501
|
Eiyama A, Kondo-Okamoto N, Okamoto K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett 2013; 587:1787-92. [PMID: 23660403 DOI: 10.1016/j.febslet.2013.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/29/2023]
Abstract
Selective degradation of mitochondria is a fundamental process that depends on formation of autophagy-related double-membrane vesicles exclusive to mitochondria, and is thus termed mitophagy. In yeast, mitophagy is induced by a shift from respiration to starvation, or prolonged respiratory growth. Here we show that mitochondrial degradation in yeast also occurs selectively under starvation conditions even without respiration. Induction of mitophagy takes place much later than that of bulk autophagy, requiring Atg11 and Atg32 essential for mitophagy as well as Atg17, Atg29, and Atg31 specific for bulk autophagy. We propose that these two discrete protein complexes cooperatively activate starvation-induced mitophagy.
Collapse
Affiliation(s)
- Akinori Eiyama
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
502
|
Sato M, Sato K. Dynamic regulation of autophagy and endocytosis for cell remodeling during early development. Traffic 2013; 14:479-486. [PMID: 23356349 DOI: 10.1111/tra.12050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/27/2022]
Abstract
Fertilization triggers cell remodeling from each gamete to a totipotent zygote. Using Caenorhabditis elegans as a model system, it has been revealed that lysosomal degradation pathways play important roles in cellular remodeling during this developmental transition. Endocytosis and autophagy, two pathways leading to the lysosomes, are highly upregulated during this period. A subset of maternal membrane proteins is selectively endocytosed and degraded in the lysosomes before the first mitotic cell division. Autophagy is also induced shortly after fertilization and executes the degradation of paternally inherited embryonic organelles, e.g. mitochondria and membranous organelles. This mechanism underlies the maternal inheritance of the mitochondrial genome. Autophagy is also required for the removal of extra P-granule (germ granules in C. elegans) components in somatic cells of early embryos and thereby for the specific distribution of P-granules to germ cells. This review focuses on recent advances in the study of the physiological roles and mechanisms of lysosomal pathways during early development in C. elegans.
Collapse
Affiliation(s)
- Miyuki Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | | |
Collapse
|
503
|
Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009357. [PMID: 22474616 DOI: 10.1101/cshperspect.a009357] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Great progress has been made toward understanding the pathogenesis of Parkinson's disease (PD) during the past two decades, mainly as a consequence of the discovery of specific gene mutations contributing to the onset of PD. Recently, dysregulation of the autophagy pathway has been observed in the brains of PD patients and in animal models of PD, indicating the emerging role of autophagy in this disease. Indeed, autophagy is increasingly implicated in a number of pathophysiologies, including various neurodegenerative diseases. This article will lead you through the connection between autophagy and PD by introducing the concept and physiological function of autophagy, and the proteins related to autosomal dominant and autosomal recessive PD, particularly α-synuclein and PINK1-PARKIN, as they pertain to autophagy.
Collapse
Affiliation(s)
- Melinda A Lynch-Day
- University of Michigan, Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
504
|
The role of 'eat-me' signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 2013; 16:339-48. [PMID: 23623150 DOI: 10.1016/j.mib.2013.03.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Selective autophagy is an important effector mechanism of cell autonomous immunity, in particular against invasive bacterial species. Anti-bacterial autophagy is activated by rupture of bacteria-containing vacuoles and exposure of bacteria to the cytosol. The autophagy cargo receptors p62, NDP52 and Optineurin detect incoming bacteria that have become associated with specific 'eat-me' signals such as Galectin-8 and poly-ubiquitin and feed them into the autophagy pathway via interactions with phagophore-associated ATG8-like proteins. Here we review recent progress in the field regarding the origin of bacteria-associated 'eat-me' signals, the specific roles of individual cargo receptors and how disrupting cargo receptor function may be important for bacterial evasion of autophagy.
Collapse
|
505
|
Cao DJ, Jiang N, Blagg A, Johnstone JL, Gondalia R, Oh M, Luo X, Yang KC, Shelton JM, Rothermel BA, Gillette TG, Dorn GW, Hill JA. Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc 2013; 2:e000016. [PMID: 23568341 PMCID: PMC3647287 DOI: 10.1161/jaha.113.000016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. Methods and Results In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte‐specific constitutively active FoxO3 mutant (caFoxO3flox;αMHC‐Mer‐Cre‐Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19‐kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3flox;αMHC‐Mer‐Cre‐Mer mice with Bnip3‐null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3‐driven activation of the ubiquitin‐proteasome system, we detected time‐dependent activation of the atrogenes program and sarcomere protein breakdown. Conclusions In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy‐lysosomal and ubiquitin‐proteasomal pathways to orchestrate cardiac muscle atrophy.
Collapse
Affiliation(s)
- Dian J Cao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Mitophagy in Ischaemia/Reperfusion Induced Cerebral Injury. Neurochem Res 2013; 38:1295-300. [DOI: 10.1007/s11064-013-1033-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/18/2022]
|
507
|
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep 2013; 14:441-9. [PMID: 23559066 DOI: 10.1038/embor.2013.40] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022] Open
Abstract
The selective autophagy receptors Atg19 and Atg32 interact with two proteins of the core autophagic machinery: the scaffold protein Atg11 and the ubiquitin-like protein Atg8. We found that the Pichia pastoris pexophagy receptor, Atg30, also interacts with Atg8. Both Atg30 and Atg32 interactions are regulated by phosphorylation close to Atg8-interaction motifs. Extending this finding to Saccharomyces cerevisiae, we confirmed phosphoregulation for the mitophagy and pexophagy receptors, Atg32 and Atg36. Each Atg30 molecule must interact with both Atg8 and Atg11 for full functionality, and these interactions occur independently and not simultaneously, but rather in random order. We present a common model for the phosphoregulation of selective autophagy receptors.
Collapse
|
508
|
Abstract
Mitochondria have long been considered as crucial organelles, primarily for their roles in biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly apparent that mitochondria are intimately involved in cell signalling pathways. Mitochondria perform various signalling functions, serving as platforms to initiate cell signalling, as well as acting as transducers and effectors in multiple processes. Here, we discuss the active roles that mitochondria have in cell death signalling, innate immunity and autophagy. Common themes of mitochondrial regulation emerge from these diverse but interconnected processes. These include: the outer mitochondrial membrane serving as a major signalling platform, and regulation of cell signalling through mitochondrial dynamics and by mitochondrial metabolites, including ATP and reactive oxygen species. Importantly, defects in mitochondrial control of cell signalling and in the regulation of mitochondrial homeostasis might underpin many diseases, in particular age-related pathologies.
Collapse
Affiliation(s)
- Stephen W G Tait
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Switchback Road, Glasgow, UK
| | | |
Collapse
|
509
|
Substrate recognition in selective autophagy and the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:163-81. [PMID: 23545414 DOI: 10.1016/j.bbamcr.2013.03.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/21/2022]
Abstract
Dynamic protein turnover through regulated protein synthesis and degradation ensures cellular growth, proliferation, differentiation and adaptation. Eukaryotic cells utilize two mechanistically distinct but largely complementary systems - the 26S proteasome and the lysosome (or vacuole in yeast and plants) - to effectively target a wide range of proteins for degradation. The concerted action of the ubiquitination machinery and the 26S proteasome ensures the targeted and tightly regulated degradation of a subset of commonly short-lived cellular proteins. Autophagy is a distinct degradation pathway, which transports a highly heterogeneous set of cargos in dedicated vesicles, called autophagosomes, to the lysosome. There the cargo becomes degraded and its molecular building blocks are recycled. While general autophagy randomly engulfs portions of the cytosol, selective autophagy employs dedicated cargo adaptors to specifically enrich the forming autophagosomes for a certain type of cargo as a response to various intra- or extracellular signals. Selective autophagy targets a wide range of cargos including long-lived proteins and protein complexes, organelles, protein aggregates and even intracellular microbes. In this review we summarize available data on cargo recognition mechanisms operating in selective autophagy and the ubiquitin-proteasome system (UPS), and emphasize their differences and common themes. Moreover, we derive general regulatory principles underlying cargo recognition in selective autophagy, and describe the system-wide crosstalk between these two cellular protein degradation systems. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
510
|
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 2013; 393:547-64. [PMID: 22944659 DOI: 10.1515/hsz-2012-0119] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/07/2012] [Indexed: 12/14/2022]
Abstract
Abstract Mitochondria are essential organelles that regulate cellular energy homeostasis and cell death. The removal of damaged mitochondria through autophagy, a process called mitophagy, is thus critical for maintaining proper cellular functions. Indeed, mitophagy has been recently proposed to play critical roles in terminal differentiation of red blood cells, paternal mitochondrial degradation, neurodegenerative diseases, and ischemia or drug-induced tissue injury. Removal of damaged mitochondria through autophagy requires two steps: induction of general autophagy and priming of damaged mitochondria for selective autophagic recognition. Recent progress in mitophagy studies reveals that mitochondrial priming is mediated either by the Pink1-Parkin signaling pathway or the mitophagic receptors Nix and Bnip3. In this review, we summarize our current knowledge on the mechanisms of mitophagy. We also discuss the pathophysiological roles of mitophagy and current assays used to monitor mitophagy.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
511
|
Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc Natl Acad Sci U S A 2013; 110:E1342-51. [PMID: 23530241 DOI: 10.1073/pnas.1300855110] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.
Collapse
|
512
|
Abstract
Mitochondrial DNA (mtDNA) is essential for aerobic energy production in eukaryotic cells, and mutations in this genome can lead to mitochondrial dysfunction. Human mtDNA mutations are typically heteroplasmic, a mix of mutant and wild-type genomes, which can present as a heterogeneous group of disorders ranging in severity from mild to fatal, and commonly affecting highly aerobic tissues such as heart, skeletal muscle, and neurons. During the 1990s, many research groups started to notice that mtDNA mutations could segregate depending upon the mutation and tissue. This segregation pattern can have a direct effect on the onset and severity of these mutations. However, these segregation patterns could not be easily explained by respiratory chain function, implying that there is regulation of mtDNA independent of its bioenergetic role. A lot of research on this topic has been largely descriptive, but over the last several years advances in mitochondrial biology have provided some mechanistic insight into the regulation of the organelle and its genome. This review addresses these advances with respect to somatic segregation of mtDNA in mammals.
Collapse
Affiliation(s)
- Riikka Jokinen
- Research Programs Unit-Molecular Neurology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
513
|
Jazwinski SM. The retrograde response: when mitochondrial quality control is not enough. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22374136 DOI: 10.1016/j.bbamcr.2012.02.010 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondria are responsible for generating adenosine triphosphate (ATP) and metabolic intermediates for biosynthesis. These dual functions require the activity of the electron transport chain in the mitochondrial inner membrane. The performance of these electron carriers is imperfect, resulting in release of damaging reactive oxygen species. Thus, continued mitochondrial activity requires maintenance. There are numerous means by which this quality control is ensured. Autophagy and selective mitophagy are among them. However, the cell inevitably must compensate for declining quality control by activating a variety of adaptations that entail the signaling of the presence of mitochondrial dysfunction to the nucleus. The best known of these is the retrograde response. This signaling pathway is triggered by the loss of mitochondrial membrane potential, which engages a series of signal transduction proteins, and it culminates in the induction of a broad array of nuclear target genes. One of the hallmarks of the retrograde response is its capacity to extend the replicative life span of the cell. The retrograde signaling pathway interacts with several other signaling pathways, such as target of rapamycin (TOR) and ceramide signaling. All of these pathways respond to stress, including metabolic stress. The retrograde response is also linked to both autophagy and mitophagy at the gene and protein activation levels. Another quality control mechanism involves age-asymmetry in the segregation of dysfunctional mitochondria. One of the processes that impinge on this age-asymmetry is related to biogenesis of the organelle. Altogether, it is apparent that mitochondrial quality control constitutes a complex network of processes, whose full understanding will require a systems approach. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
514
|
Abstract
Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release prodeath proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant mitochondria that can cause harm to the cell. This mechanism involves selective sequestration and subsequent degradation of the dysfunctional mitochondrion before it causes activation of cell death. Induction of mitochondrial autophagy, or mitophagy, results in selective clearance of damaged mitochondria in cells. In response to stress such as ischemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in cardiac myocytes. Thus, there is a delicate balance between life and death in the myocytes during stress, and the final outcome depends on the complex cross-talk between these pathways. Mitophagy functions as an early cardioprotective response, favoring adaptation to stress by removing damaged mitochondria. In contrast, increased oxidative stress and apoptotic proteases can inactivate mitophagy, allowing for the execution of cell death. Herein, we discuss the importance of mitochondria and mitophagy in cardiovascular health and disease and provide a review of our current understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
515
|
Varabyova A, Stojanovski D, Chacinska A. Mitochondrial protein homeostasis. IUBMB Life 2013; 65:191-201. [PMID: 23341326 DOI: 10.1002/iub.1122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/29/2012] [Indexed: 11/09/2022]
Abstract
Mitochondria use 800-1,500 proteins to perform their biological functions in the eukaryotic cells. Distinct transport and sorting mechanisms are responsible for the delivery of proteins to the correct location within mitochondria. Mitochondrial proteins undergo processing events and form functional assemblies. Finally, non-functional proteins are cleared to maintain healthy mitochondria. We provide an overview of the processes collectively contributing to the maintenance of mitochondrial protein homeostasis, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Aksana Varabyova
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
516
|
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013; 20:31-42. [PMID: 22743996 PMCID: PMC3524633 DOI: 10.1038/cdd.2012.81] [Citation(s) in RCA: 1368] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/17/2022] Open
Abstract
Selective autophagy of mitochondria, known as mitophagy, is an important mitochondrial quality control mechanism that eliminates damaged mitochondria. Mitophagy also mediates removal of mitochondria from developing erythrocytes, and contributes to maternal inheritance of mitochondrial DNA through the elimination of sperm-derived mitochondria. Recent studies have identified specific regulators of mitophagy that ensure selective sequestration of mitochondria as cargo. In yeast, the mitochondrial outer membrane protein autophagy-related gene 32 (ATG32) recruits the autophagic machinery to mitochondria, while mammalian Nix is required for degradation of erythrocyte mitochondria. The elimination of damaged mitochondria in mammals is mediated by a pathway comprised of PTEN-induced putative protein kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin. PINK1 and Parkin accumulate on damaged mitochondria, promote their segregation from the mitochondrial network, and target these organelles for autophagic degradation in a process that requires Parkin-dependent ubiquitination of mitochondrial proteins. Here we will review recent advances in our understanding of the different pathways of mitophagy. In addition, we will discuss the relevance of these pathways in neurons where defects in mitophagy have been implicated in neurodegeneration.
Collapse
Affiliation(s)
- G Ashrafi
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - T L Schwarz
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
517
|
Reggiori F. Autophagy: New Questions from Recent Answers. ISRN MOLECULAR BIOLOGY 2012; 2012:738718. [PMID: 27335669 PMCID: PMC4890908 DOI: 10.5402/2012/738718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Macroautophagy (hereafter autophagy) is currently one of the areas of medical life sciences attracting a great interest because of its pathological implications and therapy potentials. The discovery of the autophagy-related genes (ATGs) has been the key event in this research field because their study has led to the acquisition of new knowledge about the mechanism of this transport pathway. In addition, the investigation of these genes in numerous model systems has revealed the central role that autophagy plays in maintaining the cell homeostasis. This process carries out numerous physiological functions, some of which were unpredicted and thus surprising. Here, we will review some of the questions about the mechanism and function of autophagy that still remain unanswered, and new ones that have emerged from the recent discoveries.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| |
Collapse
|
518
|
Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet 2012; 3:297. [PMID: 23267366 PMCID: PMC3525948 DOI: 10.3389/fgene.2012.00297] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 12/02/2022] Open
Abstract
Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitochondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during aging.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion Crete, Greece
| | | |
Collapse
|
519
|
Abstract
Two genes responsible for the juvenile Parkinson’s disease (PD), PINK1 and Parkin, have been implicated in mitochondrial quality control. The inactivation of PINK1, which encodes a mitochondrial kinase, leads to age-dependent mitochondrial degeneration in Drosophila. The phenotype is closely associated with the impairment of mitochondrial respiratory chain activity and defects in mitochondrial dynamics. Drosophila genetic studies have further revealed that PINK1 is an upstream regulator of Parkin and is involved in the mitochondrial dynamics and motility. A series of cell biological studies have given rise to a model in which the activation of PINK1 in damaged mitochondria induces the selective elimination of mitochondria in cooperation with Parkin through the ubiquitin-proteasome and autophagy machineries. Although the relevance of this pathway to PD etiology is still unclear, approaches using stem cells from patients and animal models will help to understand the significance of mitochondrial quality control by the PINK1-Parkin pathway in PD and in healthy individuals. Here I will review recent advances in our understanding of the PINK1-Parkin signaling and will discuss the roles of PINK1-Parkin signaling for mitochondrial maintenance and how the failure of this signaling leads to neurodegeneration.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
520
|
Deffieu M, Bhatia-Kiššová I, Salin B, Klionsky DJ, Pinson B, Manon S, Camougrand N. Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. J Cell Sci 2012; 126:415-26. [PMID: 23230142 DOI: 10.1242/jcs.103713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are essential organelles producing most of the energy required for the cell. A selective autophagic process called mitophagy removes damaged mitochondria, which is critical for proper cellular homeostasis; dysfunctional mitochondria can generate excess reactive oxygen species that can further damage the organelle as well as other cellular components. Although proper cell physiology requires the maintenance of a healthy pool of mitochondria, little is known about the mechanism underlying the recognition and selection of damaged organelles. In this study, we investigated the cellular fate of mitochondria damaged by the action of respiratory inhibitors (antimycin A, myxothiazol, KCN) that act on mitochondrial respiratory complexes III and IV, but have different effects with regard to the production of reactive oxygen species and increased levels of reduced cytochromes. Antimycin A and potassium cyanide effectively induced nonspecific autophagy, but not mitophagy, in a wild-type strain of Saccharomyces cerevisiae; however, low or no autophagic activity was measured in strains deficient for genes that encode proteins involved in mitophagy, including ATG32, ATG11 and BCK1. These results provide evidence for a major role of specific mitophagy factors in the control of a general autophagic cellular response induced by mitochondrial alteration. Moreover, increased levels of reduced cytochrome b, one of the components of the respiratory chain, could be the first signal of this induction pathway.
Collapse
Affiliation(s)
- Maika Deffieu
- CNRS, IBGC, UMR5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
521
|
Peters TW, Rardin MJ, Czerwieniec G, Evani US, Reis-Rodrigues P, Lithgow GJ, Mooney SD, Gibson BW, Hughes RE. Tor1 regulates protein solubility in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:4679-88. [PMID: 23097491 PMCID: PMC3521677 DOI: 10.1091/mbc.e12-08-0620] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transition of proteins targeted for autophagic degradation from the soluble to the insoluble phase is regulated in an ATG1-independent mechanism by TORC1. This process is likely a critical mechanism for maintaining protein homeostasis when challenged with proteomic stress. Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.
Collapse
|
522
|
Li P, Jiao J, Gao G, Prabhakar BS. Control of mitochondrial activity by miRNAs. J Cell Biochem 2012; 113:1104-10. [PMID: 22135235 DOI: 10.1002/jcb.24004] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria supply energy for physiological function and they participate in the regulation of other cellular events including apoptosis, calcium homeostasis, and production of reactive oxygen species. Thus, mitochondria play a critical role in the cells. However, dysfunction of mitochondria is related to a variety of pathological processes and diseases. MicroRNAs (miRNAs) are a class of small noncoding RNAs about 22 nucleotides long, and they can bind to the 3'-untranslated region (3'-UTR) of mRNAs, thereby inhibiting mRNA translation or promoting mRNA degradation. We summarize the molecular regulation of mitochondrial metabolism, structure, and function by miRNAs. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Peifeng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
523
|
Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, Jain A, Olsvik H, Øvervatn A, Kirkin V, Johansen T. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 2012; 287:39275-90. [PMID: 23043107 DOI: 10.1074/jbc.m112.378109] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.
Collapse
Affiliation(s)
- Endalkachew Ashenafi Alemu
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
524
|
Sai Y, Zou Z, Peng K, Dong Z. The Parkinson's disease-related genes act in mitochondrial homeostasis. Neurosci Biobehav Rev 2012; 36:2034-43. [DOI: 10.1016/j.neubiorev.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/09/2012] [Accepted: 06/12/2012] [Indexed: 11/16/2022]
|
525
|
Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol 2012; 361:12-23. [PMID: 22575351 DOI: 10.1016/j.mce.2012.04.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/27/2023]
Abstract
Oxidative stress plays an essential role in triggering many cellular processes including programmed cell death. Proving a relationship between apoptosis and reactive oxygen species has been the goal of numerous studies. Accumulating data point to an essential role for oxidative stress in the activation of autophagy. The term autophagy encompasses several processes including not only survival or death mechanisms, but also pexophagy, mitophagy, ER-phagy or ribophagy, depending of which organelles are targeted for specific autophagic degradation. However, whether the outcome of autophagy is survival or death and whether the initiating conditions are starvation, pathogens or death receptors, reactive oxygen species are invariably involved. The role of antioxidants in the regulation of these processes, however, has been sparingly investigated. Among the known antioxidants, melatonin has high efficacy and, in both experimental and clinical situations, its protective actions against oxidative stress are well documented. Beneficial effects against mitochondrial dysfunction have also been described for melatonin; thus, this indoleamine seems to be linked to mitophagy. The present review focuses on data and the most recent advances related to the role of melatonin in health and disease, on autophagy activation in general, and on mitophagy in particular.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
526
|
Zhang Y, Zeng X, Jin S. Autophagy in adipose tissue biology. Pharmacol Res 2012; 66:505-12. [PMID: 23017672 DOI: 10.1016/j.phrs.2012.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/25/2022]
Abstract
Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
527
|
Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. TRENDS IN PLANT SCIENCE 2012; 17:526-37. [PMID: 22694835 DOI: 10.1016/j.tplants.2012.05.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated mechanisms to recycle intracellular constituents. One gaining in appreciation is autophagy, which involves specialized vesicles engulfing and delivering unwanted cytoplasmic material to the vacuole for breakdown. Central to this process is the ubiquitin-fold protein autophagy (ATG)-8, which becomes tethered to the developing autophagic membranes by lipidation. Here, we review data showing that the ATG8 moiety provides a docking site not only for proteins that help shape the enclosing vesicles and promote their fusion with the tonoplast, but also for a host of receptors that recruit appropriate autophagic cargo. The identity of these receptors has dramatically altered the view of autophagy as being a relatively nonspecific mechanism to one that may selectively sequester aggregated proteins, protein complexes, organelles, and even invading pathogens.
Collapse
Affiliation(s)
- Faqiang Li
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
528
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. Reactive oxygen species and autophagy in plants and algae. PLANT PHYSIOLOGY 2012; 160:156-64. [PMID: 22744983 PMCID: PMC3440194 DOI: 10.1104/pp.112.199992] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
529
|
Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, Ruonala MO, Priault M, Salin B, Reichert AS. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2297-310. [PMID: 22917578 DOI: 10.1016/j.bbamcr.2012.08.007] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is linked to apoptosis, aging, cancer, and a number of neurodegenerative and muscular disorders. The interplay between mitophagy and mitochondrial dynamics has been linked to the removal of dysfunctional mitochondria ensuring mitochondrial quality control. An open question is what role mitochondrial fission plays in the removal of mitochondria after mild and transient oxidative stress; conditions reported to result in moderately elevated reactive oxygen species (ROS) levels comparable to physical activity. Here we show that applying such conditions led to fragmentation of mitochondria and induction of mitophagy in mouse and human cells. These conditions increased ROS levels only slightly and neither triggered cell death nor led to a detectable induction of non-selective autophagy. Starvation led to hyperfusion of mitochondria, to high ROS levels, and to the induction of both non-selective autophagy and to a lesser extent to mitophagy. We conclude that moderate levels of ROS specifically trigger mitophagy but are insufficient to trigger non-selective autophagy. Expression of a dominant-negative variant of the fission factor DRP1 blocked mitophagy induction by mild oxidative stress as well as by starvation. Taken together, we demonstrate that in mammalian cells under mild oxidative stress a DRP1-dependent type of mitophagy is triggered while a concomitant induction of non-selective autophagy was not observed. We propose that these mild oxidative conditions resembling well physiological situations are thus very helpful for studying the molecular pathways governing the selective removal of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Magdalena Frank
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
530
|
Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 2012; 17:311-21. [PMID: 22288610 DOI: 10.1111/j.1440-1797.2012.01572.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic kidney disease (CKD) is a common and serious problem that adversely affects human health, limits longevity and increases costs to health-care systems worldwide. Its increasing incidence cannot be fully explained by traditional risk factors. Oxidative stress is prevalent in CKD patients and is considered to be an important pathogenic mechanism. Oxidative stress develops from an imbalance between free radical production often increased through dysfunctional mitochondria formed with increasing age, type 2 diabetes mellitus, inflammation, and reduced anti-oxidant defences. Perturbations in cellular oxidant handling influence downstream cellular signalling and, in the kidney, promote renal cell apoptosis and senescence, decreased regenerative ability of cells, and fibrosis. These factors have a stochastic deleterious effect on kidney function. The majority of studies investigating anti-oxidant treatments in CKD patients show a reduction in oxidative stress and many show improved renal function. Despite heterogeneity in the oxidative stress levels in the CKD population, there has been little effort to measure patient oxidative stress levels before the use of any anti-oxidants therapies to optimize outcome. This review describes the development of oxidative stress, how it can be measured, the involvement of mitochondrial dysfunction and the molecular pathways that are altered, the role of oxidative stress in CKD pathogenesis and an update on the amelioration of CKD using anti-oxidant therapies.
Collapse
Affiliation(s)
- David M Small
- Centre for Kidney Disease Research, School of Medicine, The University of Queensland, Queensland, Australia
| | | | | | | | | |
Collapse
|
531
|
Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Prescott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, Devenish RJ. Receptor protein complexes are in control of autophagy. Autophagy 2012; 8:1701-5. [PMID: 22874568 DOI: 10.4161/auto.21332] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In autophagic processes a variety of cargos is delivered to the degradative compartment of cells. Recent progress in autophagy research has provided support for the notion that when autophagic processes are operating in selective mode, a receptor protein complex will process the cargo. Here we present a concept of receptor protein complexes as comprising a functional tetrad of components: a ligand, a receptor, a scaffold and an Atg8 family protein. Our current understanding of each of the four components and their interaction in the context of cargo selection are considered in turn.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton Campus, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
de Vries RLA, Przedborski S. Mitophagy and Parkinson's disease: be eaten to stay healthy. Mol Cell Neurosci 2012; 55:37-43. [PMID: 22926193 DOI: 10.1016/j.mcn.2012.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders. Pathologically, it is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although most occurrences have an unknown cause, several gene mutations have been linked to familial forms of PD. The discovery of some of the proteins encoded by these genes, including Parkin, PINK1 and DJ-1, at the mitochondria offered a new perspective on the involvement of mitochondria in PD. Specifically, these proteins are thought to be involved in the maintenance of a healthy pool of mitochondria by regulating their turnover by mitochondrial autophagy, or mitophagy. In this review, we discuss recent studies on the role of mitophagy in PD. We present three putative models whereby PINK1 and Parkin may affect mitophagy; 1) by shifting the balance between fusion and fission of the mitochondrial network, 2) by modulating mitochondrial motility and 3) by directly recruiting the autophagic machinery to damaged mitochondria. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Rosa L A de Vries
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
533
|
Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. PLANT & CELL PHYSIOLOGY 2012; 53:1355-65. [PMID: 22764279 DOI: 10.1093/pcp/pcs099] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic components. There is no doubt that autophagy is very important to plant life, especially because plants are immobile and must survive in environmental extremes. Early studies of autophagy provided our first insights into the structural characteristics of the process in plants, but for a long time the molecular mechanisms and the physiological roles of autophagy were not understood. Genetic analyses of autophagy in the yeast Saccharomyces cerevisiae have greatly expanded our knowledge of the molecular aspects of autophagy in plants as well as in animals. Until recently our knowledge of plant autophagy was in its infancy compared with autophagy research in yeast and animals, but recent efforts by plant researchers have made many advances in our understanding of plant autophagy. Here I will introduce an overview of autophagy in plants, present current findings and discuss the physiological roles of self-degradation.
Collapse
Affiliation(s)
- Kohki Yoshimoto
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
534
|
Ni HM, Williams JA, Yang H, Shi YH, Fan J, Ding WX. Targeting autophagy for the treatment of liver diseases. Pharmacol Res 2012; 66:463-74. [PMID: 22871337 DOI: 10.1016/j.phrs.2012.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosomal degradation pathway that can degrade bulk cytoplasm and superfluous or damaged organelles, such as mitochondria, to maintain cellular homeostasis. It is now known that dysregulation of autophagy can cause pathogenesis of numerous human diseases. Here, we discuss the critical roles that autophagy plays in the pathogenesis of liver diseases such as non-alcoholic and alcoholic fatty liver, drug-induced liver injury, protein aggregate-related liver diseases, viral hepatitis, fibrosis, aging and liver cancer. In particular, we discuss the emerging therapeutic potential by pharmacological modulation of autophagy for these liver diseases.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | | | | | | | | | | |
Collapse
|
535
|
Autophagy in skeletal muscle homeostasis and in muscular dystrophies. Cells 2012; 1:325-45. [PMID: 24710479 PMCID: PMC3901110 DOI: 10.3390/cells1030325] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 07/13/2012] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.
Collapse
|
536
|
Yamaguchi O, Taneike M, Otsu K. Cooperation between proteolytic systems in cardiomyocyte recycling. Cardiovasc Res 2012; 96:46-52. [DOI: 10.1093/cvr/cvs236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
537
|
Skeletal muscle mitochondria and aging: a review. J Aging Res 2012; 2012:194821. [PMID: 22888430 PMCID: PMC3408651 DOI: 10.1155/2012/194821] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.
Collapse
|
538
|
Bhatia-Kiššová I, Camougrand N. Mitophagy: a process that adapts to the cell physiology. Int J Biochem Cell Biol 2012; 45:30-3. [PMID: 22801005 DOI: 10.1016/j.biocel.2012.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/26/2012] [Accepted: 07/01/2012] [Indexed: 10/28/2022]
Abstract
This focus makes a case that mitophagy is not a straightforward process obeying simple rules. It is a complex process through which the cell gets rid of both damaged and healthy untainted mitochondria to adjust their amount, and in accordance with cellular energy requirements. Several aspects of mitophagy have been described in both yeast and mammalian cells. They have revealed a number of discrepancies in the regulation of this process in the two eukaryotic models. Data have shown that mitophagy is a function of cell physiology. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Ingrid Bhatia-Kiššová
- Comenius University, Faculty of Natural Sciences, Department of Biochemistry, Mlynská dolina CH1, 84215 Bratislava, Slovak Republic
| | | |
Collapse
|
539
|
The phosphorylation-dependent regulation of mitochondrial proteins in stress responses. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:931215. [PMID: 22848813 PMCID: PMC3403084 DOI: 10.1155/2012/931215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022]
Abstract
To maintain cellular homeostasis, cells are equipped with precise systems that trigger the appropriate stress responses. Mitochondria not only provide cellular energy but also integrate stress response signaling pathways, including those regulating cell death. Several lines of evidence suggest that the mitochondrial proteins that function in this process, such as Bcl-2 family proteins in apoptosis and phosphoglycerate mutase family member 5 (PGAM5) in necroptosis, are regulated by several kinases. It has also been suggested that the phosphorylation-dependent regulation of mitochondrial fission machinery, dynamin-related protein 1 (Drp1), facilitates appropriate cellular stress responses. However, mitochondria themselves are also damaged by various stresses. To avoid the deleterious effects exerted by damaged mitochondria, cells remove these mitochondria in a selective autophagic degradation process called mitophagy. Interestingly, several kinases, such as PTEN-induced putative kinase 1 (PINK1) in mammals and stress-responsive mitogen-activated protein (MAP) kinases in yeast, have recently been shown to be involved in mitophagy. In this paper, we focus on the phosphorylation-dependent regulation of mitochondrial proteins and discuss the roles of this regulation in the mitochondrial and cellular stress responses.
Collapse
|
540
|
Etiology of Crohn’s disease: many roads lead to autophagy. J Mol Med (Berl) 2012; 90:987-96. [DOI: 10.1007/s00109-012-0934-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/19/2023]
|
541
|
Anand R, Langer T, Baker MJ. Proteolytic control of mitochondrial function and morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:195-204. [PMID: 22749882 DOI: 10.1016/j.bbamcr.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 12/18/2022]
Abstract
Mitochondrial proteostasis depends on a hierarchical system of tightly controlled quality surveillance mechanisms. Proteases within mitochondria take center stage in this network. They eliminate misfolded and damaged proteins and ensure the biogenesis and morphogenesis of mitochondria by processing or degrading short-lived regulatory proteins. Mitochondrial gene expression, the mitochondrial phospholipid metabolism and the fusion of mitochondrial membranes are under proteolytic control. Furthermore, in response to stress and mitochondrial dysfunction, proteolysis inhibits fusion and facilitates mitophagy and apoptosis. Defining these versatile activities of mitochondrial proteases will be pivotal for understanding the pathogenesis of various neurodegenerative disorders associated with defective mitochondria-associated proteolysis. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
|
542
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
543
|
Kobayashi T, Suzuki K, Ohsumi Y. Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett 2012; 586:2473-8. [PMID: 22728243 DOI: 10.1016/j.febslet.2012.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/07/2023]
Abstract
The Atg2-Atg18 complex is essential for autophagosome formation in Saccharomyces cerevisiae. In this paper, we show that partial induction of autophagy can proceed in cells expressing engineered variants of Atg2 capable of localizing to the pre-autophagosomal structure (PAS) in the absence of Atg18. Specifically, through the construction of fusion proteins, we show that the fusion to Atg2 of either the phosphatidylinositol 3-phosphate-binding FYVE domain or the core autophagy protein Atg8 allowed limited Atg18-independent recovery of autophagosome formation. These results indicate that effective targeting of Atg2 to the PAS can compensate for loss of Atg18 function in autophagy.
Collapse
Affiliation(s)
- Takafumi Kobayashi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
544
|
Bass A, Sauer D, Klionsky DJ. A PCR analysis of the ubiquitin-like conjugation systems in macroautophagy. Autophagy 2012; 7:1410-4. [PMID: 22024756 DOI: 10.4161/auto.7.12.16991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A central part of the core macroautophagy (hereafter autophagy) machinery includes the two ubiquitin-like (Ubl) conjugation systems that involve the Ubl proteins Atg8 and Atg12.1 Although the functions of these proteins have not been fully elucidated, they play critical roles in autophagosome formation. For example, Atg8 is involved in cargo recognition, and the amount of Atg8 in part determines the size of the autophagosome,4 whereas Atg12 is part of a trimer that may function as an E3 ligase to facilitate Atg8 conjugation to phosphatidylethanolamine and determine, in part, the site of the conjugation reaction. Thus, fully functional autophagy requires both the Atg8 and Atg12 conjugation systems. Dysfunctional autophagy is associated with various human pathophysiologies including cancer, neurodegeneration, gastrointestinal disorders and heart disease. So, if you are wondering whether autophagy is operating properly in your own body, what can you do? The problem is that there are relatively few methods for analyzing autophagy in vivo.6-11 Minimally, you might want to find out if the relevant genes are intact and have the correct sequence. Considering the rapid advances being made in DNA sequencing technology, it is likely only a matter of time before people can submit a DNA sample and obtain a rapid readout of particular genes, or their entire genome. Thus, anticipating the future, we decided to analyze a select set of autophagy-related (ATG) genes, with a focus on those encoding components of the Ubl conjugation systems, by a polymerase chain reaction (PCR)-based method that combines science with art.
Collapse
|
545
|
Abstract
Autophagy is a bulk degradation system, widely conserved in eukaryotes. Upon starvation, autophagosomes enclose a portion of the cytoplasm and ultimately fuse with the vacuole. The contents of autophagosomes are degraded in the vacuole, and recycled to maintain the intracellular amino-acid pool required for protein synthesis and survival under starvation conditions. Previously, autophagy was thought to be an essentially nonselective pathway, but recent evidence suggests that autophagosomes carry selected cargoes. These studies have identified two categories of selective autophagy - one highly selective and dependent on autophagy-related 11 (Atg11); another, less selective, that is, independent of Atg11. The former, selective category comprises the Cvt pathway, mitophagy, pexophagy and piecemeal microautophagy of the nucleus; acetaldehyde dehydrogenase 6 degradation and ribophagy belong to the latter, less selective category. In this review, I focus on the mechanisms and the physiological roles of these selective types of autophagy.
Collapse
|
546
|
Shutt TE, McBride HM. Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:417-24. [PMID: 22683990 DOI: 10.1016/j.bbamcr.2012.05.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/30/2022]
Abstract
One of the critical problems with the combustion of sugar and fat is the generation of cellular oxidation. The ongoing consumption of oxygen results in damage to lipids, protein and mtDNA, which must be repaired through essential pathways in mitochondrial quality control. It has long been established that intrinsic protease pathways within the matrix and intermembrane space actively degrade unfolded and oxidized mitochondrial proteins. However, more recent work into the field of quality control has established distinct roles for both mitochondrial fragmentation and hyperfusion in different aspects of quality control and survival. In addition, mitochondrial derived vesicles have recently been shown to carry cargo directly to the lysosome, adding further insight into the integration of mitochondrial dynamics in cellular homeostasis. This review will focus on the mechanisms and emerging questions concerning the links between mitochondrial dynamics and quality control. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Timothy E Shutt
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, Canada K1Y 4W7
| | | |
Collapse
|
547
|
Devenish RJ, Klionsky DJ. Autophagy: mechanism and physiological relevance 'brewed' from yeast studies. Front Biosci (Schol Ed) 2012; 4:1354-63. [PMID: 22652877 DOI: 10.2741/s337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a highly conserved process of quality control occurring inside cells by which cytoplasmic material can be degraded and the products recycled for use as new building blocks or for energy production. The rapid progress and 'explosion' of knowledge concerning autophagic processes in mammals/humans that has occurred over the last 15 years was driven by fundamental studies in yeast, principally using Saccharomyces cerevisiae, leading to the identification and cloning of genes required for autophagy. This chapter reviews the role of yeast studies in understanding the molecular mechanisms of autophagic processes, focusing on aspects that are conserved in mammals/humans and how autophagy is increasingly implicated in the pathogenesis of disease and is required for development and differentiation.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Victoria 3800, Australia.
| | | |
Collapse
|
548
|
Guiboileau A, Masclaux-Daubresse C. L’autophagie chez les plantes : mécanismes, régulations et fonctions. C R Biol 2012; 335:375-88. [DOI: 10.1016/j.crvi.2012.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 12/20/2022]
|
549
|
Abstract
Autophagy, a highly conserved lysosomal degradation pathway, was initially characterized as a bulk degradation system induced in response to starvation. In recent years, autophagy has emerged also as a highly selective pathway, targeting various cargoes such as aggregated proteins and damaged organelles for degradation. The key factors involved in selective autophagy are autophagy receptors and adaptor proteins, which connect the cargo to the core autophagy machinery. In this review, we discuss the current knowledge about the only mammalian adaptor protein identified thus far, autophagy-linked FYVE protein (ALFY). ALFY is a large, scaffolding, multidomain protein implicated in the selective degradation of ubiquitinated protein aggregates by autophagy. We also comment on the possible role of ALFY in the context of disease.
Collapse
|
550
|
Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 2012; 4:4/6/a008813. [PMID: 22661635 DOI: 10.1101/cshperspect.a008813] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is an important catabolic process that delivers cytoplasmic material to the lysosome for degradation. Autophagy promotes cell survival by elimination of damaged organelles and proteins aggregates, as well as by facilitating bioenergetic homeostasis. Although autophagy has been considered a cell survival mechanism, recent studies have shown that autophagy can promote cell death. The core mechanisms that control autophagy are conserved between yeast and humans, but animals also possess genes that regulate autophagy that are not present in yeast. These regulatory differences may be explained by the need to control autophagy in a cell context-specific manner in multicellular animals, such as during cell survival and cell death. Autophagy was thought to be a bulk cytoplasmic degradation mechanism, but recent studies have shown that specific cargo is recruited for degradation. This suggests the possibility that either cell survival or death may be regulated by selective autophagic clearance of cytoplasmic material. Here we summarize the mechanisms that regulate autophagy and how they may contribute to cell survival and death.
Collapse
Affiliation(s)
- Gautam Das
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | |
Collapse
|