501
|
Verdura J, Linares C, Ballesteros E, Coma R, Uriz MJ, Bensoussan N, Cebrian E. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci Rep 2019; 9:5911. [PMID: 30976028 PMCID: PMC6459914 DOI: 10.1038/s41598-019-41929-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/20/2019] [Indexed: 12/02/2022] Open
Abstract
Stochastic perturbations can trigger major ecosystem shifts. Marine systems have been severely affected in recent years by mass mortality events related to positive thermal anomalies. Although the immediate effects in the species demography affected by mortality events are well known, information on the mid- to long-term effects at the community level is much less documented. Here, we show how an extreme warming event replaces a structurally complex habitat, dominated by long-lived species, by a simplified habitat (lower species diversity and richness) dominated by turf-forming species. On the basis of a study involving the experimental manipulation of the presence of the gorgonian Paramuricea clavata, we observed that its presence mitigated the effects of warming by maintaining the original assemblage dominated by macroinvertebrates and delaying the proliferation and spread of the invasive alga Caulerpa cylindracea. However, due to the increase of sediment and turf-forming species after the mortality event we hypothesize a further degradation of the whole assemblage as both factors decrease the recruitment of P.clavata, decrease the survival of encrusting coralligenous-dwelling macroinvertebrates and facilitate the spreading of C. cylindracea.
Collapse
Affiliation(s)
- Jana Verdura
- Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain.,Centre d'Estudis Avançats de Blanes-CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Cristina Linares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de la Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes-CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Rafel Coma
- Centre d'Estudis Avançats de Blanes-CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - María J Uriz
- Centre d'Estudis Avançats de Blanes-CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Nathaniel Bensoussan
- Institut Ciències del Mar, CSIC, Barcelona, Spain.,Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Emma Cebrian
- Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain. .,Centre d'Estudis Avançats de Blanes-CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
502
|
Gómez‐Gras D, Linares C, de Caralt S, Cebrian E, Frleta‐Valić M, Montero‐Serra I, Pagès‐Escolà M, López‐Sendino P, Garrabou J. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol Evol 2019; 9:4168-4180. [PMID: 31015996 PMCID: PMC6468064 DOI: 10.1002/ece3.5045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 01/04/2023] Open
Abstract
Climate change threatens coastal benthic communities on a global scale. However, the potential effects of ongoing warming on mesophotic temperate reefs at the community level remain poorly understood. Investigating how different members of these communities will respond to the future expected environmental conditions is, therefore, key to anticipating their future trajectories and developing specific management and conservation strategies. Here, we examined the responses of some of the main components of the highly diverse Mediterranean coralligenous assemblages to thermal stress. We performed thermotolerance experiments with different temperature treatments (from 26 to 29°C) with 10 species from different phyla (three anthozoans, six sponges and one ascidian) and different structural roles. Overall, we observed species-specific contrasting responses to warming regardless of phyla or growth form. Moreover, the responses ranged from highly resistant species to sensitive species and were mostly in agreement with previous field observations from mass mortality events (MMEs) linked to Mediterranean marine heat waves. Our results unravel the diversity of responses to warming in coralligenous outcrops and suggest the presence of potential winners and losers in the face of climate change. Finally, this study highlights the importance of accounting for species-specific vulnerabilities and response diversity when forecasting the future trajectories of temperate benthic communities in a warming ocean.
Collapse
Affiliation(s)
- Daniel Gómez‐Gras
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Sonia de Caralt
- Centre d' Estudis Avançats de Blanes (CSIC)BlanesSpain
- GR MAR, Institut d'Ecologia Aquàtica, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Emma Cebrian
- Centre d' Estudis Avançats de Blanes (CSIC)BlanesSpain
- GR MAR, Institut d'Ecologia Aquàtica, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Maša Frleta‐Valić
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Ignasi Montero‐Serra
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Marta Pagès‐Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBIO)Universitat de BarcelonaBarcelonaSpain
| | - Paula López‐Sendino
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Joaquim Garrabou
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| |
Collapse
|
503
|
Starko S, Bailey LA, Creviston E, James KA, Warren A, Brophy MK, Danasel A, Fass MP, Townsend JA, Neufeld CJ. Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores. PLoS One 2019; 14:e0213191. [PMID: 30913219 PMCID: PMC6435185 DOI: 10.1371/journal.pone.0213191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/16/2019] [Indexed: 11/18/2022] Open
Abstract
Biodiversity loss is driven by interacting factors operating at different spatial scales. Yet, there remains uncertainty as to how fine-scale environmental conditions mediate biological responses to broad-scale stressors. We surveyed intertidal rocky shore kelp beds situated across a local gradient of wave action and evaluated changes in kelp diversity and abundance after more than two decades of broad scale stressors, most notably the 2013-2016 heat wave. Across all sites, species were less abundant on average in 2017 and 2018 than during 1993-1995 but changes in kelp diversity were dependent on wave exposure, with wave exposed habitats remaining stable and wave sheltered habitats experiencing near complete losses of kelp diversity. In this way, wave exposed sites have acted as refugia, maintaining regional kelp diversity despite widespread local declines. Fucoids, seagrasses and two stress-tolerant kelp species (Saccharina sessilis, Egregia menziesii) did not decline as observed in other kelps, and the invasive species Sargassum muticum increased significantly at wave sheltered sites. Long-term monitoring data from a centrally-located moderate site suggest that kelp communities were negatively impacted by the recent heatwave which may have driven observed losses throughout the region. Wave-sheltered shores, which saw the largest declines, are a very common habitat type in the Northeast Pacific and may be especially sensitive to losses in kelp diversity and abundance, with potential consequences for coastal productivity. Our findings highlight the importance of fine-scale environmental heterogeneity in mediating biological responses and demonstrate how incorporating differences between habitat patches can be essential to capturing scale-dependent biodiversity loss across the landscape.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Lauren A. Bailey
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Elandra Creviston
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Katelyn A. James
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Alison Warren
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Megan K. Brophy
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Andreea Danasel
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Megan P. Fass
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A. Townsend
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
504
|
Sanford E, Sones JL, García-Reyes M, Goddard JHR, Largier JL. Widespread shifts in the coastal biota of northern California during the 2014-2016 marine heatwaves. Sci Rep 2019; 9:4216. [PMID: 30862867 PMCID: PMC6414504 DOI: 10.1038/s41598-019-40784-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
During 2014-2016, severe marine heatwaves in the northeast Pacific triggered well-documented disturbances including mass mortalities, harmful algal blooms, and declines in subtidal kelp beds. However, less attention has been directed towards understanding how changes in sea surface temperature (SST) and alongshore currents during this period influenced the geographic distribution of coastal taxa. Here, we examine these effects in northern California, USA, with a focus on the region between Point Reyes and Point Arena. This region represents an important biogeographic transition zone that lies <150 km north of Monterey Bay, California, where numerous southern species have historically reached their northern (poleward) range limits. We report substantial changes in geographic distributions and/or abundances across a diverse suite of 67 southern species, including an unprecedented number of poleward range extensions (37) and striking increases in the recruitment of owl limpets (Lottia gigantea) and volcano barnacles (Tetraclita rubescens). These ecological responses likely arose through the combined effects of extreme SST, periods of anomalous poleward flow, and the unusually long duration of heatwave events. Prolonged marine heatwaves and enhanced poleward dispersal may play an important role in longer-term shifts in the composition of coastal communities in northern California and other biogeographic transition zones.
Collapse
Affiliation(s)
- Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California, 94923, USA.
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA.
| | - Jacqueline L Sones
- Bodega Marine Reserve, University of California, Davis, Bodega Bay, California, 94923, USA
| | | | - Jeffrey H R Goddard
- Marine Science Institute, University of California, Santa Barbara, California, 93106, USA
| | - John L Largier
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California, 94923, USA
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| |
Collapse
|
505
|
Affiliation(s)
- Éva Plagányi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Brisbane, Australia
| |
Collapse
|
506
|
Stillman JH. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology (Bethesda) 2019; 34:86-100. [DOI: 10.1152/physiol.00040.2018] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Estuary and Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|
507
|
Fulton CJ, Abesamis RA, Berkström C, Depczynski M, Graham NAJ, Holmes TH, Kulbicki M, Noble MM, Radford BT, Tano S, Tinkler P, Wernberg T, Wilson SK. Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher J. Fulton
- Research School of Biology; Australian National University; Canberra Australian Capital Territory Australia
| | - Rene A. Abesamis
- SU-Angelo King Center for Research and Environmental Management; Silliman University; Dumaguete Philippines
| | - Charlotte Berkström
- Department of Ecology, Environment & Plant Sciences; Stockholm University; Stockholm Sweden
- Department of Aquatic Resources, Institute of Coastal Research; Swedish University of Agricultural Sciences; Öregrund Sweden
| | - Martial Depczynski
- Australian Institute of Marine Science; Crawley Western Australia Australia
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
| | | | - Thomas H. Holmes
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- Marine Science Program, Department of Biodiversity, Conservation & Attractions; Government of Western Australia; Kensington Western Australia Australia
| | - Michel Kulbicki
- UMR “Entropie”, Labex Corail, IRD; University of Perpignan; Perpignan France
| | - Mae M. Noble
- Fenner School of Environment & Society; Australian National University; Canberra Australian Capital Territory Australia
| | - Ben T. Radford
- Australian Institute of Marine Science; Crawley Western Australia Australia
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
| | - Stina Tano
- Department of Ecology, Environment & Plant Sciences; Stockholm University; Stockholm Sweden
| | - Paul Tinkler
- School of Life & Environmental Sciences; Deakin University; Warrnambool Victoria Australia
| | - Thomas Wernberg
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- School of Biological Sciences; University of Western Australia; Crawley Western Australia Australia
| | - Shaun K. Wilson
- Oceans Institute; University of Western Australia; Crawley Western Australia Australia
- Marine Science Program, Department of Biodiversity, Conservation & Attractions; Government of Western Australia; Kensington Western Australia Australia
| |
Collapse
|
508
|
Egea LG, Jiménez–Ramos R, Hernández I, Brun FG. Effect of In Situ short-term temperature increase on carbon metabolism and dissolved organic carbon (DOC) fluxes in a community dominated by the seagrass Cymodocea nodosa. PLoS One 2019; 14:e0210386. [PMID: 30640926 PMCID: PMC6331083 DOI: 10.1371/journal.pone.0210386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Seagrasses form one of the most productive and threatened ecosystems worldwide because of global change and anthropogenic pressures. The frequency of extreme climatic events, such as heat waves, are expected to increase and may drive even more adverse effects than gradual warming. This study explores for the first time the effects of a sudden and temporary increase of temperature in situ on carbon metabolism and dissolved organic carbon (DOC) fluxes in a community dominated by a seagrass (Cymodocea nodosa) during two contrasting seasons (winter and summer). Results showed a positive correlation between temperature and seagrass production between seasons, while the experimental sudden and temporary increase in water temperature did not produce significant differences in carbon community metabolism and DOC fluxes in winter. In contrast, high temperature conditions in summer enhanced significantly the net community production and affected positively to DOC fluxes. Hence, this study indicates that a sudden and temporary increase in water temperature, which characterize marine heat waves, in temperate areas may enhance the autotrophic metabolism of seagrass communities and can yield an increase in the DOC released, in contrast to previous researches suggesting solely negative effects on seagrasses.
Collapse
Affiliation(s)
- Luis G. Egea
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz), Spain
- * E-mail:
| | - Rocío Jiménez–Ramos
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz), Spain
| | - Ignacio Hernández
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz), Spain
| | - Fernando G. Brun
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real (Cádiz), Spain
| |
Collapse
|
509
|
Calosi P, Putnam HM, Twitchett RJ, Vermandele F. Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:369-390. [PMID: 30216738 DOI: 10.1146/annurev-marine-010318-095106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species' sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| | - Richard J Twitchett
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom;
| | - Fanny Vermandele
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| |
Collapse
|
510
|
Bruno JF, Côté IM, Toth LT. Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience? ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:307-334. [PMID: 30606097 DOI: 10.1146/annurev-marine-010318-095300] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change-the root cause of global coral decline.
Collapse
Affiliation(s)
- John F Bruno
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA;
| | - Isabelle M Côté
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lauren T Toth
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, Florida 33701, USA
| |
Collapse
|
511
|
Becker EA, Forney KA, Redfern JV, Barlow J, Jacox MG, Roberts JJ, Palacios DM. Predicting cetacean abundance and distribution in a changing climate. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12867] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Elizabeth A. Becker
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
- ManTech International Corporation Solana Beach California
| | - Karin A. Forney
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration Moss Landing California
- Moss Landing Marine Laboratories Moss Landing California
| | - Jessica V. Redfern
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Jay Barlow
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration La Jolla California
| | - Michael G. Jacox
- Environmental Research Division Southwest Fisheries Science Center Monterey California
- Physical Sciences Division Earth System Research Laboratory Boulder Colorado
| | - Jason J. Roberts
- Marine Geospatial Ecology Laboratory, Nicholas School of the Environment Duke University Durham North Carolina
| | - Daniel M. Palacios
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center Oregon State University Newport Oregon
| |
Collapse
|
512
|
McLean M, Mouillot D, Lindegren M, Engelhard G, Villéger S, Marchal P, Brind’Amour A, Auber A. A Climate-Driven Functional Inversion of Connected Marine Ecosystems. Curr Biol 2018; 28:3654-3660.e3. [DOI: 10.1016/j.cub.2018.09.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/31/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
|
513
|
Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 2018; 9:4389. [PMID: 30348951 PMCID: PMC6197252 DOI: 10.1038/s41467-018-06765-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
Weather extremes have widespread harmful impacts on ecosystems and human communities with more deaths and economic losses from flash floods than any other severe weather-related hazards. Flash floods attributed to storm runoff extremes are projected to become more frequent and damaging globally due to a warming climate and anthropogenic changes, but previous studies have not examined the response of these storm runoff extremes to naturally and anthropogenically driven changes in surface temperature and atmospheric moisture content. Here we show that storm runoff extremes increase in most regions at rates higher than suggested by Clausius-Clapeyron scaling, which are systematically close to or exceed those of precipitation extremes over most regions of the globe, accompanied by large spatial and decadal variability. These results suggest that current projected response of storm runoff extremes to climate and anthropogenic changes may be underestimated, posing large threats for ecosystem and community resilience under future warming conditions. Storm runoff extremes dominate flash flood formation and generation, posing a grand threat to ecosystems and communities across the world. Here the authors show that current projected response of these storm runoff extremes to climate and anthropogenic changes are underestimated.
Collapse
|
514
|
Coastal Geomorphology of a Holocene Hurricane Deposit on a Pleistocene Marine Terrace from Isla Carmen (Baja California Sur, Mexico). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6040108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study reports the first example of major erosion from hurricanes degrading a rocky coastline anywhere around the Gulf of California, although other sources of evidence are well known regarding the effect of inland erosion due to catastrophic rainfall in the Southern Cape Region of the Baja California peninsula and farther north. The uplifted, 12-m terrace on the eastern shore of Isla del Carmen is the site of an unconsolidated coastal boulder deposit (CBD) consisting of large limestone blocks and boulders eroded from underlying Pliocene strata. The CBD stretches approximately 1.5 km in length, mostly set back 25 m from the lip of the terrace. The largest blocks of upturned limestone near the terrace edge are estimated to weigh between 5.8 and 28 metric tons. Waves impacting the rocky coast that peeled back slabs of horizontally-layered limestone at this spot are calculated to have been between 11.5 and 14 m in height. Analysis of sampled boulders from the CBD set back from the terrace edge by 25 m suggest that the average wave height responsible for moving those boulders was on the order of 4.3 m. Additional localities with exposed limestone shores, as well as other more common rock types of igneous origin have yet to be surveyed for this phenomenon elsewhere around the Gulf of California.
Collapse
|
515
|
Frölicher TL, Fischer EM, Gruber N. Marine heatwaves under global warming. Nature 2018; 560:360-364. [PMID: 30111788 DOI: 10.1038/s41586-018-0383-9] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/15/2018] [Indexed: 11/09/2022]
Abstract
Marine heatwaves (MHWs) are periods of extreme warm sea surface temperature that persist for days to months1 and can extend up to thousands of kilometres2. Some of the recently observed marine heatwaves revealed the high vulnerability of marine ecosystems3-11 and fisheries12-14 to such extreme climate events. Yet our knowledge about past occurrences15 and the future progression of MHWs is very limited. Here we use satellite observations and a suite of Earth system model simulations to show that MHWs have already become longer-lasting and more frequent, extensive and intense in the past few decades, and that this trend will accelerate under further global warming. Between 1982 and 2016, we detect a doubling in the number of MHW days, and this number is projected to further increase on average by a factor of 16 for global warming of 1.5 degrees Celsius relative to preindustrial levels and by a factor of 23 for global warming of 2.0 degrees Celsius. However, current national policies for the reduction of global carbon emissions are predicted to result in global warming of about 3.5 degrees Celsius by the end of the twenty-first century16, for which models project an average increase in the probability of MHWs by a factor of 41. At this level of warming, MHWs have an average spatial extent that is 21 times bigger than in preindustrial times, last on average 112 days and reach maximum sea surface temperature anomaly intensities of 2.5 degrees Celsius. The largest changes are projected to occur in the western tropical Pacific and Arctic oceans. Today, 87 per cent of MHWs are attributable to human-induced warming, with this ratio increasing to nearly 100 per cent under any global warming scenario exceeding 2 degrees Celsius. Our results suggest that MHWs will become very frequent and extreme under global warming, probably pushing marine organisms and ecosystems to the limits of their resilience and even beyond, which could cause irreversible changes.
Collapse
Affiliation(s)
- Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland. .,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
| | - Erich M Fischer
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| | - Nicolas Gruber
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|