501
|
Nakamura AJ, Rao VA, Pommier Y, Bonner WM. The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks. Cell Cycle 2010; 9:389-97. [PMID: 20046100 PMCID: PMC3086803 DOI: 10.4161/cc.9.2.10475] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The maintenance of genome stability requires efficient DNA double-stranded break (DSB) repair mediated by the phosphorylation of multiple histone H2AX molecules near the break sites. The phosphorylated H2AX (gammaH2AX) molecules form foci covering many megabases of chromatin. The formation of gamma-H2AX foci is critical for efficient DNA damage response (DDR) and for the maintenance of genome stability, however, the mechanisms of protein organization in foci is largely unknown. To investigate the nature of gammaH2AX foci formation, we analyzed the distribution of gammaH2AX and other DDR proteins at DSB sites using a variety of techniques to visualize, expand and partially disrupt chromatin. We report here that gammaH2AX foci change composition during the cell cycle, with proteins 53BP1, NBS1 and MRE11 dissociating from foci in G(2) and mitosis to return at the beginning of the following G(1). In contrast, MDC1 remained colocalized with gamma-H2AX during mitosis. In addition, while gammaH2AX was found to span large domains flanking DSB sites, 53BP1 and NBS1 were more localized and MDC1 colocalized in doublets in foci. H2AX and MDC1 were found to be involved in chromatin relaxation after DSB formation. Our data demonstrates that the DSB repair focus is a heterogeneous and dynamic structure containing internal complexity.
Collapse
Affiliation(s)
- Asako J Nakamura
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
502
|
Li Y, Li X, Guo B. Chemopreventive agent 3,3'-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res 2010; 70:646-54. [PMID: 20068155 DOI: 10.1158/0008-5472.can-09-1924] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3,3'-Diindolylmethane (DIM) is an anticancer agent that induces cell cycle arrest and apoptosis through unknown mechanisms. Here, we report that DIM can selectively induce proteasome-mediated degradation of class I histone deacetylases (HDAC1, HDAC2, HDAC3, and HDAC8) without affecting the class II HDAC proteins. DIM induced downregulation of class I HDACs in human colon cancer cells in vitro and in vivo in tumor xenografts. HDAC depletion relieved HDAC-mediated transcriptional inhibition of the cyclin-dependent kinase inhibitors p21WAF1 and p27KIP2, significantly increasing their expression and triggering cell cycle arrest in the G(2) phase of the cell cycle. Additionally, HDAC depletion was associated with an induction of DNA damage that triggered apoptosis. Our findings indicate that DIM acts to selectively target the degradation of class I HDACs.
Collapse
Affiliation(s)
- Yongming Li
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58108, USA
| | | | | |
Collapse
|
503
|
Abstract
PURPOSE Ionising radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumourigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H(2)O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. CONCLUSIONS In the past 50 years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation.
Collapse
Affiliation(s)
- Penny Jeggo
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK.
| | | |
Collapse
|
504
|
Sordet O, Nakamura AJ, Redon CE, Pommier Y. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 2010; 9:274-8. [PMID: 20023421 DOI: 10.4161/cc.9.2.10506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
505
|
Pegoraro G, Misteli T. The central role of chromatin maintenance in aging. Aging (Albany NY) 2009; 1:1017-22. [PMID: 20157584 PMCID: PMC2815750 DOI: 10.18632/aging.100106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/08/2009] [Indexed: 12/20/2022]
Abstract
Epigenetic regulation of chromatin and the DNA damage response are now well appreciated key players in human aging. What contributions chromatin and DAN repair make to aging, whether they are causal, and how these relate to other aging pathways, however, is unclear. Novel insights into the aging-related molecular mechanisms that link chromatin and DNA damage repair have recently been gained by studying models of both premature and physiological aging. Here we discuss these findings and we propose a broad framework for the role of chromatin in aging to reconcile apparently contradicting evidence obtained in various experimental systems.
Collapse
|
506
|
Gerlitz G. HMGNs, DNA repair and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:80-5. [PMID: 20004154 DOI: 10.1016/j.bbagrm.2009.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 12/28/2022]
Abstract
DNA lesions threaten the integrity of the genome and are a major factor in cancer formation and progression. Eukaryotic DNA is organized in nucleosome-based higher order structures, which form the chromatin fiber. In recent years, considerable knowledge has been gained on the importance of chromatin dynamics for the cellular response to DNA damage and for the ability to repair DNA lesions. High Mobility Group N1 (HMGN1) protein is an emerging factor that is important for chromatin alterations in response to DNA damage originated from both ultra violet light (UV) and ionizing irradiation (IR). HMGN1 is a member in the HMGN family of chromatin architectural proteins. HMGNs bind directly to nucleosomes and modulate the structure of the chromatin fiber in a highly dynamic manner. This review focuses mainly on the roles of HMGN1 in the cellular response pathways to different types of DNA lesions and in transcriptional regulation of cancer-related genes. In addition, emerging roles for HMGN5 in cancer progression and for HMGN2 as a potential tool in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37/ Room 3122, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
507
|
|
508
|
Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, Mohri Y, Miki C, Kusunoki M. KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol 2009; 17:821-8. [PMID: 19898899 DOI: 10.1245/s10434-009-0795-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND KRAB-associated protein 1 (KAP1) is a universal corepressor for Kruppel-associated box zinc finger proteins. Here we demonstrate the biological function and clinical significance of KAP1 expression in gastric cancer. METHODS Knockdown of the KAP1 gene by siRNA transfection was performed to evaluate KAP1 function in gastric cancer cells. Real-time polymerase chain reaction was performed in 91 samples obtained from gastric cancer patients. RESULTS The proliferation rate was impaired and resistance to anoikis was decreased after knockdown of KAP1 in the gastric cancer cell lines AZ521 and KATO III. Expression of the KAP1 gene was significantly higher in cancerous tissues than in noncancerous tissues (P < .05). Patients with high KAP1 expression showed a higher incidence of peritoneal carcinomatosis (P < .05) and significantly poorer overall survival compared to patients with low KAP1 expression (5-year overall survival rates, 35.4% and 50.5%, respectively; P < .05). Multivariate analysis revealed that high KAP1 expression was an independent prognostic factor (risk ratio, 1.44; 95% confidence interval, 1.03-1.99; P < .05). Intriguingly, high KAP1 expression was also an independent factor for peritoneal carcinomatosis (odds ratio, 4.53; 95% confidence interval, 1.27-18.5; P < .05). CONCLUSIONS KAP1 provides a survival advantage to gastric cancer cells and is an independent factor for peritoneal dissemination in patients with gastric cancer. These results suggest that KAP1 plays an important role in progression to peritoneal carcinomatosis in gastric cancer patients.
Collapse
Affiliation(s)
- Takeshi Yokoe
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Functional genomic screens identify CINP as a genome maintenance protein. Proc Natl Acad Sci U S A 2009; 106:19304-9. [PMID: 19889979 DOI: 10.1073/pnas.0909345106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA damage response (DDR) has a critical role in maintaining genome integrity and serves as a barrier to tumorigenesis by promoting cell-cycle arrest, DNA repair, and apoptosis. The DDR is activated not only by genotoxic agents that induce DNA damage, but also during aberrant cell-division cycles caused by activated oncogenes and inactivated tumor suppressors. Here we use RNAi and cDNA overexpression screens in human cells to identify genes that, when deregulated, lead to activation of the DDR. The RNAi screen identified 73 genes that, when silenced in at least two cell types, cause DDR activation. Silencing several of these genes also caused an increased frequency of micronuclei, a marker of genetically unstable cells. The cDNA screen identified 97 genes that when overexpressed induce DDR activation in the absence of any exogenous genotoxic agent, with an overrepresentation of genes linked to cancer. Secondary RNAi screens identified CDK2-interacting protein (CINP) as a cell-cycle checkpoint protein. CINP interacts with ATR-interacting protein and regulates ATR-dependent signaling, resistance to replication stress, and G2 checkpoint integrity.
Collapse
|
510
|
Jeggo PA. Risks from low dose/dose rate radiation: what an understanding of DNA damage response mechanisms can tell us. HEALTH PHYSICS 2009; 97:416-425. [PMID: 19820451 DOI: 10.1097/hp.0b013e3181aff9c8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The DNA damage response (DDR) mechanisms represent a vital line of defense against exogenous and endogenous DNA damage to enhance two distinct outcomes, survival and the maintenance of genomic stability. The latter is critical for cancer avoidance. DDR processes encompass repair pathways and signal transduction mechanisms that activate cell cycle checkpoint arrest and apoptosis. DNA double strand breaks (DSBs) represent important radiation-induced lesions. The major DSB repair pathways are DNA non-homologous end-joining (NHEJ) and homologous recombination (HR) and ataxia telangiectasia mutated (ATM) activates the DSB signaling response. To evaluate the ability of these pathways to protect against low doses or dose rate radiation exposure, it is important to consider the fidelity of DSB repair and the sensitivity of checkpoint arrest and apoptosis. Radiation-induced DSBs are more complex than endogenously-induced DSBs, with the potential for multiple lesions to arise in close proximity. NHEJ, the major DSB repair pathway, cannot accurately reconstitute sequence information lost at DSBs. Both pathways have the potential to cause translocations by rejoining erroneous DNA ends. Thus, complete accuracy of repair cannot be guaranteed and the formation of translocations, which have the potential to initiate carcinogenesis, can arise. Additionally, the G2/M checkpoint has a defined sensitivity, allowing some chromosome breakage to occur. Thus, genomic rearrangements can potentially arise even if the G1/S checkpoint is efficient. The sensitivity of apoptosis is currently unclear but will likely differ between tissues. In summary, it is unlikely that the DDR mechanisms can fully protect cells from genomic rearrangements following exposure to low doses or dose rate radiation.
Collapse
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex; Brighton BN1 9RQ, UK.
| |
Collapse
|
511
|
Abstract
The prime objective for every life form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damage, signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management.
Collapse
Affiliation(s)
- Stephen P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | |
Collapse
|
512
|
Darzynkiewicz Z, Traganos F, Wlodkowic D. Impaired DNA damage response--an Achilles' heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 2009; 625:143-50. [PMID: 19836377 DOI: 10.1016/j.ejphar.2009.05.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 12/21/2022]
Abstract
Despite the progress in targeting particular molecular abnormalities specific to different cancers (targeted therapy), chemo- and radiotherapies are still the most effective of all anticancer modalities. Induction of DNA damage and inhibition of cell proliferation are the objects of most chemotherapeutic agents and radiation. Their effectiveness was initially thought to be due to the high rate of proliferation of cancer cells. However, normal cell proliferation rate in some tissues often exceeds that of curable tumors. Most tumors have impaired DNA damage response (DDR) and the evidence is forthcoming that this confers sensitivity to chemo- or radiotherapy. DDR is a complex set of events which elicits a plethora of molecular interactions engaging signaling pathways designed to: (a) halt cell cycle progression and division to prevent transfer of DNA damage to progeny cells; (b) increase the accessibility of the damaged sites to the DNA repair machinery; (c) engage DNA repair mechanisms and (d) activate the apoptotic pathway when DNA cannot be successfully repaired. A defective DDR makes cancer cells unable to effectively stop cell cycle progression, engage in DNA repair and/or trigger the apoptotic program when treated with DNA damaging drugs. With continued exposure to the drug, such cells accumulate DNA damage which leads to their reproductive death that may have features of cell senescence. Cancers with nonfunctional BRCA1 and BRCA2 are particularly sensitive to combined treatment with DNA damaging drugs and inhibitors of poly(ADP-ribose) polymerase. Antitumor strategies are being designed to treat cancers having particular defects in their DDR, concurrent with protecting normal cells.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, USA.
| | | | | |
Collapse
|
513
|
Bhogal N, Jalali F, Bristow RG. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 2009; 85:732-46. [PMID: 19296345 DOI: 10.1080/09553000902785791] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE It is now feasible to detect DNA double strand breaks (DSB) in tissues by measuring the induction and resolution of DNA repair foci, such as gamma-H2AX, using immunofluorescent microscopy and digital image analysis. This review will highlight principal tools and approaches to tissue microscopy and analysis. It will also discuss the practical considerations of using microscopy in vitro and in vivo in measuring intranuclear foci following irradiation. CONCLUSIONS Computer-based image analysis algorithms allow an objective and quantitative analysis of foci and protein-protein interactions using 3D confocal images. Finally, we review the literature in which DNA repair foci have been investigated as a biodosimeter or a biomarker of DNA repair in normal tissues.
Collapse
Affiliation(s)
- Nirmal Bhogal
- Applied Molecular Oncology and Radiation Medicine Program, Ontario Cancer Institute/Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | | | |
Collapse
|
514
|
Abstract
Heterochromatin protein 1 (HP1) family members are versatile proteins involved in transcription, chromatin organization, and replication. Recent findings now have implicated HP1 proteins in the DNA damage response as well. Cell-biological approaches showed that reducing the levels of all three HP1 isoforms enhances DNA repair, possibly due to heterochromatin relaxation. Additionally, HP1 is phosphorylated in response to DNA damage, which was suggested to initiate the DNA damage response. These findings have led to the conclusion that heterochromatic proteins are inhibitory to repair and that their dissociation from heterochromatin may facilitate repair. In contrast with an inhibitory role, a more active role for HP1 in DNA repair also was proposed based on the finding that all HP1 isoforms are recruited to UV-induced lesions, oxidative lesions, and DNA breaks. The loss of HP1 renders nematodes highly sensitive to DNA damage, and mice lacking HP1beta suffer from genomic instability, suggesting that the loss of HP1 is not necessarily beneficial for repair. These findings raise the possibility that HP1 facilitates DNA repair by reorganizing chromatin, which may involve interactions between phosphorylated HP1 and other DNA damage response proteins. Taken together, these studies illustrate an emerging role of HP1 proteins in the response to genotoxic stress.
Collapse
|
515
|
Peng G, Lin SY. BRIT1/MCPH1 is a multifunctional DNA damage responsive protein mediating DNA repair-associated chromatin remodeling. Cell Cycle 2009; 8:3071-2. [PMID: 19755841 PMCID: PMC3419473 DOI: 10.4161/cc.8.19.9411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Guang Peng
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
516
|
Bansbach CE, Bétous R, Lovejoy CA, Glick GG, Cortez D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 2009; 23:2405-14. [PMID: 19793861 DOI: 10.1101/gad.1839909] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.
Collapse
Affiliation(s)
- Carol E Bansbach
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
517
|
Abstract
DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, approximately 15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3-9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson-Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, gamma-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient chromatin relaxation, but precludes significant dismantling of the heterochromatic superstructure.
Collapse
|
518
|
Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 2009; 28:3413-27. [PMID: 19779458 PMCID: PMC2752027 DOI: 10.1038/emboj.2009.276] [Citation(s) in RCA: 424] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/06/2009] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination (HR) and non-homologous end joining (NHEJ) represent distinct pathways for repairing DNA double-strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ-dependent process, which repairs a defined subset of radiation-induced DSBs in G1-phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB-repair pathway whereas HR is only essential for repair of approximately 15% of X- or gamma-ray-induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation-induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP-1, providing evidence that HR in G2 repairs heterochromatin-associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single-stranded DNA and Rad51 foci at radiation-induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.
Collapse
Affiliation(s)
- Andrea Beucher
- Darmstadt University of Technology, Radiation Biology and DNA Repair, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H, Masumoto H, Larionov V, Earnshaw WC. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 2009; 20:4194-204. [PMID: 19656847 DOI: 10.1091/mbc.e09-06-0489] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously used a human artificial chromosome (HAC) with a synthetic kinetochore that could be targeted with chromatin modifiers fused to tetracycline repressor to show that targeting of the transcriptional repressor tTS within kinetochore chromatin disrupts kinetochore structure and function. Here we show that the transcriptional corepressor KAP1, a downstream effector of the tTS, can also inactivate the kinetochore. The disruption of kinetochore structure by KAP1 subdomains does not simply result from loss of centromeric CENP-A nucleosomes. Instead it reflects a hierarchical disruption of the outer kinetochore, with CENP-C levels falling before CENP-A levels and, in certain instances, CENP-H being lost more readily than CENP-C. These results suggest that this novel approach to kinetochore dissection may reveal new patterns of protein interactions within the kinetochore.
Collapse
Affiliation(s)
- Stefano Cardinale
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
520
|
Soler D, Pampalona J, Tusell L, Genescà A. Radiation sensitivity increases with proliferation-associated telomere dysfunction in nontransformed human epithelial cells. Aging Cell 2009; 8:414-25. [PMID: 19473118 DOI: 10.1111/j.1474-9726.2009.00488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epidemiological studies have demonstrated age differences among human adults in susceptibility to radiation, with cancer cases attributable to radiation being more frequent for older individuals at time of exposure. In addition to the notion that susceptibility increases because of progressive decline in DNA monitoring and immunosurveillance, telomere function is now emerging as a new and important factor in modulating cellular and organism sensitivity to ionizing radiation. The link between telomeres and radiosensitivity is well-documented in humans, but the causal events remain elusive. In this paper, it is shown that irradiated human epithelial cells with short dysfunctional telomeres derived from normal mammary gland display elevated DNA damage. An approach identifying the specific chromosomes with critically shortened telomeres in each donor has allowed us to conclude that short dysfunctional telomeres in human epithelial cells join radiation-induced DNA broken ends, thus interfering with their efficient repair. These findings argue against telomeres participating as sensors or transducers of DNA damage, as previously suggested. Rather, our current findings give support to the idea that dysfunctional telomeres, by acting as an additional joining option, reduce the repair fidelity of DNA broken-ends induced by radiation throughout the genome. In the mammary gland, age-dependent telomere attrition due to epithelial turnover, together with the accretion of checkpoint deficiencies, might render the accumulation of short dysfunctional telomeres. This implies that the risks associated with mammography screening could be higher than previously assumed. Our results have the possibility of imprinting a temporal dimension onto radiation sensitivity, namely, that shortened telomeres in aged cells may more easily compromise normal tissue function in the elderly.
Collapse
Affiliation(s)
- David Soler
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
521
|
Differential regulation of Apak by various DNA damage signals. Mol Cell Biochem 2009; 333:181-7. [DOI: 10.1007/s11010-009-0218-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 07/07/2009] [Indexed: 12/31/2022]
|
522
|
Chang PC, Fitzgerald LD, Van Geelen A, Izumiya Y, Ellison TJ, Wang DH, Ann DK, Luciw PA, Kung HJ. Kruppel-associated box domain-associated protein-1 as a latency regulator for Kaposi's sarcoma-associated herpesvirus and its modulation by the viral protein kinase. Cancer Res 2009; 69:5681-9. [PMID: 19584288 PMCID: PMC2731626 DOI: 10.1158/0008-5472.can-08-4570] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, a major AIDS-associated malignancy, and to hematologic malignancies, including primary effusion lymphoma and multicentric Castleman's disease. Like other herpesviruses, KSHV is capable of both latent and lytic replication. Understanding the molecular details associated with this transition from latency to lytic replication is key to controlling virus spread and can affect the development of intervention strategies. Here, we report that Kruppel-associated box domain-associated protein-1 (KAP-1)/transcriptional intermediary factor 1beta, a cellular transcriptional repressor that controls chromosomal remodeling, participates in the process of switching viral latency to lytic replication. Knockdown of KAP-1 by small interfering RNA leads to KSHV reactivation mediated by K-Rta, a key transcriptional regulator. In cells harboring latent KSHV, KAP-1 was associated with the majority of viral lytic-gene promoters. K-Rta overexpression induced the viral lytic cycle with concomitant reduction of KAP-1 binding to viral promoters. Association of KAP-1 with heterochromatin was modulated by both sumoylation and phosphorylation. During lytic replication of KSHV, KAP-1 was phosphorylated at Ser(824). Several lines of evidence directly linked the viral protein kinase to this post-translational modification. Additional studies showed that this phosphorylation of KAP-1 produced a decrease in its sumoylation, consequently decreasing the ability of KAP-1 to condense chromatin on viral promoters. In summary, the cellular transcriptional repressor KAP-1 plays a role in regulating KSHV latency, and viral protein kinase modulates the chromatin remodeling function of this repressor.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| | - Latricia D. Fitzgerald
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| | - Albert Van Geelen
- Center for Comparative Medicine and Department of Pathology, University of California, Davis, CA 95616
| | - Yoshihiro Izumiya
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| | - Thomas J. Ellison
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| | - Don-Hong Wang
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| | - David K. Ann
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
| | - Paul A. Luciw
- Center for Comparative Medicine and Department of Pathology, University of California, Davis, CA 95616
| | - Hsing-Jien Kung
- Department of Biological Chemistry and Molecular Medicine and UC Davis Cancer Center, University of California, Davis, CA 95616
| |
Collapse
|
523
|
Halicka HD, Zhao H, Podhorecka M, Traganos F, Darzynkiewicz Z. Cytometric detection of chromatin relaxation, an early reporter of DNA damage response. Cell Cycle 2009; 8:2233-7. [PMID: 19502789 DOI: 10.4161/cc.8.14.8984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the early events of the DNA damage response (DDR), particularly if the damage involves induction of DNA double-strand breaks, is remodeling of chromatin structure characterized by its relaxation (decondensation). The relaxation increases accessibility of the damaged DNA sites to the repair machinery. We present here a simple cytometric approach to detect chromatin relaxation based on the analysis of the proclivity of DNA in situ to undergo denaturation after treatment with acid. DNA denaturation is probed by the metachromatic fluorochrome acridine orange (AO) which differentially stains single-stranded (denatured) DNA by fluorescing red and the double-stranded DNA by emitting green fluorescence. DNA damage was induced in both human leukemic TK6 cells and mitogen-stimulated human peripheral blood lymphocytes by exposure to UV light or by treatment with H(2)O(2). Chromatin relaxation was revealed by diminished susceptibility of DNA to denaturation, likely reflecting decreased DNA torsional stress, seen as soon as 10 min after subjecting cells to UV or H(2)O(2). While cells in all phases of the cell cycle showed a comparable extent of chromatin relaxation upon UV or H(2)O(2) exposure, H2AX was phosphorylated on Ser139 predominantly in S-phase cells. The data are consistent with the notion that chromatin relaxation is global, affects all cells with damaged DNA, and is a prerequisite to the subsequent steps of DDR that can be selective to cells in a particular phase of the cell cycle. The method offers a rapid and simple means of detecting genotoxic insult on cells.
Collapse
Affiliation(s)
- H Dorota Halicka
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
524
|
Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009; 28:1878-89. [PMID: 19407812 PMCID: PMC2684025 DOI: 10.1038/emboj.2009.119] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 01/05/2023] Open
Abstract
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.
Collapse
Affiliation(s)
- Jorrit V Tjeertes
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | - Kyle M Miller
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | | |
Collapse
|
525
|
Peng G, Yim EK, Dai H, Jackson AP, van der Burgt I, Pan MR, Hu R, Li K, Lin SY. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 2009; 11:865-72. [PMID: 19525936 PMCID: PMC2714531 DOI: 10.1038/ncb1895] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/02/2009] [Indexed: 01/03/2023]
Abstract
To detect and repair damaged DNA, DNA-damage-response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions. ATP-dependent chromatin remodelling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA-damage-response protein that is mutated in human primary microcephaly. Here we report a previously unknown function of BRIT1 as a regulator of the ATP-dependent chromatin remodelling complex SWI-SNF in DNA repair. After damage to DNA, BRIT1 increases its interaction with SWI-SNF through ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase in binding affinity provides a means by which SWI-SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation as a result of decreased association of SWI-SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and the reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired cell survival after DNA damage. Our findings therefore identify BRIT1 as a key molecule that links chromatin remodelling with response to DNA damage in the control of DNA repair, and its dysfunction contributes to human disease.
Collapse
Affiliation(s)
- Guang Peng
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Eun-Kyoung Yim
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Hui Dai
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Ineke van der Burgt
- Department of Human Genetics, University Medical Center Nijmegen, The Netherlands
| | - Mei-Ren Pan
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Ruozhen Hu
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Kaiyi Li
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, Unit 950, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
526
|
Paul L, Cattaneo M, D'Angelo A, Sampietro F, Fermo I, Razzari C, Fontana G, Eugene N, Jacques PF, Selhub J. Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr 2009; 139:1273-8. [PMID: 19458030 DOI: 10.3945/jn.109.104984] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human chromosomes are capped by telomeres, which consist of tandem repeats of DNA and associated proteins. The length of the telomeres is reduced with increasing cell divisions except when the enzyme telomerase is active, as in stem cells and germ cells. Telomere dysfunction has been associated with development of age-related pathologies, including cancer, cardiovascular disease, Alzheimer's disease, and Parkinson's disease. DNA damage in the telomeric region causes attrition of telomeres. Because folate provides precursors for nucleotide synthesis and thus affects the integrity of DNA, including that of the telomeric region, folate status has the potential to influence telomere length. Telomere length is epigenetically regulated by DNA methylation, which in turn could be modulated by folate status. In this study, we determined whether folate status and the 677C > T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene are associated with the telomere length of peripheral blood mononuclear cells in healthy men. The results of our study showed that plasma concentration of folate was associated with telomere length of peripheral blood mononuclear cells in a nonlinear manner. When plasma folate concentration was above the median, there was a positive relationship between folate and telomere length. In contrast, there was an inverse relationship between folate and telomere length when plasma folate concentration was below the median. The MTHFR 677C > T polymorphism was weakly associated (P = 0.065) with increased telomere length at below-median folate status. We propose that folate status influences telomere length by affecting DNA integrity and the epigenetic regulation of telomere length through DNA methylation.
Collapse
Affiliation(s)
- Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Callén E, Jankovic M, Wong N, Zha S, Chen HT, Difilippantonio S, Di Virgilio M, Heidkamp G, Alt FW, Nussenzweig A, Nussenzweig M. Essential role for DNA-PKcs in DNA double-strand break repair and apoptosis in ATM-deficient lymphocytes. Mol Cell 2009; 34:285-97. [PMID: 19450527 PMCID: PMC2709792 DOI: 10.1016/j.molcel.2009.04.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 03/06/2009] [Accepted: 04/24/2009] [Indexed: 02/07/2023]
Abstract
The DNA double-strand break (DSB) repair protein DNA-PKcs and the signal transducer ATM are both activated by DNA breaks and phosphorylate similar substrates in vitro, yet appear to have distinct functions in vivo. Here, we show that ATM and DNA-PKcs have overlapping functions in lymphocytes. Ablation of both kinase activities in cells undergoing immunoglobulin class switch recombination leads to a compound defect in switching and a synergistic increase in chromosomal fragmentation, DNA insertions, and translocations due to aberrant processing of DSBs. These abnormalities are attributed to a compound deficiency in phosphorylation of key proteins required for DNA repair, class switching, and cell death. Notably, both kinases are required for normal levels of p53 phosphorylation in B and T cells and p53-dependent apoptosis. Our experiments reveal a DNA-PKcs-dependent pathway that regulates DNA repair and activation of p53 in the absence of ATM.
Collapse
Affiliation(s)
- Elsa Callén
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, the Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | - Nancy Wong
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shan Zha
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, The Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hua-Tang Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Simone Difilippantonio
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michela Di Virgilio
- Laboratory of Molecular Immunology, the Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | - Gordon Heidkamp
- Laboratory of Molecular Immunology, the Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, The Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, the Rockefeller University and Howard Hughes Medical Institute, New York, New York 10065, USA
| |
Collapse
|
528
|
Tomimatsu N, Mukherjee B, Burma S. Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells. EMBO Rep 2009; 10:629-35. [PMID: 19444312 DOI: 10.1038/embor.2009.60] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 01/20/2023] Open
Abstract
The cellular response to DNA double-strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell-cycle-dependent manner. Here, we report that the crucial checkpoint signalling proteins-p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2-are phosphorylated rapidly by ATR in an ATM/Mre11/cell-cycle-independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM-deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM-deficient cells enforce an early G2/M checkpoint that is ATR-dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM-deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP-1), a protein involved in chromatin remodelling, is mediated by DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in a spatio-temporal manner in addition to ATM. We posit that ATM substrates involved in cell-cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA-PKcs in addition to ATM.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, 2201 Inwood Road, NC7.214E, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
529
|
Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma 2009; 118:487-99. [PMID: 19396454 DOI: 10.1007/s00412-009-0213-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Histones of trypanosomes are quite divergent when compared to histones of most eukaryotes. Nevertheless, the histone H4 of Trypanosoma cruzi, the protozoan that causes Chagas' disease, is acetylated in the N terminus at lysines 4, 10, and 14. Here, we investigated the cellular distribution of histone H4 containing each one of these posttranslational modifications by using specific antibodies. Histone H4 acetylated at lysine 4 (H4-K4ac) is found in the entire nuclear space preferentially at dense chromatin regions, excluding the nucleolus of replicating epimastigote forms of the parasite. In contrast, histone H4 acetylated either at K10 or K14 is found at dispersed foci all over the nuclei and at the interface between dense and nondense chromatin areas as observed by ultrastructural immunocytochemistry. The level of acetylation at K4 decreases in nonreplicating forms of the parasites when compared to K10 and K14 acetylations. Antibodies recognizing the K14 acetylation strongly labeled cells at G2 and M stages of the cell cycle. Besides that, hydroxyurea synchronized parasites show an increased acetylation at K4, K10, and K14 after S phase. Moreover, we do not observed specific colocalization of K4 modifications with the major sites of RNA polymerase II. Upon gamma-irradiation that stops parasite replication until the DNA is repaired, dense chromatin disappears and K4 acetylation decreases, while K10 and K14 acetylation increase. These results indicate that each lysine acetylation has a different role in T. cruzi. While K4 acetylation occurs preferentially in proliferating situations and accumulates in packed chromatin, K10 and K14 acetylations have a particular distribution probably at the boundaries between packed and unpacked chromatin.
Collapse
|
530
|
Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L, He F. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol 2009; 11:580-91. [PMID: 19377469 DOI: 10.1038/ncb1864] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/09/2009] [Indexed: 12/27/2022]
Abstract
Only a few p53 regulators have been shown to participate in the selective control of p53-mediated cell cycle arrest or apoptosis. How p53-mediated apoptosis is negatively regulated remains largely unclear. Here we report that Apak (ATM and p53-associated KZNF protein), a Krüppel-associated box (KRAB)-type zinc-finger protein, binds directly to p53 in unstressed cells, specifically downregulates pro-apoptotic genes, and suppresses p53-mediated apoptosis by recruiting KRAB-box-associated protein (KAP)-1 and histone deacetylase 1 (HDAC1) to attenuate the acetylation of p53. Apak inhibits p53 activity by interacting with ATM, a previously identified p53 activator. In response to stress, Apak is phosphorylated by ATM and dissociates from p53, resulting in activation of p53 and induction of apoptosis. These findings revealed Apak to be a negative regulator of p53-mediated apoptosis and showed the dual role of ATM in p53 regulation.
Collapse
Affiliation(s)
- Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteomics Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 2009; 23:912-27. [PMID: 19390086 PMCID: PMC2675867 DOI: 10.1101/gad.1782209] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/06/2009] [Indexed: 11/25/2022]
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious forms of DNA lesions in cells. Here we induced site-specific DSBs in yeast cells and monitored chromatin dynamics surrounding the DSB using Chromosome Conformation Capture (3C). We find that formation of a DSB within G1 cells is not sufficient to alter chromosome dynamics. However, DSBs formed within an asynchronous cell population result in large decreases in both intra- and interchromosomal interactions. Using live cell microscopy, we find that changes in chromosome dynamics correlate with relocalization of the DSB to the nuclear periphery. Sequestration to the periphery requires the nuclear envelope protein, Mps3p, and Mps3p-dependent tethering delays recombinational repair of a DSB and enhances gross chromosomal rearrangements. Furthermore, we show that components of the telomerase machinery are recruited to a DSB and that telomerase recruitment is required for its peripheral localization. Based on these findings, we propose that sequestration of unrepaired or slowly repaired DSBs to the nuclear periphery reflects a competition between alternative repair pathways.
Collapse
Affiliation(s)
- Pranav Oza
- Program in Molecular Medicine, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Adriana Miele
- Program in Gene Function and Expression, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Program in Gene Function and Expression, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig L. Peterson
- Program in Molecular Medicine, Interdisciplinary Graduate Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
532
|
Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V, Bensadoun JC, Cammas F, Losson R, Mansuy IM, Sandi C, Trono D. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 2009; 60:818-31. [PMID: 19081377 DOI: 10.1016/j.neuron.2008.09.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/06/2008] [Accepted: 09/29/2008] [Indexed: 02/07/2023]
Abstract
KAP1 is an essential cofactor of KRAB-zinc finger proteins, a family of vertebrate-specific epigenetic repressors of largely unknown functions encoded in the hundreds by the mouse and human genomes. Here, we report that KAP1 is expressed at high levels and necessary for KRAB-mediated repression in mature neurons of the mouse brain. Mice deleted for KAP1 in the adult forebrain exhibit heightened levels of anxiety-like and exploratory activity and stress-induced alterations in spatial learning and memory. In the hippocampus, a small number of genes are dysregulated, including some imprinted genes. Chromatin analyses of the promoters of two genes markedly upregulated in knockout mice reveal decreased histone 3 K9-trimethylation and increased histone 3 and histone 4 acetylation. We propose a model in which the tethering of KAP1-associated chromatin remodeling factors via KRAB-ZFPs epigenetically controls gene expression in the hippocampus, thereby conditioning responses to behavioral stress.
Collapse
Affiliation(s)
- Johan Jakobsson
- School of Life Sciences, National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Kong X, Mohanty SK, Stephens J, Heale JT, Gomez-Godinez V, Shi LZ, Kim JS, Yokomori K, Berns MW. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res 2009; 37:e68. [PMID: 19357094 PMCID: PMC2685111 DOI: 10.1093/nar/gkp221] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper recognition and repair of DNA damage is critical for the cell to protect its genomic integrity. Laser microirradiation ranging in wavelength from ultraviolet A (UVA) to near-infrared (NIR) can be used to induce damage in a defined region in the cell nucleus, representing an innovative technology to effectively analyze the in vivo DNA double-strand break (DSB) damage recognition process in mammalian cells. However, the damage-inducing characteristics of the different laser systems have not been fully investigated. Here we compare the nanosecond nitrogen 337 nm UVA laser with and without bromodeoxyuridine (BrdU), the nanosecond and picosecond 532 nm green second-harmonic Nd:YAG, and the femtosecond NIR 800 nm Ti:sapphire laser with regard to the type(s) of damage and corresponding cellular responses. Crosslinking damage (without significant nucleotide excision repair factor recruitment) and single-strand breaks (with corresponding repair factor recruitment) were common among all three wavelengths. Interestingly, UVA without BrdU uniquely produced base damage and aberrant DSB responses. Furthermore, the total energy required for the threshold H2AX phosphorylation induction was found to vary between the individual laser systems. The results indicate the involvement of different damage mechanisms dictated by wavelength and pulse duration. The advantages and disadvantages of each system are discussed.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
534
|
Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 2009; 10:243-54. [PMID: 19277046 PMCID: PMC3478884 DOI: 10.1038/nrm2651] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Evi Soutoglou
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 596, ILLKIRCH Cedex, CU de Strasbourg, France
| |
Collapse
|
535
|
Pandita TK, Richardson C. Chromatin remodeling finds its place in the DNA double-strand break response. Nucleic Acids Res 2009; 37:1363-77. [PMID: 19139074 PMCID: PMC2655678 DOI: 10.1093/nar/gkn1071] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 12/16/2022] Open
Abstract
The accurate repair of chromosomal double-strand breaks (DSBs) arising from exposure to exogenous agents, such as ionizing radiation (IR) and radiomimetic drugs is crucial in maintaining genomic integrity, cellular viability and the prevention of tumorigenesis. Eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs. The DNA DSB response is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes, cell-cycle checkpoints and multiple enzymatic activities to repair the broken DNA ends. Sensors and transducers signal to numerous downstream cellular effectors which function primarily by substrate posttranslational modifications including phosphorylation, acetylation, methylation and ubiquitylation. In particular, the past several years have provided important insight into the role of chromatin remodeling and histones-specific modifications to control DNA damage detection, signaling and repair. This review summarizes recently identified factors that influence this complex process and the repair of DNA DSBs in eukaryotic cells.
Collapse
Affiliation(s)
- Tej K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63108, USA.
| | | |
Collapse
|
536
|
van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 2009; 19:207-17. [PMID: 19342239 DOI: 10.1016/j.tcb.2009.03.001] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 12/18/2022]
Abstract
Chromatin structure has a crucial role in processes of metabolism, including transcription, DNA replication and DNA damage repair. An evolutionarily conserved variant of histone H2A, called H2AX, is one of the key components of chromatin. H2AX becomes rapidly phosphorylated on chromatin surrounding DNA double-strand breaks (DSBs). Recent studies have shown that H2AX and other components of damaged chromatin also become modified by acetylation and ubiquitylation. This review discusses how specific combinations of histone modifications affect the accumulation and function of DNA repair factors (MDC1, RNF8, RNF168, 53BP1, BRCA1) and chromatin remodeling complexes (INO80, SWR1, TIP60-p400) at DSBs. These collectively regulate DSB repair and checkpoint arrest, avoiding genomic instability and oncogenic transformation in higher eukaryotes.
Collapse
Affiliation(s)
- Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| | | |
Collapse
|
537
|
Helmink BA, Bredemeyer AL, Lee BS, Huang CY, Sharma GG, Walker LM, Bednarski JJ, Lee WL, Pandita TK, Bassing CH, Sleckman BP. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J Exp Med 2009; 206:669-79. [PMID: 19221393 PMCID: PMC2699138 DOI: 10.1084/jem.20081326] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 01/26/2009] [Indexed: 01/04/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle. During HR, the MRN complex functions directly in the repair of DNA DSBs and in the initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM) serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA replication in G0/G1 phase cells has been less clear. In developing G1-phase lymphocytes, DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J recombination. We show that during V(D)J recombination, MRN deficiency leads to the aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover, these defects in V(D)J recombination are remarkably similar to those observed in ATM-deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB response pathways during lymphocyte antigen receptor gene assembly.
Collapse
Affiliation(s)
- Beth A. Helmink
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrea L. Bredemeyer
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Baeck-Seung Lee
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ching-Yu Huang
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Girdhar G. Sharma
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Laura M. Walker
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey J. Bednarski
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wan-Ling Lee
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tej K. Pandita
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig H. Bassing
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Barry P. Sleckman
- Department of Pathology and Immunology and Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
538
|
Misri S, Pandita S, Kumar R, Pandita TK. Telomeres, histone code, and DNA damage response. Cytogenet Genome Res 2009; 122:297-307. [PMID: 19188699 PMCID: PMC2714185 DOI: 10.1159/000167816] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2008] [Indexed: 12/30/2022] Open
Abstract
Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.
Collapse
Affiliation(s)
- S Misri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | |
Collapse
|
539
|
Yajima H, Lee KJ, Zhang S, Kobayashi J, Chen BP. DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Mol Biol 2009; 385:800-10. [PMID: 19071136 PMCID: PMC2662442 DOI: 10.1016/j.jmb.2008.11.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol 3-kinase-like protein kinases, including ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), are the main kinases activated following various assaults on DNA. Although ATM and DNA-PKcs kinases are activated upon DNA double-strand breaks, evidence suggests that these kinases are rapidly phosphorylated by ATR kinase upon UV irradiation; thus, these kinases may also participate in the response to replication stress. Using UV-induced replication stress, we further characterize whether ATM and DNA-PKcs kinase activities are also involved in the cellular response. Contrary to the rapid activation of the ATR-dependent pathway, ATM-dependent Chk2 and KAP-1 phosphorylations, as well as DNA-PKcs Ser2056 autophosphorylation, reach their peak level at 4 to 8 h after UV irradiation. The delayed kinetics of ATM- and DNA-PKcs-dependent phosphorylations also correlated with a surge in H2AX phosphorylation, suggesting that double-strand break formation resulting from collapse of replication forks is responsible for the activation of ATM and DNA-PKcs kinases. In addition, we observed that some phosphorylation events initiated by ATR kinase in the response to UV were mediated by ATM at a later phase of the response. Furthermore, the S-phase checkpoint after UV irradiation was defective in ATM-deficient cells. These results suggest that the late increase of ATM activity is needed to complement the decreasing ATR activity for maintaining a vigilant checkpoint regulation upon replication stress.
Collapse
Affiliation(s)
- Hirohiko Yajima
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Kyung-Jong Lee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Shichuan Zhang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Junya Kobayashi
- Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Benjamin P.C. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
540
|
Kim YC, Gerlitz G, Furusawa T, Catez F, Nussenzweig A, Oh KS, Kraemer KH, Shiloh Y, Bustin M. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat Cell Biol 2009; 11:92-6. [PMID: 19079244 PMCID: PMC2717731 DOI: 10.1038/ncb1817] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/08/2008] [Indexed: 12/21/2022]
Abstract
Efficient and correct responses to double-stranded breaks (DSB) in chromosomal DNA are crucial for maintaining genomic stability and preventing chromosomal alterations that lead to cancer. The generation of DSB is associated with structural changes in chromatin and the activation of the protein kinase ataxia-telangiectasia mutated (ATM), a key regulator of the signalling network of the cellular response to DSB. The interrelationship between DSB-induced changes in chromatin architecture and the activation of ATM is unclear. Here we show that the nucleosome-binding protein HMGN1 modulates the interaction of ATM with chromatin both before and after DSB formation, thereby optimizing its activation. Loss of HMGN1 or ablation of its ability to bind to chromatin reduces the levels of ionizing radiation (IR)-induced ATM autophosphorylation and the activation of several ATM targets. IR treatments lead to a global increase in the acetylation of Lys 14 of histone H3 (H3K14) in an HMGN1-dependent manner and treatment of cells with histone deacetylase inhibitors bypasses the HMGN1 requirement for efficient ATM activation. Thus, by regulating the levels of histone modifications, HMGN1 affects ATM activation. Our studies identify a new mediator of ATM activation and demonstrate a direct link between the steady-state intranuclear organization of ATM and the kinetics of its activation after DNA damage.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabi Gerlitz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takashi Furusawa
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frédéric Catez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andre Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyu-Seon Oh
- Basic Research Laboratory, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth H. Kraemer
- Basic Research Laboratory, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Bustin
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
541
|
Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A. Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. ACTA ACUST UNITED AC 2008; 183:777-83. [PMID: 19047460 PMCID: PMC2592823 DOI: 10.1083/jcb.200805154] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular responses to both physiological and pathological DNA double-strand breaks are initiated through activation of the evolutionarily conserved ataxia telangiectasia mutated (ATM) kinase. Upon DNA damage, an activation mechanism involving autophosphorylation has been reported to allow ATM to phosphorylate downstream targets important for cell cycle checkpoints and DNA repair. In humans, serine residues 367, 1893, and 1981 have been shown to be autophosphorylation sites that are individually required for ATM activation. To test the physiological importance of these sites, we generated a transgenic mouse model in which all three conserved ATM serine autophosphorylation sites (S367/1899/1987) have been replaced with alanine. In this study, we show that ATM-dependent responses at both cellular and organismal levels are functional in mice that express a triple serine mutant form of ATM as their sole ATM species. These results lend further support to the notion that ATM autophosphorylation correlates with the DNA damage–induced activation of the kinase but is not required for ATM function in vivo.
Collapse
Affiliation(s)
- Jeremy A Daniel
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
542
|
Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S. Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 2008; 122:83-91. [PMID: 19066286 DOI: 10.1242/jcs.031062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region. The latter contains transcriptionally active and partly decondensed chromatin at the surface of condensed chromatin domains. We studied the distribution of the damage-recognition protein XPC and of XPA, which is a central component of the chromatin-associated NER complex. Both XPC and XPA rapidly accumulate in the perichromatin region after UV irradiation, whereas only XPC is also moderately enriched in condensed chromatin domains. These observations suggest that DNA damage is detected by XPC throughout condensed chromatin domains, whereas DNA-repair complexes seem preferentially assembled in the perichromatin region. We propose that UV-damaged DNA inside condensed chromatin domains is relocated to the perichromatin region, similar to what has been shown for DNA replication. In support of this, we provide evidence that UV-damaged chromatin domains undergo expansion, which might facilitate the translocation process. Our results offer novel insight into the dynamic spatial organization of DNA repair in the human cell nucleus.
Collapse
Affiliation(s)
- Liliana Solimando
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
543
|
Affiliation(s)
- Michael S Y Huen
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, PO Box 208040, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
544
|
Two distinctly altered cellular responses to DNA double-strand breaks in human neuroblastoma. Biochimie 2008; 90:1656-66. [DOI: 10.1016/j.biochi.2008.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/13/2008] [Indexed: 11/24/2022]
|
545
|
Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell 2008; 19:3923-33. [PMID: 18596239 PMCID: PMC2526706 DOI: 10.1091/mbc.e07-07-0698] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 04/25/2008] [Accepted: 06/20/2008] [Indexed: 12/18/2022] Open
Abstract
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link-induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, gamma H2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link-induced collapsed replication forks.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- *Laboratory of Molecular Gerontology and
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742
| | - Diana Muftic
- *Laboratory of Molecular Gerontology and
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | | | - Lale Dawut
- *Laboratory of Molecular Gerontology and
| | - Christa Morris
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas Helleday
- Department of Genetics, Microbiology, and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; and
| | - Yosef Shiloh
- David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
546
|
Iijima K, Ohara M, Seki R, Tauchi H. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. JOURNAL OF RADIATION RESEARCH 2008; 49:451-64. [PMID: 18772547 DOI: 10.1269/jrr.08065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling.
Collapse
Affiliation(s)
- Kenta Iijima
- Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki, Japan
| | | | | | | |
Collapse
|
547
|
|
548
|
Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31:167-77. [PMID: 18657500 DOI: 10.1016/j.molcel.2008.05.017] [Citation(s) in RCA: 668] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/01/2008] [Accepted: 05/29/2008] [Indexed: 12/13/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.
Collapse
Affiliation(s)
- Aaron A Goodarzi
- Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
549
|
Chromatin structure influences the sensitivity of DNA to gamma-radiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2398-414. [PMID: 18706456 DOI: 10.1016/j.bbamcr.2008.07.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 11/23/2022]
Abstract
For the first time, DNA double-strand breaks (DSBs) were directly visualized in functionally and structurally different chromatin domains of human cells. The results show that genetically inactive condensed chromatin is much less susceptible to DSB induction by gamma-rays than expressed, decondensed domains. Higher sensitivity of open chromatin for DNA damage was accompanied by more efficient DSB repair. These findings follow from comparing DSB induction and repair in two 11 Mbp-long chromatin regions, one with clusters of highly expressed genes and the other, gene-poor, containing mainly genes having only low transcriptional activity. The same conclusions result from experiments with whole chromosome territories, differing in gene density and consequently in chromatin condensation. It follows from our further results that this lower sensitivity of DNA to the damage by ionizing radiation in heterochromatin is not caused by the simple chromatin condensation but very probably by the presence of a higher amount of proteins compared to genetically active and decondensed chromatin. In addition, our results show that some agents potentially used for cell killing in cancer therapy (TSA, hypotonic and hypertonic) influence cell survival of irradiated cells via changes in chromatin structure and efficiency of DSB repair in different ways.
Collapse
|
550
|
Abstract
Cellular senescence is associated with ageing and cancer in vivo and has a proven tumour-suppressive function. Common to both ageing and cancer is the generation of DNA damage and the engagement of the DNA-damage response pathways. In this Review, the diverse mechanisms that lead to DNA-damage generation and the activation of DNA-damage-response signalling pathways are discussed, together with the evidence for their contribution to the establishment and maintenance of cellular senescence in the context of organismal ageing and cancer development.
Collapse
|