501
|
Bingol K. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods. High Throughput 2018; 7:E9. [PMID: 29670016 PMCID: PMC6023270 DOI: 10.3390/ht7020009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022] Open
Abstract
Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome the manual absolute quantitation step of metabolites in one-dimensional (1D) ¹H nuclear magnetic resonance (NMR) spectra. This provides more consistency between inter-laboratory comparisons. Integration of two-dimensional (2D) NMR metabolomics databases under a unified web server allowed for very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry (MS). These hybrid MS/NMR approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing for profiling ever larger number of metabolites in application studies.
Collapse
Affiliation(s)
- Kerem Bingol
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
502
|
Current and future perspectives of functional metabolomics in disease studies-A review. Anal Chim Acta 2018; 1037:41-54. [PMID: 30292314 DOI: 10.1016/j.aca.2018.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Functional metabolomics is a new concept, which studies the functions of metabolites and related enzymes focused on metabolomics. It overcomes the shortcomings of traditional discovery metabolomics of mainly relying on literatures for biological interpretation. Functional metabolomics has many advantages. Firstly, the functional roles of metabolites and related metabolic enzymes are focused. Secondly, the in vivo and in vitro experiments are conducted to validate the metabolomics findings, therefore, increasing the reliability of metabolomics study and producing the new knowledge. Thirdly, functional metabolomics can be used by biologists to investigate functions of metabolites, and related genes and proteins. In this review, we summarize the analytical, biological and clinical platforms used in functional metabolomics studies. Recent progresses of functional metabolomics in cancer, metabolic diseases and biological phenotyping are reviewed, and future development is also predicted. Because of the tremendous advantages of functional metabolomics, it will have a bright future.
Collapse
|
503
|
Villalón-López N, Serrano-Contreras JI, Téllez-Medina DI, Gerardo Zepeda L. An 1H NMR-based metabolomic approach to compare the chemical profiling of retail samples of ground roasted and instant coffees. Food Res Int 2018; 106:263-270. [DOI: 10.1016/j.foodres.2017.11.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/25/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022]
|
504
|
NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
505
|
Stroehlein AJ, Young ND, Gasser RB. Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnol Adv 2018; 36:915-934. [PMID: 29477756 DOI: 10.1016/j.biotechadv.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
506
|
Bhinderwala F, Lonergan S, Woods J, Zhou C, Fey PD, Powers R. Expanding the Coverage of the Metabolome with Nitrogen-Based NMR. Anal Chem 2018; 90:4521-4528. [PMID: 29505241 DOI: 10.1021/acs.analchem.7b04922] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isotopically labeling a metabolite and tracing its metabolic fate has provided invaluable insights about the role of metabolism in human diseases in addition to a variety of other issues. 13C-labeled metabolite tracers or unlabeled 1H-based NMR experiments are currently the most common application of NMR to metabolomics studies. Unfortunately, the coverage of the metabolome has been consequently limited to the most abundant carbon-containing metabolites. To expand the coverage of the metabolome and enhance the impact of metabolomics studies, we present a protocol for 15N-labeled metabolite tracer experiments that may also be combined with routine 13C tracer experiments to simultaneously detect both 15N- and 13C-labeled metabolites in metabolic samples. A database consisting of 2D 1H-15N HSQC natural-abundance spectra of 50 nitrogen-containing metabolites are also presented to facilitate the assignment of 15N-labeled metabolites. The methodology is demonstrated by labeling Escherichia coli and Staphylococcus aureus metabolomes with 15N1-ammonium chloride, 15N4-arginine, and 13C2-acetate. Efficient 15N and 13C metabolite labeling and identification were achieved utilizing standard cell culture and sample preparation protocols.
Collapse
Affiliation(s)
| | | | | | - Chunyi Zhou
- Center for Staphylococcal Research, Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198-5900 , United States
| | - Paul D Fey
- Center for Staphylococcal Research, Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198-5900 , United States
| | | |
Collapse
|
507
|
Abstract
Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.
Collapse
|
508
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
509
|
Beirnaert C, Meysman P, Vu TN, Hermans N, Apers S, Pieters L, Covaci A, Laukens K. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput Biol 2018; 14:e1006018. [PMID: 29494588 PMCID: PMC5849334 DOI: 10.1371/journal.pcbi.1006018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/13/2018] [Accepted: 02/04/2018] [Indexed: 01/18/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).
Collapse
Affiliation(s)
- Charlie Beirnaert
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
- * E-mail: (CB); (KL)
| | - Pieter Meysman
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sandra Apers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
- * E-mail: (CB); (KL)
| |
Collapse
|
510
|
Detection and quantification of phenethylamines in sports dietary supplements by NMR approach. J Pharm Biomed Anal 2018; 151:347-355. [DOI: 10.1016/j.jpba.2018.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
511
|
Bhatia A, Tripathi T, Singh S, Bisht H, Behl HM, Roy R, Sidhu OP. Comprehensive metabolite profiling in distinct chemotypes of Commiphora wightii. Nat Prod Res 2018; 33:17-23. [PMID: 29393680 DOI: 10.1080/14786419.2018.1431629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Commiphora wightii (Arn.) Bhandari, known as guggul, produces a medicinally important gum resin which is used extensively by Ayurvedic physicians to treat various ailments. However, most of the studies on C. wightii have been limited to its gum resin. Comprehensive metabolic profiling of leaves, stem and gum resin samples was undertaken to analyse aqueous and non-aqueous metabolites from three distinct chemotypes (NBRI-101, NBRI-102 and NBRI-103) shortlisted from different agro-climatic zones. GC-MS, HPLC and NMR spectroscopy were used for comprehensive metabolomics. Multivariate analysis showed characteristic variation in quinic and citric acids, myo-inositol and glycine (aqueous metabolites) and 2,6-di-tert-butyl-phenol, trans-farnesol and guggulsterones (non-aqueous metabolites) amongst the three chemotypes. Quinic acid, citric acid and myo-ionositol were detected in substantial quantities from leaves and stem samples which provide opportunities for novel nutraceutical and pharmaceutical formulations. Quinic acid, from the leaves, was identified as a marker metabolite for early selection of high guggulsterones-yielding cultivars.
Collapse
Affiliation(s)
- Anil Bhatia
- a CSIR-National Botanical Research Institute , Lucknow , India.,b MU Metabolomics Center, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia , MO , USA
| | - Tusha Tripathi
- a CSIR-National Botanical Research Institute , Lucknow , India
| | - Suruchi Singh
- c Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Lucknow , India
| | - Hema Bisht
- a CSIR-National Botanical Research Institute , Lucknow , India
| | - Hari M Behl
- a CSIR-National Botanical Research Institute , Lucknow , India.,d BFT Biotech , Newark , CA , USA
| | - Raja Roy
- c Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Lucknow , India
| | - Om P Sidhu
- a CSIR-National Botanical Research Institute , Lucknow , India
| |
Collapse
|
512
|
Boiteau RM, Hoyt DW, Nicora CD, Kinmonth-Schultz HA, Ward JK, Bingol K. Structure Elucidation of Unknown Metabolites in Metabolomics by Combined NMR and MS/MS Prediction. Metabolites 2018; 8:metabo8010008. [PMID: 29342073 PMCID: PMC5875998 DOI: 10.3390/metabo8010008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
We introduce a cheminformatics approach that combines highly selective and orthogonal structure elucidation parameters; accurate mass, MS/MS (MS²), and NMR into a single analysis platform to accurately identify unknown metabolites in untargeted studies. The approach starts with an unknown LC-MS feature, and then combines the experimental MS/MS and NMR information of the unknown to effectively filter out the false positive candidate structures based on their predicted MS/MS and NMR spectra. We demonstrate the approach on a model mixture, and then we identify an uncatalogued secondary metabolite in Arabidopsis thaliana. The NMR/MS² approach is well suited to the discovery of new metabolites in plant extracts, microbes, soils, dissolved organic matter, food extracts, biofuels, and biomedical samples, facilitating the identification of metabolites that are not present in experimental NMR and MS metabolomics databases.
Collapse
Affiliation(s)
- Rene M Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Carrie D Nicora
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | - Joy K Ward
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Kerem Bingol
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
513
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
514
|
Abstract
LC-MS untargeted analysis is a valuable tool in the field of metabolic profiling (metabonomics/metabolomics), and the applications of this technology have grown rapidly over the past decade. LC-MS offers advantages over other analytical platforms such as speed, sensitivity, relative ease of sample preparation, and large dynamic range. As with any analytical approach, there are still drawbacks and challenges to overcome, but advances are constantly being made regarding both column chemistries and instrumentation. There are numerous untargeted LC-MS approaches which can be used in this ever-growing research field; these can be optimized depending on sample type and the nature of the study or biological question. Some of the main LC-MS approaches for the untargeted analysis of biological samples will be described in detail in the following protocol.
Collapse
Affiliation(s)
- Elizabeth J Want
- Computational and Systems Medicine, Imperial College London, London, UK.
| |
Collapse
|
515
|
Pînzariu O, Georgescu B, Georgescu CE. Metabolomics-A Promising Approach to Pituitary Adenomas. Front Endocrinol (Lausanne) 2018; 9:814. [PMID: 30705668 PMCID: PMC6345099 DOI: 10.3389/fendo.2018.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Metabolomics-the novel science that evaluates the multitude of low-molecular-weight metabolites in a biological system, provides new data on pathogenic mechanisms of diseases, including endocrine tumors. Although development of metabolomic profiling in pituitary disorders is at an early stage, it seems to be a promising approach in the near future in identifying specific disease biomarkers and understanding cellular signaling networks. Objectives: To review the metabolomic profile and the contributions of metabolomics in pituitary adenomas (PA). Methods: A systematic review was conducted via PubMed, Web of Science Core Collection and Scopus databases, summarizing studies that have described metabolomic aspects of PA. Results: Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectrometry, which are traditional techniques employed in metabolomics, suggest amino acids metabolism appears to be primarily altered in PA. N-acetyl aspartate, choline-containing compounds and creatine appear as highly effective in differentiating PA from healthy tissue. Deoxycholic and 4-pyridoxic acids, 3-methyladipate, short chain fatty acids and glucose-6-phosphate unveil metabolite biomarkers in patients with Cushing's disease. Phosphoethanolamine, N-acetyl aspartate and myo-inositol are down regulated in prolactinoma, whereas aspartate, glutamate and glutamine are up regulated. Phosphoethanolamine, taurine, alanine, choline-containing compounds, homocysteine, and methionine were up regulated in unclassified PA across studies. Intraoperative use of ultra high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which allows localization and delineation between functional PA and healthy pituitary tissue, may contribute to achievement of complete tumor resection in addition to preservation of pituitary cell lines and vasopressin secretory cells, thus avoiding postoperative diabetes insipidus. Conclusion: Implementation of ultra high performance metabolomics analysis techniques in the study of PA will significantly improve diagnosis and, potentially, the therapeutic approach, by identifying highly specific disease biomarkers in addition to novel molecular pathogenic mechanisms. Ultra high mass resolution MALDI-MSI emerges as a helpful clinical tool in the neurosurgical treatment of pituitary tumors. Therefore, metabolomics appears to be a science with a promising prospect in the sphere of PA, and a starting point in pituitary care.
Collapse
Affiliation(s)
- Oana Pînzariu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen E. Georgescu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
- *Correspondence: Carmen E. Georgescu
| |
Collapse
|
516
|
Teunissen CE, Verheul C, Willemse EAJ. The use of cerebrospinal fluid in biomarker studies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:3-20. [PMID: 29110777 DOI: 10.1016/b978-0-12-804279-3.00001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebrospinal fluid (CSF) is an extremely useful matrix for biomarker research for several purposes, such as diagnosis, prognosis, monitoring, and identification of prominent leads in pathways of neurologic diseases. Such biomarkers can be identified based on a priori hypotheses around prominent protein changes, but also by applying -omics technologies. Proteomics is widely used, but metabolomics and transcriptomics are rapidly revealing their potential for CSF studies. The basis of such studies is the availability of high-quality biobanks. Furthermore, profound knowledge and consequent optimization of all aspects in biomarker development are needed. Here we discuss current knowledge and recently developed protocols for successful biomarker studies, from collection of CSF by lumbar puncture, processing, and biobanking protocols, preanalytic confounding factors, and cost-efficient development and validation of assays for implementation into clinical practice or research.
Collapse
Affiliation(s)
- C E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands.
| | - C Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - E A J Willemse
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
517
|
Li Y, He Q, Du S, Guo S, Geng Z, Deng Z. Study of Methanol Extracts from Different Parts of Peganum harmala L. Using 1H-NMR Plant Metabolomics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:6532789. [PMID: 30581649 PMCID: PMC6276451 DOI: 10.1155/2018/6532789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 05/03/2023]
Abstract
A nuclear magnetic resonance- (NMR-) based metabolomics method was used to identify differential metabolites of methanol extracts obtained from six parts of Peganum harmala L. (P. harmala), namely, the root, stem, leaf, flower, testa, and seed. Two multivariate statistical analysis methods, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), were combined to clearly distinguish among the P. harmala samples from the six different parts. Eleven differential components were screened by the PLS-DA loading plot, and the relative contents were calculated by univariate analysis of variance. Chemometric results showed significant differences in the metabolites of the different parts of P. harmala. The seeds contained large amounts of harmaline, harmine, and vasicine compared to other organs. The acetic acid, proline, lysine, and sucrose contents of the roots were significantly higher than those of the other parts. In the testa, the vasicine, asparagine, choline, and 4-hydroxyisoleucine contents were clearly dominant. The obtained data revealed the distribution characteristics of the metabolomes of the different P. harmala parts and provided fundamental knowledge for the rational development of its medicinal parts.
Collapse
Affiliation(s)
- Yinping Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shushan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shanshan Guo
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zhufeng Geng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Zhiwei Deng
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
518
|
A. Pertinhez T, Casali E, Zambianchi L, Spisni A, Baricchi R. Statistical validation of 1H NMR protocol vs standard biochemical assay in quality control of RBC packed units. J Pharm Biomed Anal 2018. [DOI: 10.1016/j.jpba.2017.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
519
|
Gomes NG, Pereira DM, Valentão P, Andrade PB. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J Pharm Biomed Anal 2018; 147:234-249. [DOI: 10.1016/j.jpba.2017.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
520
|
Exploring the Impact of Food on the Gut Ecosystem Based on the Combination of Machine Learning and Network Visualization. Nutrients 2017; 9:nu9121307. [PMID: 29194366 PMCID: PMC5748757 DOI: 10.3390/nu9121307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/03/2023] Open
Abstract
Prebiotics and probiotics strongly impact the gut ecosystem by changing the composition and/or metabolism of the microbiota to improve the health of the host. However, the composition of the microbiota constantly changes due to the intake of daily diet. This shift in the microbiota composition has a considerable impact; however, non-pre/probiotic foods that have a low impact are ignored because of the lack of a highly sensitive evaluation method. We performed comprehensive acquisition of data using existing measurements (nuclear magnetic resonance, next-generation DNA sequencing, and inductively coupled plasma-optical emission spectroscopy) and analyses based on a combination of machine learning and network visualization, which extracted important factors by the Random Forest approach, and applied these factors to a network module. We used two pteridophytes, Pteridium aquilinum and Matteuccia struthiopteris, for the representative daily diet. This novel analytical method could detect the impact of a small but significant shift associated with Matteuccia struthiopteris but not Pteridium aquilinum intake, using the functional network module. In this study, we proposed a novel method that is useful to explore a new valuable food to improve the health of the host as pre/probiotics.
Collapse
|
521
|
Sander K, Asano KG, Bhandari D, Van Berkel GJ, Brown SD, Davison B, Tschaplinski TJ. Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:270. [PMID: 29213318 PMCID: PMC5707896 DOI: 10.1186/s13068-017-0960-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging. RESULTS Through our validations, we verified the handling and storage stability of these metabolites, and verified extraction matrices and extraction solvent were not suppressing mass spectrometry signals. We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions. NADH/NAD+ values of 0.26 and 0.04 for an adhE-deficient strain of C. thermocellum and its parent, respectively, reflect the expected shift to a more reduced redox potential when a species lacks the ability to re-oxidize NADH by synthesizing ethanol. This method failed to yield reliable results with C. bescii and poor-growing strains of T. saccharolyticum. CONCLUSIONS Our validated protocols demonstrate and validate the extraction and analysis of selected redox and energy-related metabolites from two candidate consolidated bioprocessing biocatalysts, C. thermocellum and T. saccharolyticum. This development and validation highlights the important, but often neglected, need to optimize and validate metabolomic protocols when adapting them to new cell or tissue types.
Collapse
Affiliation(s)
- Kyle Sander
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Keiji G. Asano
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Deepak Bhandari
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Gary J. Van Berkel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: LanzaTech, Skokie, IL USA
| | - Brian Davison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
522
|
NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver. Metabolites 2017; 7:metabo7040061. [PMID: 29144418 PMCID: PMC5746741 DOI: 10.3390/metabo7040061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/03/2022] Open
Abstract
Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow (Passer domesticus) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in 1H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.
Collapse
|
523
|
Moure MJ, Zhuo Y, Boons GJ, Prestegard JH. Perdeuterated and 13C-enriched myo-inositol for DNP assisted monitoring of enzymatic phosphorylation by inositol-3-kinase. Chem Commun (Camb) 2017; 53:12398-12401. [PMID: 29067365 PMCID: PMC5690875 DOI: 10.1039/c7cc07023c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of perdeuterated and 13C enriched myo-inositol is presented. Myo-inositol and its derivatives are of interest as substrates for enzymes producing phosphorylated species with regulatory functions in many organisms. Its utility in monitoring real-time phosphorylation by myo-inositol-3-kinase is illustrated using dynamic nuclear polarization (DNP) to enhance NMR observation.
Collapse
Affiliation(s)
- M. J. Moure
- Complex Carbohydrate Research Center, University of Georgia, Athens GA 30602
| | - Y. Zhuo
- Complex Carbohydrate Research Center, University of Georgia, Athens GA 30602
| | - G. J. Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens GA 30602
| | - J. H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens GA 30602
| |
Collapse
|
524
|
Spin System Modeling of Nuclear Magnetic Resonance Spectra for Applications in Metabolomics and Small Molecule Screening. Anal Chem 2017; 89:12201-12208. [PMID: 29058410 DOI: 10.1021/acs.analchem.7b02884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The exceptionally rich information content of nuclear magnetic resonance (NMR) spectra is routinely used to identify and characterize molecules and molecular interactions in a wide range of applications, including clinical biomarker discovery, drug discovery, environmental chemistry, and metabolomics. The set of peak positions and intensities from a reference NMR spectrum generally serves as the identifying signature for a compound. Reference spectra normally are collected under specific conditions of pH, temperature, and magnetic field strength, because changes in conditions can distort the identifying signatures of compounds. A spin system matrix that parametrizes chemical shifts and coupling constants among spins provides a much richer feature set for a compound than a spectral signature based on peak positions and intensities. Spin system matrices expand the applicability of NMR spectral libraries beyond the specific conditions under which data were collected. In addition to being able to simulate spectra at any field strength, spin parameters can be adjusted to systematically explore alterations in chemical shift patterns due to variations in other experimental conditions, such as compound concentration, pH, or temperature. We present methodology and software for efficient interactive optimization of spin parameters against experimental 1D-1H NMR spectra of small molecules. We have used the software to generate spin system matrices for a set of key mammalian metabolites and are also using the software to parametrize spectra of small molecules used in NMR-based ligand screening. The software, along with optimized spin system matrix data for a growing number of compounds, is available from http://gissmo.nmrfam.wisc.edu/ .
Collapse
|
525
|
Song Q, Zhou H, Han Q, Diao X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:48-57. [PMID: 28917945 DOI: 10.1016/j.aquatox.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens.
Collapse
Affiliation(s)
- Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
526
|
Shaffer M, Armstrong AJS, Phelan VV, Reisdorph N, Lozupone CA. Microbiome and metabolome data integration provides insight into health and disease. Transl Res 2017; 189:51-64. [PMID: 28764956 PMCID: PMC5659916 DOI: 10.1016/j.trsl.2017.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
For much of our history, the most basic information about the microbial world has evaded characterization. Next-generation sequencing has led to a rapid increase in understanding of the structure and function of host-associated microbial communities in diverse diseases ranging from obesity to autism. Through experimental systems such as gnotobiotic mice only colonized with known microbes, a causal relationship between microbial communities and disease phenotypes has been supported. Now, microbiome research must move beyond correlations and general demonstration of causality to develop mechanistic understandings of microbial influence, including through their metabolic activities. Similar to the microbiome field, advances in technologies for cataloguing small molecules have broadened our understanding of the metabolites that populate our bodies. Integration of microbial and metabolomics data paired with experimental validation has promise for identifying microbial influence on host physiology through production, modification, or degradation of bioactive metabolites. Realization of microbial metabolic activities that affect health is hampered by gaps in our understanding of (1) biological properties of microbes and metabolites, (2) which microbial enzymes/pathways produce which metabolites, and (3) the effects of metabolites on hosts. Capitalizing on known mechanistic relationships and filling gaps in our understanding has the potential to enable translational microbiome research across disease contexts.
Collapse
Affiliation(s)
- Michael Shaffer
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Computational Bioscience Program, University of Colorado Denver, Aurora, Colo
| | - Abigail J S Armstrong
- Department of Medicine, University of Colorado Denver, Aurora, Colo; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colo
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colo
| | | |
Collapse
|
527
|
Ørsted M, Malmendal A, Muñoz J, Kristensen TN. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
528
|
Wang C, He L, Li DW, Bruschweiler-Li L, Marshall AG, Brüschweiler R. Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry. J Proteome Res 2017; 16:3774-3786. [PMID: 28795575 DOI: 10.1021/acs.jproteome.7b00457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more 1H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.
Collapse
Affiliation(s)
| | - Lidong He
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | | | | | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States.,Ion Cyclotron Resonance Program, The National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | | |
Collapse
|
529
|
Ercole A, Magnoni S, Vegliante G, Pastorelli R, Surmacki J, Bohndiek SE, Zanier ER. Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury. Front Neurol 2017; 8:450. [PMID: 28912750 PMCID: PMC5582086 DOI: 10.3389/fneur.2017.00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) is understood as an interplay between the initial injury, subsequent secondary injuries, and a complex host response all of which are highly heterogeneous. An understanding of the underlying biology suggests a number of windows where mechanistically inspired interventions could be targeted. Unfortunately, biologically plausible therapies have to-date failed to translate into clinical practice. While a number of stereotypical pathways are now understood to be involved, current clinical characterization is too crude for it to be possible to characterize the biological phenotype in a truly mechanistically meaningful way. In this review, we examine current and emerging technologies for fuller biochemical characterization by the simultaneous measurement of multiple, diverse biomarkers. We describe how clinically available techniques such as cerebral microdialysis can be leveraged to give mechanistic insights into TBI pathobiology and how multiplex proteomic and metabolomic techniques can give a more complete description of the underlying biology. We also describe spatially resolved label-free multiplex techniques capable of probing structural differences in chemical signatures. Finally, we touch on the bioinformatics challenges that result from the acquisition of such large amounts of chemical data in the search for a more mechanistically complete description of the TBI phenotype.
Collapse
Affiliation(s)
- Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sandra Magnoni
- Department of Anesthesiology and Intensive Care, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Vegliante
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Roberta Pastorelli
- Unit of Gene and Protein Biomarkers, Laboratory of Mass Spectrometry, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jakub Surmacki
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
530
|
Havelund JF, Heegaard NHH, Færgeman NJK, Gramsbergen JB. Biomarker Research in Parkinson's Disease Using Metabolite Profiling. Metabolites 2017; 7:E42. [PMID: 28800113 PMCID: PMC5618327 DOI: 10.3390/metabo7030042] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifactorial disease, which requires a more precise diagnosis and personalized medication to obtain optimal outcome. In recent years, advanced metabolite profiling of body fluids like serum/plasma, CSF or urine, known as "metabolomics", has become a powerful and promising tool to identify novel biomarkers or "metabolic fingerprints" characteristic for PD at various stages of disease. In this review, we discuss metabolite profiling in clinical and experimental PD. We briefly review the use of different analytical platforms and methodologies and discuss the obtained results, the involved metabolic pathways, the potential as a biomarker and the significance of understanding the pathophysiology of PD. Many of the studies report alterations in alanine, branched-chain amino acids and fatty acid metabolism, all pointing to mitochondrial dysfunction in PD. Aromatic amino acids (phenylalanine, tyrosine, tryptophan) and purine metabolism (uric acid) are also altered in most metabolite profiling studies in PD.
Collapse
Affiliation(s)
- Jesper F Havelund
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institute, DK-2300 Copenhagen, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Nils J K Færgeman
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
531
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
532
|
Duong NT, Yamato M, Nakano M, Kume S, Tamura Y, Kataoka Y, Wong A, Nishiyama Y. Capillary-Inserted Rotor Design for HRµMASNMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules 2017; 22:E1289. [PMID: 28771206 PMCID: PMC6152061 DOI: 10.3390/molecules22081289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/30/2017] [Indexed: 11/17/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to analyze mass-scarce samples in limited volumes of less than 300 nL with simple handling. The sample is loaded into the glass capillary, and this capillary is then inserted into a Kel-F rotor. The experimental performance of the capillary-inserted rotor (capillary-insert) is investigated on an isotropic solution of sucrose by the use of a high-resolution micro-sized magic angle spinning (HRµMAS) probe. The acquired NMR signal's sensitivity to a given sample amount is comparable or even higher in comparison to that recorded by the standard solution NMR probe. More importantly, this capillary-insert coupled with the HRµMAS probe allows in-depth studies of heterogeneous samples as the MAS removes the line broadening caused by the heterogeneity. The NMR analyses of mass-limited cultured neurospheres have been demonstrated, resulting in high quality spectra where numerous metabolites are unambiguously identified.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Advanced Solid-State NMR Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| | - Masanori Yamato
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Masayuki Nakano
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan.
| | - Satoshi Kume
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Yasuhisa Tamura
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Kobe, Hyogo 650-0047, Japan.
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan.
| | - Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Yusuke Nishiyama
- Advanced Solid-State NMR Unit, RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
- Engineering Division, JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
533
|
Abstract
Data processing and analysis are major bottlenecks in high-throughput metabolomic experiments. Recent advancements in data acquisition platforms are driving trends toward increasing data size (e.g., petabyte scale) and complexity (multiple omic platforms). Improvements in data analysis software and in silico methods are similarly required to effectively utilize these advancements and link the acquired data with biological interpretations. Herein, we provide an overview of recently developed and freely available metabolomic tools, algorithms, databases, and data analysis frameworks. This overview of popular tools for MS and NMR-based metabolomics is organized into the following sections: data processing, annotation, analysis, and visualization. The following overview of newly developed tools helps to better inform researchers to support the emergence of metabolomics as an integral tool for the study of biochemistry, systems biology, environmental analysis, health, and personalized medicine.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, TX, USA
| | | |
Collapse
|
534
|
Zhou J, Lu C, Zhang D, Ma C, Su X. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation. J Microbiol 2017; 55:628-634. [PMID: 28752295 DOI: 10.1007/s12275-017-6551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 01/15/2023]
Abstract
Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD+, NADP+, oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe3+ influences the metabolite profiles of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jun Zhou
- School of Marine Science, Ningbo University, Zhejiang, 315211, P. R. China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Zhejiang, 315211, P. R. China.
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Zhejiang, 315211, P. R. China
| | - Chennv Ma
- School of Marine Science, Ningbo University, Zhejiang, 315211, P. R. China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Zhejiang, 315211, P. R. China.
| |
Collapse
|
535
|
Armiñán A, Mendes L, Carrola J, Movellan J, Vicent MJ, Duarte IF. HIF-1α inhibition by diethylstilbestrol and its polyacetal conjugate in hypoxic prostate tumour cells: insights from NMR metabolomics. J Drug Target 2017; 25:845-855. [PMID: 28737429 DOI: 10.1080/1061186x.2017.1358728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, we have employed 1H NMR metabolomics to assess the metabolic responses of PC3 prostate tumour cells to hypoxia and to pharmacological HIF-1α inhibition by DES or its polyacetal conjugate tert-DES. Oxygen deprivation prompted a number of changes in intracellular composition and metabolic activity, mainly reflecting upregulated glycolysis, amino acid catabolism and other compensatory mechanisms used by hypoxic cells to deal with oxidative imbalance and energy deficit. Cell treatment with a non-cytotoxic concentration of DES, under hypoxia, triggered significant changes in 17 metabolites. Among these, lactate, phosphocreatine and reduced glutathione, whose levels showed opposite variations in hypoxic and drug-treated cells, emerged as possible markers of DES-induced HIF-1α inhibition. Furthermore, the free drug had a much higher impact on the cellular metabolome than tert-DES, particularly concerning polyamine and pyrimidine biosynthetic pathways, known to be tightly involved in cell proliferation and growth. This is likely due to the different cell pharmacokinetics observed between free and conjugated DES. Overall, this study has revealed a number of unanticipated metabolic changes that inform on DES and tert-DES direct cellular effects, providing further insight into their mode of action at the biochemical level.
Collapse
Affiliation(s)
- Ana Armiñán
- a Polymer Therapeutics Lab , Centro de Investigación Príncipe Felipe (CIPF) , Valencia , Spain
| | - Luís Mendes
- b Department of Chemistry, CICECO - Aveiro Institute of Materials , University of Aveiro , Aveiro , Portugal
| | - Joana Carrola
- b Department of Chemistry, CICECO - Aveiro Institute of Materials , University of Aveiro , Aveiro , Portugal
| | - Julie Movellan
- a Polymer Therapeutics Lab , Centro de Investigación Príncipe Felipe (CIPF) , Valencia , Spain
| | - María J Vicent
- a Polymer Therapeutics Lab , Centro de Investigación Príncipe Felipe (CIPF) , Valencia , Spain
| | - Iola F Duarte
- b Department of Chemistry, CICECO - Aveiro Institute of Materials , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
536
|
Abstract
Metabolomics is the newest addition to the "omics" disciplines and has shown rapid growth in its application to human health research because of fundamental advancements in measurement and analysis techniques. Metabolomics has unique and proven advantages in systems biology and biomarker discovery. The next generation of analysis techniques promises even richer and more complete analysis capabilities that will enable earlier clinical diagnosis, drug refinement, and personalized medicine. A review of current advancements in methodologies and statistical analysis that are enhancing and improving the performance of metabolomics is presented along with highlights of some recent successful applications.
Collapse
Affiliation(s)
- Eli Riekeberg
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
537
|
Stryeck S, Birner-Gruenberger R, Madl T. Integrative metabolomics as emerging tool to study autophagy regulation. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:240-258. [PMID: 28845422 PMCID: PMC5568430 DOI: 10.15698/mic2017.08.584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Recent technological developments in metabolomics research have enabled in-depth characterization of complex metabolite mixtures in a wide range of biological, biomedical, environmental, agricultural, and nutritional research fields. Nuclear magnetic resonance spectroscopy and mass spectrometry are the two main platforms for performing metabolomics studies. Given their broad applicability and the systemic insight into metabolism that can be obtained it is not surprising that metabolomics becomes increasingly popular in basic biological research. In this review, we provide an overview on key metabolites, recent studies, and future opportunities for metabolomics in studying autophagy regulation. Metabolites play a pivotal role in autophagy regulation and are therefore key targets for autophagy research. Given the recent success of metabolomics, it can be expected that metabolomics approaches will contribute significantly to deciphering the complex regulatory mechanisms involved in autophagy in the near future and promote understanding of autophagy and autophagy-related diseases in living cells and organisms.
Collapse
Affiliation(s)
- Sarah Stryeck
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit for Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
538
|
Li DW, Wang C, Brüschweiler R. Maximal clique method for the automated analysis of NMR TOCSY spectra of complex mixtures. JOURNAL OF BIOMOLECULAR NMR 2017; 68:195-202. [PMID: 28573376 PMCID: PMC7032946 DOI: 10.1007/s10858-017-0119-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/24/2017] [Indexed: 05/16/2023]
Abstract
Characterization of the chemical components of complex mixtures in solution is important in many areas of biochemistry and chemical biology, including metabolomics. The use of 2D NMR total correlation spectroscopy (TOCSY) experiments has proven very useful for the identification of known metabolites as well as for the characterization of metabolites that are unknown by taking advantage of the good resolution and high sensitivity of this homonuclear experiment. Due to the complexity of the resulting spectra, automation is critical to facilitate and speed-up their analysis and enable high-throughput applications. To better meet these emerging needs, an automated spin-system identification algorithm of TOCSY spectra is introduced that represents the cross-peaks and their connectivities as a mathematical graph, for which all subgraphs are determined that are maximal cliques. Each maximal clique can be assigned to an individual spin system thereby providing a robust deconvolution of the original spectrum for the easy extraction of critical spin system information. The approach is demonstrated for a complex metabolite mixture consisting of 20 compounds and for E. coli cell lysate.
Collapse
Affiliation(s)
- Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Cheng Wang
- Department of Chemistry and Biochemistry, The Ohio State University, CBEC Building, Columbus, OH, 43210, USA
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, CBEC Building, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
539
|
Zhang B, Yuan J, Brüschweiler R. Differential Attenuation of NMR Signals by Complementary Ion-Exchange Resin Beads for De Novo Analysis of Complex Metabolomics Mixtures. Chemistry 2017; 23:9239-9243. [PMID: 28523725 DOI: 10.1002/chem.201701572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/06/2022]
Abstract
A primary goal of metabolomics is the characterization of a potentially very large number of metabolites that are part of complex mixtures. Application to biofluids and tissue samples offers insights into biochemical metabolic pathways and their role in health and disease. 1D 1 H and 2D 13 C-1 H HSQC NMR spectra are most commonly used for this purpose. They yield quantitative information about each proton of the mixture, but do not tell which protons belong to the same molecule. Interpretation requires the use of NMR spectral databases, which naturally limits these investigations to known metabolites. Here, a new method is presented that uses complementary ion exchange resin beads to differentially attenuate 2D NMR cross-peaks that belong to different metabolites. Based on their characteristic attenuation patterns, cross-peaks could be clustered and assigned to individual molecules, including unknown metabolites with multiple spin systems, as demonstrated for a metabolite model mixture and E. coli cell lysate.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jiaqi Yuan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA.,Campus Chemical Instrument Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, 1645 Neil Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
540
|
Ennis K, Lusczek E, Rao R. Characterization of the concurrent metabolic changes in brain and plasma during insulin-induced moderate hypoglycemia using 1H NMR spectroscopy in juvenile rats. Neurosci Lett 2017. [PMID: 28627374 DOI: 10.1016/j.neulet.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R2=0.92, Q2=0.31; plasma: R2=0.95, Q2=0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R2=0.86; hypoglycemia group: R2=0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, Mayo Mail Code 195, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; Center for Neurobehavioral Development, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
541
|
Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson's Disease. Metabolites 2017; 7:metabo7020022. [PMID: 28538683 PMCID: PMC5487993 DOI: 10.3390/metabo7020022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling.
Collapse
|
542
|
Marshall DD, Powers R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:1-16. [PMID: 28552170 PMCID: PMC5448308 DOI: 10.1016/j.pnmrs.2017.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 05/02/2023]
Abstract
Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique strengths. NMR requires minimal sample handling without the need for chromatography, is easily quantitative, and provides multiple means of metabolite identification, but is limited to detecting the most abundant metabolites (⩾1μM). Conversely, mass spectrometry has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and has a higher resolution (∼103-104) and dynamic range (∼103-104), but quantitation is a challenge and sample complexity may limit metabolite detection because of ion suppression. Consequently, liquid chromatography (LC) or gas chromatography (GC) is commonly employed in conjunction with MS, but this may lead to other sources of error. As a result, NMR and mass spectrometry are highly complementary, and combining the two techniques is likely to improve the overall quality of a study and enhance the coverage of the metabolome. While the majority of metabolomic studies use a single analytical source, there is a growing appreciation of the inherent value of combining NMR and MS for metabolomics. An overview of the current state of utilizing both NMR and MS for metabolomics will be presented.
Collapse
Affiliation(s)
- Darrell D Marshall
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States.
| |
Collapse
|
543
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
544
|
Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes. Amino Acids 2017; 49:1955-1963. [PMID: 28421296 PMCID: PMC5696498 DOI: 10.1007/s00726-017-2419-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/08/2017] [Indexed: 12/11/2022]
Abstract
Drug-induced off-target cardiotoxicity, particularly following anti-cancer therapy, is a major concern in new drug discovery and development. To ensure patient safety and efficient pharmaceutical drug development, there is an urgent need to develop more predictive cell model systems and distinct toxicity signatures. In this study, we applied our previously proposed repeated exposure toxicity methodology and performed 1H NMR spectroscopy-based extracellular metabolic profiling in culture medium of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exposed to doxorubicin (DOX), an anti-cancer agent. Single exposure to DOX did not show alteration in the basal level of extracellular metabolites while repeated exposure to DOX caused reduction in the utilization of pyruvate and acetate, and accumulation of formate compared to control culture medium. During drug washout, only pyruvate showed reversible effect and restored its utilization by hiPSC-CMs. On the other hand, formate and acetate showed irreversible effect in response to DOX exposure. DOX repeated exposure increased release of lactate dehydrogenase (LDH) in culture medium suggesting cytotoxicity events, while declined ATP levels in hiPSC-CMs. Our data suggests DOX perturbed mitochondrial metabolism in hiPSC-CMs. Pyruvate, acetate and formate can be used as metabolite signatures of DOX induced cardiotoxicity. Moreover, the hiPSC-CMs model system coupled with metabolomics technology offers a novel and powerful approach to strengthen cardiac safety assessment during new drug discovery and development.
Collapse
|
545
|
Hoffmann F, Li DW, Sebastiani D, Brüschweiler R. Improved Quantum Chemical NMR Chemical Shift Prediction of Metabolites in Aqueous Solution toward the Validation of Unknowns. J Phys Chem A 2017; 121:3071-3078. [PMID: 28388058 DOI: 10.1021/acs.jpca.7b01954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A quantum-chemistry based protocol, termed MOSS-DFT, is presented for the prediction of 13C and 1H NMR chemical shifts of a wide range of organic molecules in aqueous solution, including metabolites. Molecular motif-specific linear scaling parameters are reported for five different density functional theory (DFT) methods (B97-2/pcS-1, B97-2/pcS-2, B97-2/pcS-3, B3LYP/pcS-2, and BLYP/pcS-2), which were applied to a large set of 176 metabolite molecules. The chemical shift root-mean-square deviations (RMSD) for the best method, B97-2/pcS-3, are 1.93 and 0.154 ppm for 13C and 1H chemical shifts, respectively. Excellent results have been obtained for chemical shifts of methyl and aromatic 13C and 1H that are not directly bonded to a heteroatom (O, N, S, or P) with RMSD values of 1.15/0.079 and 1.31/0.118 ppm, respectively. This study not only demonstrates how NMR chemical shift in aqueous environment can be improved over the commonly used global linear scaling approach, but also allows for motif-specific error estimates, which are useful for an improved chemical shift-based verification of metabolite candidates of metabolomics samples containing unknown components.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University , Columbus, Ohio 43210, United States
| | - Daniel Sebastiani
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
546
|
Peng Y, Hansen AL, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Chapman MS, Brüschweiler R. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. J Am Chem Soc 2017; 139:4846-4853. [PMID: 28287709 DOI: 10.1021/jacs.7b00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine kinase (AK), which is a member of the phosphagen kinase family, serves as a model system for studying the structural and dynamic determinants of biomolecular enzyme catalysis of all major states involved of the enzymatic cycle. These states are the apo state (substrate free), the Michaelis complex analogue AK:Arg:Mg·AMPPNP (MCA), a product complex analogue AK:pAIE:Mg·ADP (PCA), and the transition state analogue AK:Arg:Mg·ADP:NO3- (TSA). The conformational dynamics of these states have been studied by NMR relaxation dispersion measurements of the methyl groups of the Ile, Leu, and Val residues at two static magnetic fields. Although all states undergo significant amounts of μs-ms time scale dynamics, only the MCA samples a dominant excited state that resembles the TSA, as evidenced by the strong correlation between the relaxation dispersion derived chemical shift differences Δω and the equilibrium chemical shift differences Δδ of these states. The average lifetime of the MCA is 36 ms and the free energy difference to the TSA-like form is 8.5 kJ/mol. It is shown that the conformational energy landscape of the Michaelis complex analogue is shaped in a way that at room temperature it channels passage to the transition state, thereby determining the rate-limiting step of the phosphorylation reaction of arginine. Conversely, relaxation dispersion experiments of the TSA reveal that it samples the structures of the Michaelis complex analogue or the apo state as its dominant excited state. This reciprocal behavior shows that the free energy of the TSA, with all ligands bound, is lower by only about 8.9 kJ/mol than that of the Michaelis or apo complex conformations with the TSA ligands present.
Collapse
Affiliation(s)
| | | | | | - Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Michael S Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | | |
Collapse
|
547
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
548
|
Menni C, Zierer J, Valdes AM, Spector TD. Mixing omics: combining genetics and metabolomics to study rheumatic diseases. Nat Rev Rheumatol 2017; 13:174-181. [PMID: 28148918 DOI: 10.1038/nrrheum.2017.5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolomics is an exciting field in systems biology that provides a direct readout of the biochemical activities taking place within an individual at a particular point in time. Metabolite levels are influenced by many factors, including disease status, environment, medications, diet and, importantly, genetics. Thanks to their dynamic nature, metabolites are useful for diagnosis and prognosis, as well as for predicting and monitoring the efficacy of treatments. At the same time, the strong links between an individual's metabolic and genetic profiles enable the investigation of pathways that underlie changes in metabolite levels. Thus, for the field of metabolomics to yield its full potential, researchers need to take into account the genetic factors underlying the production of metabolites, and the potential role of these metabolites in disease processes. In this Review, the methodological aspects related to metabolomic profiling and any potential links between metabolomics and the genetics of some of the most common rheumatic diseases are described. Links between metabolomics, genetics and emerging fields such as the gut microbiome and proteomics are also discussed.
Collapse
Affiliation(s)
- Cristina Menni
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| | - Jonas Zierer
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ana M Valdes
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
- Academic Rheumatology, The University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Tim D Spector
- The Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| |
Collapse
|
549
|
Allard PM, Genta-Jouve G, Wolfender JL. Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol 2017; 36:40-49. [DOI: 10.1016/j.cbpa.2016.12.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
|
550
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|