501
|
Inde Z, Dixon SJ. The impact of non-genetic heterogeneity on cancer cell death. Crit Rev Biochem Mol Biol 2018; 53:99-114. [PMID: 29250983 PMCID: PMC6089072 DOI: 10.1080/10409238.2017.1412395] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
The goal of cancer chemotherapy is to induce homogeneous cell death within the population of targeted cancer cells. However, no two cells are exactly alike at the molecular level, and sensitivity to drug-induced cell death, therefore, varies within a population. Genetic alterations can contribute to this variability and lead to selection for drug resistant clones. However, there is a growing appreciation for the role of non-genetic variation in producing drug-tolerant cellular states that exhibit reduced sensitivity to cell death for extended periods of time, from hours to weeks. These cellular states may result from individual variation in epigenetics, gene expression, metabolism, and other processes that impact drug mechanism of action or the execution of cell death. Such population-level non-genetic heterogeneity may contribute to treatment failure and provide a cellular "substrate" for the emergence of genetic alterations that confer frank drug resistance.
Collapse
Affiliation(s)
- Zintis Inde
- a Cancer Biology Program , Stanford University School of Medicine , Stanford , CA , USA
| | - Scott J Dixon
- a Cancer Biology Program , Stanford University School of Medicine , Stanford , CA , USA
- b Department of Biology , Stanford University , Stanford , CA , USA
| |
Collapse
|
502
|
Assenov Y, Brocks D, Gerhäuser C. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51:12-21. [PMID: 29366906 DOI: 10.1016/j.semcancer.2018.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
Analogous to life on earth, tumor cells evolve through space and time and adapt to different micro-environmental conditions. As a result, tumors are composed of millions of genetically diversified cells at the time of diagnosis. Profiling these variants contributes to understanding tumors' clonal origins and might help to better understand response to therapy. However, even genetically homogenous cell populations show remarkable diversity in their response to different environmental stimuli, suggesting that genetic heterogeneity does not explain the full spectrum of tumor plasticity. Understanding epigenetic diversity across cancer cells provides important additional information about the functional state of subclones and therefore allows better understanding of tumor evolution and resistance to current therapies.
Collapse
Affiliation(s)
- Yassen Assenov
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David Brocks
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Clarissa Gerhäuser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
503
|
Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 2018; 7:34084-99. [PMID: 27136895 PMCID: PMC5085139 DOI: 10.18632/oncotarget.9122] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/− CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans.
Collapse
Affiliation(s)
- Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Herbert B Tanowitz
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | | | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
504
|
Shea MP, O'Leary KA, Fakhraldeen SA, Goffin V, Friedl A, Wisinski KB, Alexander CM, Schuler LA. Antiestrogen Therapy Increases Plasticity and Cancer Stemness of Prolactin-Induced ERα + Mammary Carcinomas. Cancer Res 2018; 78:1672-1684. [PMID: 29363543 DOI: 10.1158/0008-5472.can-17-0985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022]
Abstract
Although antiestrogen therapies are successful in many patients with estrogen receptor alpha-positive (ERα+) breast cancer, 25% to 40% fail to respond. Although multiple mechanisms underlie evasion of these treatments, including tumor heterogeneity and drug-resistant cancer stem cells (CSC), further investigations have been limited by the paucity of preclinical ERα+ tumor models. Here, we examined a mouse model of prolactin-induced aggressive ERα+ breast cancer, which mimics the epidemiologic link between prolactin exposure and increased risk for metastatic ERα+ tumors. Like a subset of ERα+ patient cancers, the prolactin-induced adenocarcinomas contained two major tumor subpopulations that expressed markers of normal luminal and basal epithelial cells. CSC activity was distributed equally across these two tumor subpopulations. Treatment with the selective estrogen receptor downregulator (SERD), ICI 182,780 (ICI), did not slow tumor growth, but induced adaptive responses in CSC activity, increased markers of plasticity including target gene reporters of Wnt/Notch signaling and epithelial-mesenchymal transition, and increased double-positive (K8/K5) cells. In primary tumorsphere cultures, ICI stimulated CSC self-renewal and was able to overcome the dependence of self-renewal upon Wnt or Notch signaling individually, but not together. Our findings demonstrate that treatment of aggressive mixed lineage ERα+ breast cancers with a SERD does not inhibit growth, but rather evokes tumor cell plasticity and regenerative CSC activity, predicting likely negative impacts on patient tumors with these characteristics.Significance: This study suggests that treatment of a subset of ERα+ breast cancers with antiestrogen therapies may not only fail to slow growth but also promote aggressive behavior by evoking tumor cell plasticity and regenerative CSC activity. Cancer Res; 78(7); 1672-84. ©2018 AACR.
Collapse
Affiliation(s)
- Michael P Shea
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saja A Fakhraldeen
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kari B Wisinski
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Caroline M Alexander
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin. .,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
505
|
Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma. PLoS One 2018; 13:e0190970. [PMID: 29342186 PMCID: PMC5771584 DOI: 10.1371/journal.pone.0190970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
In this study chemotherapy response in neuroblastoma (NB) was assessed for the first time in a transplantation model comprising non-malignant human embryonic microenvironment of pluripotent stem cell teratoma (PSCT) derived from diploid bona fide hESC. Two NB cell lines with known high-risk phenotypes; the multi-resistant BE(2)-C and the drug sensitive IMR-32, were transplanted to the PSCT model and the tumour growth was exposed to single or repeated treatments with doxorubicin, and thereafter evaluated for cell death, apoptosis, and proliferation. Dose dependent cytotoxic effects were observed, this way corroborating the experimental platform for this type of analysis. Notably, analysis of doxorubicin-resilient BE(2)-C growth in the PSCT model revealed an unexpected 1,5-fold increase in Ki67-index (p<0.05), indicating that non-cycling (G0) cells entered the cell cycle following the doxorubicin exposure. Support for this notion was obtained also in vitro. A pharmacologically relevant dose (1μM) resulted in a marked accumulation of Ki67 positive BE(2)-C cells (p<0.0001), as well as a >3-fold increase in active cell cycle (i.e. cells positive staining for PH3 together with incorporation of EdU) (p<0.01). Considering the clinical challenge for treating high-risk NB, the discovery of a therapy-provoked growth-stimulating effect in the multi-resistant and p53-mutated BE(2)-C cell line, but not in the drug-sensitive p53wt IMR-32 cell line, warrants further studies concerning generality and clinical significance of this new observation.
Collapse
|
506
|
Pass HI, Lavilla C, Canino C, Goparaju C, Preiss J, Noreen S, Blandino G, Cioce M. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin. Oncotarget 2018; 7:56408-56421. [PMID: 27486763 PMCID: PMC5302923 DOI: 10.18632/oncotarget.10895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components.
Collapse
Affiliation(s)
- Harvey I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Carmencita Lavilla
- New York University Langone Medical Center, New York University, New York, USA
| | - Claudia Canino
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,University Campus Biomedico, Rome, Italy
| | - Chandra Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Jordan Preiss
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Samrah Noreen
- New York University Langone Medical Center, New York University, New York, USA
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| | - Mario Cioce
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| |
Collapse
|
507
|
Teater M, Dominguez PM, Redmond D, Chen Z, Ennishi D, Scott DW, Cimmino L, Ghione P, Chaudhuri J, Gascoyne RD, Aifantis I, Inghirami G, Elemento O, Melnick A, Shaknovich R. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun 2018; 9:222. [PMID: 29335468 PMCID: PMC5768781 DOI: 10.1038/s41467-017-02595-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases. In diffuse large B-cell lymphoma (DLBCL) increased epigenetic heterogeneity in the form of cytosine methylation is known to link to a poor clinical outcome. Here, the authors show that AICDA, an enzyme required for DLBCL pathogenesis, increases cytosine methylation heterogeneity.
Collapse
Affiliation(s)
- Matt Teater
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pilar M Dominguez
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Redmond
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Daisuke Ennishi
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Luisa Cimmino
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Paola Ghione
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Division of Hematology, Department of Experimental Medicine and Oncology, University of Turin, 10124, Turin, Italy
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY, 10021, USA
| | - Randy D Gascoyne
- Department of Pathology, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Iannis Aifantis
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA. .,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Rita Shaknovich
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA. .,Cancer Genetics, Inc., Rutherford, NJ, 07070, USA.
| |
Collapse
|
508
|
Kim BG, Kang S, Han HH, Lee JH, Kim JE, Lee SH, Cho NH. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget 2018; 7:27468-78. [PMID: 27027350 PMCID: PMC5053664 DOI: 10.18632/oncotarget.8322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/14/2016] [Indexed: 01/04/2023] Open
Abstract
Tumor growth–generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously.
Collapse
Affiliation(s)
- Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hwan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea.,Global 5-5-10 System Biology, Yonsei University, Seoul, South Korea
| |
Collapse
|
509
|
Kotelnikova EA, Pyatnitskiy M, Paleeva A, Kremenetskaya O, Vinogradov D. Practical aspects of NGS-based pathways analysis for personalized cancer science and medicine. Oncotarget 2018; 7:52493-52516. [PMID: 27191992 PMCID: PMC5239569 DOI: 10.18632/oncotarget.9370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Nowadays, the personalized approach to health care and cancer care in particular is becoming more and more popular and is taking an important place in the translational medicine paradigm. In some cases, detection of the patient-specific individual mutations that point to a targeted therapy has already become a routine practice for clinical oncologists. Wider panels of genetic markers are also on the market which cover a greater number of possible oncogenes including those with lower reliability of resulting medical conclusions. In light of the large availability of high-throughput technologies, it is very tempting to use complete patient-specific New Generation Sequencing (NGS) or other "omics" data for cancer treatment guidance. However, there are still no gold standard methods and protocols to evaluate them. Here we will discuss the clinical utility of each of the data types and describe a systems biology approach adapted for single patient measurements. We will try to summarize the current state of the field focusing on the clinically relevant case-studies and practical aspects of data processing.
Collapse
Affiliation(s)
- Ekaterina A Kotelnikova
- Personal Biomedicine, Moscow, Russia.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Institute Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mikhail Pyatnitskiy
- Personal Biomedicine, Moscow, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Olga Kremenetskaya
- Personal Biomedicine, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy Vinogradov
- Personal Biomedicine, Moscow, Russia.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
510
|
Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2018; 357:357/6348/eaal2380. [PMID: 28729483 DOI: 10.1126/science.aal2380] [Citation(s) in RCA: 900] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.
Collapse
Affiliation(s)
- William A Flavahan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Elizabeth Gaskell
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA, and Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
511
|
Luo CW, Wu CC, Chang SJ, Chang TM, Chen TY, Chai CY, Chang CL, Hou MF, Pan MR. CHD4-mediated loss of E-cadherin determines metastatic ability in triple-negative breast cancer cells. Exp Cell Res 2018; 363:65-72. [PMID: 29305962 DOI: 10.1016/j.yexcr.2017.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of cancer with aggressive behaviors (high recurrence and metastasis rate) and poor prognosis. Therefore, studying the determining factors that lead to malignant TNBCs is necessary to develop personalized therapy and improve survival rates. In this study, we first analyzed levels of chromodomain helicase DNA binding protein 4 (CHD4) in 60 TNBC patients by immunohistochemical staining. We then clarified the role of CHD4 in TNBC and non-TNBC cell lines. Our clinical data indicated that higher CHD4 expression is positively correlated with metastatic stage, tumor recurrence, and survival status. Consistent with the clinical analytical data, our in vitro data also indicated that high level of CHD4 is positively correlated with malignant behaviors in TNBC cells, such as cell motility and mortality. For further analyses, we found that E-cadherin, N-cadherin and fibronetin are involved in CHD4-mediated epithelial-mesenchymal transition (EMT). Silencing of CHD4 also increased drug sensitivity to cisplatin and PARP1 inhibitor, especially in TNBC cells. Altogether, our findings showed that CHD4 is not only a potential prognostic biomarker for TNBC patient survival, but is also a powerful candidate in the development of new anti-cancer agents in TNBC.
Collapse
Affiliation(s)
- Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
512
|
Stypulkowski E, Asangani IA, Witze ES. The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division. Sci Signal 2018; 11:eaam8705. [PMID: 29295957 PMCID: PMC5914505 DOI: 10.1126/scisignal.aam8705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asymmetric cell division results in two distinctly fated daughter cells. A molecular hallmark of asymmetric division is the unequal partitioning of cell fate determinants. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which, in turn, drives migration and metastasis. We report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell fate determinants Numb and β-catenin through the activity of the depalmitoylating enzyme APT1. Using point mutations, we showed that specific palmitoylated residues on Numb were required for its asymmetric localization. By live-cell imaging, we showed that reciprocal interactions between APT1 and the Rho family GTPase CDC42 promoted the asymmetric localization of Numb and β-catenin to the plasma membrane. This, in turn, restricted Notch- or Wnt-responsive transcriptional activity to one daughter cell. Moreover, we showed that altering APT1 abundance changed the transcriptional signatures of MDA-MB-231 triple receptor-negative breast cancer cells, similar to changes in Notch and β-catenin-mediated Wnt signaling. We also showed that loss of APT1 depleted a specific subpopulation of tumorigenic cells in colony formation assays. Together, our findings suggest that APT1-mediated depalmitoylation is a major mechanism of asymmetric cell division that maintains Notch- and Wnt-associated protein dynamics, gene expression, and cellular functions.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Witze
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
513
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
514
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
515
|
Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett 2018; 15:11-22. [PMID: 29285184 PMCID: PMC5738689 DOI: 10.3892/ol.2017.7292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer.
Collapse
Affiliation(s)
- Prakriti Sen
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pooja Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niladri Ganguly
- Cancer Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
516
|
Kim JA, Yeom YI. Metabolic Signaling to Epigenetic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:69-80. [PMID: 29212308 PMCID: PMC5746039 DOI: 10.4062/biomolther.2017.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
517
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
518
|
Shankar S, Faheem MM, Nayak D, Wani NA, Farooq S, Koul S, Goswami A, Rai R. Cyclodipeptide c(Orn-Pro) Conjugate with 4-Ethylpiperic Acid Abrogates Cancer Cell Metastasis through Modulating MDM2. Bioconjug Chem 2017; 29:164-175. [DOI: 10.1021/acs.bioconjchem.7b00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sudha Shankar
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | - Debasis Nayak
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | | | | | - Anindya Goswami
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| |
Collapse
|
519
|
Croglio MP, Haake JM, Ryan CP, Wang VS, Lapier J, Schlarbaum JP, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque JR, Albanese C, Yarden RI. Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget 2017; 7:13984-4001. [PMID: 26910887 PMCID: PMC4924693 DOI: 10.18632/oncotarget.7414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/28/2022] Open
Abstract
Strigolactones are a novel class of plant hormones produced in roots that regulate shoot and root development. We previously reported that strigolactone analogs (SLs) induce G2/M cell cycle arrest and apoptosis in a variety of human cancer cells and inhibit tumor growth of human breast cancer xenografts in mice. SLs had no significant influences on non-transformed cells. Here we report for the first time that SLs induce DNA damage in the form of DNA double-strand breaks (DSBs) and activate the DNA damage response signaling by inducing phosphorylation of ATM, ATR and DNA-PKcs and co-localization of the DNA damage signaling protein, 53BP1, with γH2AX nuclear foci. We further report that in addition to DSBs induction, SLs simultaneously impair DSBs repair, mostly homology-directed repair (HDR) and to a lesser extent non-homologous end joining (NHEJ). In response to SLs, RAD51, the homologous DSB repair protein, is ubiquitinated and targeted for proteasomal degradation and it fails to co-localize with γH2AX foci. Interestingly, SLs synergize with DNA damaging agents-based therapeutics. The combination of PARP inhibitors and SLs showed an especially potent synergy, but only in BRCA1-proficient cells. No synergy was observed between SLs and PARP inhibitors in BRCA1-deficient cells, supporting a role for SLs in HDR impairment. Together, our data suggest that SLs increase genome instability and cell death by a unique mechanism of inducing DNA damage and inhibiting DNA repair.
Collapse
Affiliation(s)
- Michael P Croglio
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jefferson M Haake
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Colin P Ryan
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Victor S Wang
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jennifer Lapier
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jamie P Schlarbaum
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Yaron Dayani
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Emma Artuso
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet Dagan, Israel
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yu Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas Tricoli
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| | - Jeannine R LaRocque
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Christopher Albanese
- The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA.,Department of Pathology, Georgetown University Medical Center, NW, Washington DC, USA
| | - Ronit I Yarden
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington DC, USA
| |
Collapse
|
520
|
LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget 2017; 7:27280-94. [PMID: 27049829 PMCID: PMC5053649 DOI: 10.18632/oncotarget.8465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Basal cell carcinomas (BCC) of the skin are the most common of human cancers. The noncanonical NF-κB pathway is dependent on IKKα. However, the role of IKKα in BCC has not been elucidated. We show here that IKKα is expressed in the nucleus in BCC and non-malignant diseases. Nuclear IKKα could directly bind to the promoters of inflammation factors and LGR5, a stem cell marker, in turn, upregulating LGR5 expression through activation of STAT3 signaling pathway during cancer progression. Activation of STAT3 signaling pathway contributes LGR5 expression in dependent of IKKα after the interplay between STAT3 and IKKα. Meanwhile knockdown of IKKα inhibits tumor growth and transition of epithelial stage to mescheme stage. Taken together, we demonstrate that IKKα functions as a bone fide chromatin regulator in BCC, whose promoted expression contributes to oncogenic transformation via promoting expression stemness- and inflammatory- related genes. Our finding reveals a novel viewpoint for how IKKα may involve in BCCs tumor progression in the inflammatory microenvironment.
Collapse
|
521
|
Farahmand L, Darvishi B, Salehi M, Samadi Kouchaksaraei S, Majidzadeh-A K. Functionalised nanomaterials for eradication of CSCs, a promising approach for overcoming tumour heterogeneity. J Drug Target 2017; 26:649-657. [DOI: 10.1080/1061186x.2017.1405426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
522
|
Abstract
Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.
Collapse
|
523
|
Cuyàs E, Verdura S, Fernández-Arroyo S, Bosch-Barrera J, Martin-Castillo B, Joven J, Menendez JA. Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity. Oncotarget 2017; 8:99223-99236. [PMID: 29245896 PMCID: PMC5725087 DOI: 10.18632/oncotarget.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Personalized cancer medicine based on the analysis of tumors en masse is limited by tumor heterogeneity, which has become a major obstacle to effective cancer treatment. Cancer stem cells (CSC) are emerging as key drivers of inter- and intratumoral heterogeneity. CSC have unique metabolic dependencies that are required not only for specific bioenergetic/biosynthetic demands but also for sustaining their operational epigenetic traits, i.e. self-renewal, tumor-initiation, and plasticity. Given that the metabolome is the final downstream product of all the –omic layers and, therefore, most representative of the biological phenotype, we here propose that a novel approach to better understand the complexity of tumor heterogeneity is by mapping and cataloging small numbers of CSC metabolomic phenotypes. The narrower metabolomic diversity of CSC states could be employed to reduce multidimensional tumor heterogeneity into dynamic models of fewer actionable sub-phenotypes. The identification of the driver nodes that are used differentially by CSC states to metabolically regulate self-renewal and tumor initation and escape chemotherapy might open new preventive and therapeutic avenues. The mapping of CSC metabolomic states could become a pioneering strategy to reduce the dimensionality of tumor heterogeneity and improve our ability to examine changes in tumor cell populations for cancer detection, prognosis, prediction/monitoring of therapy response, and detection of therapy resistance and recurrent disease. The identification of driver metabolites and metabolic nodes accounting for a large amount of variance within the CSC metabolomic sub-phenotypes might offer new unforeseen opportunities for reducing and exploiting tumor heterogeneity via metabolic targeting of CSC.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | | | | | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
524
|
The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. J Transl Med 2017; 97:1142-1151. [PMID: 28394318 DOI: 10.1038/labinvest.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem-like cell (CSC) hypothesis postulates that a small population of cells in a cancer has self-renewal and clonal tumor initiation properties. These cells are responsible for tumor initiation, growth, recurrence and for resistance to chemotherapy and radiation therapy. CSCs can be characterized using markers such as SSEA-1, SSEA-4, CD44, CD24, ALDEFLUOR and others. CSCs form spheres when they are cultured in serum-free condition in low attachment plates and can generate tumors when injected into immune-deficient mice. During epithelial to mesenchymal transition (EMT), cells lose cellular adhesion and polarity and acquire an invasive phenotype. Recent studies have established a relationship between EMT and increased numbers of CSCs in some solid malignancies. Non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs) have been shown to have important roles during EMT and some of these molecules also have regulatory roles in the proliferation of CSCs. Specific lncRNAs enhanced cell migration and invasion in breast carcinomas, which was associated with the generation of stem cell properties. The tumor microenvironment of CSCs also has an important role in tumor progression. Recent studies have shown that the interaction between tumor cells and the local microenvironment at the metastatic site leads to the development of premetastatic niche(s) and allows for the proliferation of the metastatic cells during colonization. The role of exosomes in the microenvironment during the EMT program is currently a major area of research. This review examines CSCs and the relationship between EMT and CSCs in solid tumors with emphasis on thyroid CSCs. The role of non-coding RNAs and of the microenvironment in EMT and in tumor progression are also examined. This review also highlights the growing number of studies that show the close association of EMT and CSCs and the role of exosomes and other elements of the tissue microenvironment in CSC metastasis. A better understanding of these mechanisms will lead to more effective targeting of primary and metastatic malignancies.
Collapse
|
525
|
Liu T, Wu X, Chen T, Luo Z, Hu X. Downregulation of DNMT3A by miR-708-5p Inhibits Lung Cancer Stem Cell-like Phenotypes through Repressing Wnt/β-catenin Signaling. Clin Cancer Res 2017; 24:1748-1760. [PMID: 28972040 DOI: 10.1158/1078-0432.ccr-17-1169] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/14/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Lung cancer is the leading cause of cancer-related death in the world, and emerging evidences suggest that lung cancer stem cells (CSC) are associated with its poor prognosis, tumor recurrence, and therapy resistance. Here we reveal a novel role for miR-708-5p in inhibiting lung CSC-like features.Experimental Design: Phenotypic effects of miR-708-5p on the lung CSC-like properties were examined by in vitro sphere formation assay and in xenografted animal models. Immunoblotting, dual luciferase reporter, and immunocytochemistry were performed to determine the target of miR-708-5p. DNA methylation of CDH1 promoter region was tested using bisulfate sequencing. Genome-wide miRNA sequencing data of 990 patients from The Cancer Genome Atlas (TCGA) dataset and 148 patients from China cohort were analyzed to excavate the pathogenic implications of miR-708-5p.Results: Expression of miR-708-5p inhibits the CSC traits of NSCLC cells in vitro while antagonizing miR-708-5p promotes tumorigenesis in vivo miR-708-5p directly suppresses the translation of DNMT3A, which results in a substantial reduction of global DNA methylation and the upregulated expression of tumor suppressor CDH1. The upregulation of CDH1 decreased the activity of Wnt/β-catenin signaling and then impaired the stemness characteristics of NSCLC cells. Clinically, patients with high miR-708-5p expression show significantly better survival and lower recurrence. Furthermore, miR-708-5p has a promising potential to apply to differentiating histologic subtypes in NSCLC.Conclusions: Our findings support that miR-708-5p suppresses NSCLC initiation, development, and stemness through interfering DNMT3A-dependent DNA methylation. miR-708-5p may function as a novel diagnostic and prognostic biomarker in NSCLC. Clin Cancer Res; 24(7); 1748-60. ©2017 AACR.
Collapse
Affiliation(s)
- Tianchi Liu
- Population and Quantitative Genetics Laboratory, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoping Wu
- Population and Quantitative Genetics Laboratory, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tong Chen
- Population and Quantitative Genetics Laboratory, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zewei Luo
- Population and Quantitative Genetics Laboratory, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China. .,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaohua Hu
- Population and Quantitative Genetics Laboratory, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
526
|
Ramón Y Cajal S, Capdevila C, Hernandez-Losa J, De Mattos-Arruda L, Ghosh A, Lorent J, Larsson O, Aasen T, Postovit LM, Topisirovic I. Cancer as an ecomolecular disease and a neoplastic consortium. Biochim Biophys Acta Rev Cancer 2017; 1868:484-499. [PMID: 28947238 DOI: 10.1016/j.bbcan.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Current anticancer paradigms largely target driver mutations considered integral for cancer cell survival and tumor progression. Although initially successful, many of these strategies are unable to overcome the tremendous heterogeneity that characterizes advanced tumors, resulting in the emergence of resistant disease. Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in wide phenotypic and molecular heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells and the tumor microenvironment. In this context, cancer may be perceived as an "ecomolecular" disease that involves cooperation between several neoplastic clones and their interactions with immune cells, stromal fibroblasts, and other cell types present in the microenvironment. This collaboration is mediated by a variety of secreted factors. Cancer is therefore analogous to complex ecosystems such as microbial consortia. In the present article, we comment on the current paradigms and perspectives guiding the development of cancer diagnostics and therapeutics and the potential application of systems biology to untangle the complexity of neoplasia. In our opinion, conceptualization of neoplasia as an ecomolecular disease is warranted. Advances in knowledge pertinent to the complexity and dynamics of interactions within the cancer ecosystem are likely to improve understanding of tumor etiology, pathogenesis, and progression. This knowledge is anticipated to facilitate the design of new and more effective therapeutic approaches that target the tumor ecosystem in its entirety.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain.
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Leticia De Mattos-Arruda
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Abhishek Ghosh
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| |
Collapse
|
527
|
Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A, O'Hagan HM, Murphy L, Zahnow CA, Gabrielson E, Velculescu VE, Easwaran HP, Baylin SB. Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations. Cancer Cell 2017; 32:360-376.e6. [PMID: 28898697 PMCID: PMC5596892 DOI: 10.1016/j.ccell.2017.08.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells for transformation by a single oncogene. The smoke-induced chromatin changes include initial repressive polycomb marking of genes, later manifesting abnormal DNA methylation by 10 months. At this time, cells exhibit epithelial-to-mesenchymal changes, anchorage-independent growth, and upregulated RAS/MAPK signaling with silencing of hypermethylated genes, which normally inhibit these pathways and are associated with smoking-related non-small cell lung cancer. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adenosquamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.
Collapse
Affiliation(s)
- Michelle Vaz
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen Y Hwang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Kagiampakis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashwini Patil
- Krieger School of Arts and Sciences, Baltimore, MD 21218, USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Lauren Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hariharan P Easwaran
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
528
|
Abstract
How genetic and epigenetic events synergize to generate the oncogenic state is not well understood. In this issue of Cancer Cell, Vaz et al. provide compelling evidence that exposure to chronic cigarette smoke causes progressive epigenetic alterations that prime for key genetic events to drive the development of lung cancer.
Collapse
Affiliation(s)
- Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 1466, Australia.
| | - Peter L Molloy
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, NSW 1670, Australia
| |
Collapse
|
529
|
Moriya C, Taniguchi H, Miyata K, Nishiyama N, Kataoka K, Imai K. Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice. Carcinogenesis 2017; 38:638-648. [PMID: 28498896 DOI: 10.1093/carcin/bgx040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/04/2017] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer, with aggressive properties characterized by metastasis, recurrence and drug resistance. Cancer stem cells are considered to be responsible for these properties. PRDM14, a transcriptional regulator that maintains pluripotency in embryonic stem cells, is overexpressed in some cancers. Here, we assessed PRDM14 expression and the effects of PRDM14 knockdown on cancer stem-like phenotypes in pancreatic cancer. We observed that PRDM14 protein was overexpressed in pancreatic cancer tissues compared with normal pancreatic tissues. Using lentiviral shRNA-transduced pancreatic cancer cells, we found that PRDM14 knockdown decreased sphere formation, number of side population and cell surface marker-positive cells and subcutaneous xenograft tumors and liver metastasis in mice. This was accompanied by upregulation of some microRNAs (miRNAs), including miR-125a-3p. miR-125a-3p, a tumor suppressor that is down-regulated in pancreatic cancer, has been suggested to regulate the expression of the Src-family kinase, Fyn. In PRDM14-knockdown cells, Fyn was expressed at lower levels and downstream proteins were less activated. These changes were considered to cause suppression of the above cancer phenotypes. In addition, we used small interfering RNA (siRNA)-based therapy targeting PRDM14 in a mouse model of liver metastasis induced using MIA-PaCa2 cells, and this treatment significantly decreased metastasis and in vitro migration. Taken together, these results suggest that targeting the overexpression of PRDM14 suppresses cancer stem-like phenotypes, including liver metastasis, via miRNA regulation and siRNA-based therapy targeting it shows promise as a treatment for patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Kanjiro Miyata
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan and
| | - Kazunori Kataoka
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan, Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohzoh Imai
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
530
|
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2017; 51:129-138. [PMID: 28887175 DOI: 10.1016/j.semcancer.2017.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. ALL arises from the malignant transformation of progenitor B- and T-cells in the bone marrow into leukemic cells, but the mechanisms underlying this transformation are not well understood. Recent technical advances and decreasing costs of methods for high-throughput DNA sequencing and SNP genotyping have stimulated systematic studies of the epigenetic changes in leukemic cells from pediatric ALL patients. The results emerging from these studies are increasing our understanding of the epigenetic component of leukemogenesis and have demonstrated the potential of DNA methylation as a biomarker for lineage and subtype classification, prognostication, and disease progression in ALL. In this review, we provide a concise examination of the epigenetic studies in ALL, with a focus on DNA methylation and mutations perturbing genes involved in chromatin modification, and discuss the future role of epigenetic analyses in research and clinical management of ALL.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ann-Christine Syvänen
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
531
|
Reynolds DS, Tevis KM, Blessing WA, Colson YL, Zaman MH, Grinstaff MW. Breast Cancer Spheroids Reveal a Differential Cancer Stem Cell Response to Chemotherapeutic Treatment. Sci Rep 2017; 7:10382. [PMID: 28871147 PMCID: PMC5583341 DOI: 10.1038/s41598-017-10863-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 08/16/2017] [Indexed: 01/06/2023] Open
Abstract
An abnormal multicellular architecture is a defining characteristic of breast cancer and, yet, most in vitro tumor models fail to recapitulate this architecture or accurately predict in vivo cellular responses to therapeutics. The efficacy of two front-line chemotherapeutic agents (paclitaxel and cisplatin) are described within three distinct in vitro models employing the triple-negative basal breast cancer cell line MDA-MB-231 and the luminal breast cancer cell line MCF7: a) a 3D collagen embedded multicellular spheroid tumor model, which reflects the architecture and cellular heterogeneity of tumors in vivo; b) a 3D collagen model with a single cell-type diffusely embedded; and c) a 2D monolayer. The MDA-MB-231 embedded spheroid tumor model exhibited the most robust response to chemotherapeutic treatment, and possessed the greatest cancer stem cell (CSC) content. CSC-related genes are elevated across all MDA-MB-231 in vitro models following paclitaxel treatment, indicating that paclitaxel enrichment of chemoresistant CSCs is less dependent on microenvironmental tumor structure, while cisplatin showed a more context-dependent response. In the MCF7 cell models a context-dependent response is observed with paclitaxel treatment increasing the CSC related genes in the 2D monolayer and 3D diffuse models while cisplatin treatment afforded an increase in ALDH1A3 expression in all three models.
Collapse
Affiliation(s)
- Daniel S Reynolds
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Kristie M Tevis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | | | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Howard Hughes Medical Institute, Boston University, Boston, MA, 02118, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Department of Chemistry, Boston University, Boston, MA, 02215, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
532
|
Basanta D, Anderson ARA. Homeostasis Back and Forth: An Ecoevolutionary Perspective of Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028332. [PMID: 28289244 DOI: 10.1101/cshperspect.a028332] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of genetic mutations in cancer is indisputable: They are a key source of tumor heterogeneity and drive its evolution to malignancy. But, the success of these new mutant cells relies on their ability to disrupt the homeostasis that characterizes healthy tissues. Mutated clones unable to break free from intrinsic and extrinsic homeostatic controls will fail to establish a tumor. Here, we will discuss, through the lens of mathematical and computational modeling, why an evolutionary view of cancer needs to be complemented by an ecological perspective to understand why cancer cells invade and subsequently transform their environment during progression. Importantly, this ecological perspective needs to account for tissue homeostasis in the organs that tumors invade, because they perturb the normal regulatory dynamics of these tissues, often coopting them for its own gain. Furthermore, given our current lack of success in treating advanced metastatic cancers through tumor-centric therapeutic strategies, we propose that treatments that aim to restore homeostasis could become a promising venue of clinical research. This ecoevolutionary view of cancer requires mechanistic mathematical models to both integrate clinical with biological data from different scales but also to detangle the dynamic feedback between the tumor and its environment. Importantly, for these models to be useful, they need to embrace a higher degree of complexity than many mathematical modelers are traditionally comfortable with.
Collapse
Affiliation(s)
- David Basanta
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
533
|
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: The promise of immune priming with epigenetic agents. Oncoimmunology 2017; 6:e1315486. [PMID: 29123948 PMCID: PMC5665084 DOI: 10.1080/2162402x.2017.1315486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).
Collapse
Affiliation(s)
- Corey A Carter
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | - Joseph Roswarski
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | | | | | - Harry Lybeck
- University of Helsinki, Department of Physiology, Helsinki, Finland
| | - Michelle M Kim
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, USA
| | | | - Tony R Reid
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
534
|
Nagaraju GP, Wu C, Merchant N, Chen Z, Lesinski GB, El-Rayes BF. Epigenetic effects of inhibition of heat shock protein 90 (HSP90) in human pancreatic and colon cancer. Cancer Lett 2017; 402:110-116. [PMID: 28583846 DOI: 10.1016/j.canlet.2017.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
Silencing of tumor suppressor and DNA repair genes through methylation plays a role in cancer development, growth and response to therapy in colorectal and pancreatic cancers. Heat shock protein 90 (HSP90) regulates transcription of DNA methyltransferase enzymes (DNMT). In addition, DNMTs are client proteins of HSP90. The aim of this study is to evaluate the effects of HSP90 inhibition on DNA methylation in colorectal and pancreatic cancer cell lines. Our data shows that inhibition of HSP90 using ganetespib resulted in downregulation of mRNA and protein expression of DNMT1, DNMT3A, and DNMT3B in HT-29 and MIA PaCa-2 cell lines. This in turn was associated with a drop in the fraction of methylated cytosine residues and re-expression of silenced genes including MLH-1, P16 and SPARC. These effects were validated in HT-29 tumors implanted subcutaneously in mice following in vivo administration of ganetespib. This work demonstrates the effectiveness of ganetespib, an HSP90 inhibitor in modulating DNA methylation through downregulation of DNMT expression.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
535
|
Li QL, Lei PJ, Zhao QY, Li L, Wei G, Wu M. Epigenomic analysis in a cell-based model reveals the roles of H3K9me3 in breast cancer transformation. Epigenomics 2017; 9:1077-1092. [DOI: 10.2217/epi-2016-0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. Methods: The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. Results: The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell’s sensitivity to DNA damage reagents. Conclusion: H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.
Collapse
Affiliation(s)
- Qing-Lan Li
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Department of Biochemistry & Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Pin-Ji Lei
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Department of Biochemistry & Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Quan-Yi Zhao
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Department of Biochemistry & Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lianyun Li
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Department of Biochemistry & Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Department of Biochemistry & Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
536
|
Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL. Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends Pharmacol Sci 2017; 38:669-686. [DOI: 10.1016/j.tips.2017.05.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
|
537
|
Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 2017; 430:266-274. [PMID: 28774727 DOI: 10.1016/j.ydbio.2017.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance.
Collapse
|
538
|
Song KH, Choi CH, Lee HJ, Oh SJ, Woo SR, Hong SO, Noh KH, Cho H, Chung EJ, Kim JH, Chung JY, Hewitt SM, Baek S, Lee KM, Yee C, Son M, Mao CP, Wu TC, Kim TW. HDAC1 Upregulation by NANOG Promotes Multidrug Resistance and a Stem-like Phenotype in Immune Edited Tumor Cells. Cancer Res 2017; 77:5039-5053. [PMID: 28716899 DOI: 10.1158/0008-5472.can-17-0072] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Cancer immunoediting drives the adaptation of tumor cells to host immune surveillance. Immunoediting driven by antigen (Ag)-specific T cells enriches NANOG expression in tumor cells, resulting in a stem-like phenotype and immune resistance. Here, we identify HDAC1 as a key mediator of the NANOG-associated phenotype. NANOG upregulated HDAC1 through promoter occupancy, thereby decreasing histone H3 acetylation on K14 and K27. NANOG-dependent, HDAC1-driven epigenetic silencing of cell-cycle inhibitors CDKN2D and CDKN1B induced stem-like features. Silencing of TRIM17 and NOXA induced immune and drug resistance in tumor cells by increasing antiapoptotic MCL1. Importantly, HDAC inhibition synergized with Ag-specific adoptive T-cell therapy to control immune refractory cancers. Our results reveal that NANOG influences the epigenetic state of tumor cells via HDAC1, and they encourage a rational application of epigenetic modulators and immunotherapy in treatment of NANOG+ refractory cancer types. Cancer Res; 77(18); 5039-53. ©2017 AACR.
Collapse
Affiliation(s)
- Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Seon Rang Woo
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon-Oh Hong
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Hee Noh
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Yong Chung
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Stephen M Hewitt
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungki Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, UT MDAnderson Cancer Center, Houston, Texas.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Minjoo Son
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chih-Ping Mao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - T C Wu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Department of Biomedical Science, College of Medicine, Korea University, Seoul, Korea.,Translational Research Institute for Incurable Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
539
|
Jia D, Li L, Andrew S, Allan D, Li X, Lee J, Ji G, Yao Z, Gadde S, Figeys D, Wang L. An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis 2017; 8:e2932. [PMID: 28703802 PMCID: PMC5550865 DOI: 10.1038/cddis.2017.319] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022]
Abstract
Stromal cells, infiltrating immune cells, paracrine factors and extracellular matrix have been extensively studied in cancers. However, autocrine factors produced by tumor cells and communications between autocrine factors and intracellular signaling pathways in the development of drug resistance, cancer stem-like cells (CSCs) and tumorigenesis have not been well investigated, and the precise mechanism and tangible approaches remain elusive. Here we reveal a new mechanism by which cytokines produced by breast cancer cells after chemotherapy withdrawal activate both Wnt/β-catenin and NF-κB pathways, which in turn further promote breast cancer cells to produce and secrete cytokines, forming an autocrine inflammatory forward-feedback loop to facilitate the enrichment of drug-resistant breast cancer cells and/or CSCs. Such an unexpected autocrine forward-feedback loop and CSC enrichment can be effectively blocked by inhibition of Wnt/β-catenin and NF-κB signaling. It can also be diminished by IL8-neutralizing antibody or blockade of IL8 receptors CXCR1/2 with reparixin. Administration of reparixin after chemotherapy withdrawal effectively attenuates tumor masses in a human xenograft model and abolishes paclitaxel-enriched CSCs in the secondary transplantation. These results are partially supported by the latest clinical data set. Breast cancer patients treated with chemotherapeutic drugs exhibited poor survival rate (66.7 vs 282.8 months, P=0.00071) and shorter disease-free survival time if their tumor samples expressed high level of IL8, CXCR1, CXCR2 genes and Wnt target genes. Taken together, this study provides new insights into the communication between autocrine niches and signaling pathways in the development of chemotherapy resistance and CSCs; it also offers a tangible approach in breast cancer treatment.
Collapse
Affiliation(s)
- Deyong Jia
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sulaiman Andrew
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - David Allan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada Sir Frederick G. Banting Research Centre, Ottawa, Ontario, Canada
| | - Jonathan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Guang Ji
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Suresh Gadde
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Danial Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- China-Canada Centre of Research for Digestive Diseases, Ottawa, Ontario, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
540
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
541
|
Li Y, Lin K, Yang Z, Han N, Quan X, Guo X, Li C. Bladder cancer stem cells: clonal origin and therapeutic perspectives. Oncotarget 2017; 8:66668-66679. [PMID: 29029546 PMCID: PMC5630446 DOI: 10.18632/oncotarget.19112] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022] Open
Abstract
In this article, we review the origin and therapeutic perspectives of bladder cancer stem cells (BCSCs), which are integral to the initiation, high recurrence and chemoresistance of bladder cancer. BCSCs are heterogenous and originate from multiple cell types, including urothelial stem cells and differentiated cell types, including basal, intermediate stratum and umbrella cells. Cell surface markers, including CD44, CD67LR, EMA, ALDH1A1 and BCMab1, are used to identify and isolate BCSCs. The Hedgehog, Notch, Wnt and JAK-STAT signaling pathways play key roles in maintaining the stemness, self-renewal and proliferative potential of BCSCs. High expression of ABC transporters, acetaldehyde dehydrogenase, antioxidants and apoptosis resistance proteins in BCSCs play a critical role in chemoresistance. Consequently, a greater understanding of the biology of BCSCs will be important for identifying effective therapeutic targets to improve clinical outcomes for bladder cancer patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaisu Lin
- Department of Oncology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, China
| | - Zhao Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ning Han
- Department of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaofang Quan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Jianlan Institute of Medicine, Beijing, China
| |
Collapse
|
542
|
Schillaci O, Fontana S, Monteleone F, Taverna S, Di Bella MA, Di Vizio D, Alessandro R. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 2017; 7:4711. [PMID: 28680152 PMCID: PMC5498501 DOI: 10.1038/s41598-017-05002-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.
Collapse
Affiliation(s)
- Odessa Schillaci
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Fontana
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy.
| | - Francesca Monteleone
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| |
Collapse
|
543
|
|
544
|
Balça-Silva J, Matias D, Dubois LG, Carneiro B, do Carmo A, Girão H, Ferreira F, Ferrer VP, Chimelli L, Filho PN, Tão H, Rebelo O, Barbosa M, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells. Transl Oncol 2017; 10:555-569. [PMID: 28654819 PMCID: PMC5487246 DOI: 10.1016/j.tranon.2017.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 10/25/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Brenno Carneiro
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal.
| | - Henrique Girão
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| | | | - Valeria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Leila Chimelli
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Hermínio Tão
- Neurosurgery Service, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Marcos Barbosa
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Neurosurgery Service, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Laboratory of Oncobiology and Hematology and CIMAGO, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN)-Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
545
|
Abstract
Eph-ephrin bidirectional signaling is essential for eye lens transparency in humans and mice. Our previous studies in mouse lenses demonstrate that ephrin-A5 is mainly expressed in the anterior epithelium, where it is required for maintaining the anterior epithelial monolayer. In contrast, EphA2 is localized in equatorial epithelial and fiber cells where it is essential for equatorial epithelial and fiber cell organization and hexagonal cell shape. Immunostaining of lens epithelial and fiber cells reveals that EphA2 and ephrin-A5 are also co-expressed in anterior fiber cell tips, equatorial epithelial cells and newly formed lens fibers, although they are not precisely colocalized. Due to this complex expression pattern and the promiscuous interactions between Eph receptors and ephrin ligands, as well as their complex bidirectional signaling pathways, cataracts in ephrin-A5(-/-) or EphA2(-/-) lenses may arise from loss of function or abnormal signaling mechanisms. To test whether abnormal signaling mechanisms may play a role in cataractogenesis in ephrin-A5(-/-) or EphA2(-/-) lenses, we generated EphA2 and ephrin-A5 double knockout (DKO) mice. We compared the phenotypes of EphA2(-/-) and ephrin-A5(-/-) lenses to that of DKO lenses. DKO lenses displayed an additive lens phenotype that was not significantly different from the two single KO lens phenotypes. Similar to ephrin-A5(-/-) lenses, DKO lenses had abnormal anterior epithelial cells leading to a large mass of epithelial cells that invade into the underlying fiber cell layer, directly resulting in anterior cataracts in ephrin-A5(-/-) and DKO lenses. Yet, similar to EphA2(-/-) lenses, DKO lenses also had abnormal packing of equatorial epithelial cells with disorganized meridional rows, lack of a lens fulcrum and disrupted fiber cells. The DKO lens phenotype rules out abnormal signaling by EphA2 in ephrin-A5(-/-) lenses or by ephrin-A5 in EphA2(-/-) lenses as possible cataract mechanisms. Thus, these results indicate that EphA2 and ephrin-A5 do not form a lens receptor-ligand pair, and that EphA2 and ephrin-A5 have other binding partners in the lens to help align differentiating equatorial epithelial cells or maintain the anterior epithelium, respectively.
Collapse
|
546
|
Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S, Jiang L, Wu J, Li M, Song L, Li J. Antagonizing miR-455-3p inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Mol Cancer 2017. [PMID: 28633632 PMCID: PMC5479030 DOI: 10.1186/s12943-017-0669-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The plasticity of cancer stem cells (CSCs)/tumor-initiating cells (T-ICs) suggests that multiple CSC/T-IC subpopulations exist within a tumor and that multiple oncogenic pathways collaborate to maintain the CSC/T-IC state. Here, we aimed to identify potential therapeutic targets that concomitantly regulate multiple T-IC subpopulations and CSC/T-IC-associated pathways. Methods A chemoresistant patient-derived xenograft (PDX) model of human esophageal squamous cell carcinoma (ESCC) was employed to identify microRNAs that contribute to ESCC aggressiveness. The oncogenic effects of microRNA-455-3p (miR-455-3p) on ESCC chemoresistance and tumorigenesis were examined by in vivo and in vitro chemoresistance, tumorsphere formation, side-population, and in vivo limiting dilution assays. The roles of miR-455-3p in activation of the Wnt/β-catenin and transforming growth factor-β (TGF-β)/Smad pathways were determined by luciferase and RNA immunoprecipitation assays. Results We found that miR-455-3p played essential roles in ESCC chemoresistance and tumorigenesis. Treatment with a miR-455-3p antagomir dramatically chemosensitized ESCC cells and reduced the subpopulations of CD90+ and CD271+ T-ICs via deactivation of multiple stemness-associated pathways, including Wnt/β-catenin and TGF-β signaling. Importantly, miR-455-3p exhibited aberrant upregulation in various human cancer types, and was significantly associated with decreased overall survival of cancer patients. Conclusions Our results demonstrate that miR-455-3p functions as an oncomiR in ESCC progression and may provide a potential therapeutic target to achieve better clinical outcomes in cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0669-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aibin Liu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jinrong Zhu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Geyan Wu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lixue Cao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Zhanyao Tan
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Shuxia Zhang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lili Jiang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jun Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
547
|
Câmara DAD, Porcacchia AS, Costa AS, Azevedo RA, Kerkis I. Murine melanoma cells incomplete reprogramming using non-viral vector. Cell Prolif 2017; 50. [PMID: 28618452 DOI: 10.1111/cpr.12352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The reprogramming of cancer cells into induced pluripotent stem cells or less aggressive cancer cells can provide a modern platform to study cancer-related genes and their interactions with cell environment before and after reprogramming. Herein, we aimed to investigate the reprogramming capacity of murine melanoma B16F10 cells. MATERIALS AND METHODS The B16F10 was transfected using non-viral circular DNA plasmid containing the genes Sox-2, Oct4, Nanog, Lin28 and green fluorescent protein (GFP). These cells were characterized by immunofluorescence, analysis RT-PCR and cell cycle. RESULTS Our results demonstrated for the first time that reprogramming of B16F10 may be induced using non-viral minicircle DNA containing the four reprogramming factors Oct4, Sox2, Lin 28, Nanog (OSLN) and the GFP reporter gene. The resulting clones are composed by epithelioid cells. These cells display characteristics of cancer stem cells, thus expressing pluripotent stem cell markers and dividing asymmetrically and symmetrically. Reprogrammed B16F10 cells did not form teratomas; however, they showed the suppression of tumourigenic abilities characterized by a reduced tumour size, when compared with parental B16F10 cell line. In contrast to parental cell line that showed accumulation of the cells in S phase of cell cycle, the cells of reprogrammed clones are accumulated in G1 phase. Long-term cultivation of reprogrammed B16F10 cells induces regression of their reprogramming. CONCLUSIONS Our data imply that in result of reprogramming of B16F10 cells less aggressive Murine Melanoma Reprogrammed Cancer Cells may be obtained. These cells represent an interesting model to study mechanism of cells malignancy as well as provide a novel tool for anti-cancer drugs screening.
Collapse
Affiliation(s)
- D A D Câmara
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil.,Department of Morphology and Genetics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - A S Porcacchia
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - A S Costa
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| | - R A Azevedo
- Departament of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - I Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil
| |
Collapse
|
548
|
Han L, Xu J, Xu Q, Zhang B, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 2017; 37:1318-1349. [PMID: 28586517 DOI: 10.1002/med.21453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
Numerous studies have proved that cell-nonautonomous regulation of neoplastic cells is a distinctive and essential characteristic of tumorigenesis. Two way communications between the tumor and the stroma, or within the tumor significantly influence disease progression and modify treatment responses. In the tumor microenvironment (TME), malignant cells utilize paracrine signaling initiated by adjacent stromal cells to acquire resistance against multiple types of anticancer therapies, wherein extracellular vesicles (EVs) substantially promote such events. EVs are nanoscaled particles enclosed by phospholipid bilayers, and can mediate intercellular communications between cancerous cells and the adjacent microenvironment to accelerate pathological proceeding. Here we review the most recent studies of EV biology and focus on key cell lineages of the TME and their EV cargoes that are biologically active and responsible for cancer resistance, including proteins, RNAs, and other potentially essential components. Since EVs are emerging as novel but critical elements in establishing and maintaining hallmarks of human cancer, timely and insightful understanding of their molecular properties and functional mechanisms would pave the road for clinical diagnosis, prognosis, and effective targeting in the global landscape of precision medicine. Further, we address the potential of EVs as promising biomarkers in cancer clinics and summarize the technical improvements in EV preparation, analysis, and imaging. We highlight the practical issues that should be exercised with caution to guide the development of targeting agents and therapeutic methodologies to minimize cancer resistance driven by EVs, thereby allowing to effectively control the early steps of disease exacerbation.
Collapse
Affiliation(s)
- L Han
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Zhang
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Y Sun
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA
| |
Collapse
|
549
|
Ohata Y, Shimada S, Akiyama Y, Mogushi K, Nakao K, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Tanabe M, Tanaka S. Acquired Resistance with Epigenetic Alterations Under Long-Term Antiangiogenic Therapy for Hepatocellular Carcinoma. Mol Cancer Ther 2017; 16:1155-1165. [PMID: 28246302 DOI: 10.1158/1535-7163.mct-16-0728] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
Antiangiogenic therapy is initially effective for several solid tumors including hepatocellular carcinoma; however, they finally relapse and progress, resulting in poor prognosis. We here established in vivo drug-tolerant subclones of human hepatocellular carcinoma cells by long-term treatment with VEGF receptor (VEGFR) inhibitor and serial transplantation in immunocompromised mice (total 12 months), and then compared them with the parental cells in molecular and biological features. Gene expression profiles elucidated a G-actin monomer binding protein thymosin β 4 (Tβ4) as one of the genes enriched in the resistant cancer cells relative to the initially sensitive ones. Highlighting epigenetic alterations involved in drug resistance, we revealed that Tβ4 could be aberrantly expressed following demethylation of DNA and active modification of histone H3 at the promoter region. Ectopic overexpression of Tβ4 in hepatocellular carcinoma cells could significantly enhance sphere-forming capacities and infiltrating phenotypes in vitro, and promote growth of tumors refractory to the VEGFR multikinase inhibitor sorafenib in vivo Clinically, sorafenib failed to improve the progression-free survival in patients with Tβ4-high hepatocellular carcinoma, indicating that Tβ4 expression could be available as a surrogate marker of susceptibility to this drug. This study suggests that Tβ4 expression triggered by epigenetic alterations could contribute to the development of resistance to antiangiogenic therapy by the acquisition of stemness, and that epigenetic control might be one of the key targets to regulate the resistance in hepatocellular carcinoma. Mol Cancer Ther; 16(6); 1155-65. ©2017 AACR.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- DNA Methylation
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Histones/metabolism
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Promoter Regions, Genetic
- Sorafenib
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yoshiteru Ohata
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Nakao
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
550
|
Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH, Vertino P, Cooper L, Salaita K, Kowalski J, Marcus AI. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun 2017; 8:15078. [PMID: 28497793 PMCID: PMC5437311 DOI: 10.1038/ncomms15078] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. The mechanisms linking phenotypic heterogeneity to collective cancer invasion are unclear. Here the authors develop an image-guided genomic technique to select and amplify leader and follower cells from in vitro invading cell packs and find a cooperative symbiotic relationship between these two cell populations.
Collapse
Affiliation(s)
- J Konen
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - E Summerbell
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - B Dwivedi
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - K Galior
- Department of Chemistry, Emory University, 506 Atwood Drive, Atlanta, Georgia 30322, USA
| | - Y Hou
- Department of Biomedical Informatics, Emory University, 36 Eagle Row, Atlanta, Georgia 30322, USA
| | - L Rusnak
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - A Chen
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - J Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York 11794, USA
| | - W Zhou
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - L H Boise
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - P Vertino
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Radiation Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - L Cooper
- Department of Biomedical Informatics, Emory University, 36 Eagle Row, Atlanta, Georgia 30322, USA
| | - K Salaita
- Department of Chemistry, Emory University, 506 Atwood Drive, Atlanta, Georgia 30322, USA
| | - J Kowalski
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Biostatistics and Bioinformatics, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - A I Marcus
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|