501
|
Xu C, Zhang L, He H, Liu X, Pei X, Ma T, Ma B, Lin W, Zhang B. Sheep tail fat inhibits the proliferation of non-small-cell lung cancer cells in vitro and in vivo. Front Pharmacol 2022; 13:917513. [PMID: 36034869 PMCID: PMC9403308 DOI: 10.3389/fphar.2022.917513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that numerous edible oils may function as adjuvant dietary therapies to treat cancer. We previously reported that the odd-chain saturated fatty acid (OCSFA), heptadecanoic acid (C17:0), profoundly inhibits non-small-cell lung cancer (NSCLC) cell proliferation. However, the antitumor potential of edible lipids rich in C17:0 remains unclear. Here, we determined that sheep tail fat (STF) is a dietary lipid rich in C17:0 and exhibited the greatest inhibitory effect against three NSCLC cell lines (A549, PC-9, and PC-9/GR) among common dietary lipids. Cell migration experiments demonstrated that STF could significantly inhibit the wound healing capacity of three NSCLC cell lines by promoting the generation of reactive oxygen species (ROS) and subsequent cell death. Mechanistic studies showed that STF suppressed NSCLC cell growth by downregulating the Akt/S6K signaling pathway. Furthermore, administration of STF reduced tumor growth, weight, and expression of the proliferative marker Ki-67 in nude mice bearing A549 xenografts. Collectively, our data show that STF has antitumor activity against NSCLC, implying that dietary intake of C17:0-rich STF may be a potential adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Changzhi Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lanlan Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huimin He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiaoyi Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xinxin Pei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Tengfei Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Bingbing Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| | - Buchang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| |
Collapse
|
502
|
Wang X, Li Y, Shi Y, Luo J, Zhang Y, Pan Z, Wu F, Tian J, Yu W. Comprehensive analysis to identify the neurotransmitter receptor-related genes as prognostic and therapeutic biomarkers in hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:887076. [PMID: 35990607 PMCID: PMC9388745 DOI: 10.3389/fcell.2022.887076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease with high morbidity and mortality, which accounts for the fourth most common cause of cancer-related deaths. Reports suggest that the neurotransmitter receptor-related genes (NRGs) may influence the tumor microenvironment and the prognosis of patients with HCC.Methods: The clinical information and RNA-seq data of patients with HCC were acquired from the ICGC-LIRI-JP dataset and the TCGA-LIHC dataset. Effects of 115 NRGs on the prognosis of HCC patients were analyzed in the ICGC-LIRI-JP dataset. The least absolute shrinkage and selection operator (LASSO) regression model was utilized to generate a risk score formula based on the critical NRGs. Next, the risk score effectiveness was validated both in the TCGA-LIHC dataset and in our clinical HCC samples. Based on the risk scores, patients with HCC were divided into two groups. Moreover, differentially expressed genes (DEGs) were screened. The gene ontology (GO) was used to analyze the functional enrichments of DEGs and to identify potential signaling pathways. To test the diagnostic effectiveness of our model, the receiver operator characteristic curve (ROC) analysis and nomogram were used. Finally, potential targeted drug prediction was performed based on DEGs of nine clinical HCC samples.Results: Nine NRGs were correlated significantly with the prognosis of patients with HCC, and eight NRGs were successfully included in the LASSO regression model. The Kaplan-Meier analysis of overall survival (OS) suggested that patients in the high-risk score group had worse prognosis; on the other hand, ROC analysis revealed a high prognostic value of the risk score in HCC. Several critical signaling pathways, such as lipid metabolism, organic acid metabolism, cell migration, cell adhesion, and immune response, were enriched both in public datasets and clinical samples. Nomogram results also suggested that the risk scores correlated well with the patients’ prognosis. Potential targeted drugs prediction revealed that tubulin inhibitors might be the promising drugs for patients with HCC who have high risk scores based on the NRGs.Conclusion: We established a prognostic model based on critical NRGs. NRGs show a promising prognostic prediction value in HCC and are potential therapeutic targets for the disease treatment.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiran Li
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiying Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feixiang Wu
- Department of Intensive Care Medicine, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weifeng Yu, ; Jie Tian,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weifeng Yu, ; Jie Tian,
| |
Collapse
|
503
|
Ren M, Zheng X, Gao H, Jiang A, Yao Y, He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front Bioeng Biotechnol 2022; 10:943906. [PMID: 35992338 PMCID: PMC9388847 DOI: 10.3389/fbioe.2022.943906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer cells reprogram their metabolism to meet their growing demand for bioenergy and biosynthesis. The metabolic profile of cancer cells usually includes dysregulation of main nutritional metabolic pathways and the production of metabolites, which leads to a tumor microenvironment (TME) having the characteristics of acidity, hypoxic, and/or nutrient depletion. Therapies targeting metabolism have become an active and revolutionary research topic for anti-cancer drug development. The differential metabolic vulnerabilities between tumor cells and other cells within TME provide nanotechnology a therapeutic window of anti-cancer. In this review, we present the metabolic characteristics of intrinsic cancer cells and TME and summarize representative strategies of nanoparticles in metabolism-regulating anti-cancer therapy. Then, we put forward the challenges and opportunities of using nanoparticles in this emerging field.
Collapse
Affiliation(s)
- Mengdi Ren
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aimin Jiang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| | - Wangxiao He
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| |
Collapse
|
504
|
Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed Lipid Metabolism and the Lipid-Associated Hallmarks of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153714. [PMID: 35954376 PMCID: PMC9367418 DOI: 10.3390/cancers14153714] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third-most diagnosed cancer and the second-leading cause of cancer-related deaths worldwide. Limitations in early and accurate diagnosis of CRC gives rise to poor patient survival. Advancements in analytical techniques have improved our understanding of the cellular and metabolic changes occurring in CRC and potentiate avenues for improved diagnostic and therapeutic strategies. Lipids are metabolites with important biological functions; however, their role in CRC is poorly understood. Here, we provide an in-depth review of the recent literature concerning lipid alterations in CRC and propose eight lipid metabolism-associated hallmarks of CRC. Abstract Lipids have diverse structures, with multifarious regulatory functions in membrane homeostasis and bioenergetic metabolism, in mediating functional protein–lipid and protein–protein interactions, as in cell signalling and proliferation. An increasing body of evidence supports the notion that aberrant lipid metabolism involving remodelling of cellular membrane structure and changes in energy homeostasis and signalling within cancer-associated pathways play a pivotal role in the onset, progression, and maintenance of colorectal cancer (CRC) and their tumorigenic properties. Recent advances in analytical lipidome analysis technologies have enabled the comprehensive identification and structural characterization of lipids and, consequently, our understanding of the role they play in tumour progression. However, despite progress in our understanding of cancer cell metabolism and lipidomics, the key lipid-associated changes in CRC have yet not been explicitly associated with the well-established ‘hallmarks of cancer’ defined by Hanahan and Weinberg. In this review, we summarize recent findings that highlight the role of reprogrammed lipid metabolism in CRC and use this growing body of evidence to propose eight lipid metabolism-associated hallmarks of colorectal cancer, and to emphasize their importance and linkages to the established cancer hallmarks.
Collapse
Affiliation(s)
- Timothy Salita
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Yepy H. Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Oliver M. Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Correspondence: (O.M.S.); (G.E.R.)
| | - Gavin E. Reid
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (O.M.S.); (G.E.R.)
| |
Collapse
|
505
|
Song Q, Yang Y, Jiang D, Qin Z, Xu C, Wang H, Huang J, Chen L, Luo R, Zhang X, Huang Y, Xu L, Yu Z, Tan S, Deng M, Xue R, Qie J, Li K, Yin Y, Yue X, Sun X, Su J, He F, Ding C, Hou Y. Proteomic analysis reveals key differences between squamous cell carcinomas and adenocarcinomas across multiple tissues. Nat Commun 2022; 13:4167. [PMID: 35851595 PMCID: PMC9293992 DOI: 10.1038/s41467-022-31719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (AC) are two main histological subtypes of solid cancer; however, SCCs are derived from different organs with similar morphologies, and it is challenging to distinguish the origin of metastatic SCCs. Here we report a deep proteomic analysis of 333 SCCs of 17 organs and 69 ACs of 7 organs. Proteomic comparison between SCCs and ACs identifies distinguishable pivotal pathways and molecules in those pathways play consistent adverse or opposite prognostic roles in ACs and SCCs. A comparison between common and rare SCCs highlights lipid metabolism may reinforce the malignancy of rare SCCs. Proteomic clusters reveal anatomical features, and kinase-transcription factor networks indicate differential SCC characteristics, while immune subtyping reveals diverse tumor microenvironments across and within diagnoses and identified potential druggable targets. Furthermore, tumor-specific proteins provide candidates with differentially diagnostic values. This proteomics architecture represents a public resource for researchers seeking a better understanding of SCCs and ACs.
Collapse
Affiliation(s)
- Qi Song
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yufeng Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Subei Tan
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Minying Deng
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ruqun Xue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingbo Qie
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kai Li
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanan Yin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuetong Yue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaogang Sun
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Chen Ding
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
506
|
lncRNA ZFAS1 Promotes HMGCR mRNA Stabilization via Binding U2AF2 to Modulate Pancreatic Carcinoma Lipometabolism. J Immunol Res 2022; 2022:4163198. [PMID: 35846429 PMCID: PMC9286883 DOI: 10.1155/2022/4163198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Being one of the most lethal malignant tumors worldwide, pancreatic carcinoma (PC) shows strong invasiveness and high mortality. In tumorigenesis and progression, the role played by long-chain noncoding RNAs (lncRNAs) cannot be ignored. This article mainly probes into the function of lncRNA ZFAS1 in PC. ZFAS1 expression in PC and normal counterparts retrieved from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) database was analysed by GEPIA2. Its expression profile in clinical specimens and human PC cell strains was quantified using qRT-PCR. Measurements of BxPC-3 cell multiplication and invasiveness employed CCK-8, plate clone formation test, and Transwell chamber assay. ZFAS1's impact on lipid content in BxPC-3 cells was detected. RNA pulldown and RIP assays analyzed the interaction of ZFAS1 with U2AF2 and HMGCR in BxPC-3 cells. Finally, the impacts of U2AF2 and HMGCR on the biological behavior of BxPC-3 were observed. ZFAS1 was kept at a high level in PC tissues versus the normal counterparts. ZFAS1 gene knockout remarkably suppressed PC cell multiplication and invasiveness and decreased the contents of free fatty acids, total cholesterol, triglycerides, and phospholipids. Mechanistically, ZFAS1 stabilized HMGCR mRNA through U2AF2, thus increasing HMGCR expression and promoting PC lipid accumulation. Meanwhile, reduced PC cell viability and invasiveness were observed after downregulating U2AF2 and HMGCR. As an oncogene of PC, ZFAS1 can modulate lipometabolism and stabilize HMGCR mRNA expression by binding with U2AF2 in PC, which is a candidate target for PC diagnosis and treatment.
Collapse
|
507
|
Marelli G, Morina N, Portale F, Pandini M, Iovino M, Di Conza G, Ho PC, Di Mitri D. Lipid-loaded macrophages as new therapeutic target in cancer. J Immunother Cancer 2022; 10:jitc-2022-004584. [PMID: 35798535 PMCID: PMC9263925 DOI: 10.1136/jitc-2022-004584] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophages are main players of the innate immune system. They show great heterogeneity and play diverse functions that include support to development, sustenance of tissue homeostasis and defense against infections. Dysfunctional macrophages have been described in multiple pathologies including cancer. Indeed tumor-associated macrophages (TAMs) are abundant in most tumors and sustain cancer growth, promote invasion and mediate immune evasion. Importantly, lipid metabolism influences macrophage activation and lipid accumulation confers pathogenic features on macrophages. Notably, a subset of lipid-loaded macrophages has been recently identified in many tumor types. Lipid-loaded TAMs support tumor growth and progression and exert immune-suppressive activities. In this review, we describe the role of lipid metabolism in macrophage activation in physiology and pathology and we discuss the impact of lipid accumulation in macrophages in the context of cancer.
Collapse
Affiliation(s)
- Giulia Marelli
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Nicolò Morina
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Federica Portale
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Marta Pandini
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy.,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| | - Marta Iovino
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy
| | - Giusy Di Conza
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Diletta Di Mitri
- Tumor Microenvironment Unit, IRCCS Humanitas Research Hospital, Lombardia, Italy .,Department of Biomedical Sciences, Humanitas University, Lombardia, Italy
| |
Collapse
|
508
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
509
|
Zhang Y, Wan C, Song Z, Meng W, Wang S, Lan Z. Pectolinarigenin reduces the expression of sterol regulatory element-binding proteins and cellular lipid levels. Biosci Biotechnol Biochem 2022; 86:1220-1230. [PMID: 35723236 DOI: 10.1093/bbb/zbac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors that act important roles in the genes involved in lipid biosynthesis. In this study, it was found that the flavonoid pectolinarigenin, reduced the activity of SRE-containing fatty acid synthase (FAS) promoter and the mRNA expressions of SREBP target genes in human hepatoma (Huh-7) cells. Moreover, compared to other flavonoids, pectolinarigenin reduced the mature forms of SREBPs in a dose-dependent manner. The insulin-induced gene (INSIG) and proteasome were not involved in the pectolinarigenin-mediated reduction of mature forms of SREBPs. Pectolinarigenin also reduced the lipid contents in vitro. These results suggest that pectolinarigenin may inhibit lipogenesis through suppressing SREBP activity, at least partially, via the formation of SREBPs mature forms, thereby reducing the expression of their downstream genes related to lipogenesis. To the best of our knowledge, this is the first work that shows how pectolinarigenin affects cellular lipid levels by affecting SREBPs.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Changjian Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zijie Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhou Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
510
|
Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism. Cancers (Basel) 2022; 14:cancers14122896. [PMID: 35740562 PMCID: PMC9221533 DOI: 10.3390/cancers14122896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Acetyl-CoA Synthetase 2 (ACSS2) is highly expressed in a variety of tumors, which is very important for tumor growth, proliferation, invasion, and metastasis in the nutritional stress microenvironment. Studies have proven that ACSS2 inhibitors can be effective in halting cancer growth and can be combined with other antineoplastic drugs to reduce drug resistance. This article mainly reviews the mechanism of ACSS2-promoting tumor growth from many aspects and the prospect of clinical application of targeted inhibitors. Abstract Acetyl-CoA Synthetase 2 (ACSS2) belongs to a member of the acyl-CoA short-chain synthase family, which can convert acetate in the cytoplasm and nucleus into acetyl-CoA. It has been proven that ACSS2 is highly expressed in glioblastoma, breast cancer, liver cancer, prostate cancer, bladder cancer, renal cancer, and other tumors, and is closely related to tumor stage and the overall survival rate of patients. Accumulating studies show that hypoxia and a low serum level induce ACSS2 expression to help tumor cells cope with this nutrient-poor environment. The potential mechanisms are associated with the ability of ACSS2 to promote the synthesis of lipids in the cytoplasm, induce the acetylation of histones in the nucleus, and facilitate the expression of autophagy genes. Novel-specific inhibitors of ACSS2 are developed and confirmed to the effectiveness in pre-clinical tumor models. Targeting ACSS2 may provide novel approaches for tumor treatment. This review summarizes the biological function of ACSS2, its relation to survival and prognosis in different tumors, and how ACSS2 mediates different pathways to promote tumor metastasis, invasion, and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xu Wang
- Correspondence: (X.W.); (D.C.)
| | | |
Collapse
|
511
|
Wu T, Wang G, Xiong Z, Xia Y, Song X, Zhang H, Wu Y, Ai L. Probiotics Interact With Lipids Metabolism and Affect Gut Health. Front Nutr 2022; 9:917043. [PMID: 35711544 PMCID: PMC9195177 DOI: 10.3389/fnut.2022.917043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have attracted much attention due to their ability to modulate host intestinal microbe, participate in nutrient metabolism or immunomodulatory. Both inflammatory bowel disease (IBD) and bowel cancer are digestive system disease, which have become a global public health problem due to their unclear etiology, difficult to cure, and repeated attacks. Disturbed gut microbiota and abnormal lipid metabolism would increase the risk of intestinal inflammation. However, the link between lipid metabolism, probiotics, and IBD is unclear. In this review, we found that different lipids and their derivatives have different effects on IBD and gut microbes. ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid, eicosapentaenoic acid, and their derivatives resolvin E1, resolvin D can inhibit oxidative stress and reactive oxygen species activate NFκB and MAPk pathway. While ω-6 PUFAs linoleic acid and arachidonic acid can be derived into leukotrienes and prostaglandins, which will aggravate IBD. Cholesterol can be converted into bile acids to promote lipid absorption and affect microbial survival and colonization. At the same time, it is affected by microbial bile salt hydrolase to regulate blood lipids. Low denstiy lipoprotein (LDL) is easily converted into oxidized LDL, thereby promoting inflammation, while high denstiy lipoprotein (HDL) has the opposite effect. Probiotics compete with intestinal microorganisms for nutrients or ecological sites and thus affect the structure of intestinal microbiota. Moreover, microbial short chain fatty acids, bile salt hydrolase, superoxide dismutase, glutathione, etc. can affect lipid metabolism and IBD. In conclusion, probiotics are directly or indirectly involved in lipids metabolism and their impact on IBD, which provides the possibility to explore the role of probiotics in improving gut health.
Collapse
Affiliation(s)
- Taoying Wu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Hunan Key Laboratory of Bean Products Processing and Safety Control, School of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
512
|
Shinoda S, Nakamura N, Roach B, Bernlohr DA, Ikramuddin S, Yamamoto M. Obesity and Pancreatic Cancer: Recent Progress in Epidemiology, Mechanisms and Bariatric Surgery. Biomedicines 2022; 10:1284. [PMID: 35740306 PMCID: PMC9220099 DOI: 10.3390/biomedicines10061284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/24/2022] Open
Abstract
More than 30% of people in the United States (US) are classified as obese, and over 50% are considered significantly overweight. Importantly, obesity is a risk factor not only for the development of metabolic syndrome but also for many cancers, including pancreatic ductal adenocarcinoma (PDAC). PDAC is the third leading cause of cancer-related death, and 5-year survival of PDAC remains around 9% in the U.S. Obesity is a known risk factor for PDAC. Metabolic control and bariatric surgery, which is an effective treatment for severe obesity and allows massive weight loss, have been shown to reduce the risk of PDAC. It is therefore clear that elucidating the connection between obesity and PDAC is important for the identification of a novel marker and/or intervention point for obesity-related PDAC risk. In this review, we discussed recent progress in obesity-related PDAC in epidemiology, mechanisms, and potential cancer prevention effects of interventions, including bariatric surgery with preclinical and clinical studies.
Collapse
Affiliation(s)
- Shuhei Shinoda
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Naohiko Nakamura
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - Brett Roach
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (N.N.); (B.R.); (S.I.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
513
|
Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiol Res 2022; 261:127082. [PMID: 35660471 DOI: 10.1016/j.micres.2022.127082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
In the past, tumor and microbial infection were commonly regarded as independent diseases with few interrelations. The discovery of bacteria in tumor tissue changed the knowledge of bacteria-tumor relationship. Recently, more and more findings have demonstrated the significant effects of bacteria on the genesis, development and metastasis of tumor. Particularly, the influence of bacteria on tumor immunity is of great interest. Bacteria can inhibit the function of immune system through multiple mechanisms. On the other hand, some bacteria can also enhance the immune response and inhibit tumor progression. Understanding the bacteria-tumor interactions is of great importance for developing novel anticancer approaches. Herein, we aim to provide a comprehensive understanding of the tumor/tumor immunology, the biogenesis of bacteria in tumor and the relation of tumorigenesis with bacteria. In addition, the roles of bacteria in tumor immunology and the potential approaches to use bacteria for cancer therapy are discussed.
Collapse
|
514
|
Lan Y, Jin C, Kumar P, Yu X, Lenahan C, Sheng J. Ketogenic Diets and Hepatocellular Carcinoma. Front Oncol 2022; 12:879205. [PMID: 35600387 PMCID: PMC9115558 DOI: 10.3389/fonc.2022.879205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The ketogenic diet (KD) is a low-carbohydrate, high-fat diet regarded as a potential intervention for cancers owing to its effects on tumor metabolism and behavior. Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer, and its management is worth investigating because of the high fatality rate. Additionally, as the liver is the glucose and lipid metabolism center where ketone bodies are produced, the application of KD to combat HCC is promising. Prior studies have reported that KD could reduce the energy supply and affect the proliferation and differentiation of cancer cells by lowering the blood glucose and insulin levels. Furthermore, KD can increase the expression of hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in hepatocytes and regulate lipid metabolism to inhibit the progression of HCC. In addition, β-hydroxybutyrate can induce histone hyperacetylation and reduce the expression of inflammatory factors to alleviate damage to hepatocytes. However, there are few relevant studies at present, and the specific effects and safety of KD on HCC warrant further research. Optimizing the composition of KD and combining it with other therapies to enhance its anti-cancer effects warrant further exploration.
Collapse
Affiliation(s)
- Yan Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaonan Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Pavitra Kumar
- Department for BioMedical Research, Hepatology, University of Bern, Bern, Switzerland
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
515
|
Luo SD, Tsai HT, Chiu TJ, Li SH, Hsu YL, Su LJ, Tsai MH, Lee CY, Hsiao CC, Chen CH. Leptin Silencing Attenuates Lipid Accumulation through Sterol Regulatory Element-Binding Protein 1 Inhibition in Nasopharyngeal Carcinoma. Int J Mol Sci 2022; 23:5700. [PMID: 35628510 PMCID: PMC9146162 DOI: 10.3390/ijms23105700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Leptin is a crucial regulator of metabolism and energy homeostasis in mammals. Many studies have investigated the impacts of leptin on human cancers, such as proliferation and metastasis. However, the mechanisms underlying leptin-mediated regulation of lipid metabolism in nasopharyngeal carcinoma (NPC) remain incompletely understood. In the current study, leptin downregulation ameliorated lipid accumulation, triglyceride, and cholesterol levels. Mechanistically, diminished leptin by siRNA not only inhibited sterol regulatory element-binding protein 1 (SREBP1), a master regulator of lipid metabolism, at the mRNA and protein levels, but also reduced SREBP1 downstream target expressions, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1), in NPC cells. In addition, leptin expression could modulate the promoter activity of SREBP1. We also found that pharmacological inhibition of poly-ADP ribose polymerase-γ (PPAR-γ) resulted in increased SREBP1 expression in leptin-depleted NPC cells. Functionally, SREBP1 overexpression overcame the effects of leptin-silencing attenuated triglyceride level, cholesterol level and cell survival in NPC cells. Taken together, our results demonstrate that leptin is an important regulator of lipid metabolism in NPC cells and might could be a potential therapeutic target for treatment of NPC patients.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Hsin-Ting Tsai
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ya-Ling Hsu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Yi Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chang-Han Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
516
|
Chen M, Chen Q, Liu W, Tong H, Wu Y. The effectiveness of diet intervention in improving the metabolism of overweight and obese women: a systematic review and meta-analysis. Am J Transl Res 2022; 14:2926-2938. [PMID: 35702099 PMCID: PMC9185074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Dietary therapy may improve glucose and lipid metabolism function in women. However, there is no systematic review to investigate the association between metabolic effects and different dietary interventions in obese women. The main purpose of this study is to summarize the current literature and investigate whether different dietary interventions have an effect on glucose and metabolic indicators of overweight or obese women. METHODS We conducted a scoping review of randomized controlled trial (RCT) studies from 1991 to 2022 by adopting a systematic review and meta-analysis. The database includes Google Scholar, PubMed, Embase and Web of Science. Literature screening, data extraction, and quality assessment were independently completed by 2 researchers. Meta-analysis was performed with RevMan. RESULTS Twelve articles were extracted and the meta-analysis results showed that the mean difference of metabolic indexes of obese women before and after dietary intervention, including fasting glucose, fasting insulin, HOMA-IR (Homeostasis model assessment-insulin resistance), TG (triglyceride), TC (total cholesterol), LDL-C (low-density lipoprotein cholesterol), HDL-C (high-density lipoprotein cholesterol) are -0.13 [-0.15, -0.10], -2.41 [-3.44, -1.38], -0.13 [-0.15, -0.10], -21.71 [-24.19, -19.22], -21.71 [-24.19, -19.22], -13.29 [-17.86, -8.72], 3.31 [2.22, 4.40], respectively. CONCLUSIONS Different dietary interventions benefit glucose and lipid metabolism of overweight or obese women. Further study is needed to determine which specific dietary effects have the greatest effect on improving metabolic indicators.
Collapse
Affiliation(s)
- Mengkun Chen
- Department of Obstetrics and Gynecology Otolaryngology, Xiamen Chang Gung HospitalXiamen 330520, Fujian, China
| | - Qiuli Chen
- School of Public Health, The University of QueenslandBrisbane, Australia
- Department of Research and Development, Zhengjiang Zhongwei Medical Research CenterHangzhou 310018, Zhejiang, China
| | - Wenjun Liu
- Department of Research and Development, Zhengjiang Zhongwei Medical Research CenterHangzhou 310018, Zhejiang, China
| | - Hui Tong
- Department of Research and Development, Zhengjiang Zhongwei Medical Research CenterHangzhou 310018, Zhejiang, China
| | - Yuedan Wu
- Department of Nutrition, Yueqing People’s HospitalYueqing 325600, Zhejiang, China
| |
Collapse
|
517
|
LPIN1 Induces Gefitinib Resistance in EGFR Inhibitor-Resistant Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2022; 14:cancers14092222. [PMID: 35565351 PMCID: PMC9102170 DOI: 10.3390/cancers14092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Drug resistance limits the efficacy of targeted therapies, including tyrosine kinase inhibitors (TKIs); however, a substantial portion of the drug resistance mechanisms remains unexplained. In this study, we identified LPIN1 as a key factor that regulates gefitinib resistance in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) cells. Unlike TKI-sensitive HCC827 cells, gefitinib treatment induced LPIN1 expression and increased diacylglycerol concentration in TKI-resistant H1650 cells, followed by the activation of protein kinase C delta and nuclear factor kappa B (NF-κB) in an LPIN1-dependent manner, resulting in cancer cell survival. Additionally, LPIN1 increased the production of lipid droplets, which play an important role in TKI drug resistance. All results were recapitulated in a patient-derived EGFR-mutant NSCLC cell line. In in vivo tumorigenesis assay, we identified that both shRNA-mediated depletion and pharmaceutical inhibition of LPIN1 clearly reduced tumor growth and confirmed that gefitinib treatment induced LPIN1 expression and LPIN1-dependent NF-κB activation (an increase in p-IκBα level) in tumor tissues. These results suggest an effective strategy of co-treating TKIs and LPIN1 inhibitors to prevent TKI resistance in NSCLC patients.
Collapse
|
518
|
Zhu R, Yang Y, Shao F, Wang J, Gao Y, He J, Lu Z. Choline Kinase Alpha2 Promotes Lipid Droplet Lipolysis in Non-Small-Cell Lung Carcinoma. Front Oncol 2022; 12:848483. [PMID: 35463311 PMCID: PMC9021865 DOI: 10.3389/fonc.2022.848483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Rapid tumor growth inevitably results in energy stress, including deficiency of glutamine, a critical amino acid for tumor cell proliferation. However, whether glutamine deficiency allows tumor cells to use lipid droplets as an energy resource and the mechanism underlying this potential regulation remain unclear. Methods We purified lipid droplets from H322 and H358 human non-small-cell lung cancer (NSCLC) cells under glutamine deprivation conditions and performed immunoblotting to determine the binding of choline kinase (CHK) α2 to lipid droplets. Immunofluorescence was used to quantify lipid droplet numbers and sizes. Immunoprecipitation and immunoblotting were performed to examine AMPK activation and CHKα2 phosphorylation. Cellular fatty acid levels, mitochondrial acetyl coenzyme A and ATP production, and cell apoptosis and proliferation were measured. Immunohistochemical analyses were performed to determine the expression levels of ACC pS79 and CHKα2 pS279 in tumor specimens from NSCLC patients. The prognostic value of ACC pS79 and CHKα2 pS279 was assessed using the Kaplan-Meier method and Cox regression models. Results Glutamine deficiency induces AMPK-mediated CHKα2 S279 phosphorylation, which promotes the binding of CHKα2 to lipid droplets, resulting in recruitment of cytosolic lipase ATGL and autophagosomes and subsequent lipolysis of lipid droplets to sustain tumor cell survival and proliferation. In addition, the levels of ACC pS79 and CHKα S279 were much higher in human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other. Notably, ACC pS79 and CHKα pS279 expression levels alone were associated with poor prognosis of NSCLC patients, and combined values of both phosphorylation levels were correlated with worse prognosis of the patients. Conclusion CHKα2 plays a critical role in lipolysis of lipid droplets in NSCLC. ACC pS79 and CHKα2 pS279 alone or in combination can be used as prognostic markers in NSCLC.
Collapse
Affiliation(s)
- Rongxuan Zhu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhimin Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
519
|
Shi GJ, Zhou Q, Zhu Q, Wang L, Jiang GQ. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs. J Clin Lab Anal 2022; 36:e24384. [PMID: 35441740 PMCID: PMC9169174 DOI: 10.1002/jcla.24384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lipid metabolism is closely related to the occurrence and development of breast cancer. Our purpose was to establish a novel model based on lipid metabolism-related long noncoding RNAs (lncRNAs) and evaluate the potential clinical value in predicting prognosis for patients suffering from breast cancer. METHODS RNA data and clinical information for breast cancer were obtained from the cancer genome atlas (TCGA) database. Lipid metabolism-related lncRNAs were identified via the criteria of correlation coefficient |R2 | > 0.4 and p < 0.001, and prognostic lncRNAs were identified to establish model through Cox regression analysis. The training set and validation set were established to certify the feasibility, and all samples were separated into high-risk group or low-risk group. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were conducted to evaluate the potential biological functions, and the immune infiltration levels were explored through Cibersortx database. RESULTS A total of 14 lncRNAs were identified as protective genes (AC022150.4, AC061992.1, AC090948.3, AC092794.1, AC107464.3, AL021707.8, AL451085.2, AL606834.2, FLJ42351, LINC00926, LINC01871, TNFRSF14-AS1, U73166.1 and USP30-AS1) with HRs < 1 while 10 lncRNAs (AC022150.2, AC090948.1, AC243960.1, AL021707.6, ITGB2-AS1, OTUD6B-AS1, SP2-AS1, TOLLIP-AS1, Z68871.1 and ZNF337-AS1) were associated with increased risk with HRs >1. A total of 24 prognostic lncRNAs were selected to construct the model. The patients in low-risk group were associated with better prognosis in both training set (p < 0.001) and validation set (p < 0.001). The univariate and multivariate Cox regression analyses revealed that risk score was an independent prognostic factors in both training set (p < 0.001) and validation set (p < 0.001). GO and GSEA analyses revealed that these lncRNAs were related to metabolism-related signal pathway and immune cells signal pathway. Risk score was negatively correlated with B cells (r = -0.097, p = 0.002), NK cells (r = -0.097, p = 0.002), Plasma cells (r = -0.111, p = 3.329e-04), T-cells CD4 (r = -0.064, p = 0.039) and T-cells CD8 (r = -0.322, p = 2.357e-26) and positively correlated with Dendritic cells (r = 0.077, p = 0.013) and Monocytes (r = 0.228, p = 1.107e-13). CONCLUSION The prognostic model based on lipid metabolism lncRNAs possessed an important value in survival prediction of breast cancer patients.
Collapse
Affiliation(s)
- Guo-Jian Shi
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thyroid and Breast Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, China
| | - Qin Zhou
- Department of Thyroid and Breast Surgery, The First People's Hospital of Kunshan, Kunshan, China
| | - Qi Zhu
- Department of Thyroid and Breast Surgery, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Li Wang
- Department of Radiotherapy, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
520
|
In Silico Establishment and Validation of Novel Lipid Metabolism-Related Gene Signature in Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3170950. [PMID: 35480865 PMCID: PMC9038413 DOI: 10.1155/2022/3170950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
Background Aberrant lipid metabolism is an alteration common to many types of cancer. Dysregulation of lipid metabolism is considered a major risk factor for bladder cancer. Accordingly, we focused on genes related to lipid metabolism and screened novel markers for predicting the prognosis of bladder cancer. Methods RNA-seq data for bladder cancer were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The nonnegative matrix factorization (NMF) algorithm was used to classify the molecular subtypes. Weighted correlation network analysis (WGCNA) was applied to identify coexpressed genes, and least absolute shrinkage and selection operator (LASSO) multivariate Cox analysis was used to construct a prognostic risk model. External validation data and in vitro experiments were used to verify the results from in silico analysis. Results Bladder cancer samples were grouped into two clusters based on the NMF algorithm. A total of 1467 genes involved in coexpression modules were identified in WGCNA. We finally established a 5-gene signature (TM4SF1, KCNK5, FASN, IMPDH1, and KCNJ15) that exhibited good stability across different datasets and was also an independent risk factor for prognosis. Furthermore, the predictive efficacy of our model was generally higher than the predictive efficacy of other published models. Distinct risk groups of patients also showed significantly different immune infiltration cell patterns and associations with clinical variables. Moreover, the 5 signature genes were verified in clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry, which were in agreement with the in silico analysis. For in vitro experiments, knockdown of IMPDH1 markedly inhibited cell proliferation in bladder cancer. Conclusion We established a 5-gene prognosis signature based on lipid metabolism in bladder cancer, which could be an effective prognostic indicator.
Collapse
|
521
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
522
|
Zhang L, Zhao S, Liu Y, Lv F, Geng X. Identification and validation of transcription factor-driven enhancers of genes related to lipid metabolism in metastatic oral squamous cell carcinomas. BMC Oral Health 2022; 22:126. [PMID: 35428233 PMCID: PMC9013160 DOI: 10.1186/s12903-022-02157-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The role and mechanisms of lipid metabolism in oral squamous cell carcinomas (OSCC) metastasis have not been clarified. This study aims to identify lipid metabolism-related genes and transcription factors regulated by metastasis-associated enhancers (MAEs) in OSCC. Methods Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed for lipid metabolism enrichment. TCGA data were used to analyze the differentially expressed lipid metabolism-related genes. MAEs were analyzed using GSE120634. Overlapping analysis was used to screen the MAE-regulated lipid metabolism-related genes, and the prognosis of these genes was analyzed. Transcription factor prediction was performed for the MAE-regulated lipid metabolism-related genes with prognostic value. Validation of the metastatic specificity of MAEs at ACAT1, OXSM and VAPA locus was performed using GSE88976 and GSE120634. ChIP-qPCR, qRT-PCR and Western blotting were used to verify the regulation of ACAT1, OXSM and VAPA expression by CBFB. Effects of CBFB knockdown on proliferation, invasion and lipid synthesis in metastatic OSCC cells were analyzed. Results Lipid metabolism was significantly enhanced in metastatic OSCC compared to non-metastatic OSCC. The expression of 276 lipid metabolism-related genes was significantly upregulated in metastatic OSCC, which were functionally related to lipid uptake, triacylglycerols, phospholipids and sterols metabolism. A total of 6782 MAEs and 176 MAE-regulated lipid metabolism-related genes were filtered. Three MAE-regulated lipid metabolism-related genes, ACAT1, OXSM and VAPA, were associated with a poor prognosis in OSCC patients. Enhancers at ACAT1, OXSM and VAPA locus were metastasis-specific enhancers. CBFB regulated ACAT1, OXSM and VAPA expression by binding to the enhancers of these genes. Knockdown of CBFB inhibited proliferation, invasion and lipid synthesis in metastatic OSCC cells. Conclusion The MAE-regulated lipid metabolism-related genes (ACAT1, OXSM and VAPA) and the key transcription factor (CBFB) were identified. CBFB knockdown inhibited proliferation, invasion and lipid synthesis of OSCC cells. These findings provide novel candidates for the development of therapeutic targets for OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02157-7.
Collapse
|
523
|
Gouw AM, Kumar V, Resendez A, Alvina FB, Liu NS, Margulis K, Tong L, Zare RN, Malhotra SV, Felsher DW. Azapodophyllotoxin Causes Lymphoma and Kidney Cancer Regression by Disrupting Tubulin and Monoglycerols. ACS Med Chem Lett 2022; 13:615-622. [PMID: 35450373 PMCID: PMC9014495 DOI: 10.1021/acsmedchemlett.1c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
A natural compound screen identified several anticancer compounds, among which azapodophyllotoxin (AZP) was found to be the most potent. AZP caused decreased viability of both mouse and human lymphoma and renal cell cancer (RCC) tumor-derived cell lines. Novel AZP derivatives were synthesized and screened identifying compound NSC750212 to inhibit the growth of both lymphoma and RCC both in vitro and in vivo. A nanoimmunoassay was used to assess the NSC750212 mode of action in vivo. On the basis of the structure of AZP and its mode of action, AZP disrupts tubulin polymerization. Through desorption electrospray ionization mass spectrometry imaging, NSC750212 was found to inhibit lipid metabolism. NSC750212 suppresses monoglycerol metabolism depleting lipids and thereby inhibits tumor growth. The dual mode of tubulin polymerization disruption and monoglycerol metabolism inhibition makes NSC750212 a potent small molecule against lymphoma and RCC.
Collapse
Affiliation(s)
- Arvin M. Gouw
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Fidelia B. Alvina
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Natalie S. Liu
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Katherine Margulis
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Ling Tong
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Richard N. Zare
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Sanjay V. Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Cell, Developmental and Cancer Biology, Oregon health and Science University, Portland, Oregon 97201, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon health and Science University, Portland, Oregon 97201, United States
| | - Dean W. Felsher
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
524
|
Tu B, Gao Y, Sun F, Shi M, Huang Y. Lipid Metabolism Regulation Based on Nanotechnology for Enhancement of Tumor Immunity. Front Pharmacol 2022; 13:840440. [PMID: 35392570 PMCID: PMC8980325 DOI: 10.3389/fphar.2022.840440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
The hallmarks of cancer include dysregulated metabolism and immune evasion. As a basic way of metabolism, lipid metabolism is reprogrammed for the rapid energy and nutrient supply in the occurrence and development of tumors. Lipid metabolism alterations that occur in the tumor microenvironment (TME) affect the antitumor responses of immune cells and cause immune evasion. Therefore, targeting lipid metabolism in the TME for enhancing the antitumor effect of immune cells is a promising direction for cancer treatment. Cancer nanomedicine has great potential in regulating tumor metabolism and tumor immunity. This review summarizes the nanotechnology-based strategies for lipid metabolism regulation in the TME for enhanced anticancer immune responses.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mingjie Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China.,School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, China
| |
Collapse
|
525
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
526
|
Monroe JD, Fraher D, Huang X, Mellett NA, Meikle PJ, Sinclair AJ, Lirette ST, Maihle NJ, Gong Z, Gibert Y. Identification of novel lipid biomarkers in xmrk- and Myc-induced models of hepatocellular carcinoma in zebrafish. Cancer Metab 2022; 10:7. [PMID: 35379333 PMCID: PMC8981695 DOI: 10.1186/s40170-022-00283-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC. METHODS We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression. RESULTS We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression. CONCLUSIONS These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, 3168, Australia
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Nita J Maihle
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
527
|
Liu WB, Wang HL, Chen L, Tang B, Ke G, Wang S, Sun YQ, Ma J, Lyu DL. Cucurbitacin E inhibits cellular proliferation and induces apoptosis in melanoma by suppressing HSDL2 expression. Chin Med 2022; 17:28. [PMID: 35193614 PMCID: PMC8862504 DOI: 10.1186/s13020-022-00582-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma is among the most aggressive types of skin malignancy and can have an unpredictable clinical course. Exploration of novel therapeutic targets and their regulators remains essential for the prevention and treatment of melanoma. METHODS HSDL2 protein levels were examined by immunohistochemistry. The roles of HSDL2 in cell proliferation and apoptosis were identified by CCK-8 and colony formation assays. The function of HSDL2 in cell apoptosis was analysed by flow cytometry. Western blotting, cell proliferation and apoptosis and a xenograft tumour model were utilized to explore the inhibitory functions and mechanisms of CuE in melanoma. RESULTS HSDL2 is overexpressed in melanoma and promotes melanoma progression by activating the ERK and AKT pathways. CuE could inhibit the ERK and AKT pathways by decreasing HSDL2 expression; therefore, CuE could inhibit melanoma growth in vitro and in vivo. CONCLUSION HSDL2 may be a promising therapeutic target against melanoma, and CuE can inhibit melanoma by downregulating HSDL2 expression.
Collapse
Affiliation(s)
- Wen-Bei Liu
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - He-Li Wang
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Lei Chen
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Biao Tang
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Guolin Ke
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Shuai Wang
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Yin-Qiao Sun
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China
| | - Junting Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Da-Lun Lyu
- Department of Dermato-Venerology and Department of Burn and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, 241000, Anhui, China.
| |
Collapse
|
528
|
Guan Z, Li Y, Hu S, Mo C, He D, Huang Z, Liao M. Screening and identification of differential metabolites in serum and urine of bamaxiang pigs bitten by trimeresurus stejnegeri based on UPLC-Q-TOF/MS metabolomics technology. J Toxicol Sci 2022; 47:389-407. [PMID: 36104186 DOI: 10.2131/jts.47.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trimeresurus stejnegeri is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases. Elucidating the metabolic changes of the body caused by Trimeresurus stejnegeri bite will be beneficial to the diagnosis and treatment of snakebite. Thus, an animal pig model of Trimeresurus stejnegeri bite was established, and then the metabolites of serum and urine were subsequently screened and identified in both ESI+ and ESI- modes identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods. There are 9 differential metabolites in serum, including Oleic acid, Lithocholic acid, Deoxycholic acid, Hypoxanthine, etc. There are 11 differential metabolites in urine, including Dopamine, Thiocysteine, Arginine, Indoleacetaldehyde, etc. Serum enrichment pathway analysis showed that 5 metabolic pathways, including Tryptophanuria, Liver disease due to cystic fibrosis, Hartnup disease, Hyperbaric oxygen exposure and Biliary cirrhosis, the core metabolites in these pathways, including deoxycholic acid, lithocholic acid, tryptophan and hypoxanthine, changed significantly. Urine enrichment pathway analysis showed that 4 metabolic pathways, including Aromatic L-Amino Acid Decarboxylase, Vitiligo, Blue Diaper Syndrome and Hyperargininemia, the core metabolites in these pathways including dopamine, 5-hydroxyindole acetic acid and arginine. Taken together, the current study has successfully established an animal model of Trimeresurus stejnegeri bite, and identified the metabolic markers and metabolic pathways of Trimeresurus stejnegeri bite. These metabolites and pathways may have potential application value and provide a therapeutic basis for the treatment of Trimeresurus stejnegeri bite.
Collapse
Affiliation(s)
- ZheZhe Guan
- Institute of Life Sciences of Guangxi Medical University, China
| | - YaLan Li
- Institute of Life Sciences of Guangxi Medical University, China
| | - ShaoCong Hu
- Institute of Life Sciences of Guangxi Medical University, China
| | - CaiFeng Mo
- Institute of Life Sciences of Guangxi Medical University, China
| | - DongLing He
- Institute of Life Sciences of Guangxi Medical University, China
| | - Zhi Huang
- Institute of Life Sciences of Guangxi Medical University, China
| | - Ming Liao
- Institute of Life Sciences of Guangxi Medical University, China
| |
Collapse
|
529
|
Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y. The role of RNA m6A methylation in lipid metabolism. Front Endocrinol (Lausanne) 2022; 13:866116. [PMID: 36157445 PMCID: PMC9492936 DOI: 10.3389/fendo.2022.866116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The m6A methylation is the most numerous modification of mRNA in mammals, coordinated by RNA m6A methyltransferases, RNA m6A demethylases, and RNA m6A binding proteins. They change the RNA m6A methylation level in their specific manner. RNA m6A modification has a significant impact on lipid metabolic regulation. The "writer" METTL3/METTL14 and the "eraser" FTO can promote the accumulation of lipids in various cells by affecting the decomposition and synthesis of lipids. The "reader" YTHDF recognizes m6A methylation sites of RNA and regulates the target genes' translation. Due to this function that regulates lipid metabolism, RNA m6A methylation plays a pivotal role in metabolic diseases and makes it a great potential target for therapy.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujie Wang
- Department of Orthopaedics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiarui Gu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianhong Su
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaosong Gu
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yu Feng, ; Xiaosong Gu,
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yu Feng, ; Xiaosong Gu,
| |
Collapse
|
530
|
Jiang A, Chen X, Zheng H, Liu N, Ding Q, Li Y, Fan C, Fu X, Liang X, Tian T, Ruan Z, Yao Y. Lipid metabolism-related gene prognostic index (LMRGPI) reveals distinct prognosis and treatment patterns for patients with early-stage pulmonary adenocarcinoma. Int J Med Sci 2022; 19:711-728. [PMID: 35582412 PMCID: PMC9108406 DOI: 10.7150/ijms.71267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Lipid metabolism plays a pivotal role in cancer progression and metastasis. This study aimed to investigate the prognostic value of lipid metabolism-related genes (LMRGs) in early-stage lung adenocarcinoma (LUAD) and develop a lipid metabolism-related gene prognostic index (LMRGPI) to predict their overall survival (OS) and treatment response. Methods: A total of 774 early-stage LUAD patients were identified from The Cancer Genome Atlas (TCGA, 403 patients) database and Gene Expression Omnibus (GEO, 371 patients) database. The non-negative Matrix Factorization (NMF) algorithm was used to identify different population subtypes based on LMRGs. The Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analyses were used to develop the LMRGPI, with receiver operating characteristic (ROC) curves and concordance index being used to evaluate its performance. The characteristics of mutation landscape, enriched pathways, tumor microenvironment (TME), and treatment response between different LMRGPI groups were also investigated. Results: We identified two population subtypes based on LMRGs in the TCGA-LUAD cohort, with distinct prognosis, TME, and immune status being observed. LMRGPI was developed based on the expression levels of six LMRGs, including ANGPTL4, NPAS2, SLCO1B3, ACOXL, ALOX15, and B3GALNT1. Higher LMRGPI was correlated with poor OS both in TCGA and GSE68465 cohorts. Two nomograms were established to predict the survival probability of early-stage LUAD, with higher consistencies being observed between the predicted and actual OS. Higher LMRGPI was significantly correlated with more frequent TP53 mutation, higher tumor mutation burden (TMB), and up-regulation of CD274. Besides, patients with higher LMRGPI presented unremarkable responses for gefitinib, erlotinib, cisplatin, and vinorelbine, while they tend to have a favorable response for immune checkpoint inhibitors (ICIs). The opposite results were observed in the low-LMRGPI group. Conclusions: We comprehensively investigated the prognostic value of LMRGs in early-stage LUAD. Given its good prognostic ability, LMRGPI could serve as a promising biomarker to predict the OS and treatment response of these patients.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xue Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Haoran Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qianqian Ding
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chaoxin Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
531
|
Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis 2021; 13:23. [PMID: 34934042 PMCID: PMC8692455 DOI: 10.1038/s41419-021-04477-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer characterized by high invasiveness, heterogeneity, and mainly occurs in the ultraviolet (UV)-exposed regions of the skin, but its pathogenesis is still unclear. Here, we generated single-cell transcriptome profiles for 350 cells from six primary UV-induced cSCCs, together with matched adjacent skin samples, and three healthy control skin tissues by single-cell RNA-sequencing technology based on Smart-seq2 strategy. A series of bioinformatics analyses and in vitro experiments were used to decipher and validate the critical molecular pattern of cSCC. Results showed that cSCC cells and normal keratinocytes were significantly distinct in gene expression and chromosomal copy number variation. Furthermore, cSCC cells exhibited 18 hallmark pathways of cancer by gene set enrichment analysis. Differential expression analysis demonstrated that many members belonging to S100 gene family, SPRR gene family, and FABP5 were significantly upregulated in cSCC cells. Further experiments confirmed their upregulation and showed that S100A9 or FABP5 knockdown in cSCC cells inhibited their proliferation and migration through NF-κB pathway. Taken together, our data provide a valuable resource for deciphering the molecular pattern in UV-induced cSCC at a single-cell level and suggest that S100A9 and FABP5 may provide novel targets for therapeutic intervention of cSCC in the future.
Collapse
|
532
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
533
|
Zhu J, Huang R, Yang R, Xiao Y, Yan J, Zheng C, Xiao W, Huang C, Wang Y. Licorice extract inhibits growth of non-small cell lung cancer by down-regulating CDK4-Cyclin D1 complex and increasing CD8 + T cell infiltration. Cancer Cell Int 2021; 21:529. [PMID: 34641869 PMCID: PMC8507331 DOI: 10.1186/s12935-021-02223-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
Background Targeting tumor microenvironment (TME) may provide therapeutic activity and selectivity in treating cancers. Therefore, an improved understanding of the mechanism by which drug targeting TME would enable more informed and effective treatment measures. Glycyrrhiza uralensis Fisch (GUF, licorice), a widely used herb medicine, has shown promising immunomodulatory activity and anti-tumor activity. However, the molecular mechanism of this biological activity has not been fully elaborated. Methods Here, potential active compounds and specific targets of licorice that trigger the antitumor immunity were predicted with a systems pharmacology strategy. Flow cytometry technique was used to detect cell cycle profile and CD8+ T cell infiltration of licorice treatment. And anti-tumor activity of licorice was evaluated in the C57BL/6 mice. Results We reported the G0/G1 growth phase cycle arrest of tumor cells induced by licorice is related to the down-regulation of CDK4-Cyclin D1 complex, which subsequently led to an increased protein abundance of PD-L1. Further, in vivo studies demonstrated that mitigating the outgrowth of NSCLC tumor induced by licorice was reliant on increased antigen presentation and improved CD8+ T cell infiltration. Conclusions Briefly, our findings improved the understanding of the anti-tumor effects of licorice with the systems pharmacology strategy, thereby promoting the development of natural products in prevention or treatment of cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02223-0.
Collapse
Affiliation(s)
- Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jiangna Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical, Co., Ltd, Lianyungang, China.
| | - Chao Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China. .,Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, 712100, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
534
|
Ma Q, Meng Z, Meng Y, Liu R, Lu Z. A moonlighting function of choline kinase alpha 2 in the initiation of lipid droplet lipolysis in cancer cells. Cancer Commun (Lond) 2021; 41:933-936. [PMID: 34449975 PMCID: PMC8504140 DOI: 10.1002/cac2.12211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Qingxia Ma
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhaoyuan Meng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, P. R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhimin Lu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, P. R. China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, P. R. China
| |
Collapse
|
535
|
Jiang H, Lin Q, Ma L, Luo S, Jiang X, Fang J, Lu Z. Fructose and fructose kinase in cancer and other pathologies. J Genet Genomics 2021; 48:531-539. [PMID: 34326012 DOI: 10.1016/j.jgg.2021.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Fructose metabolism and fructose kinase KHK-C/A are key factors in the development of lipid oversynthesis-promoted metabolic disorders and cancer. Here, we summarize and discuss the current knowledge about the specific features of fructose metabolism and the distinct roles of KHK-C and KHK-A in metabolic liver diseases and their relevant metabolic disorders and cancer, and we highlight the specific protein kinase activity of KHK-A in tumor development. In addition, different approaches that have been used to inhibit KHK and the exploration of KHK inhibitors in clinical treatment are introduced.
Collapse
Affiliation(s)
- Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Qian Lin
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Leina Ma
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Shudi Luo
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Xiaoming Jiang
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Jing Fang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
536
|
Imazeki H, Ogiwara Y, Kawamura M, Boku N, Kudo-Saito C. CD11b +CTLA4 + myeloid cells are a key driver of tumor evasion in colorectal cancer. J Immunother Cancer 2021; 9:jitc-2021-002841. [PMID: 34261702 PMCID: PMC8280900 DOI: 10.1136/jitc-2021-002841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumor metastasis is the major cause of death of colorectal cancer (CRC), and metastatic CRC remains incurable in many cases despite great advances in genetic and molecular profiling, and clinical development of numerous drugs, including immune checkpoint inhibitors. Thus, more effective treatments are urgently needed for the patients in clinical settings. Methods We used mouse CRC metastasis models that murine Colon26 cells were subcutaneously and intravenously implanted and attempted to elucidate the tumor biological and immunological mechanisms underlying cancer metastasis. Then, we evaluated in vivo antitumor efficacy induced by agents targeting the identified molecular mechanisms using the mouse models. We validated the clinical relevancy of the findings using peripheral blood mononuclear cells obtained from stage IV metastatic CRC patients. Results CD11b+CTLA4+ myeloid cells were systemically expanded in the metastatic settings and facilitated tumor progression and metastasis directly via generating lipid droplets in tumor cells and indirectly via inducing immune exhaustion. These events were mediated by IL1B produced via the CTLA4 signaling from the increased myeloid cells. Blocking CTLA4 and IL1B with the specific mAbs significantly suppressed tumor progression and metastasis in the mouse models resistant to anti-PD1 therapy, and the therapeutic efficacy was optimized by blocking cyclooxygenases with aspirin. Conclusions The CD11b+CTLA4+ cells are a key driver of tumor evasion, and targeting the CTLA4-IL1B axis could be a promising strategy for treating metastatic CRC. The triple combination regimen with anti-CTLA4/IL1B mAbs and aspirin may be useful in clinical settings.
Collapse
Affiliation(s)
- Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Kawamura
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|