501
|
Karzbrun E, Tshuva RY, Reiner O. An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids. ACTA ACUST UNITED AC 2018; 81:e62. [PMID: 30239150 DOI: 10.1002/cpcb.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain organoids are an emerging technique for studying human neurodevelopment in vitro, with biomedical implications. However, three-dimensional tissue culture poses several challenges, including lack of nutrient exchange at the organoid core and limited imaging accessibility of whole organoids. Here we present a method for culturing organoids in a micro-fabricated device that enables in situ real-time imaging over weeks with efficient nutrient exchange by diffusion. Our on-chip approach offers a means for studying the dynamics of organoid development, cell differentiation, cell cycle, and motion. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Physics and the Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
502
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
503
|
3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018; 120:191-199. [PMID: 30176269 DOI: 10.1016/j.neuint.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Neurodegenerative disorders have an enormous impact on society and healthcare budgets. There has been a high degree of failure in many recent clinical trials for disease-modifying therapeutics. A major factor in this failure is the difficulty of translating findings from animal-based cell models to human patients. The majority of non-animal neurodegenerative disease research has been conducted in 2 dimensional models of rodent neonatal neurons and glia. While these systems have provided valuable insights into neural cell function and dysfunction, they have largely reached the end of their useful life, as human stem cell technologies combined with major advances in microfluidic technologies have opened the door to development of patient-derived 3D brain cell models. These have major advantages in providing a micro-physiological system more closely reflecting the in vivo brain environment, and promote the interaction between different patient-derived brain cell-types. However, major challenges remain before these model systems will replace the 2D rodent models as the workhorse for neurodegenerative disease studies. Despite these challenges, we are likely to experience a rapid transition of research from old models to new patient derived 3D brain cell systems, which will likely improve translational outcomes for disease therapeutics.
Collapse
|
504
|
Bejoy J, Song L, Wang Z, Sang QX, Zhou Y, Li Y. Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the A β42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomater Sci Eng 2018; 4:2922-2933. [PMID: 30533518 PMCID: PMC6286050 DOI: 10.1021/acsbiomaterials.8b00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) components of the brain play complex roles in neurodegenerative diseases. The study of microenvironment of brain tissues with Alzheimer's disease revealed colocalized expression of different ECM molecules such as heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), matrix metal-loproteinases (MMPs), and hyaluronic acid. In this study, both cortical and hippocampal populations were generated from human-induced pluripotent stem cell-derived neural spheroids. The cultures were then treated with heparin (competes for Aβ affinity with HSPG), heparinase III (digests HSPGs), chondroitinase (digests CSPGs), hyaluronic acid, and an MMP-2/9 inhibitor (SB-3CT) together with amyloid β (Aβ42) oligomers. The results indicate that inhibition of HSPG binding to Aβ42 using either heparinase III or heparin reduces Aβ42 expression and increases the population of β-tubulin III+ neurons, whereas the inhibition of MMP2/9 induces more neurotoxicity. The results should enhance our understanding of the contribution of ECMs to the Aβ-related neural cell death.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Liqing Song
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Zhe Wang
- Department of Chemistry and Biochemistry
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
505
|
Yabut OR, Pleasure SJ. Sonic Hedgehog Signaling Rises to the Surface: Emerging Roles in Neocortical Development. Brain Plast 2018; 3:119-128. [PMID: 30151337 PMCID: PMC6091060 DOI: 10.3233/bpl-180064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian neocortex is composed of a diverse population of neuronal and glial cells that are crucial for cognition and consciousness. Orchestration of molecular events that lead to the production of distinct cell lineages is now a major research focus. Recent studies in mammalian animal models reveal that Sonic Hedgehog (Shh) signaling plays crucial roles in this process. In this review, we will evaluate these studies and provide insights on how Shh signaling specifically influence cortical development, beyond its established roles in telencephalic patterning, by specifically focusing on its impact on cells derived from the cortical radial glial (RG) cells. We will also assess how these findings further advance our knowledge of neurological diseases and discuss potential roles of targeting Shh signaling in therapies.
Collapse
Affiliation(s)
- Odessa R Yabut
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Programs in Neuroscience and Developmental Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, CA, USA
| |
Collapse
|
506
|
Srinivasan G, Morgan D, Varun D, Brookhouser N, Brafman DA. An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomater 2018; 74:168-179. [PMID: 29775730 DOI: 10.1016/j.actbio.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cell derived neural progenitor cells (hNPCs) have the unique properties of long-term in vitro expansion as well as differentiation into the various neurons and supporting cell types of the central nervous system (CNS). Because of these characteristics, hNPCs have tremendous potential in the modeling and treatment of various CNS diseases and disorders. However, expansion and neuronal differentiation of hNPCs in quantities necessary for these applications is not possible with current two dimensional (2-D) approaches. Here, we used a fully defined peptide substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their neuronal derivatives in quantities necessary for basic and translational applications. STATEMENT OF SIGNIFICANCE In this work, we developed a microcarrier (MC)-based culture system that allows for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells (hNPCs) under defined conditions. In turn, this MC approach was implemented in a rotating wall vessel (RWV) bioreactor for the large-scale expansion and neuronal differentiation of hNPCs. This work is of significance as it overcomes current limitations of conventional two dimensional (2-D) culture systems to enable the generation of hNPCs and their neuronal derivatives in quantities required for downstream applications in disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Daylin Morgan
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Divya Varun
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, United States
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, United States.
| |
Collapse
|
507
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
508
|
The State of the NIH BRAIN Initiative. J Neurosci 2018; 38:6427-6438. [PMID: 29921715 DOI: 10.1523/jneurosci.3174-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The BRAIN Initiative arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system (CNS). As the Initiative enters its fifth year, NIH has supported >500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual laboratories, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and the National Institutes of Health continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative.
Collapse
|
509
|
Gopurappilly R, Deb BK, Chakraborty P, Hasan G. Stable STIM1 Knockdown in Self-Renewing Human Neural Precursors Promotes Premature Neural Differentiation. Front Mol Neurosci 2018; 11:178. [PMID: 29942250 PMCID: PMC6004407 DOI: 10.3389/fnmol.2018.00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signaling plays a significant role in the development of the vertebrate nervous system where it regulates neurite growth as well as synapse and neurotransmitter specification. Elucidating the role of Ca2+ signaling in mammalian neuronal development has been largely restricted to either small animal models or primary cultures. Here we derived human neural precursor cells (NPCs) from human embryonic stem cells to understand the functional significance of a less understood arm of calcium signaling, Store-operated Ca2+ entry or SOCE, in neuronal development. Human NPCs exhibited robust SOCE, which was significantly attenuated by expression of a stable shRNA-miR targeted toward the SOCE molecule, STIM1. Along with the plasma membrane channel Orai, STIM is an essential component of SOCE in many cell types, where it regulates gene expression. Therefore, we measured global gene expression in human NPCs with and without STIM1 knockdown. Interestingly, pathways down-regulated through STIM1 knockdown were related to cell proliferation and DNA replication processes, whereas post-synaptic signaling was identified as an up-regulated process. To understand the functional significance of these gene expression changes we measured the self-renewal capacity of NPCs with STIM1 knockdown. The STIM1 knockdown NPCs demonstrated significantly reduced neurosphere size and number as well as precocious spontaneous differentiation toward the neuronal lineage, as compared to control cells. These findings demonstrate that STIM1 mediated SOCE in human NPCs regulates gene expression changes, that in vivo are likely to physiologically modulate the self-renewal and differentiation of NPCs.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
510
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
511
|
Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol 2018; 135:811-826. [PMID: 29705908 PMCID: PMC5954077 DOI: 10.1007/s00401-018-1850-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
Abstract
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
512
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
513
|
Magariños AM, Pedron S, Creixell M, Kilinc M, Tabansky I, Pfaff DW, Harley BAC. The Feasibility of Encapsulated Embryonic Medullary Reticular Cells to Grow and Differentiate Into Neurons in Functionalized Gelatin-Based Hydrogels. FRONTIERS IN MATERIALS 2018; 5:40. [PMID: 30687706 PMCID: PMC6345411 DOI: 10.3389/fmats.2018.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study of the behavior of embryonic neurons in controlled in vitro conditions require methodologies that take advantage of advanced tissue engineering approaches to replicate elements of the developing brain extracellular matrix. We report here a series of experiments that explore the potential of photo-polymerized gelatin hydrogels to culture primary embryonic neurons. We employed large medullary reticular neurons whose activity is essential for brain arousal as well as a library of gelatin hydrogels that span a range of mechanical properties, inclusion of brain-mimetic hyaluronic acid, and adhesion peptides. These hydrogel platforms showed inherent capabilities to sustain neuronal viability and were permissive for neuronal differentiation, resulting in the development of neurite outgrowth under specific conditions. The maturation of embryonic medullary reticular cells took place in the absence of growth factors or other exogenous bioactive molecules. Immunocytochemistry labeling of neuron-specific tubulin confirmed the initiation of neural differentiation. Thus, this methodology provides an important validation for future studies of nerve cell growth and maintenance.
Collapse
Affiliation(s)
- Ana M. Magariños
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marc Creixell
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Murat Kilinc
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Inna Tabansky
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald W. Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Brendan A. C. Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
514
|
Tang BL. Patient-Derived iPSCs and iNs-Shedding New Light on the Cellular Etiology of Neurodegenerative Diseases. Cells 2018; 7:38. [PMID: 29738460 PMCID: PMC5981262 DOI: 10.3390/cells7050038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) and induced neuronal (iN) cells are very much touted in terms of their potential promises in therapeutics. However, from a more fundamental perspective, iPSCs and iNs are invaluable tools for the postnatal generation of specific diseased cell types from patients, which may offer insights into disease etiology that are otherwise unobtainable with available animal or human proxies. There are two good recent examples of such important insights with diseased neurons derived via either the iPSC or iN approaches. In one, induced motor neurons (iMNs) derived from iPSCs of Amyotrophic lateral sclerosis/Frontotemporal dementia (ALS/FTD) patients with a C9orf72 repeat expansion revealed a haploinsufficiency of protein function resulting from the intronic expansion and deficiencies in motor neuron vesicular trafficking and lysosomal biogenesis that were not previously obvious in knockout mouse models. In another, striatal medium spinal neurons (MSNs) derived directly from fibroblasts of Huntington’s disease (HD) patients recapitulated age-associated disease signatures of mutant Huntingtin (mHTT) aggregation and neurodegeneration that were not prominent in neurons differentiated indirectly via iPSCs from HD patients. These results attest to the tremendous potential for pathologically accurate and mechanistically revealing disease modelling with advances in the derivation of iPSCs and iNs.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
515
|
Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Curr Top Dev Biol 2018; 129:99-122. [PMID: 29801532 DOI: 10.1016/bs.ctdb.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study of the cellular and molecular processes of the developing human brain has been hindered by access to suitable models of living human brain tissue. Recently developed 3D cell culture models offer the promise of studying fundamental brain processes in the context of human genetic background and species-specific developmental mechanisms. Here, we review the current state of 3D human brain organoid models and consider their potential to enable investigation of complex aspects of human brain development and the underpinning of human neurological disease.
Collapse
|
516
|
Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic Changes of the Mitochondria in Psychiatric Illnesses: New Mechanistic Insights From Human Neuronal Models. Biol Psychiatry 2018; 83:751-760. [PMID: 29486891 PMCID: PMC6469392 DOI: 10.1016/j.biopsych.2018.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a crucial role in neuronal function, especially in energy production, the generation of reactive oxygen species, and calcium signaling. Multiple lines of evidence have suggested the possible involvement of mitochondrial deficits in major psychiatric disorders, such as schizophrenia and bipolar disorder. This review will outline the current understanding of the physiological role of mitochondria and their dysfunction under pathological conditions, particularly in psychiatric disorders. The current knowledge about mitochondrial deficits in these disorders is somewhat limited because of the lack of effective methods to dissect dynamic changes in functional deficits that are directly associated with psychiatric conditions. Human neuronal cell model systems have been dramatically developed in recent years with the use of stem cell technology, and these systems may be key tools for overcoming this dilemma and improving our understanding of the dynamic changes in the mitochondrial deficits in patients with psychiatric disorders. We introduce recent discoveries from new experimental models and conclude the discussion by referring to future perspectives. We emphasize the significance of combining studies of human neuronal cell models with those of other experimental systems, including animal models.
Collapse
Affiliation(s)
- Rupali Srivastava
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Travis Faust
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adriana Ramos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
517
|
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human Brain Organoids on a Chip Reveal the Physics of Folding. NATURE PHYSICS 2018; 14:515-522. [PMID: 29760764 PMCID: PMC5947782 DOI: 10.1038/s41567-018-0046-7] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| |
Collapse
|
518
|
Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018; 36:432-441. [PMID: 29658944 DOI: 10.1038/nbt.4127] [Citation(s) in RCA: 797] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.
Collapse
Affiliation(s)
- Abed AlFatah Mansour
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - J Tiago Gonçalves
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Cooper W Bloyd
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Daphne Quang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Stephen Johnston
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
519
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
520
|
Mukhtar T, Taylor V. Untangling Cortical Complexity During Development. J Exp Neurosci 2018; 12:1179069518759332. [PMID: 29551911 PMCID: PMC5846925 DOI: 10.1177/1179069518759332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
521
|
Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Eng Part A 2018; 24:1125-1137. [PMID: 29361890 DOI: 10.1089/ten.tea.2017.0423] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aβ42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aβ42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.
Collapse
Affiliation(s)
- Yuanwei Yan
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Liqing Song
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Julie Bejoy
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Jing Zhao
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Takahisa Kanekiyo
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Guojun Bu
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Yi Zhou
- 3 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida
| | - Yan Li
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
522
|
Jeong H, Tiwari VK. Exploring the Complexity of Cortical Development Using Single-Cell Transcriptomics. Front Neurosci 2018; 12:31. [PMID: 29456488 PMCID: PMC5801402 DOI: 10.3389/fnins.2018.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
The developing neocortex in the mammalian brain is composed of multiple cell types including apical progenitors (AP), basal progenitors (BP), and neurons that populate three different layers, the ventricular zone (VZ), the subventricular zone (SVZ), and the cortical plate (CP). Despite recent advances, the diversity of the existing cell populations including those which are differentiating and mature, their biogenesis and the underlying gene regulatory mechanisms remain poorly known. Recent studies have taken advantage of the rapidly emerging single-cell technologies to decode the heterogeneity of cell populations at the transcriptome level during cortical development and their molecular details. Here we review these studies and provide an overview of the steps in single-cell transcriptomics including both experimental and computational analysis. We also discuss how single-cell genomics holds a big potential in future for brain research and discuss its possible applications and biological insights that can be achieved from these approaches. We conclude this review by discussing the current challenges in the implementation of single-cell techniques toward a comprehensive understanding of the genetic and epigenetic mechanisms underlying neocortex development.
Collapse
|
523
|
Vadodaria KC, Amatya DN, Marchetto MC, Gage FH. Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward. Genome Med 2018; 10:1. [PMID: 29301565 PMCID: PMC5755287 DOI: 10.1186/s13073-017-0512-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the neurobiology of psychiatric disorders remains limited, and biomarker-based clinical management is yet to be developed. Induced pluripotent stem cell (iPSC) technology has revolutionized our capacity to generate patient-derived neurons to model psychiatric disorders. Here, we highlight advantages and caveats of iPSC disease modeling and outline strategies for addressing current challenges.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Debha N Amatya
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
524
|
Perez-Lanzon M, Kroemer G, Maiuri MC. Organoids for Modeling Genetic Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:49-81. [DOI: 10.1016/bs.ircmb.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
525
|
Min KJ, Kim TH, Choi JW. Magnetic Force-Driven Graphene Patterns to Direct Synaptogenesis of Human Neuronal Cells. MATERIALS 2017; 10:ma10101151. [PMID: 28974044 PMCID: PMC5666957 DOI: 10.3390/ma10101151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 11/30/2022]
Abstract
Precise control of axonal growth and synaptic junction formation are incredibly important to repair and/or to mimic human neuronal network. Here, we report a graphene oxide (GO)-based hybrid patterns that were proven to be excellent for guiding axonal growth and its consequent synapse formation of human neural cells. Unlike the previous method that utilized micro-contacting printing technique to generate GO patterns, here, GO-encapsulated magnetic nanoparticles were first synthesized and utilized as core materials wherein the external magnetic force facilitated the transfer of GO film to the desired substrate. Owing to the intrinsic property of GO that provides stable cell attachment and growth for long-term culture, human neuronal cells could be effectively patterned on the biocompatible polymer substrates with different pattern sizes. By using magnetic force-driven GO hybrid patterns, we demonstrated that accumulation and expression level of Synaptophysin of neurons could be effectively controlled with varying sizes of each pattern. The synaptic network between each neuron could be precisely controlled and matched by guiding axonal direction. This work provides treatment and modeling of brain diseases and spinal cord injuries.
Collapse
Affiliation(s)
- Kyung-Joon Min
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Jeong-Woo Choi
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| |
Collapse
|