501
|
Ranganathan M, Farutin A, Misbah C. Effect of Cytoskeleton Elasticity on Amoeboid Swimming. Biophys J 2018; 115:1316-1329. [PMID: 30177444 PMCID: PMC6170896 DOI: 10.1016/j.bpj.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, it has been reported that the cells of the immune system, as well as Dictyostelium amoebae, can swim in a bulk fluid by changing their shape repeatedly. We refer to this motion as amoeboid swimming. Here, we explore how the propulsion and the deformation of the cell emerge as an interplay between the active forces that the cell employs to activate the shape changes and the passive, viscoelastic response of the cell membrane, the cytoskeleton, and the surrounding environment. We introduce a model in which the cell is represented by an elastic capsule enclosing a viscous liquid. The motion of the cell is activated by time-dependent forces distributed along its surface. The model is solved numerically using the boundary integral formulation. The cell can swim in a fluid medium using cyclic deformations or strokes. We measure the swimming velocity of the cell as a function of the force amplitude, the stroke frequency, and the viscoelastic properties of the cell and the medium. We show that an increase in the shear modulus leads both to a regular slowdown of the swimming, which is more pronounced for more deflated swimmers, and to a tendency toward cell buckling. For a given stroke frequency, the swimming velocity shows a quadratic dependence on force amplitude for small forces, as expected, but saturates for large forces. We propose a scaling relationship for the dependence of swimming velocity on the relevant parameters that qualitatively reproduces the numerical results and allows us to define regimes in which the cell motility is dominated by elastic response or by the effective cortex viscosity. This leads to an estimate of the effective cortex viscosity of 103 Pa ⋅ s for which the two effects are comparable, which is close to that provided by several experiments.
Collapse
Affiliation(s)
- Madhav Ranganathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Alexander Farutin
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | - Chaouqi Misbah
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| |
Collapse
|
502
|
Morita T, Omori T, Ishikawa T. Passive swimming of a microcapsule in vertical fluid oscillation. Phys Rev E 2018; 98:023108. [PMID: 30253563 DOI: 10.1103/physreve.98.023108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/24/2022]
Abstract
The artificial microswimmer is a cutting-edge technology with applications in drug delivery and micro-total-analysis systems. The flow field around a microswimmer can be regarded as Stokes flow, in which reciprocal body deformation cannot induce migration. In this study, we propose a microcapsule swimmer that undergoes amoeboidlike shape deformations under fluid oscillation conditions. This is a study on the propulsion principle using a capsule with a solid membrane, and one of only a few studies using fluid oscillation. The microswimmer consists of an elastic capsule containing fluid and a rigid sphere. Opposing forces are generated when fluid oscillations are applied, because the densities of the internal fluid and sphere are different. The opposing forces induce nonreciprocal body deformation, which leads to migration of the microswimmer under Stokes flow conditions. Using numerical simulations, we found that the microswimmer propels itself in one of two modes, i.e., stroke swimming or drag swimming. We discuss the feasibility of the proposed microswimmer and show that the most efficient swimmer can migrate tens of micrometers per second. These findings pave the way for future artificial microswimmer designs.
Collapse
Affiliation(s)
- Takeru Morita
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshihiro Omori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
503
|
Codutti A, Bachmann F, Faivre D, Klumpp S. Bead-Based Hydrodynamic Simulations of Rigid Magnetic Micropropellers. Front Robot AI 2018; 5:109. [PMID: 33500988 PMCID: PMC7805997 DOI: 10.3389/frobt.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 12/03/2022] Open
Abstract
The field of synthetic microswimmers, micro-robots moving in aqueous environments, has evolved significantly in the last years. Micro-robots actuated and steered by external magnetic fields are of particular interest because of the biocompatibility of this energy source and the possibility of remote control, features suited for biomedical applications. While initial work has mostly focused on helical shapes, the design space under consideration has widened considerably with recent works, opening up new possibilities for optimization of propellers to meet specific requirements. Understanding the relation between shape on the one hand and targeted actuation and steerability on the other hand requires an understanding of their propulsion behavior. Here we propose hydrodynamic simulations for the characterization of rigid micropropellers of any shape, actuated by rotating external magnetic fields. The method consists of approximating the propellers by rigid clusters of spheres. We characterize the influence of model parameters on the swimming behavior to identify optimal simulation parameters using helical propellers as a test system. We then explore the behavior of randomly shaped propellers that were recently characterized experimentally. The simulations show that the orientation of the magnetic moment with respect to the propeller's internal coordinate system has a strong impact on the propulsion behavior and has to be known with a precision of ≤ 5° to predict the propeller's velocity-frequency curve. This result emphasizes the importance of the magnetic properties of the micropropellers for the design of desired functionalities for potential biomedical applications, and in particular the importance of their orientation within the propeller's structure.
Collapse
Affiliation(s)
- Agnese Codutti
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Felix Bachmann
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Biosciences and Biotechnologies Institute (BIAM), CEA Cadarache, Saint Paul Lez Durance, France
| | - Stefan Klumpp
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute for Nonlinear Dynamics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
504
|
Ebbens SJ, Gregory DA. Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers. Acc Chem Res 2018; 51:1931-1939. [PMID: 30070110 DOI: 10.1021/acs.accounts.8b00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Catalytic Janus colloids produce rapid motion in fluids by decomposing dissolved fuel. There is great potential to exploit these "autonomous chemical swimmers" in applications currently performed by diffusion limited passive colloids. Key application areas for colloids include transporting active ingredients for drug delivery, gathering analytes for medical diagnostics, and self-assembling into regular structures used for photonic materials and lithographic templating. For drug delivery and medical diagnostics, controlling colloidal motion is key in order to target therapies, and transport analytes through lab-on-a-chip devices. Here, the autonomous motion of catalytic Janus colloids can remove the current requirements to induce and control colloid motion using external fields, thereby reducing the technological complexity required for medical therapies and diagnostics. For materials applications exploiting colloidal self-assembly, the additional interactions introduced by catalytic activity and rapid motion are predicted to allow access to new reconfigurable and responsive structures. In order to realize these goals, it is vital to develop methods to control both individual colloidal paths and collective behavior in motile catalytic colloidal systems. However, catalytic Janus colloids' trajectories are randomized by Brownian effects, and so require new strategies in order to be harnessed for transport. This is achievable using a variety of different approaches. For example, self-assembly and control of catalyst geometry can introduce controlled amounts of rotary motion, or "spin" into chemical swimmer trajectories. Furthermore, rotary motion combined with gravity, produces well-defined orientated helical trajectories. In addition, when catalytic colloids interact with topographical features, such as edges and trenches, they are steered. This gives rise to a new approach for autonomous colloidal microfluidic transport that could be deployed in future lab-on-a-chip devices. Chemical gradients can also influence the motion of catalytic Janus colloids, for example, to cause collective accumulations at specific locations. However, at present, the predicted theoretical degree of control over this phenomenon has not been fully verified in experimental systems. Collective behavior control for chemical swimmers is also possible by exploiting the potential for the complex interactions in these systems to allow access to self-assembled, dynamic and reconfigurable ordered structures. Again, current experiments have not yet accessed the breadth of possible behavior. Consequently, continued efforts are required to understand and control these interaction mechanisms in real world systems. Ultimately, this will help realize the use of catalytic Janus colloids for tasks that require well-controlled motion and structural organization, enabling functions such as analyte capture and concentration, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephen J. Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, United Kingdom
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
505
|
Gao Y, Dullens RPA, Aarts DGAL. Bulk synthesis of silver-head colloidal rodlike micromotors. SOFT MATTER 2018; 14:7119-7125. [PMID: 30027982 DOI: 10.1039/c8sm00832a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colloidal particles with asymmetric catalytic activities are emerging micro/nanomotors that harvest chemical energy for propulsion in fluids. It is of general interest to produce such particles with high performance, in large quantity and at low cost. In this paper, we present a facile bulk method to synthesize silver-head colloidal silica rods. These particles self-propel towards their active sites by reacting with hydrogen peroxide, and the velocity is tuned via the fuel concentration. We show that these motors are highly efficient; compared to the currently available chemical-phoretic micro/nanomotors they show similar performance of self-propulsion at fuel concentrations that are two orders of magnitude smaller.
Collapse
Affiliation(s)
- Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, 518060, China.
| | | | | |
Collapse
|
506
|
Leeth Holterhoff A, Li M, Gibbs JG. Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface's Physicochemical Properties. J Phys Chem Lett 2018; 9:5023-5028. [PMID: 30122044 DOI: 10.1021/acs.jpclett.8b02277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-phoretic colloids are emerging as critical components of programmable nano- and microscale active matter and may usher in a new area of complex, small-scale machinery. To date, most studies have focused upon active particles confined by gravity to a plane located just above a solid/liquid interface. Despite this ubiquity, little attention has been directed at how the physicochemical qualities of this interface might affect motion. Here, we show that both the chemical and physical properties of the solid, above which motion takes place, significantly influence the behavior of particles propelled by self-generated concentration gradients. More specifically, titania/silica (TiO2/SiO2) photoactive microswimmers move faster when the local osmotic flow over the stationary solid is diminished, which we demonstrate by reducing the magnitude of the surface's zeta potential or by increasing surface roughness. Our results suggest that consideration of surface properties is crucial for modeling self-phoretic active matter while simultaneously offering a new avenue for engineering the kinematic behavior of such systems.
Collapse
Affiliation(s)
- Andrew Leeth Holterhoff
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| | - Mingyang Li
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| | - John G Gibbs
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| |
Collapse
|
507
|
Chen J, Chen Y, Kapral R. Chemically Propelled Motors Navigate Chemical Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800028. [PMID: 30250781 PMCID: PMC6145410 DOI: 10.1002/advs.201800028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/15/2018] [Indexed: 05/06/2023]
Abstract
Very small synthetic motors that use chemical reactions to drive their motion are being studied widely because of their potential applications, which often involve active transport and dynamics on nanoscales. Like biological molecular machines, they must be able to perform their tasks in complex, highly fluctuating environments that can form chemical patterns with diverse structures. Motors in such systems can actively assemble into dynamic clusters and other unique nonequilibrium states. It is shown how chemical patterns with small characteristic dimensions may be utilized to suppress rotational Brownian motions of motors and guide them to move along prescribed paths, properties that can be exploited in applications. In systems with larger pattern length scales, domains can serve as catch basins for motors through chemotactic effects. The resulting collective motor dynamics in such confining domains can be used to explore new aspects of active particle collective dynamics or promote specific types of active self-assembly. More generally, when chemically self-propelled motors operate in far-from-equilibrium active chemical media the variety of possible phenomena and the scope of their potential applications are substantially increased.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Yu‐Guo Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
508
|
Hou R, Cherstvy AG, Metzler R, Akimoto T. Biased continuous-time random walks for ordinary and equilibrium cases: facilitation of diffusion, ergodicity breaking and ageing. Phys Chem Chem Phys 2018; 20:20827-20848. [PMID: 30066003 DOI: 10.1039/c8cp01863d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent α are considered for the WTD ψ(t) ∼ 1/t1+α. We treat continuous-time random walks (CTRWs) with 0 < α < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < α < 2 and α > 2. We demonstrate that in the presence of a drift CTRWs with α < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < α < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with α > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < α < 2 and α > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with α > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent α.
Collapse
Affiliation(s)
- Ru Hou
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China.
| | | | | | | |
Collapse
|
509
|
Narinder N, Bechinger C, Gomez-Solano JR. Memory-Induced Transition from a Persistent Random Walk to Circular Motion for Achiral Microswimmers. PHYSICAL REVIEW LETTERS 2018; 121:078003. [PMID: 30169097 DOI: 10.1103/physrevlett.121.078003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
We experimentally study the motion of light-activated colloidal microswimmers in a viscoelastic fluid. We find that, in such a non-Newtonian environment, the active colloids undergo an unexpected transition from enhanced angular diffusion to persistent rotational motion above a critical propulsion speed, despite their spherical shape and stiffness. We observe that, in contrast to chiral asymmetric microswimmers, the resulting circular orbits can spontaneously reverse their sense of rotation and exhibit an angular velocity and a radius of curvature that nonlinearly depend on the propulsion speed. By means of a minimal non-Markovian Langevin model for active Brownian motion, we show that these nonequilibrium effects emerge from the delayed response of the fluid with respect to the self-propulsion of the particle without counterpart in Newtonian fluids.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | | |
Collapse
|
510
|
Kurzthaler C, Devailly C, Arlt J, Franosch T, Poon WCK, Martinez VA, Brown AT. Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy. PHYSICAL REVIEW LETTERS 2018; 121:078001. [PMID: 30169062 DOI: 10.1103/physrevlett.121.078001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/01/2018] [Indexed: 05/25/2023]
Abstract
We demonstrate differential dynamic microscopy and particle tracking for the characterization of the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function (ISF). We provide an analytical solution for the ISF of the paradigmatic active Brownian particle model and find striking agreement with experimental results from the smallest length scales, where translational diffusion and self-propulsion dominate, up to the largest ones, which probe effective diffusion due to rotational Brownian motion. At intermediate length scales, characteristic oscillations resolve the crossover between directed motion to orientational relaxation and allow us to discriminate active Brownian motion from other reorientation processes, e.g., run-and-tumble motion. A direct comparison to theoretical predictions reliably yields the rotational and translational diffusion coefficients of the particles, the mean and width of their speed distribution, and the temporal evolution of these parameters.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Clémence Devailly
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jochen Arlt
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Aidan T Brown
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
511
|
Chu G, Zussman E. From Chaos to Order: Evaporative Assembly and Collective Behavior in Drying Liquid Crystal Droplets. J Phys Chem Lett 2018; 9:4795-4801. [PMID: 30084639 DOI: 10.1021/acs.jpclett.8b01866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emergence of dynamic assembly and collective motion in living systems are marvels of nature that suggest universal principles for governing self-organization. By drying a drop of surfactant-stabilized liquid crystal emulsions, we present a simple form of evaporative assembly and collective motion in colloidal droplets. Driven by local evaporation flux distribution and capillary force, the dynamic mode in these swimming liquid crystal droplets highly depends on their intrinsic configurations, exhibiting a macroscopic transition from chaotic to well-organized. The combination of collective behavior, speed distribution, interparticle interaction, formation of topological defects and dislocations in a swarm of hexagonal ordered liquid crystal droplets produced a myriad of dynamical states, which suggest a means of mimicking the nonequilibrium state of living matter with controlled properties.
Collapse
Affiliation(s)
- Guang Chu
- NanoEngineering Group, Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
512
|
Lima EO, Pereira PCN, Löwen H, Apolinario SWS. Complex structures generated by competing interactions in harmonically confined colloidal suspensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:325101. [PMID: 29974867 DOI: 10.1088/1361-648x/aad14f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the structural properties of colloidal particle systems interacting via an isotropic pair potential and confined by a three-dimensional harmonic potential. The interaction potential has a repulsive-attractive-repulsive profile that varies with the interparticle distance (also known as a 'mermaid' potential). We performed Langevin dynamics simulations to find the equilibrium configurations of the system. We show that particles can self-assemble in complex structural patterns, such as compact disks, fringed disks, rods, spherical clusters with superficial entrances among others. Also, for particular values of the parameters of the interaction potential, we could identify that some configurations were formed by quasi two-dimensional (2D) structures which are stable for 2D systems.
Collapse
Affiliation(s)
- E O Lima
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | | | | |
Collapse
|
513
|
O'Neel-Judy É, Nicholls D, Castañeda J, Gibbs JG. Light-Activated, Multi-Semiconductor Hybrid Microswimmers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801860. [PMID: 29995334 DOI: 10.1002/smll.201801860] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/28/2018] [Indexed: 05/28/2023]
Abstract
Using a dynamic fabrication process, hybrid, photoactivated microswimmers made from two different semiconductors, titanium dioxide (TiO2 ) and cuprous oxide (Cu2 O) are developed, where each material occupies a distinct portion of the multiconstituent particles. Structured light-activated microswimmers made from only TiO2 or Cu2 O are observed to be driven in hydrogen peroxide and water most vigorously under UV or blue light, respectively, whereas hybrid structures made from both of these materials exhibit wavelength-dependent modes of motion due to the disparate responses of each photocatalyst. It is also found that the hybrid particles are activated in water alone, a behavior which is not observed in those made from a single semiconductor, and thus, the system may open up a new class of fuel-free photoactive colloids that take advantage of semiconductor heterojunctions. The TiO2 /Cu2 O hybrid microswimmer presented here is but an example of a broader method for inducing different modes of motion in a single light-activated particle, which is not limited to the specific geometries and materials presented in this study.
Collapse
Affiliation(s)
- Étude O'Neel-Judy
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Dylan Nicholls
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - John Castañeda
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - John G Gibbs
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
514
|
Abaurrea Velasco C, Abkenar M, Gompper G, Auth T. Collective behavior of self-propelled rods with quorum sensing. Phys Rev E 2018; 98:022605. [PMID: 30253508 DOI: 10.1103/physreve.98.022605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Active agents-like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays-show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.
Collapse
Affiliation(s)
- Clara Abaurrea Velasco
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Masoud Abkenar
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
515
|
Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci U S A 2018; 115:8272-8277. [PMID: 30061393 DOI: 10.1073/pnas.1800819115] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The separation of motile sperm from semen samples is sought after for medical infertility treatments. In this work, we demonstrate a high-throughput microfluidic device that can passively isolate motile sperm within corrals inside a fluid channel, separating them from the rest of the diluted sample. Using finite element method simulations and proposing a model for sperm motion, we investigated how flow rate can provide a rheotaxis zone in front of the corral for sperm to move upstream/downstream depending on their motility. Using three different flow rates that provided shear rates above the minimum value within the rheotaxis zone, we experimentally tested the device with human and bovine semen. By taking advantage of the rheotactic behavior of sperm, this microfluidic device is able to corral motile sperm with progressive velocities in the range of 48-93 μm⋅s-1 and 51-82 μm⋅s-1 for bovine and human samples, respectively. More importantly, we demonstrate that the separated fractions of both human and bovine samples feature 100% normal progressive motility. Furthermore, by extracting the sperm swimming distribution within the rheotaxis zone and sperm velocity distribution inside the corral, we show that the minimum velocity of the corralled sperm can be adjusted by changing the flow rate; that is, we are able to control the motility of the separated sample. This microfluidic device is simple to use, is robust, and has a high throughput compared with traditional methods of motile sperm separation, fulfilling the needs for sperm sample preparation for medical treatments, clinical applications, and fundamental studies.
Collapse
|
516
|
Martín-Gómez A, Gompper G, Winkler RG. Active Brownian Filamentous Polymers under Shear Flow. Polymers (Basel) 2018; 10:E837. [PMID: 30960761 PMCID: PMC6403868 DOI: 10.3390/polym10080837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
The conformational and rheological properties of active filaments/polymers exposed to shear flow are studied analytically. Using the continuous Gaussian semiflexible polymer model extended by the activity, we derive analytical expressions for the dependence of the deformation, orientation, relaxation times, and viscosity on the persistence length, shear rate, and activity. The model yields a Weissenberg-number dependent shear-induced deformation, alignment, and shear thinning behavior, similarly to the passive counterpart. Thereby, the model shows an intimate coupling between activity and shear flow. As a consequence, activity enhances the shear-induced polymer deformation for flexible polymers. For semiflexible polymers/filaments, a nonmonotonic deformation is obtained because of the activity-induced shrinkage at moderate and swelling at large activities. Independent of stiffness, activity-induced swelling facilitates and enhances alignment and shear thinning compared to a passive polymer. In the asymptotic limit of large activities, a polymer length- and stiffness-independent behavior is obtained, with universal shear-rate dependencies for the conformations, dynamics, and rheology.
Collapse
Affiliation(s)
- Aitor Martín-Gómez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
517
|
Pessot G, Löwen H, Menzel AM. Binary pusher–puller mixtures of active microswimmers and their collective behaviour. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1496291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giorgio Pessot
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
518
|
Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, Mohamud R, Lim J. Artificial Magnetotaxis of Microbot: Magnetophoresis versus Self-Swimming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7971-7980. [PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Hui Xin Che
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Chen Guo
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Chunzhao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Siew Chun Low
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences , Universiti Sains Malaysia , 16150 Kubang Kerian , Kelantan , Malaysia
| | - JitKang Lim
- School of Chemical Engineering , Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
519
|
Khaluf Y, Ferrante E, Simoens P, Huepe C. Scale invariance in natural and artificial collective systems: a review. J R Soc Interface 2018; 14:rsif.2017.0662. [PMID: 29093130 DOI: 10.1098/rsif.2017.0662] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023] Open
Abstract
Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics. We then provide examples of scale invariance from different domains in science, describe their origins and main features and discuss potential challenges and approaches for designing and engineering artificial systems with scale-invariant properties.
Collapse
Affiliation(s)
- Yara Khaluf
- Ghent University-imec, IDLab-INTEC, Technologiepark 15, 9052 Gent, Belgium
| | - Eliseo Ferrante
- KU Leuven, Laboratory of Socioecology and Social Evolution, Naamsestraat 59, 3000 Leuven, Belgium
| | - Pieter Simoens
- Ghent University-imec, IDLab-INTEC, Technologiepark 15, 9052 Gent, Belgium
| | - Cristián Huepe
- CHuepe Labs, 814 W 19th Street 1F, Chicago, IL 60608, USA.,Northwestern Institute on Complex Systems & ESAM, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
520
|
Bott MC, Winterhalter F, Marechal M, Sharma A, Brader JM, Wittmann R. Isotropic-nematic transition of self-propelled rods in three dimensions. Phys Rev E 2018; 98:012601. [PMID: 30110778 DOI: 10.1103/physreve.98.012601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in three dimensions.
Collapse
Affiliation(s)
- M C Bott
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - F Winterhalter
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - M Marechal
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany
| | - J M Brader
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - R Wittmann
- Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
521
|
Desai N, Ardekani AM. Combined influence of hydrodynamics and chemotaxis in the distribution of microorganisms around spherical nutrient sources. Phys Rev E 2018; 98:012419. [PMID: 30110747 DOI: 10.1103/physreve.98.012419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
We study how the interaction between hydrodynamics and chemotaxis affects the colonization of nutrient sources by microorganisms. We use an individual-based model and perform probabilistic simulations to ascertain the impact of important environmental and motility characteristics on the spatial distribution of microorganisms around a spherical nutrient source. In general, we unveil four distinct regimes based on the distribution of the microorganisms: (i) strong surface colonization, (ii) rotary-diffusion-induced "off-surface" accumulation, (iii) a depletion zone in the spatial distribution, and (iv) no appreciable aggregation, with their occurrence being contingent on the relative strengths of hydrodynamic and chemotactic effects. More specifically, we show that the extent of surface colonization first increases, then reaches a plateau, and finally decreases as the nutrient availability is increased. We also show that surface colonization reduces monotonically as the mean run length of the chemotactic microorganisms increases. Our study provides insight into the interplay of two important mechanisms governing microorganism behavior near nutrient sources, isolates each of their effects, and thus offers greater predictability of this nontrivial phenomenon.
Collapse
Affiliation(s)
- Nikhil Desai
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
522
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
523
|
Schwarzendahl FJ, Mazza MG. Maximum in density heterogeneities of active swimmers. SOFT MATTER 2018; 14:4666-4678. [PMID: 29717736 DOI: 10.1039/c7sm02301d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Suspensions of unicellular microswimmers such as flagellated bacteria or motile algae can exhibit spontaneous density heterogeneities at large enough concentrations. We introduce a novel model for biological microswimmers that creates the flow field of the corresponding microswimmers, and takes into account the shape anisotropy of the swimmer's body and stroke-averaged flagella. By employing multiparticle collision dynamics, we directly couple the swimmer's dynamics to the fluid's. We characterize the nonequilibrium phase diagram, as the filling fraction and Péclet number are varied, and find density heterogeneities in the distribution of both pullers and pushers, due to hydrodynamic instabilities. We find a maximum degree of clustering at intermediate filling fractions and at large Péclet numbers resulting from a competition of hydrodynamic and steric interactions between the swimmers. We develop an analytical theory that supports these results. This maximum might represent an optimum for the microorganisms' colonization of their environment.
Collapse
Affiliation(s)
- Fabian Jan Schwarzendahl
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany.
| | | |
Collapse
|
524
|
Jamali T, Naji A. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening. SOFT MATTER 2018; 14:4820-4834. [PMID: 29845128 DOI: 10.1039/c8sm00338f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.
Collapse
Affiliation(s)
- Tayeb Jamali
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
| | | |
Collapse
|
525
|
Eisenstecken T, Gompper G, Winkler RG. Internal dynamics of semiflexible polymers with active noise. J Chem Phys 2018; 146:154903. [PMID: 28433012 DOI: 10.1063/1.4981012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The intramolecular dynamics of flexible and semiflexible polymers in response to active noise is studied theoretically. The active noise may either originate from interactions of a passive polymer with a bath of active Brownian particles or the polymer itself is comprised of active Brownian particles. We describe the polymer by the continuous Gaussian semiflexible-polymer model, taking into account the finite polymer extensibility. Our analytical calculations predict a strong dependence of the polymer dynamics on the activity. In particular, active semiflexible polymers exhibit a crossover from a bending elasticity-dominated dynamics at weak activity to that of flexible polymers at strong activity. The end-to-end vector correlation function decays exponentially for times longer than the longest polymer relaxation time. Thereby, the polymer relaxation determines the decay of the correlation function for long and flexible polymers. For shorter and stiffer polymers, the relaxation behavior of individual active Brownian particles dominates the decay above a certain activity. The diffusive dynamics of a polymer is substantially enhanced by the activity. Three regimes can be identified in the mean square displacement for sufficiently strong activities: an activity-induced ballistic regime at short times, followed by a Rouse-type polymer-specific regime for any polymer stiffness, and free diffusion at long times, again determined by the activity.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
526
|
Colberg PH, Kapral R. Many-body dynamics of chemically propelled nanomotors. J Chem Phys 2018; 147:064910. [PMID: 28810764 DOI: 10.1063/1.4997572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
Collapse
Affiliation(s)
- Peter H Colberg
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
527
|
Duman Ö, Isele-Holder RE, Elgeti J, Gompper G. Collective dynamics of self-propelled semiflexible filaments. SOFT MATTER 2018; 14:4483-4494. [PMID: 29808191 DOI: 10.1039/c8sm00282g] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and self-propulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods. As activity increases, finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly to self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter.
Collapse
Affiliation(s)
- Özer Duman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forchungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | | | | | | |
Collapse
|
528
|
Ferreiro-Córdova C, Toner J, Löwen H, Wensink HH. Long-time anomalous swimmer diffusion in smectic liquid crystals. Phys Rev E 2018; 97:062606. [PMID: 30011607 DOI: 10.1103/physreve.97.062606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The dynamics of self-locomotion of active particles in aligned or liquid crystalline fluids strongly deviates from that in simple isotropic media. We explore the long-time dynamics of a swimmer moving in a three-dimensional smectic liquid crystal and find that the mean-square displacement transverse to the director exhibits a distinct logarithmic tail at long times. The scaling is distinctly different from that in an isotropic or nematic fluid and hints at the subtle but important role of the director fluctuation spectrum in governing the long-time motility of active particles. Our findings are based on a generic hydrodynamic theory and Brownian dynamics computer simulation of a three-dimensional soft mesogen model.
Collapse
Affiliation(s)
- Claudia Ferreiro-Córdova
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
529
|
Okumura K, Nishikawa S, Omori T, Ishikawa T, Takamatsu A. Asymmetry in cilia configuration induces hydrodynamic phase locking. Phys Rev E 2018; 97:032411. [PMID: 29776148 DOI: 10.1103/physreve.97.032411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 11/07/2022]
Abstract
To gain insight into the nature of biological synchronization at the microscopic scale, we here investigate the hydrodynamic synchronization between conically rotating objects termed nodal cilia. A mechanical model of three rotating cilia is proposed with consideration of variation in their shapes and geometrical arrangement. We conduct numerical estimations of both near-field and far-field hydrodynamic interactions, and we apply a conventional averaging method for weakly coupled oscillators. In the nonidentical case, the three cilia showed stable locked-phase differences around ±π/2. However, such phase locking also occurred with three identical cilia when allocated in a triangle except for the equilateral triangle. The effects of inhomogeneity in cilia shapes and geometrical arrangement on such asymmetric interaction is discussed to understand the role of biological variation in synchronization via hydrodynamic interactions.
Collapse
Affiliation(s)
- Keiji Okumura
- Department of Electrical Engineering and Bioscience, Waseda University, Sinjuku-ku, Tokyo 169-8555, Japan
| | - Seiya Nishikawa
- Department of Electrical Engineering and Bioscience, Waseda University, Sinjuku-ku, Tokyo 169-8555, Japan
| | - Toshihiro Omori
- Department of Finemechanics, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Atsuko Takamatsu
- Department of Electrical Engineering and Bioscience, Waseda University, Sinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
530
|
Liebchen B, Monderkamp P, Ten Hagen B, Löwen H. Viscotaxis: Microswimmer Navigation in Viscosity Gradients. PHYSICAL REVIEW LETTERS 2018; 120:208002. [PMID: 29864289 DOI: 10.1103/physrevlett.120.208002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Indexed: 06/08/2023]
Abstract
The survival of many microorganisms, like Leptospira or Spiroplasma bacteria, can depend on their ability to navigate towards regions of favorable viscosity. While this ability, called viscotaxis, has been observed in several bacterial experiments, the underlying mechanism remains unclear. We provide a framework to study viscotaxis of biological or synthetic self-propelled swimmers in slowly varying viscosity fields and show that suitable body shapes create viscotaxis based on a systematic asymmetry of viscous forces acting on a microswimmer. Our results shed new light on viscotaxis in Spiroplasma and Leptospira and suggest that dynamic body shape changes exhibited by both types of microorganisms may have an unrecognized functionality: to prevent them from drifting to low viscosity regions where they swim poorly. The present theory classifies microswimmers regarding their ability to show viscotaxis and can be used to design synthetic viscotactic swimmers, e.g., for delivering drugs to a target region distinguished by viscosity.
Collapse
Affiliation(s)
- Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Paul Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Borge Ten Hagen
- Physics of Fluids Group and Max Planck Center Twente, Department of Science and Technology, MESA+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
531
|
Meng F, Matsunaga D, Golestanian R. Clustering of Magnetic Swimmers in a Poiseuille Flow. PHYSICAL REVIEW LETTERS 2018; 120:188101. [PMID: 29775341 DOI: 10.1103/physrevlett.120.188101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
We investigate the collective behavior of magnetic swimmers, which are suspended in a Poiseuille flow and placed under an external magnetic field, using analytical techniques and Brownian dynamics simulations. We find that the interplay between intrinsic activity, external alignment, and magnetic dipole-dipole interactions leads to longitudinal structure formation. Our work sheds light on a recent experimental observation of a clustering instability in this system.
Collapse
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Daiki Matsunaga
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
532
|
Vilfan M, Osterman N, Vilfan A. Magnetically driven omnidirectional artificial microswimmers. SOFT MATTER 2018; 14:3415-3422. [PMID: 29670984 DOI: 10.1039/c8sm00230d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an experimental realisation of two new artificial microswimmers that swim at low Reynolds number. The swimmers are externally driven with a periodically modulated magnetic field that induces an alternating attractive/repulsive interaction between the swimmer parts. The field sequence also modulates the drag on the swimmer components, making the working cycle non-reciprocal. The resulting net translational displacement leads to velocities of up to 2 micrometers per second. The swimmers can be made omnidirectional, meaning that the same magnetic field sequence can drive swimmers in any direction in the sample plane. Although the direction of their swimming is determined by the momentary orientation of the swimmer, their motion can be guided by solid boundaries. We demonstrate their omnidirectionality by letting them travel through a circular microfluidic channel. We use simple scaling arguments as well as more detailed numerical simulations to explain the measured velocity as a function of the actuation frequency.
Collapse
Affiliation(s)
- Mojca Vilfan
- J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
533
|
Praetorius S, Voigt A, Wittkowski R, Löwen H. Active crystals on a sphere. Phys Rev E 2018; 97:052615. [PMID: 29906962 DOI: 10.1103/physreve.97.052615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.
Collapse
Affiliation(s)
- Simon Praetorius
- Institute for Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Axel Voigt
- Institute for Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), D-01062 Dresden, Germany
- Center for Systems Biology Dresden (CSBD), D-01307 Dresden, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
534
|
Affiliation(s)
| | - Chantal Valeriani
- Departamento de Física Aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
535
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
536
|
Robertson B, Stark H, Kapral R. Collective orientational dynamics of pinned chemically-propelled nanorotors. CHAOS (WOODBURY, N.Y.) 2018; 28:045109. [PMID: 31906629 DOI: 10.1063/1.5018297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
537
|
Liao JJ, Huang XQ, Ai BQ. Transport of the moving barrier driven by chiral active particles. J Chem Phys 2018. [DOI: 10.1063/1.5018371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-jing Liao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xiao-qun Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
538
|
Wang Q, Othmer HG. Analysis of a model microswimmer with applications to blebbing cells and mini-robots. J Math Biol 2018; 76:1699-1763. [PMID: 29497820 DOI: 10.1007/s00285-018-1225-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/05/2018] [Indexed: 11/25/2022]
Abstract
Recent research has shown that motile cells can adapt their mode of propulsion depending on the environment in which they find themselves. One mode is swimming by blebbing or other shape changes, and in this paper we analyze a class of models for movement of cells by blebbing and of nano-robots in a viscous fluid at low Reynolds number. At the level of individuals, the shape changes comprise volume exchanges between connected spheres that can control their separation, which are simple enough that significant analytical results can be obtained. Our goal is to understand how the efficiency of movement depends on the amplitude and period of the volume exchanges when the spheres approach closely during a cycle. Previous analyses were predicated on wide separation, and we show that the speed increases significantly as the separation decreases due to the strong hydrodynamic interactions between spheres in close proximity. The scallop theorem asserts that at least two degrees of freedom are needed to produce net motion in a cyclic sequence of shape changes, and we show that these degrees can reside in different swimmers whose collective motion is studied. We also show that different combinations of mode sharing can lead to significant differences in the translation and performance of pairs of swimmers.
Collapse
Affiliation(s)
- Qixuan Wang
- 540R Rowland Hall, University of California, Irvine, Irvine, USA.
| | - Hans G Othmer
- School of Mathematics, 270A Vincent Hall, University of Minnesota, Minneapolis, USA
| |
Collapse
|
539
|
Duzgun A, Selinger JV. Active Brownian particles near straight or curved walls: Pressure and boundary layers. Phys Rev E 2018; 97:032606. [PMID: 29776164 DOI: 10.1103/physreve.97.032606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.
Collapse
Affiliation(s)
- Ayhan Duzgun
- Department of Physics and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| | - Jonathan V Selinger
- Department of Physics and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
| |
Collapse
|
540
|
Pimponi D, Chinappi M, Gualtieri P. Flagellated microswimmers: Hydrodynamics in thin liquid films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:28. [PMID: 29488023 DOI: 10.1140/epje/i2018-11635-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The hydrodynamics of a flagellated microswimmer moving in thin films is discussed. The fully resolved hydrodynamics is exploited by solving the Stokes equations for the actual geometry of the swimmer. Two different interfaces are used to confine the swimmer: a bottom solid wall and a top air-liquid interface, as appropriate for a thin film. The swimmer follows curved clockwise trajectories that can converge towards an asymptotically stable circular path or can result in a collision with one of the two interfaces. A bias towards the air-liquid interface emerges. Slight changes in the swimmer geometry and film thickness strongly affect the resulting dynamics suggesting that a very reach phenomenology occurs in the presence of confinement. Under specific conditions, the swimmer follows a "crown-like" path. Implications for the motion of bacteria close to an air bubble moving in a microchannel are discussed.
Collapse
Affiliation(s)
- Daniela Pimponi
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184, Roma, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133, Roma, Italy
| | - Paolo Gualtieri
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184, Roma, Italy.
| |
Collapse
|
541
|
Hermann S, Schmidt M. Active ideal sedimentation: exact two-dimensional steady states. SOFT MATTER 2018; 14:1614-1621. [PMID: 29411843 DOI: 10.1039/c7sm02515g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
542
|
Abstract
We unveil orbital topologies of two nearby swimming microorganisms using an artificial microswimmer, called Quadroar. Depending on the initial conditions of the microswimmers, we find diverse families of attractors including dynamical equilibria, bound orbits, braids, and pursuit–evasion games. We also observe a hydrodynamic slingshot effect: a system of two hydrodynamically interacting swimmers moving along braids can advance in space faster than non-interacting swimmers that have the same actuation parameters and initial conditions as the interacting ones. Our findings suggest the existence of complex collective behaviors of microswimmers, from equilibrium to rapidly streaming states.
Collapse
|
543
|
de Macedo Biniossek N, Löwen H, Voigtmann T, Smallenburg F. Static structure of active Brownian hard disks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:074001. [PMID: 29271364 DOI: 10.1088/1361-648x/aaa3bf] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
Collapse
Affiliation(s)
- N de Macedo Biniossek
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
544
|
Malgaretti P, Popescu MN, Dietrich S. Self-diffusiophoresis induced by fluid interfaces. SOFT MATTER 2018; 14:1375-1388. [PMID: 29383367 DOI: 10.1039/c7sm02347b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The influence of a fluid-fluid interface on self-phoresis of chemically active, axially symmetric, spherical colloids is analyzed. Distinct from the studies of self-phoresis for colloids trapped at fluid interfaces or in the vicinity of hard walls, here we focus on the issue of self-phoresis close to a fluid-fluid interface. In order to provide physically intuitive results highlighting the role played by the interface, the analysis is carried out for the case that the symmetry axis of the colloid is normal to the interface; moreover, thermal fluctuations are not taken into account. Similarly to what has been observed near hard walls, we find that such colloids can be set into motion even if their whole surface is homogeneously active. This is due to the anisotropy along the direction normal to the interface owing to the partitioning by diffusion, among the coexisting fluid phases, of the product of the chemical reaction taking place at the colloid surface. Different from results corresponding to hard walls, in the case of a fluid interface the direction of motion, i.e., towards the interface or away from it, can be controlled by tuning the physical properties of one of the two fluid phases. This effect is analyzed qualitatively and quantitatively, both by resorting to a far-field approximation and via an exact, analytical calculation which provides the means for a critical assessment of the approximate analysis.
Collapse
Affiliation(s)
- P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|
545
|
James M, Wilczek M. Vortex dynamics and Lagrangian statistics in a model for active turbulence. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:21. [PMID: 29435676 DOI: 10.1140/epje/i2018-11625-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain conditions. We study this phenomenon of "active turbulence" statistically by using numerical tools. Following Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of two-point statistics in this system. Furthermore, we extend this statistical study with measurements of vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.
Collapse
Affiliation(s)
- Martin James
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
546
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
547
|
Elementary Flow Field Profiles of Micro-Swimmers in Weakly Anisotropic Nematic Fluids: Stokeslet, Stresslet, Rotlet and Source Flows. FLUIDS 2018. [DOI: 10.3390/fluids3010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
548
|
Richard C, Simmchen J, Eychmüller A. Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Harvesting energy from photochemical reactions has long been studied as an efficient means of renewable energy, a topic that is increasingly gaining importance also for motion at the microscale. Iron oxide has been a material of interest in recent studies. Thus, in this work different synthesis methods and encapsulation techniques were used to try and optimize the photo-catalytic properties of iron oxide colloids. Photodegradation experiments were carried out following the encapsulation of the nanoparticles and the Fenton effect was also verified. The end goal would be to use the photochemical degradation of peroxide to propel an array of swimmers in a controlled manner while utilizing the Fenton effect for the degradation of dyes or waste in wastewater remediation.
Collapse
|
549
|
Reinken H, Klapp SHL, Bär M, Heidenreich S. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Phys Rev E 2018; 97:022613. [PMID: 29548118 DOI: 10.1103/physreve.97.022613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 06/08/2023]
Abstract
In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016)2470-004510.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.
Collapse
Affiliation(s)
- Henning Reinken
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
550
|
Agrawal A, Babu SB. Self-organization in a bimotility mixture of model microswimmers. Phys Rev E 2018; 97:020401. [PMID: 29548189 DOI: 10.1103/physreve.97.020401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Indexed: 06/08/2023]
Abstract
We study the cooperation and segregation dynamics in a bimotility mixture of microorganisms which swim at low Reynolds numbers via periodic deformations along the body. We employ a multiparticle collision dynamics method to simulate a two component mixture of artificial swimmers, termed as Taylor lines, which differ from each other only in the propulsion speed. The analysis reveals that a contribution of slower swimmers towards clustering, on average, is much larger as compared to the faster ones. We notice distinctive self-organizing dynamics, depending on the percentage difference in the speed of the two kinds. If this difference is large, the faster ones fragment the clusters of the slower ones in order to reach the boundary and form segregated clusters. Contrarily, when it is small, both kinds mix together at first, the faster ones usually leading the cluster and then gradually the slower ones slide out thereby also leading to segregation.
Collapse
Affiliation(s)
- Adyant Agrawal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujin B Babu
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|