Departament de Biologia Fonamental i Ciències de la Salut, Ed. Guillem Colom. Universitat de les Illes Balears, Cra. Valldemossa, Km 7.5, 07122-Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
510
|
Abstract
Adipocytes have been studied with increasing intensity as a result of the emergence of obesity as a serious public health problem and the realization that adipose tissue serves as an integrator of various physiological pathways. In particular, their role in calorie storage makes adipocytes well suited to the regulation of energy balance. Adipose tissue also serves as a crucial integrator of glucose homeostasis. Knowledge of adipocyte biology is therefore crucial for understanding the pathophysiological basis of obesity and metabolic diseases such as type 2 diabetes. Furthermore, the rational manipulation of adipose physiology is a promising avenue for therapy of these conditions.
Collapse
Affiliation(s)
- Evan D Rosen
- Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Centre, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
511
|
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127:397-408. [PMID: 17055439 DOI: 10.1016/j.cell.2006.09.024] [Citation(s) in RCA: 1808] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/26/2006] [Accepted: 09/14/2006] [Indexed: 01/11/2023]
Abstract
PPARgamma coactivator 1alpha (PGC-1alpha) is a potent stimulator of mitochondrial biogenesis and respiration. Since the mitochondrial electron transport chain is the main producer of reactive oxygen species (ROS) in most cells, we examined the effect of PGC-1alpha on the metabolism of ROS. PGC-1alpha is coinduced with several key ROS-detoxifying enzymes upon treatment of cells with an oxidative stressor; studies with RNAi or null cells indicate that PGC-1alpha is required for the induction of many ROS-detoxifying enzymes, including GPx1 and SOD2. PGC-1alpha null mice are much more sensitive to the neurodegenerative effects of MPTP and kainic acid, oxidative stressors affecting the substantia nigra and hippocampus, respectively. Increasing PGC-1alpha levels dramatically protects neural cells in culture from oxidative-stressor-mediated death. These studies reveal that PGC-1alpha is a broad and powerful regulator of ROS metabolism, providing a potential target for the therapeutic manipulation of these important endogenous toxins.
Collapse
Affiliation(s)
- Julie St-Pierre
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Cha SH, Rodgers JT, Puigserver P, Chohnan S, Lane MD. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. Proc Natl Acad Sci U S A 2006; 103:15410-5. [PMID: 17030788 PMCID: PMC1622837 DOI: 10.1073/pnas.0607334103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous investigations show that intracerebroventricular administration of a potent inhibitor of fatty acid synthase, C75, increases the level of its substrate, malonyl-CoA, in the hypothalamus. The "malonyl-CoA signal" is rapidly transmitted to skeletal muscle by the sympathetic nervous system, increasing fatty acid oxidation, uncoupling protein-3 (UCP3) expression, and thus, energy expenditure. Here, we show that intracerebroventricular or intraperitoneal administration of C75 increases the number of mitochondria in white and red (soleus) skeletal muscle. Consistent with signal transmission from the hypothalamus by the sympathetic nervous system, centrally administered C75 rapidly (< or =2 h) up-regulated the expression (in skeletal muscle) of the beta-adrenergic signaling molecules, i.e., norepinephrine, beta3-adrenergic receptor, and cAMP; the transcriptional regulators peroxisomal proliferator activator regulator gamma coactivator 1alpha (PGC-1alpha) and estrogen receptor-related receptor alpha (ERRalpha); and the expression of key oxidative mitochondrial enzymes, including pyruvate dehydrogenase kinase, medium-chain length fatty acyl-CoA dehydrogenase, ubiquinone-cytochrome c reductase, cytochrome oxidase, as well as ATP synthase and UCP3. The role of PGC-1alpha in mediating these responses in muscle was assessed with C2C12 myocytes in cell culture. Consistent with the in vivo response, adenovirus-directed expression of PGC-1alpha in C2C12 muscle cells provoked the phosphorylation/inactivation and reduced expression of acetyl-CoA carboxylase 2, causing a reduction of the malonyl-CoA concentration. These effects, coupled with an increased carnitine palmitoyltransferase 1b, led to increased fatty acid oxidation. PGC-1alpha also increased the expression of ERRalpha, PPARalpha, and enzymes that support mitochondrial fatty acid oxidation, ATP synthesis, and thermogenesis, apparently mediated by an increased expression of UCP3.
Collapse
Affiliation(s)
| | - Joseph T. Rodgers
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Pere Puigserver
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Shigeru Chohnan
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chu-ou, Ami, Ibaraki 300-0393, Japan
| | | |
Collapse
|
513
|
Grant N. The role of triiodothyronine-induced substrate cycles in the hepatic response to overnutrition: thyroid hormone as an antioxidant. Med Hypotheses 2006; 68:641-9. [PMID: 17023119 DOI: 10.1016/j.mehy.2006.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/29/2006] [Indexed: 01/11/2023]
Abstract
Overnutrition, by generating reactive oxygen species (ROS), produces oxidative stress - an important cause of cellular injury. In the liver, overnutrition begins in the perivenous hepatocytes. To prevent injury, cells must protect themselves against ROS accumulation. Overnutrition also activates the enzyme deiodinase-1 (D1), which catalyzes the conversion of T4 to T3. D1 is primarily located in the PV region of the liver. Thyroid hormone is known to generate substrate cycling. The hypothesis of this paper is that a nutrient-induced increase in intracellular T3 acts as an antioxidant by inducing substrate cycles that reduce ROS accumulation. These cycles do this by: (i) reducing ROS formation by hydrolyzing excess ATP, thus enhancing oxidative phosphorylation and reducing the proton motive force on the electron transport chain (ETC), and; (ii) enhancing the removal (reduction) of ROS by producing the NADPH required for regeneration of reduced glutathione, a potent endogenous antioxidant. Oxidative stress is an important factor in the etiology of a number of hepatic injuries, including nonalcoholic steatohepatitis (NASH) and hepatocarcinogenesis. In the latter, the frequency of mutations in thyroid hormone receptors (TRs) supports the concept that thyroid hormone acts as a tumor suppressor by reducing oxidative stress. This paper reviews the substrate cycles involved in this process. It also describes other mechanisms that permit rapid availability of T3 to cells undergoing oxidative stress.
Collapse
Affiliation(s)
- Neville Grant
- Department of Medicine, Washington University School of Medicine, David P Wohl Jr., Hospital, 4960 Children's Pl sixth floor, St. Louis, MO, USA.
| |
Collapse
|
514
|
Abstract
A detailed understanding of the processes governing adipose tissue formation will be instrumental in combating the obesity epidemic. Much progress has been made in the last two decades in defining transcriptional events controlling the differentiation of mesenchymal stem cells into adipocytes. A complex network of transcription factors and cell-cycle regulators, in concert with specific transcriptional coactivators and corepressors, respond to extracellular stimuli to activate or repress adipocyte differentiation. This review summarizes advances in this field, which constitute a framework for potential antiobesity strategies.
Collapse
Affiliation(s)
- Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
515
|
Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J 2006; 398:153-68. [PMID: 16898874 PMCID: PMC1550312 DOI: 10.1042/bj20060402] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since expression of UCP1 is the hallmark of BAT and a key factor determining energy expenditure, we also review conditions associated with enhanced energy expenditure and UCP1 expression in WAT that may provide information on processes involved in brown adipocyte differentiation.
Collapse
Affiliation(s)
- Jacob B Hansen
- Department of Medical Biochemistry and Genetics, the Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
516
|
Lehr L, Canola K, Asensio C, Jimenez M, Kuehne F, Giacobino JP, Muzzin P. The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture. FEBS Lett 2006; 580:4661-6. [PMID: 16876797 DOI: 10.1016/j.febslet.2006.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
In rodent brown adipose tissue, the beta-adrenergic signaling is believed, by an action on PGC-1alpha, to control UCP1 expression and mitochondriogenesis. We addressed this hypothesis using beta(1)/beta(2)/beta(3)-adrenoceptor knockout (beta-less) brown adipocytes in primary culture. In these cells: (a) proliferation and differentiation into multilocular cells were normal; (b) UCP1 mRNA expression was dramatically decreased (by 93%), whereas PGC-1alpha and mtTFA mRNA expressions were not; (c) UCP1, PGC-1alpha and COX IV protein expressions were decreased by 97%, 62% and 22%, respectively. Altogether the data show a dissociation between the control of UCP1, which is mostly beta-adrenoceptor-dependent and that of PGC-1alpha and of mitochondriogenesis which are not.
Collapse
Affiliation(s)
- Lorenz Lehr
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|