501
|
Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, Desilva U, Zhang W, Sunkar R. Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics 2009; 10:65. [PMID: 19196471 PMCID: PMC2644714 DOI: 10.1186/1471-2164-10-65] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 02/05/2009] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans.
Collapse
Affiliation(s)
- Alavala Matta Reddy
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Ellendorff U, Fradin EF, de Jonge R, Thomma BPHJ. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:591-602. [PMID: 19098131 PMCID: PMC2651451 DOI: 10.1093/jxb/ern306] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/04/2008] [Accepted: 11/07/2008] [Indexed: 05/18/2023]
Abstract
RNA silencing is a conserved mechanism in eukaryotes that plays an important role in various biological processes including regulation of gene expression. RNA silencing also plays a role in genome stability and protects plants against invading nucleic acids such as transgenes and viruses. Recently, RNA silencing has been found to play a role in defence against bacterial plant pathogens in Arabidopsis through modulating host defence responses. In this study, it is shown that gene silencing plays a role in plant defence against multicellular microbial pathogens; vascular fungi belonging to the Verticillium genus. Several components of RNA silencing pathways were tested, of which many were found to affect Verticillium defence. Remarkably, no altered defence towards other fungal pathogens that include Alternaria brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina, but also the vascular pathogen Fusarium oxysporum, was recorded. Since the observed differences in Verticillium susceptibility cannot be explained by notable differences in root architecture, it is speculated that the gene silencing mechanisms affect regulation of Verticillium-specific defence responses.
Collapse
Affiliation(s)
- Ursula Ellendorff
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Emilie F. Fradin
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
503
|
Hydrogen Peroxide-Responsive Genes in Stress Acclimation and Cell Death. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
504
|
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. PLANT PHYSIOLOGY 2009; 149:88-95. [PMID: 19126699 PMCID: PMC2613698 DOI: 10.1104/pp.108.129791] [Citation(s) in RCA: 691] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/20/2008] [Indexed: 05/17/2023]
Affiliation(s)
- Kazuo Nakashima
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, Ibaraki 305-8686, Japan
| | | | | |
Collapse
|
505
|
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. ANNALS OF BOTANY 2009; 103:29-38. [PMID: 18952624 PMCID: PMC2707283 DOI: 10.1093/aob/mcn205] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/22/2008] [Accepted: 09/15/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of miRNAs in plants' responses to abiotic stresses. METHODS A custom microparaflo microfluidic array containing release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress-responsive miRNAs using the differences in miRNA expression between the salt-tolerant maize inbred line 'NC286' and the salt-sensitive maize line 'Huangzao4'. Key Results miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These miRNAs displayed different activities in the salt response, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, 18 miRNAs were found which were only expressed in the salt-tolerant maize line, and 25 miRNAs that showed a delayed regulation pattern in the salt-sensitive line. A gene model was proposed that showed how miRNAs could regulate the abiotic stress-associated process and the gene networks coping with the stress. CONCLUSIONS Salt-responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.
Collapse
Affiliation(s)
- Dong Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhijie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zuxin Zhang
- College of Agronomy, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
- For correspondence. E-mail
| |
Collapse
|
506
|
Hewezi T, Howe P, Maier TR, Baum TJ. Arabidopsis small RNAs and their targets during cyst nematode parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1622-34. [PMID: 18986258 DOI: 10.1094/mpmi-21-12-1622] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-parasitic cyst nematodes induce the formation of specialized feeding cells in infected roots, which involves plant developmental processes that have been shown to be influenced by microRNAs (miRNAs) and other small RNAs. This observation provided the foundation to investigate the potential involvement of small RNAs in plant-cyst nematode interactions. First, we examined the susceptibilities of Arabidopsis DICER-like (dcl) and RNA-dependent RNA polymerase (rdr) mutants to the sugar beet cyst nematode Heterodera schachtii. The examined mutants exhibited a trend of decreased susceptibility, suggesting a role of small RNAs mediating gene regulation processes during the plant-nematode interaction. Second, we generated two small RNA libraries from aseptic Arabidopsis roots harvested at 4 and 7 days after infection with surface-sterilized H. schachtii. Sequences of known miRNAs as well as novel small interfering (si)RNAs were identified. Following this discovery, we used real-time reverse-transcriptase polymerase chain reaction to quantify a total of 15 Arabidopsis transcripts that are known targets of six of the different miRNA families found in our study (miR160, miR164, miR167, miR171, miR396, and miR398) in inoculated and noninoculated Arabidopsis roots. Our analyses showed mostly negative correlations between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during parasitism. Also, we identified a total of 125 non-miRNA siRNAs. Some of these siRNAs perfectly complement protein-coding mRNAs or match transposon or retrotransposon sequences in sense or antisense orientations. We further quantified a group of siRNAs in H. schachtii-inoculated roots. The examined siRNAs exhibited distinct expression patterns in infected and noninfected roots, providing additional evidence for the implication of small RNAs in cyst nematode parasitism. These data lay the foundation for detailed analyses of the functions of small RNAs during phytonematode parasitism.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Pathology, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
507
|
Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 2008; 19:57-69. [PMID: 18997003 DOI: 10.1101/gr.080275.108] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation.
Collapse
Affiliation(s)
- Besma Ben Amor
- Institut des Sciences du Végétal (ISV), CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Vazquez F, Blevins T, Ailhas J, Boller T, Meins F. Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 2008; 36:6429-38. [PMID: 18842626 PMCID: PMC2582634 DOI: 10.1093/nar/gkn670] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, canonical 21-nt miRNAs are generated by Dicer-like (DCL) 1 from hairpin precursors. We have identified a novel class of functional 23- to 25-nt long-miRNAs that is generated independently from the same miRNA precursors by DCL3. Long-miRNAs are developmentally regulated and in some cases have been conserved during evolution implying that they have biological functions. Plant microRNA genes (MIR) have been proposed to evolve by inverted duplication of the target gene. We found that recently evolved MIR genes consistently give rise to long-miRNAs, while ancient MIR genes give rise predominantly to canonical miRNAs. Transcripts from inverted repeats representing evolving proto-MIR genes were processed by DCL3 into long-miRNAs and also by DCL1, DCL2 or DCL4 depending on hairpin stem length to produce different sizes of miRNAs. Our results suggest that evolution of MIR genes is associated with gradual, overlapping changes in DCL usage resulting in specific size classes of miRNAs.
Collapse
Affiliation(s)
- Franck Vazquez
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
509
|
Chinnusamy V, Gong Z, Zhu JK. Abscisic acid-mediated epigenetic processes in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1187-95. [PMID: 19017106 PMCID: PMC2862557 DOI: 10.1111/j.1744-7909.2008.00727.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated epigenome will be of immense use to understand the plant development, stress adaptation and stress memory.
Collapse
Affiliation(s)
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
510
|
Mallory AC, Elmayan T, Vaucheret H. MicroRNA maturation and action--the expanding roles of ARGONAUTEs. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:560-6. [PMID: 18691933 DOI: 10.1016/j.pbi.2008.06.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/02/2008] [Accepted: 06/17/2008] [Indexed: 05/19/2023]
Abstract
MicroRNAs are endogenously produced 21-nt riboregulators that associate with ARGONAUTE (AGO) proteins to direct mRNA cleavage or repress translation of complementary RNAs. In addition to protein-coding gene repression, miRNA-directed regulation of non-protein-coding transcripts can incite production of trans-acting siRNA (tasiRNA) populations that themselves direct mRNA repression. Arabidopsis encodes 10 AGO proteins among which, AGO1, AGO7, and AGO10 have been implicated in miRNA-guided gene repression in vivo. Recent work has shown that AGO proteins discriminate their associated small RNA populations on the basis of size and 5'-terminal nucleotide identity, extending the roles of AGO proteins beyond small RNA action. Our expanding appreciation of miRNA-directed regulation during plant development and stress adaptations has placed miRNAs at the forefront of plant biology.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
511
|
Lin SI, Chiou TJ. Long-distance movement and differential targeting of microRNA399s. PLANT SIGNALING & BEHAVIOR 2008; 3:730-2. [PMID: 19704842 PMCID: PMC2634573 DOI: 10.4161/psb.3.9.6488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 05/21/2023]
Abstract
We have previously demonstrated that miR399s control phosphate (Pi) homeostasis by regulating the expression of a ubiquitin-conjugating E2 enzyme (UBC24/PHO2) in Arabidopsis. Changes in miR399-dependent PHO2 gene expression modulate Pi uptake, allocation and remobilization. More recently, we provided evidence that miR399s are able to move in the phloem stream and across grafting junctions from the scions overexpressing miR399 to the wild-type rootstocks. Movement of miR399s serves as a long-distance signal to report and balance the Pi status between shoots and roots. Of note, results from grafting experiments indicate that miR399b is less efficient in cleaving the PHO2 mRNA than is miR399f, despite the similar mobility of the two miR399s. We propose that nucleotide 13 of miR399s, which gives rise to the sequence variation among different miR399 species, could be involved in regulating the abundance of PHO2 mRNA through sequence complementarity to the target sequences of PHO2 mRNA and mimicking target sequence of At4/IPS1 noncoding RNAs.
Collapse
Affiliation(s)
- Shu-I Lin
- Graduate Institute of Life Sciences; National Defense Medical Center; and Agricultural Biotechnology Research Center; Academia Sinica; Taipei, Taiwan, Republic of China
| | | |
Collapse
|
512
|
Microfluidic-based enzymatic on-chip labeling of miRNAs. N Biotechnol 2008; 25:142-9. [PMID: 18786664 DOI: 10.1016/j.nbt.2008.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 11/20/2022]
Abstract
Small noncoding RNAs (sncRNAs) have moved from oddity to recognized important players in gene regulation. Next generation sequencing approaches discover more and more such molecules from a variety of different groups, but flexible tools translating this sequence information into affordable high-throughput assays are missing. Here we describe a microfluidic primer extension assay (MPEA) for the detection of sncRNAs on highly flexible microfluidic microarrays which combines several beneficial parameters: it can effortless incorporate any new sequence information; it is sensitive enough to work with as little as 20ng of total RNA and has a high level of specificity owing to a combination of a conventional hybridization assay and an enzymatic elongation step. Importantly, no labeling step is needed before hybridization and - because of its high sensitivity - no amplification is required. Both aspects ensure that no bias is introduced by such processes. Although the assay is exemplified with miRNAs, the flexibility of the technology platform allows the analysis of any type of sncRNA, such as piRNAs.
Collapse
|
513
|
Voinnet O. Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:464-70. [PMID: 18583181 DOI: 10.1016/j.pbi.2008.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 04/08/2008] [Indexed: 05/04/2023]
Abstract
RNA silencing is a pan-eukaryotic, sequence-specific gene regulation mechanism with recognized roles in development and maintenance of genome integrity. In plants, this mechanism also operates as a major antiviral defense system whereby 21-24 nt-long RNAs derived from the pathogen's genomes guide post-transcriptional silencing (PTGS) of viral transcripts. Recent evidence suggests that PTGS involving small RNAs of cellular, rather than pathogenous origin, might additionally have broad implications in potentiating basal defense and race-specific resistance to microbes in plants. These studies simultaneously unravel a staggering degree of complexity and flexibility in endogenous RNA silencing pathways, a likely reflection of the plants' faculty to adapt to their environment.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, 12 rue du Général 67084 Strasbourg Cedex, France.
| |
Collapse
|
514
|
Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. THE PLANT CELL 2008; 20:2238-51. [PMID: 18682547 PMCID: PMC2553615 DOI: 10.1105/tpc.108.059444] [Citation(s) in RCA: 572] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/07/2008] [Accepted: 07/22/2008] [Indexed: 05/18/2023]
Abstract
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:beta-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the induction by drought was transcriptional. NFYA5 contains a target site for miR169, which targets mRNAs for cleavage or translational repression. We found that miR169 was downregulated by drought stress through an ABA-dependent pathway. Analysis of the expression of miR169 precursors showed that miR169a and miR169c were substantially downregulated by drought stress. Coexpression of miR169 and NFYA5 suggested that miR169a was more efficient than miR169c at repressing the NFYA5 mRNA level. nfya5 knockout plants and plants overexpressing miR169a showed enhanced leaf water loss and were more sensitive to drought stress than wild-type plants. By contrast, transgenic Arabidopsis plants overexpressing NFYA5 displayed reduced leaf water loss and were more resistant to drought stress than the wild type. Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress-responsive genes. Thus, NFYA5 is important for drought resistance, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Wen-Xue Li
- Key Laboratory of Plant and Soil Interactions, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
|
516
|
Jin H. Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 2008; 582:2679-84. [PMID: 18619960 DOI: 10.1016/j.febslet.2008.06.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 06/26/2008] [Accepted: 06/30/2008] [Indexed: 01/17/2023]
Abstract
Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.
Collapse
Affiliation(s)
- Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
517
|
Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:131-51. [PMID: 18363789 DOI: 10.1111/j.1365-313x.2008.03497.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of </=2.5 for mismatched patterns in the miRNA:mRNA duplexes as the criterion. Six of the selected targets were validated experimentally. The expression of a majority of the novel miRNAs was altered in response to cold, heat, salt, dehydration, and mechanical stresses. Microarray analysis of known Ptc-miRNAs identified 19 additional cold stress-responsive Ptc-miRNAs from 14 miRNA gene families. Interestingly, we found that individual miRNAs of a family responded differentially to stress, which suggests that the members of a family may have different functions. These results reveal possible roles for miRNAs in the regulatory networks associated with the long-term growth of tree species and provide useful information for developing trees with a greater level of stress resistance.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
518
|
Wang F, Zhong NQ, Gao P, Wang GL, Wang HY, Xia GX. SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance. PLANT, CELL & ENVIRONMENT 2008; 31:982-94. [PMID: 18373622 DOI: 10.1111/j.1365-3040.2008.01810.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Suaeda salsa is a leaf-succulent euhalophytic plant capable of surviving under seawater salinity. Here, we report the isolation and functional analysis of a novel Suaeda gene (designated as SsTypA1) encoding a member of the TypA/BipA GTPase gene family. The steady-state transcript level of SsTypA1 in S. salsa was up-regulated in response to various external stressors. Expression of SsTypA1 was restricted to the epidermal layers of the leaf and stem in S. salsa, and SsTypA1-green fluorescence protein (GFP) fusion proteins were targeted to the chloroplasts of tobacco leaves. Ectopic over-expression of SsTypA1 rendered the transgenic tobacco plants with significantly increased tolerance to oxidative stress, and this was accompanied by a reduction in H(2)O(2) content. Enzymatic and Western blot analyses revealed that the activity and amount of the thylakoid-bound NAD(P)H dehydrogenase (NDH) complex in the chloroplasts of leaf cells were enhanced. Additionally, an in vitro assay demonstrated that SsTypA1 bound to GTP and possessed GTPase activity that was stimulated by the presence of chloroplast 70S ribosomes. Together, these results suggest that SsTypA1 may play a critical role in the development of oxidative stress tolerance, perhaps as a translational regulator of the stress-responsive proteins involved in reactive oxygen species (ROS) suppression in chloroplast.
Collapse
Affiliation(s)
- Fang Wang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences; National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
519
|
Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ. Diamonds in the rough: mRNA-like non-coding RNAs. TRENDS IN PLANT SCIENCE 2008; 13:329-34. [PMID: 18448381 DOI: 10.1016/j.tplants.2008.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 05/20/2023]
Abstract
Non-coding RNAs are increasingly being identified as crucial regulators of gene expression and other cellular functions in plants. Experimental and computational methods have revealed the existence of mRNA-like non-coding RNAs (mlncRNAs), a class of non-coding RNAs that, in plants, are associated with tissue-specific expression, development and the phosphate-starvation response. Although their mechanisms of action are largely unknown, one can speculate that mlncRNAs act through secondary structures or specific sequences that bind to proteins or metabolites, or that have catalytic activity. This review summarizes the computational methods developed to identify candidate mlncRNAs, and the current experimental evidence regarding the function of several known mlncRNAs.
Collapse
Affiliation(s)
- Linda A Rymarquis
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
520
|
Brown JWS, Marshall DF, Echeverria M. Intronic noncoding RNAs and splicing. TRENDS IN PLANT SCIENCE 2008; 13:335-42. [PMID: 18555733 DOI: 10.1016/j.tplants.2008.04.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 05/23/2023]
Abstract
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.
Collapse
Affiliation(s)
- John W S Brown
- Plant Sciences Division, University of Dundee at the Scottish Crop Research Institute (SCRI), Invergowrie, Dundee, DD2 5DA, UK.
| | | | | |
Collapse
|
521
|
Mallory AC, Bouché N. MicroRNA-directed regulation: to cleave or not to cleave. TRENDS IN PLANT SCIENCE 2008; 13:359-67. [PMID: 18501664 DOI: 10.1016/j.tplants.2008.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 05/18/2023]
Abstract
Gene expression is regulated by transcriptional and post-transcriptional pathways, which are crucial for optimizing gene output and for coordinating cellular programs. MicroRNAs (miRNAs) regulate gene expression networks necessary for proper development, cell viability and stress responses. In plants and animals, 20-24-nt miRNAs direct cleavage and translational repression of partially complementary mRNA target transcripts, through conserved ARGONAUTE proteins. In plants, certain miRNAs indirectly regulate developmental programs by instigating the production of small interfering RNAs (siRNAs). In addition, non-cleavable plant miRNA targets sequester miRNAs, thus regulating miRNA availability. This review summarizes the complexities and diversity of plant miRNA-directed gene regulatory mechanisms and highlights the use of miRNAs for the specific knockdown of gene expression in plants.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| | | |
Collapse
|
522
|
Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 2008; 582:2445-52. [PMID: 18558089 DOI: 10.1016/j.febslet.2008.06.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/22/2008] [Accepted: 06/02/2008] [Indexed: 12/17/2022]
Abstract
Nine conserved miRNA families and three potential novel miRNAs in Brassica rapa were identified from a small RNA library. The expression patterns of some conserved miRNAs had different tissue specificity in Brassica and Arabidopsis. One of the three potential miRNAs, named bra-miR1885, was verified as a true functional miRNA. It could be induced specifically by Turnip mosaic virus (TuMV) infection, and target TIR-NBS-LRR class disease-resistant transcripts for cleavage. Based on the hypothesis for de novo generation of new miRNA genes and the sequence similarity between bra-MIR1885 precursor loci and target transcript sequences, we suggest that bra-MIR1885 is a new miRNA gene that originated through inverted duplication events from TIR-NBS-LRR class disease-resistant protein-coding gene sequences, which became bra-miR1885 targets.
Collapse
|
523
|
Abstract
Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
524
|
Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ. Regulatory network of microRNA399 and PHO2 by systemic signaling. PLANT PHYSIOLOGY 2008; 147:732-46. [PMID: 18390805 PMCID: PMC2409027 DOI: 10.1104/pp.108.116269] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 03/24/2008] [Indexed: 05/17/2023]
Abstract
Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their involvement in long-distance signaling. In this study, we used reciprocal grafting between wild-type and miR399-overexpressing transgenic plants to dissect the systemic roles of miR399 and PHO2. Arabidopsis rootstocks overexpressing miR399 showed high accumulation of Pi in the wild-type scions because of reduced PHO2 expression in the rootstocks. Although miR399 precursors or expression was not detected, we found a small but substantial amount of mature miR399 in the wild-type rootstocks grafted with transgenic scions, which indicates the movement of miR399 from shoots to roots. Suppression of PHO2 with miR399b or c was less efficient than that with miR399f. Of note, findings in grafted Arabidopsis were also discovered in grafted tobacco (Nicotiana benthamiana) plants. The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots. We propose that the long-distance movement of miR399s from shoots to roots is crucial to enhance Pi uptake and translocation during the onset of Pi deficiency. Moreover, PHO2 small interfering RNAs mediated by the cleavage of miR399s may function to refine the suppression of PHO2. The regulation of miR399 and PHO2 via long-distance communication in response to Pi deficiency is discussed.
Collapse
Affiliation(s)
- Shu-I Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
525
|
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008; 320:1185-90. [PMID: 18483398 DOI: 10.1126/science.1159151] [Citation(s) in RCA: 986] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA-guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.
Collapse
Affiliation(s)
- Peter Brodersen
- Institut de Biologie Moléculaire des Plantes du CNRS, Unité Propre de Recherche 2357, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
526
|
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2008; 14:836-43. [PMID: 18356539 PMCID: PMC2327369 DOI: 10.1261/rna.895308] [Citation(s) in RCA: 591] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/24/2008] [Indexed: 05/18/2023]
Abstract
High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.
Collapse
Affiliation(s)
- Han-Hua Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | | | | | | | | |
Collapse
|
527
|
Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC PLANT BIOLOGY 2008; 8:37. [PMID: 18416839 PMCID: PMC2358906 DOI: 10.1186/1471-2229-8-37] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 04/16/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. RESULTS We searched all publicly available nucleotide databases of genome survey sequences (GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families - miR319, miR156/157, miR169, miR165/166 and miR394 - were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2 small RNAs (small-85 and small-87) in Brassica spp. CONCLUSION Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2 small RNAs that have been identified only in Arabidopsis thus far, are also conserved in Brassica spp. These findings will be useful for tracing the evolution of small RNAs by examining their expression in common ancestors of the Arabidopsis-Brassica lineage.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
528
|
Reynolds M, Tuberosa R. Translational research impacting on crop productivity in drought-prone environments. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:171-9. [PMID: 18329330 DOI: 10.1016/j.pbi.2008.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/31/2008] [Accepted: 02/08/2008] [Indexed: 05/19/2023]
Abstract
Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center CIMMYT, Int. AP 6-641, 06600 México, DF, Mexico.
| | | |
Collapse
|
529
|
Murphy D, Dancis B, Brown JR. The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol 2008; 8:92. [PMID: 18366743 PMCID: PMC2287173 DOI: 10.1186/1471-2148-8-92] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/25/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs (ncRNAs) which play important roles in eukaryotic gene regulation. miRNA biogenesis and activation is a complex process involving multiple protein catalysts and involves the large macromolecular RNAi Silencing Complex or RISC. While phylogenetic analyses of miRNA genes have been previously published, the evolution of miRNA biogenesis itself has been little studied. In order to better understand the origin of miRNA processing in animals and plants, we determined the phyletic occurrences and evolutionary relationships of four major miRNA pathway protein components; Dicer, Argonaute, RISC RNA-binding proteins, and Exportin-5. RESULTS Phylogenetic analyses show that all four miRNA pathway proteins were derived from large multiple protein families. As an example, vertebrate and invertebrate Argonaute (Ago) proteins diverged from a larger family of PIWI/Argonaute proteins found throughout eukaryotes. Further gene duplications among vertebrates after the evolution of chordates from urochordates but prior to the emergence of fishes lead to the evolution of four Ago paralogues. Invertebrate RISC RNA-binding proteins R2D2 and Loquacious are related to other RNA-binding protein families such as Staufens as well as vertebrate-specific TAR (HIV trans-activator RNA) RNA-binding protein (TRBP) and protein kinase R-activating protein (PACT). Export of small RNAs from the nucleus, including miRNA, is facilitated by three closely related karyopherin-related nuclear transporters, Exportin-5, Exportin-1 and Exportin-T. While all three exportins have direct orthologues in deutrostomes, missing exportins in arthropods (Exportin-T) and nematodes (Exportin-5) are likely compensated by dual specificities of one of the other exportin paralogues. CONCLUSION Co-opting particular isoforms from large, diverse protein families seems to be a common theme in the evolution of miRNA biogenesis. Human miRNA biogenesis proteins have direct, orthologues in cold-blooded fishes and, in some cases, urochordates and deutrostomes. However, lineage specific expansions of Dicer in plants and invertebrates as well as Argonaute and RNA-binding proteins in vertebrates suggests that novel ncRNA regulatory mechanisms can evolve in relatively short evolutionary timeframes. The occurrence of multiple homologues to RNA-binding and Argonaute/PIWI proteins also suggests the possible existence of further pathways for additional types of ncRNAs.
Collapse
Affiliation(s)
- Dennis Murphy
- Bioinformatics, Molecular Discovery Research, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA.
| | | | | |
Collapse
|
530
|
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC PLANT BIOLOGY 2008; 8:25. [PMID: 18312648 PMCID: PMC2292181 DOI: 10.1186/1471-2229-8-25] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Small RNA-guided gene silencing at the transcriptional and post-transcriptional levels has emerged as an important mode of gene regulation in plants and animals. Thus far, conventional sequencing of small RNA libraries from rice led to the identification of most of the conserved miRNAs. Deep sequencing of small RNA libraries is an effective approach to uncover rare and lineage- and/or species-specific microRNAs (miRNAs) in any organism. RESULTS In order to identify new miRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. A total of 58,781, 43,003 and 80,990 unique genome-matching small RNAs were obtained from the control, drought and salt stress libraries, respectively. Sequence analysis confirmed the expression of most of the conserved miRNAs in rice. Importantly, 23 new miRNAs mostly each derived from a unique locus in rice genome were identified. Six of the new miRNAs are conserved in other monocots. Additionally, we identified 40 candidate miRNAs. Allowing not more than 3 mis-matches between a miRNA and its target mRNA, we predicted 20 targets for 9 of the new miRNAs. CONCLUSION Deep sequencing proved to be an effective strategy that allowed the discovery of 23 low-abundance new miRNAs and 40 candidate miRNAs in rice.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Yun Zheng
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
531
|
Nonogaki H. Repression of transcription factors by microRNA during seed germination and postgerminaiton: Another level of molecular repression in seeds. PLANT SIGNALING & BEHAVIOR 2008; 3:65-7. [PMID: 19704775 PMCID: PMC2633965 DOI: 10.4161/psb.3.1.4918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 05/03/2023]
Abstract
There are multiple layers of molecular repression during seed germination and seedling growth which are important to maintain normal developmental programs at the early stages of plant growth. Genes involved in hormone biosynthesis and deactivation which determine the dormant or germinative status of seeds are generally controlled at the transcriptional level. In contrast, regulation involving protein modification and degradation which occur at the posttranslational level seem to be more important for the removal of proteins suppressing seed germination and seedling growth. Recent work indicates that posttranscriptional repression, another level of molecular regulation, is also critical for seed germination and postgermination. This addendum highlights recent findings concerning the repression of transcription factors by microRNA (miRNA) in Arabidopsis seeds and seedlings. Characterization of the mutant expressing miR160-resistant AUXIN RESPONSE FACTOR10 suggested the possible involvement of auxin-ABA crosstalk in seed germination. The new findings are integrated into the current model of seed germination mechanisms depicting a balance between embryo growth potential and endosperm mechanical resistance.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture; Oregon State University; Corvallis, Oregan USA
| |
Collapse
|
532
|
Boyko A, Kovalchuk I. Epigenetic control of plant stress response. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:61-72. [PMID: 17948278 DOI: 10.1002/em.20347] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Living organisms have the clearly defined strategies of stress response. These strategies are predefined by a genetic make-up of the organism and depend on a complex regulatory network of molecular interactions. Although in most cases, the plant response to stress based on the mechanisms of tolerance, resistance, and avoidance has clearly defined metabolic pathways, the ability to acclimate/adapt after a single generation exposure previously observed in several studies (Boyko A et al. [2007]: Nucleic Acids Res 35:1714-1725; Boyko and Kovalchuk, unpublished data), represents an interesting phenomenon that cannot be explained by Mendelian genetics. The latest findings in the field of epigenetics and the process of a reversible control over gene expression and inheritance lead to believe that organisms, especially plants, may have a flexible short-term strategy of the response to stress. Indeed, the organisms that can modify gene expression reversibly have an advantage in evolutionary terms, since they can avoid unnecessary excessive rearrangements and population diversification. This review covers various epigenetic processes involved in plant stress response. We focus on the mechanisms of DNA methylation and histone modifications responsible for the protection of somatic cells and inheritance of stress memories.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
533
|
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2007; 2:e1326. [PMID: 18094749 PMCID: PMC2147077 DOI: 10.1371/journal.pone.0001326] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/21/2007] [Indexed: 01/11/2023] Open
Abstract
Background Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. Principal Findings We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Conclusions Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.
Collapse
|
534
|
Agorio A, Vera P. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. THE PLANT CELL 2007; 19:3778-90. [PMID: 17993621 PMCID: PMC2174867 DOI: 10.1105/tpc.107.054494] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/10/2007] [Accepted: 10/23/2007] [Indexed: 05/20/2023]
Abstract
Here, we report the characterization of the Arabidopsis thaliana ocp11 (for overexpressor of cationic peroxidase11) mutant, in which a beta-glucuronidase reporter gene under the control of the H(2)O(2)-responsive Ep5C promoter is constitutively expressed. ocp11 plants show enhanced disease susceptibility to the virulent bacterium Pseudomonas syringae pv tomato DC3000 (P.s.t. DC3000) and also to the avirulent P.s.t. DC3000 carrying the effector avrRpm1 gene. In addition, ocp11 plants are also compromised in resistance to the nonhost pathogen P. syringae pv tabaci. Genetic and molecular analyses reveal that ocp11 plants are not affected in salicylic acid perception. We cloned OCP11 and show that it encodes ARGONAUTE4 (AGO4), a component of the pathway that mediates the transcriptional gene silencing associated with small interfering RNAs that direct DNA methylation at specific loci, a phenomenon known as RNA-directed DNA methylation (RdDM). Thus, we renamed our ocp11 mutant ago4-2, as it represents a different allele to the previously characterized recessive ago4-1. Both mutants decrease the extent of DNA cytosine methylation at CpNpG and CpHpH (asymmetric) positions present at different DNA loci and show commonalities in all of the molecular and phenotypic aspects that we have considered. Interestingly, we show that AGO4 works independently of other components of the RdDM pathway in mediating resistance to P.s.t. DC3000, and loss of function in other components of the pathway operating upstream of AGO4, such as RDR2 and DCL3, or operating downstream, such as DRD1, CMT3, DRM1, and DRM2, does not compromise resistance to this pathogen.
Collapse
Affiliation(s)
- Astrid Agorio
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | |
Collapse
|
535
|
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. TRENDS IN PLANT SCIENCE 2007; 12:444-51. [PMID: 17855156 DOI: 10.1016/j.tplants.2007.07.002] [Citation(s) in RCA: 1062] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 05/17/2023]
Abstract
Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses.
Collapse
|
536
|
Abstract
Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress.
Collapse
Affiliation(s)
- Anthony K L Leung
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|