501
|
Dijk W, Di Filippo M, Kooijman S, van Eenige R, Rimbert A, Caillaud A, Thedrez A, Arnaud L, Pronk A, Garçon D, Sotin T, Lindenbaum P, Ozcariz Garcia E, Pais de Barros JP, Duvillard L, Si-Tayeb K, Amigo N, Le Questel JY, Rensen PC, Le May C, Moulin P, Cariou B. Identification of a Gain-of-Function LIPC Variant as a Novel Cause of Familial Combined Hypocholesterolemia. Circulation 2022; 146:724-739. [PMID: 35899625 PMCID: PMC9439636 DOI: 10.1161/circulationaha.121.057978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease is the main cause of mortality worldwide and is strongly influenced by circulating low-density lipoprotein (LDL) cholesterol levels. Only a few genes causally related to plasma LDL cholesterol levels have been identified so far, and only 1 gene, ANGPTL3, has been causally related to combined hypocholesterolemia. Here, our aim was to elucidate the genetic origin of an unexplained combined hypocholesterolemia inherited in 4 generations of a French family. METHODS Using next-generation sequencing, we identified a novel dominant rare variant in the LIPC gene, encoding for hepatic lipase, which cosegregates with the phenotype. We characterized the impact of this LIPC-E97G variant on circulating lipid and lipoprotein levels in family members using nuclear magnetic resonance-based lipoprotein profiling and lipidomics. To uncover the mechanisms underlying the combined hypocholesterolemia, we used protein homology modeling, measured triglyceride lipase and phospholipase activities in cell culture, and studied the phenotype of APOE*3.Leiden.CETP mice after LIPC-E97G overexpression. RESULTS Family members carrying the LIPC-E97G variant had very low circulating levels of LDL cholesterol and high-density lipoprotein cholesterol, LDL particle numbers, and phospholipids. The lysophospholipids/phospholipids ratio was increased in plasma of LIPC-E97G carriers, suggestive of an increased lipolytic activity on phospholipids. In vitro and in vivo studies confirmed that the LIPC-E97G variant specifically increases the phospholipase activity of hepatic lipase through modification of an evolutionarily conserved motif that determines substrate access to the hepatic lipase catalytic site. Mice overexpressing human LIPC-E97G recapitulated the combined hypocholesterolemic phenotype of the family and demonstrated that the increased phospholipase activity promotes catabolism of triglyceride-rich lipoproteins by different extrahepatic tissues but not the liver. CONCLUSIONS We identified and characterized a novel rare variant in the LIPC gene in a family who presents with dominant familial combined hypocholesterolemia. This gain-of-function variant makes LIPC the second identified gene, after ANGPTL3, causally involved in familial combined hypocholesterolemia. Our mechanistic data highlight the critical role of hepatic lipase phospholipase activity in LDL cholesterol homeostasis and suggest a new LDL clearance mechanism.
Collapse
Affiliation(s)
- Wieneke Dijk
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Mathilde Di Filippo
- UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiStites, Hospices Civils de Lyon, Bron, France (M.D.F.).,CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.)
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Robin van Eenige
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Aurélie Thedrez
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Lucie Arnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Amanda Pronk
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Pierre Lindenbaum
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | | | - Jean-Paul Pais de Barros
- Lipidomic Platform, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France (J.-P.P.d.B.)
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, France (L.D.).,CHU Dijon, Department of Biochemistry, Dijon, France (L.D.)
| | - Karim Si-Tayeb
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain (E.O.G., N.A.).,Department of Basic Medical Sciences, Rovira I Virgili University, IISPV, CIBERDEM, Reus, Spain (N.A.)
| | | | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (S.K., R.v.E., A.P., P.C.N.R.)
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France (M.D.F., P.M.).,Fédération d’endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France (P.M.)
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, France (W.D., A.R., A.C., A.T., L.A., D.G., T.S., P.L., K.S.-T., C.L.M., B.C.)
| |
Collapse
|
502
|
Scisciola L, Cataldo V, Taktaz F, Fontanella RA, Pesapane A, Ghosh P, Franzese M, Puocci A, De Angelis A, Sportiello L, Marfella R, Barbieri M. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front Cardiovasc Med 2022; 9:1008922. [PMID: 36148061 PMCID: PMC9485634 DOI: 10.3389/fcvm.2022.1008922] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory disease leading to mortality and morbidity in the civilized world. Atherosclerosis manifests as an accumulation of plaques in the intimal layer of the arterial wall that, by its subsequent erosion or rupture, triggers cardiovascular diseases. Diabetes mellitus is a well-known risk factor for atherosclerosis. Indeed, Type 2 diabetes mellitus patients have an increased risk of atherosclerosis and its associated-cardiovascular complications than non-diabetic patients. Sodium-glucose co-transport 2 inhibitors (SGLT2i), a novel anti-diabetic drugs, have a surprising advantage in cardiovascular effects, such as reducing cardiovascular death in a patient with or without diabetes. Numerous studies have shown that atherosclerosis is due to a significant inflammatory burden and that SGLT2i may play a role in inflammation. In fact, several experiment results have demonstrated that SGLT2i, with suppression of inflammatory mechanism, slows the progression of atherosclerosis. Therefore, SGLT2i may have a double benefit in terms of glycemic control and control of the atherosclerotic process at a myocardial and vascular level. This review elaborates on the anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Lucia Scisciola
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
503
|
Civeira F, Arca M, Cenarro A, Hegele RA. A mechanism-based operational definition and classification of hypercholesterolemia. J Clin Lipidol 2022; 16:813-821. [DOI: 10.1016/j.jacl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
|
504
|
Gaine SP, Quispe R, Patel J, Michos ED. New Strategies for Lowering Low Density Lipoprotein Cholesterol for Cardiovascular Disease Prevention. CURRENT CARDIOVASCULAR RISK REPORTS 2022; 16:69-78. [PMID: 36213094 PMCID: PMC9543364 DOI: 10.1007/s12170-022-00694-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
Purpose of review The primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD) relies on optimizing cardiovascular health and appropriate pharmacotherapy, a mainstay of which is low-density lipoprotein-cholesterol (LDL-C) lowering. Typically, statin therapy remains the first line approach. Advances in technology and understanding of lipid metabolism have facilitated the development of several novel therapeutic targets and medications within the last decade. This review focuses on medications recently approved by the U.S. Food and Drug Administration (FDA) for the reduction of LDL-C and ASCVD risk, as well as new therapies in the pipeline. Recent findings Novel lipid therapies aim to lower risk of ASCVD by targeting reduction of atherogenic compounds, such as LDL, lipoprotein(a) (Lp(a)), and triglyceride-rich lipoproteins. Evolocumab and alirocumab, monoclonal antibody proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors which lower LDL-C by approximately 60%, have emerged as important therapies for use in patients with ASCVD as well as familial hypercholesterolemia (FH). Bempedoic acid, an ATP citrate lyase inhibitor, is an oral medication recently approved that can lower LDL-C by approximately 18% alone and 38% when combined with ezetimibe. Inclisiran, a small-interfering RNA (siRNA) molecule which inhibits the translation of PCSK9, is the most recently FDA-approved LDL-C lowering medication, and can reduce LDL-C by approximately 50% with twice yearly subcutaneous dosing. The cardiovascular outcome trials for bempedoic acid and inclisiran are still on-going. Evinacumab, a monoclonal antibody which targets angiopoietin-like protein 3 (ANGPTL3), has been approved for use in patients with homozygous FH. SiRNAs and anti-sense oligonucleotides (ASO) facilitating selective inhibition of the production of targeted proteins including Lp(a) and ANGLPTL3 are active areas of clinical investigation. Summary Recently several novel LDL-C lowering medications have been approved. New therapeutic targets have been identified and present additional means of lowering LDL-C and other atherogenic compounds for patients who remain at high ASCVD risk.
Collapse
Affiliation(s)
- Sean Paul Gaine
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renato Quispe
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaideep Patel
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
505
|
Lucero D, Wolska A, Aligabi Z, Turecamo S, Remaley AT. Lipoprotein Assessment in the twenty-first Century. Endocrinol Metab Clin North Am 2022; 51:459-481. [PMID: 35963624 PMCID: PMC9382697 DOI: 10.1016/j.ecl.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on decades of both basic science and epidemiologic research, there is overwhelming evidence for the causal relationship between high levels of cholesterol, especially low-density lipoprotein cholesterol and cardiovascular disease. Risk evaluation and monitoring the response to lipid-lowering therapies are heavily dependent on the accurate assessment of plasma lipoproteins in the clinical laboratory. This article provides an update of lipoprotein metabolism as it relates to atherosclerosis and how diagnostic measures of lipids and lipoproteins can serve as markers of cardiovascular risk, with a focus on recent advances in cardiovascular risk marker testing.
Collapse
Affiliation(s)
- Diego Lucero
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA.
| | - Anna Wolska
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute. National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5N323, Bethesda, MD 20892, USA
| | - Zahra Aligabi
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute. National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5N323, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA
| |
Collapse
|
506
|
Nguyen SD, Maaninka K, Mäyränpää MI, Baumann M, Soliymani R, Lee-Rueckert M, Jauhiainen M, Kovanen PT, Öörni K. Neutrophil proteinase 3 - An LDL- and HDL-proteolyzing enzyme with a potential to contribute to cholesterol accumulation in human atherosclerotic lesions. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159225. [PMID: 36058498 DOI: 10.1016/j.bbalip.2022.159225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Su Duy Nguyen
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Maaninka
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland; EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Mikko I Mäyränpää
- Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marc Baumann
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland; Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
507
|
Association between Lipoprotein Subfractions, Hemostatic Potentials, and Coronary Atherosclerosis. DISEASE MARKERS 2022; 2022:2993309. [PMID: 36082237 PMCID: PMC9448618 DOI: 10.1155/2022/2993309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/17/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Background. Dyslipidemias are associated with atherosclerotic plaque formation and a prothrombotic state, thus increasing the risk of both atherosclerotic vascular disease and atherothrombotic adverse events. We sought to explore the association between lipoprotein subfractions, overall hemostasis, and coronary calcifications in individuals at intermediate cardiovascular risk. Methods. Consecutive statin-naive individuals at intermediate cardiovascular risk referred for coronary artery calcium score (CACS) scanning were included. CACS was assessed using a 128-slice dual-source CT scanner. Traditional lipid profile, high-density lipoprotein (HDL) subfractions 2 and 3, and small dense low-density lipoproteins (sdLDL) were measured with commercially available assays. Overall hemostatic (OHP) and coagulation potentials (OCP) were measured spectrophotometrically, using fibrin aggregation curves after exposure to thrombin and recombinant tissue-type plasminogen activator, respectively. Overall fibrinolytic potential (OFP) was calculated as a difference between the two areas under curves. Results. We included 160 patients (median age 63 (interquartile range (IQR), 56-71 years, 52% women, and median CACS 8, IQR 0-173 Agatston units). HDL3 levels—but not sdLDL or hemostatic potentials—were significantly associated with CACS zero, even after adjusting for age, sex, arterial hypertension, dyslipidemia, diabetes, and smoking history (OR 0.980 (0.962-0.999),
). HDL3 was also significantly associated with OCP (
,
adjusted for age and sex 0.037). Conclusions. In patients at intermediate cardiovascular risk, HDL3 is associated with both subclinical atherosclerosis and overall coagulation. Our findings are in line with studies reporting on an inverse relationship between HDL3 and atherosclerosis and provide one possible mechanistic explanation for the association between novel lipid biomarkers and coagulation derangements.
Collapse
|
508
|
Nordestgaard LT, Christoffersen M, Frikke-Schmidt R. Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2022; 23:9777. [PMID: 36077172 PMCID: PMC9456552 DOI: 10.3390/ijms23179777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, and the prodromal phases of Alzheimer's disease can last for decades. Vascular dementia is the second most common form of dementia and is distinguished from Alzheimer's disease by evidence of previous stroke or hemorrhage and current cerebrovascular disease. A compiled group of vascular-related dementias (vascular dementia and unspecified dementia) is often referred to as non-Alzheimer dementia. Recent evidence indicates that preventing dementia by lifestyle interventions early in life with a focus on reducing cardiovascular risk factors is a promising strategy for reducing future risk. Approximately 40% of dementia cases is estimated to be preventable by targeting modifiable, primarily cardiovascular risk factors. The aim of this review is to describe the association between risk factors for atherosclerotic cardiovascular disease and the risk of Alzheimer's disease and non-Alzheimer dementia by providing an overview of the current evidence and to shed light on possible shared pathogenic pathways between dementia and cardiovascular disease. The included risk factors are body mass index (BMI); plasma triglyceride-, high-density lipoprotein (HDL) cholesterol-, low-density lipoprotein (LDL) cholesterol-, and total cholesterol concentrations; hypertension; diabetes; non-alcoholic fatty liver disease (NAFLD); physical inactivity; smoking; diet; the gut microbiome; and genetics. Furthermore, we aim to disentangle the difference between associations of risk factors in midlife as compared with in late life.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
509
|
Brandts J, Verket M, Müller-Wieland D. [Lipid lowering: new agents and new concepts]. Herz 2022; 47:419-425. [PMID: 36018378 DOI: 10.1007/s00059-022-05133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
Abstract
Low-density lipoprotein (LDL) cholesterol (LDL-C) is a causal risk factor for cardiovascular complications. A target value is set according to risk, guideline-based and individual basis. We now have the means to lower LDL‑C levels to ranges that are even associated with plaque volume regression. Moreover, lipid treatment is an example of how pharmacotherapy has evolved from classical selective inhibition of enzymes by drugs (e.g. statins) to targeted neutralization of proteins by antibodies. The reduction of atherogenic lipoproteins by specific inhibition or reduction of mRNA of target proteins, e.g. PCSK‑9, ANGPLT3, ApoC-III or Apo (a), and possibly one day by vaccination or even CRISP-based gene therapy will in the long term lead to new concepts in the treatment and prevention of dyslipidemia and cardiovascular complications. The cumulative exposure of atherogenic lipoproteins to the vessel wall is determined by the time-averaged LDL‑C level. This essentially depends on patient adherence and prescribed treatment intensity by physicians. Therefore, it is likely that treatment adherence influences the cumulative benefit of treatment. Accordingly, the new therapeutic strategies mentioned above with presumably higher adherence rates could help to optimize cardiovascular prevention. Early and effective LDL‑C lowering could drastically reduce the incidence of cardiovascular complications in the long term and help to maintain the health of our patients.
Collapse
Affiliation(s)
- Julia Brandts
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Marlo Verket
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Dirk Müller-Wieland
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
510
|
Cho KH, Kim MC, Choo EH, Choi IJ, Lee SN, Park MW, Park CS, Kim HY, Kim CJ, Sim DS, Kim JH, Hong YJ, Jeong MH, Chang K, Ahn Y. Impact of Low Baseline Low-Density Lipoprotein Cholesterol on Long-Term Postdischarge Cardiovascular Outcomes in Patients With Acute Myocardial Infarction. J Am Heart Assoc 2022; 11:e025958. [PMID: 36000434 PMCID: PMC9496430 DOI: 10.1161/jaha.122.025958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Real‐world data on low baseline low‐density lipoprotein cholesterol (LDL‐C) levels and long‐term postdischarge cardiovascular outcomes in patients with acute coronary syndrome are limited. Methods and Results Of the 10 719 patients enrolled in the Korean registry of acute myocardial infarction between January 2004 and August 2014, we identified 5532 patients who were event free from death, recurrent myocardial infarction, or stroke during the in‐hospital period after successful percutaneous coronary intervention. The co–primary outcomes were 3‐point major adverse cardiovascular events (a composite of nonfatal stroke, nonfatal myocardial infarction, and cardiovascular death) and cardiovascular death at 5 years. Of 5532 patients with acute myocardial infarction (mean age, 62.1±12.8 years; 75.0% men), 446 cardiovascular deaths (8.1%) and 695 three‐point major adverse cardiovascular events (12.6%) occurred at 5 years. In the continuous analysis of LDL‐C, the risk of cardiovascular events increased steeply as LDL‐C levels decreased from 100 mg/dL. For categorical analysis of LDL‐C (<70, 70–99, and ≥100 mg/dL), as LDL‐C levels decreased, clinical outcomes worsened (237/3759 [6.3%] in LDL‐C ≥100 mg/dL versus 123/1291 [9.5%] in LDL‐C 70–99 mg/dL versus 86/482 [17.8%] in LDL‐C <70 mg/dL for cardiovascular death; P‐trend<0.001; and 417/3759 [11.1%] in LDL‐C ≥100 mg/dL versus 172/1291 [13.3%] in LDL‐C 70–99 mg/dL versus 106/482 [22.2%] in LDL‐C <70 mg/dL for 3‐point major adverse cardiovascular event; P‐trend<0.001). In a Cox time‐to‐event multivariable model with LDL‐C levels ≥100 mg/dL as the reference, the baseline LDL‐C level <70 mg/dL was independently associated with an increased incidence of cardiovascular death (adjusted hazard ratio, 1.68 [95% CI, 1.30–2.17]) and 3‐point major adverse cardiovascular event (adjusted hazard ratio, 1.37 [95% CI, 1.10–1.71]). Conclusions In this Korean acute myocardial infarction registry, the baseline LDL‐C level <70 mg/dL was significantly associated with an increased incidence of long‐term cardiovascular events after discharge. (COREA [Cardiovascular Risk and Identification of Potential High‐Risk Population]‐Acute Myocardial Infarction Registry; NCT02806102). Registration URL: https://www.clinicaltrials.gov/; Unique identifier: NCT02806102.
Collapse
Affiliation(s)
- Kyung Hoon Cho
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea
| | - Min Chul Kim
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| | - Eun Ho Choo
- Department of Cardiology Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul Republic of Korea
| | - Ik Jun Choi
- Department of Cardiology Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea Incheon Republic of Korea
| | - Su Nam Lee
- Department of Cardiology St Vincent's Hospital, College of Medicine, The Catholic University of Korea Suwon Republic of Korea
| | - Mahn-Won Park
- Department of Cardiology Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea Daejeon Republic of Korea
| | - Chul Soo Park
- Department of Cardiology Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul Republic of Korea
| | - Hee-Yeol Kim
- Department of Cardiology Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea Bucheon Republic of Korea
| | - Chan Joon Kim
- Department of Cardiology Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul Republic of Korea
| | - Doo Sun Sim
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| | - Ju Han Kim
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| | - Young Joon Hong
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| | - Kiyuk Chang
- Department of Cardiology Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology Chonnam National University Hospital Gwangju Republic of Korea.,Department of Cardiology Chonnam National University Medical School Hwasun-gun Republic of Korea
| |
Collapse
|
511
|
Fu C, Li Y, Xi H, Niu Z, Chen N, Wang R, Yan Y, Gan X, Wang M, Zhang W, Zhang Y, Lv P. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front Nutr 2022; 9:978475. [PMID: 35990352 PMCID: PMC9386258 DOI: 10.3389/fnut.2022.978475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the vessel-wall cells have been recognized. Many lines of evidence suggest that tobacco smoking and foodborne BaP exposure play a pivotal role in the dysfunctions of vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle cells, which contribute to the formation and worsening of cardiovascular diseases (CVDs). To clarify the underlying molecular mechanism of BaP-evoked CVDs, the present study mainly focused on both cellular and animal reports whose keywords include BaP and atherosclerosis, abdominal aortic aneurysm, hypertension, or myocardial injury. This review demonstrated the aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway exert a dominant role in the oxidative stress, inflammation response, and genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists of BaP are also discussed to better understand its mechanism of action on toxic pathways.
Collapse
Affiliation(s)
- Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao Xi
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Eco-Environmental Monitoring Center of Hebei Province, Shijiazhuang, China
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
512
|
Reiss AB, De Leon J. Special Issue on "Advances in Cholesterol and Lipid Metabolism". Metabolites 2022; 12:metabo12080765. [PMID: 36005636 PMCID: PMC9413280 DOI: 10.3390/metabo12080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cholesterol and lipid metabolism is a broad topic that encompasses multiple aspects of cellular function in every organ [...].
Collapse
|
513
|
Soleimani AA, Mohammadi A, Ghasempour G, Abkenar BR, Shokri N, Najafi M. Dexamethasone suppresses the proliferation and migration of VSMCs by FAK in high glucose conditions. BMC Pharmacol Toxicol 2022; 23:63. [PMID: 35978346 PMCID: PMC9382766 DOI: 10.1186/s40360-022-00604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background High glucose conditions cause some changes in the vessels of diabetes through the signal transduction pathways. Dexamethasone and other corticosteroids have a wide range of biological effects in immunological events. In the present study, the effects of dexamethasone were investigated on the VSMC (vascular smooth muscle cell) proliferation, and migration based on the FAK gene and protein changes in high glucose conditions. Methods and materials The vascular smooth muscle cells were cultured in DMEM and were treated with dexamethasone (10–7 M, 10–6 M, and 10–5 M) for 24, and 48 h in high glucose conditions. The cell viability was estimated by MTT method. The FAK gene expression levels and pFAK protein values were determined by RT-qPCR and western blotting techniques, respectively. A scratch assay was used to evaluate cellular migration. Results The FAK gene expression levels decreased significantly dependent on dexamethasone doses at 24 and 48 h. The pFAK protein values decreased significantly with a time lag at 24- and 48-h periods as compared with gene expression levels. Conclusion The results showed that the inhibition of VSMC proliferation and migration by dexamethasone in the high glucose conditions may be related to the changes of FAK. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00604-3.
Collapse
Affiliation(s)
- Ali Akbar Soleimani
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Clinical Biochemistry Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Borhan Rahimi Abkenar
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
514
|
Averyanova IV. Occurrence of metabolic syndrome components in northerners. Klin Lab Diagn 2022; 67:444-450. [PMID: 36095080 DOI: 10.51620/0869-2084-2022-67-8-444-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The metabolic syndrome is currently becoming more common. It is a significant public health concern as it is epidemic affecting populations in many regions of the world. In Magadan region no research has been carried out to study the frequency of components of the metabolic syndrome among northerners. This survey was performed to assess the occurrence of the main and additional components of the metabolic syndrome among 17 to 74 year old residents of the Northern region. Two hundred and forty north born Caucasians participated in the study: male subjects at their young age, working age, and retirement age, all belonging to the territory of Magadan region. We used photometric, immunochemiluminescent research methods, as well as standard methods for assessing body mass index and cardiovascular system. The metabolic syndrome factors were determined in accordance with the criteria of the National Cholesterol Education Program (NCEP), the Adult Treatment Program III (ATP III), the International Diabetes Federation (IDF), and the Consensus of International Experts in Cardiology and Endocrinology. We analyzed five main components of the metabolic syndrome (overweight, carbohydrate metabolic impairments hypertension, hypertriglyceridemia, hypoalphacholesterolemia) and three additional components (presence of insulin resistance, purine metabolism disorder, deficient and insufficient concentrations of vitamin D). Combinations of the components were also studied through the examined age groups. According to the ATP III, NCEP and IDF criteria, the metabolic syndrome was more common in elderly subjects (47%) than in working age (21%) or young examinees (3%). Older males tended to exhibit higher frequency of both the main and additional factors of metabolic syndrome. The total index of the occurrence of metabolic syndrome factors in the group of young men was 101%; in the group of men of working age - 180%, and in men of retirement age - 274%. The results on occurrence of the metabolic syndrome components observed in the surveyed groups of northerners can make an information data base, which we assume can be applied when planning and carrying out scientifically grounded preventive measures, which will improve subjective quality of life and its expectancy under the North conditions.
Collapse
|
515
|
Karppinen JE, Törmäkangas T, Kujala UM, Sipilä S, Laukkanen J, Aukee P, Kovanen V, Laakkonen EK. Menopause modulates the circulating metabolome: evidence from a prospective cohort study. Eur J Prev Cardiol 2022; 29:1448-1459. [PMID: 35930503 DOI: 10.1093/eurjpc/zwac060] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
AIMS We studied the changes in the circulating metabolome and their relation to the menopausal hormonal shift in 17β-oestradiol and follicle-stimulating hormone levels among women transitioning from perimenopause to early postmenopause. METHODS AND RESULTS We analysed longitudinal data from 218 Finnish women, 35 of whom started menopausal hormone therapy during the study. The menopausal transition was monitored with menstrual diaries and serum hormone measurements. The median follow-up was 14 months (interquartile range: 8-20). Serum metabolites were quantified with targeted nuclear magnetic resonance metabolomics. The model results were adjusted for age, follow-up duration, education, lifestyle, and multiple comparisons. Menopause was associated with 85 metabolite measures. The concentration of apoB (0.17 standard deviation [SD], 99.5% confidence interval [CI] 0.03-0.31), very-low-density lipoprotein triglycerides (0.25 SD, CI 0.05-0.45) and particles (0.21 SD, CI 0.05-0.36), low-density lipoprotein (LDL) cholesterol (0.17 SD, CI 0.01-0.34) and particles (0.17 SD, CI 0.03-0.31), high-density lipoprotein (HDL) triglycerides (0.24 SD, CI 0.02-0.46), glycerol (0.32 SD, CI 0.07-0.58) and leucine increased (0.25 SD, CI 0.02-0.49). Citrate (-0.36 SD, CI -0.57 to -0.14) and 3-hydroxybutyrate concentrations decreased (-0.46 SD, CI -0.75 to -0.17). Most metabolite changes were associated with the menopausal hormonal shift. This explained 11% and 9% of the LDL cholesterol and particle concentration increase, respectively. Menopausal hormone therapy was associated with increased medium-to-large HDL particle count and decreased small-to-medium LDL particle and glycine concentration. CONCLUSIONS Menopause is associated with proatherogenic circulating metabolome alterations. Female sex hormones levels are connected to the alterations, highlighting their impact on women's cardiovascular health.
Collapse
Affiliation(s)
- Jari E Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Laukkanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Internal Medicine, Central Finland Health Care District, Jyväskylä, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pauliina Aukee
- Department of Obstetrics and Gynecology, Pelvic Floor Research and Therapy Unit, Central Finland Health Care District, Jyväskylä, Finland
| | - Vuokko Kovanen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
516
|
Marco-Benedí V, Bea AM, Cenarro A, Jarauta E, Laclaustra M, Civeira F. Current causes of death in familial hypercholesterolemia. Lipids Health Dis 2022; 21:64. [PMID: 35918701 PMCID: PMC9344778 DOI: 10.1186/s12944-022-01671-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a codominant autosomal disease characterized by high low-density lipoprotein cholesterol (LDLc) and a high risk of premature cardiovascular disease (CVD). The molecular bases have been well defined, and effective lipid lowering is possible. This analysis aimed to study the current major causes of death of genetically defined heterozygous familial hypercholesterolemia (heFH). METHODS A case‒control study was designed to analyse life-long mortality in a group of heFH and control families. Data from first-degree family members of cases and controls (nonconsanguineous cohabitants), including deceased relatives, were collected from a questionnaire and review of medical records. Mortality was compared among heFH patients, nonheFH patients, and nonconsanguineous family members. RESULTS A total of 813 family members were analysed, 26.4% of whom were deceased. Among the deceased, the mean age of death was 69.3 years in heFH individuals, 73.5 years in nonheFH individuals, and 73.2 years in nonconsanguineous individuals, without significant differences. CVD was the cause of death in 59.7% of heFH individuals, 37.7% of nonheFH individuals, and 37.4% of nonconsanguineous individuals (P = 0.012). These differences were greater after restricting the analyses to parents. The hazard ratio of dying from CVD was 2.85 times higher (95% CI, (1.73-4.69) in heFH individuals than in individuals in the other two groups (non-FH and nonconsanguineous), who did not differ in their risk. CONCLUSIONS CVD mortality in heFH individuals is lower and occurs later than that described in the last century but is still higher than that in non-FH individuals. This improved prognosis of CVD risk is not associated with changes in non-CVD mortality.
Collapse
Affiliation(s)
- Victoria Marco-Benedí
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain.,Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain
| | - Ana M Bea
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Zaragoza, Spain.,Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain
| | - Ana Cenarro
- Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain.,Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
| | - Estíbaliz Jarauta
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain.,Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain
| | - Martín Laclaustra
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Zaragoza, Spain. .,Universidad de Zaragoza, Zaragoza, Spain. .,Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain.
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV, Zaragoza, Spain. .,Universidad de Zaragoza, Zaragoza, Spain. .,Unidad de Lípidos, Hospital Universitario Miguel Servet, Avda Isabel La Católica 1-3, Zaragoza, 50009, Spain.
| |
Collapse
|
517
|
Cholesterol-lowering activity of 10-gingerol in HepG2 cells is associated with enhancing LDL cholesterol uptake, cholesterol efflux and bile acid excretion. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
518
|
Hyaluronic acid-guided assembly of ceria nanozymes as plaque-targeting ROS scavengers for anti-atherosclerotic therapy. Carbohydr Polym 2022; 296:119940. [DOI: 10.1016/j.carbpol.2022.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022]
|
519
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
520
|
Horton AE, Martin AC, Srinivasan S, Justo RN, Poplawski NK, Sullivan D, Brett T, Chow CK, Nicholls SJ, Pang J, Watts GF. Integrated guidance to enhance the care of children and adolescents with familial hypercholesterolaemia: Practical advice for the community clinician. J Paediatr Child Health 2022; 58:1297-1312. [PMID: 35837752 PMCID: PMC9545564 DOI: 10.1111/jpc.16096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
Familial hypercholesterolaemia (FH) is a highly penetrant monogenic disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL)-cholesterol (LDL-C) concentration and, if untreated, leads to premature atherosclerosis and coronary artery disease (CAD). At a prevalence of 1:250 individuals, with over 90% undiagnosed, recent estimates suggest that there are approximately 22 000 children and adolescents with FH in Australia and New Zealand. However, the overwhelming majority remain undetected and inadequately treated until adulthood or after their first cardiac event. The guidance in this paper aims to increase awareness about paediatric FH and provide practical advice for the diagnosis and management of FH in children and adolescents. Recommendations are given on the detection, diagnosis, assessment and management of FH in children and adolescents. Recommendations are also made on genetic testing, including counselling and the potential for universal screening programmes. Practical guidance on management includes treatment of non-cholesterol risk factors, and safe and appropriate use of LDL-C lowering therapies, including statins, ezetimibe, PCSK9 inhibitors and lipoprotein apheresis. Models of care for FH need to be adapted to local and regional health care needs and available resources. Targeting the detection of FH as a priority in children and young adults has the potential to alter the natural history of atherosclerotic cardiovascular disease and recognise the promise of early detection for improving long-term health outcomes. A comprehensive implementation strategy, informed by further research, including assessments of cost-benefit, will be required to ensure that this new guidance benefits all families with or at risk of FH.
Collapse
Affiliation(s)
- Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia
- Cardiovascular Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - Stephen J Nicholls
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
521
|
Cardiac telerehabilitation with long-term follow-up reduces GlycA and improves lipoprotein particle profile: A randomised controlled trial. Int J Cardiol 2022; 369:60-64. [PMID: 35944773 DOI: 10.1016/j.ijcard.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
522
|
Closs C, Ackerman M, Masson W, Lobo M, Molinero G, Lavalle-Cobo A, Béliard S, Mourre F, Valéro R, Nogueira JP. Effectiveness of Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy on Lipid Levels in Type 2 Diabetes: a Meta-analysis. J Gastrointest Surg 2022; 26:1575-1584. [PMID: 35513608 DOI: 10.1007/s11605-022-05338-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/10/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Obesity and its co-morbidities, including type 2 diabetes (T2DM) and dyslipidemia, are accompanied by excess cardiovascular morbi-mortality. Aside from excess low density lipoprotein-cholesterol (LDL-C), atherogenic dyslipidemia (AD), mainly characterized by elevated triglycerides and decreased high density lipoprotein-cholesterol (HDL-C) levels, is often present in T2DM obese patients. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), has become a reference treatment in that population. However, the respective effects of RYGB vs SG on lipid metabolism in T2DM patients have been rarely studied. METHODS A meta-analysis of randomized controlled trials, comparing the effects of RGYBG vs SG on lipid metabolism 12 months after surgery in T2DM patients, was performed. RESULTS Four studies including a total of 298 patients (151 patients in the RYGB and 147 patients in the SG group) were examined. Despite a greater decrease in body mass index and greater improvement in glycemic control in RYGB compared to SG. RYGB vs SG was more effective in reducing total cholesterol, LDL-C, and non-HDL-C levels (mean difference [MD] -26.10 mg/dL, 95 % CI -38.88 to -13.50, p<0.00001; [MD] -20.10 mg/dL, 95 % CI -27.90 to -12.20, p<0.00001 and MD 31.90 mg/dl, 95 % CI -46.90 to -16.80, p<0.00001, respectively). CONCLUSIONS The superiority of RYGB vs SG in reducing LDL-C, with an effect comparable to a moderate-intensity statin, suggests RYBG should be favored in hypercholesterolemic T2DM patients in order to further reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cecilia Closs
- Centro Medico Melian, Av. 9 de Julio 243, CP: 3600, Formosa, Argentina
| | | | - Walter Masson
- Hospital Italiano de Buenos Aires, Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, CP:1199, Buenos Aires, Argentina
| | - Martin Lobo
- Consejo de Epidemiologia y Prevención, Sociedad Argentina de Cardiología, Azcuénaga 980, CP: 1115, Buenos Aires, Argentina
| | - Graciela Molinero
- Consejo de Epidemiologia y Prevención, Sociedad Argentina de Cardiología, Azcuénaga 980, CP: 1115, Buenos Aires, Argentina
| | - Augusto Lavalle-Cobo
- Consejo de Epidemiologia y Prevención, Sociedad Argentina de Cardiología, Azcuénaga 980, CP: 1115, Buenos Aires, Argentina
| | - Sophie Béliard
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 Bd Baille, 13005, Marseille, France
| | - Florian Mourre
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 Bd Baille, 13005, Marseille, France
| | - René Valéro
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 Bd Baille, 13005, Marseille, France
| | - Juan Patricio Nogueira
- Centro de Investigación en Endocrinología, Nutrición y Metabolismo (CIENM), Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Av. Gutnisky 3200, 3600, Formosa, Argentina.
| |
Collapse
|
523
|
Kjeldsen EW, Thomassen JQ, Rasmussen KL, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Impact of diet on ten-year absolute cardiovascular risk in a prospective cohort of 94 321 individuals: A tool for implementation of healthy diets. Lancet Reg Health Eur 2022; 19:100419. [PMID: 35664050 PMCID: PMC9160320 DOI: 10.1016/j.lanepe.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background An unhealthy diet is a major risk factor for cardiovascular disease attributing to the burden of non-communicable diseases. Current dietary guidelines are not sufficiently implemented and effective strategies to encourage people to change and maintain healthy diets are lacking. We aimed to evaluate the impact of incorporating dietary assessment into ten-year absolute risk charts for atherosclerotic cardiovascular disease (ASCVD). Methods In the prospective Copenhagen General Population Study including 94 321 individuals, we generated sex-specific ten-year absolute risk scores for ASCVD according to adherence to dietary guidelines, using a short and valid food frequency questionnaire. To account for competing risk, we used the method of Fine-Gray. Findings Non-adherence to dietary guidelines was associated with an atherogenic lipid and inflammatory profile. Ten-year absolute risk of ASCVD increased with increasing age, increasing systolic blood pressure, and decreasing adherence to dietary guidelines for both sexes. The highest ten-year absolute risk of ASCVD of 38% was observed in men aged 65–69 years who smoked, had very low adherence to dietary guidelines, and a systolic blood pressure between 160 and 179 mmHg. The corresponding value for women was 26%. Risk charts replacing dietary assessment with non-HDL cholesterol yielded similar estimates. Interpretation Incorporation of a short dietary assessment into ten-year absolute risk charts has the potential to motivate patients to adhere to dietary guideline recommendations. Improved implementation of national dietary guidelines must be a cornerstone for future prevention of cardiovascular disease in both younger and older individuals. Funding The Lundbeck Foundation (R278-2018-804) and the Danish Heart Foundation.
Collapse
|
524
|
Hao Y, Yang YL, Wang YC, Li J. Effect of the Early Application of Evolocumab on Blood Lipid Profile and Cardiovascular Prognosis in Patients with Extremely High-Risk Acute Coronary Syndrome. Int Heart J 2022; 63:669-677. [PMID: 35831153 DOI: 10.1536/ihj.22-052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors significantly reduce low-density lipoprotein cholesterol (LDL-C) and improve the prognosis of patients with acute coronary syndrome (ACS). However, the feasibility and safety of early application of PCSK9 inhibitors on the basis of statins combined with ezetimibe to strengthen lipid lowering in extremely high-risk coronary heart disease populations are still unknown.This study was a prospective, randomized controlled study. A total of 136 patients with extremely high-risk ACS with LDL-C ≥ 3.0 mmol/L after percutaneous coronary intervention (PCI) treatment were randomly assigned 1:1 to the control group (atorvastatin 40 mg/day and ezetimibe 10 mg/day) or the evolocumab group (evolocumab 140 mg every 2 weeks combined with atorvastatin 40 mg/day and ezetimibe 10 mg/day). We compared the blood lipid profiles, major adverse cardiovascular events (MACEs), and adverse reactions. MACEs included cardiogenic death, nonfatal myocardial infarction, nonfatal stroke, and readmission due to angina. Adverse reactions included allergies, myalgia, poor blood glucose control, and liver damage.Within 1 month, the average level of LDL-C in the evolocumab group decreased from 3.54 to 0.57 mmol/L and that in the control group decreased from 3.52 to 1.26 mmol/L. The LDL-C compliance (< 1.0 mmol/L) rate was significantly increased in the evolocumab group compared with the control group (82.35% versus 22.06%, P < 0.01). The average level of lipoprotein (a) (Lp (a) ) in the control group increased by 9.94 ± 51.93% from baseline after treatment, but evolocumab reduced the Lp (a) level (-38.84 ± 32.40%). Additionally, evolocumab further reduced the levels of apolipoprotein B/A1 (-70.56 ± 22.38% versus -51.29 ± 18.14%), cholesterol (-54.76 ± 18.10% versus -41.16 ± 18.14%), and apolipoprotein B (-66.47 ± 26.89% versus -46.78 ± 24.12%) compared with those in the control group, all P < 0.01. The blood lipid levels of both control and evolocumab groups stabilized after 1 month. During the 3-month follow-up, the incidence of MACEs after PCI was lower in the evolocumab group than in the control group (8.82% versus 24.59%, P = 0.015), and evolocumab combined with statins and ezetimibe did not increase the occurrence of adverse reactions (13.24% versus 11.48%, P = 0.762).In patients with extremely high-risk ACS with high levels of LDL-C, adding evolocumab to their treatment regimen as early as possible may enhance lipid lowering, increase the patient's LDL-C compliance rate in the short term, and improve cardiovascular prognosis but will not increase adverse reactions.
Collapse
Affiliation(s)
- Yan Hao
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Yu-Lin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Yong-Chao Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
525
|
Jansen M, Contini C. LDL retention time in plasma can be -based on causation- estimated by the lipid composition of LDL and other lipoproteins. PLoS One 2022; 17:e0272050. [PMID: 35901111 PMCID: PMC9333322 DOI: 10.1371/journal.pone.0272050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Information on LDL’s dynamic behaviour of LDL (i.e. production rate and fractional catabolic rate) are of interest if pathologies, lipid-lowering strategies or LDL-metabolism itself are investigated. Determination of these rates is costly and elaborate. Here we studied the interrelationship of LDL mass, its composition and other lipoproteins. Based on this data, we deducted information about LDL’s dynamic behaviour. Methods Lipoprotein profiles of n = 236 participants are evaluated. Plasma was separated by sequential ultracentrifugation into VLDL, IDL, LDL and HDL. Additionally, LDL and HDL were separated into subfractions. Stepwise multiple linear regressions were used to study LDL’s ApoB mass and lipid composition. Relying on these results and on causation, we constructed a mathematical model to estimate LDL’s retention time. Results The ApoB mass in LDL correlated best among all measured parameters (including corresponding lipid compositions but using no LDL-associated parameters) with the cholesterol ester content in IDL. TG/CE ratios in LDL’s subfractions were strongly correlated with the corresponding ratios in IDL and HDL. The constructed mathematical model links the TG/CE ratio of LDL and HDL to LDL’s ApoB concentration and enables a good estimate of LDL’s retention time in plasma. Discussion Relying on our statistic evaluations, we assume that i) the production of nascent LDL via IDL as well as ii) LDL’s prolonged retention are mapped by the TG/CE ratio in LDL subfractions. HDL’s TG/CE ratio is associated with the change in LDL’s TG/CE ratio during its retention in plasma. Our mathematical model uses this information and enables–by relying on causation- a good estimation of LDL’s retention time.
Collapse
Affiliation(s)
- Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre -University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- * E-mail:
| | - Christine Contini
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre -University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
526
|
Abstract
PURPOSE OF REVIEW Plasma levels of LDL cholesterol (LDL-C) are causally associated with cardiovascular risk. Reducing LDL-C results in a decreased incidence of cardiovascular events, proportionally to the absolute reduction in LDL-C. The inhibition of proprotein convertase subtilisin kexin 9 (PCSK) is a highly effective and safe approach to reducing LDL-C levels. In this review, we discuss the available data on the efficacy and safety of inclisiran, a siRNA targeting PCSK9 and propose a clinical profile for the patients who can benefit the most from this approach. RECENT FINDINGS Inclisiran is a small interfering RNA targeting the mRNA of PCSK9 specifically in the liver, owing to the conjugation with triantennary N-acetylgalactosamine. Randomized clinical trials have shown that inclisiran provides robust and durable reductions of PCSK9 and LDL-C levels, with a dosing schedule of once every 6 months after the initial and 3-month doses. These effects are consistent in different categories of patients, including patients with atherosclerotic cardiovascular disease and/or risk equivalent or patients with heterozygous familial hypercholesterolaemia. Ultimately the administration schedule may improve patients' compliance given also the favourable safety profile of the drug. Completion of ongoing outcome clinical trials will provide information on both the expected clinical benefit and the safety of inclisiran administered for longer.
Collapse
|
527
|
Triglyceride-Rich Lipoproteins, Remnants, and Atherosclerotic Cardiovascular Disease Risk. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
528
|
Melnikov I, Kozlov S, Pogorelova O, Tripoten M, Khamchieva L, Saburova O, Avtaeva Y, Zvereva M, Matroze E, Kuznetsova T, Prokofieva L, Balakhonova T, Gabbasov Z. The monomeric C-reactive protein level is associated with the increase in carotid plaque number in patients with subclinical carotid atherosclerosis. Front Cardiovasc Med 2022; 9:968267. [PMID: 35935662 PMCID: PMC9353581 DOI: 10.3389/fcvm.2022.968267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The high-sensitivity C-reactive protein (hsCRP) assay measures the level of the pentameric form of CRP in blood. Currently, there are no available assays measuring the level of the monomeric form of CRP (mCRP), produced at sites of local inflammation. We developed an assay measuring the mCRP level in blood plasma with functional beads for flow cytometry. The assay was used to measure the mCRP level in 80 middle-aged individuals with initially moderate cardiovascular SCORE risk. By the time of the mCRP measurement, the patients have been followed up for subclinical carotid atherosclerosis progression for 7 years. Ultrasound markers of subclinical atherosclerosis, which included plaque number (PN) and total plaque height (PH), were measured at baseline and at the 7th-year follow-up survey. Inflammatory biomarkers, including mCRP, hsCRP, inteleukin-6 (IL-6) and von Willebrand factor (VWF) level, were measured at the 7th-year follow-up survey. The median level of mCRP was 5.2 (3.3; 7.1) μg/L, hsCRP 1.05 (0.7; 2.1) mg/L, IL-6 0.0 (0.0; 2.8) pg/mL, VWF 106 (77; 151) IU/dL. In the patients with the mCRP level below median vs. the patients with the median mCRP level or higher, change from baseline in PN was 0.0 (0.0; 1.0) vs. 1.0 (1.0; 2.0) and PH 0.22 (−0.24; 1.91) mm vs. 1.97 (1.14; 3.14) mm, respectively (p < 0.05). The adjusted odds ratio for the formation of new carotid atherosclerotic plaques was 4.7 (95% CI 1.7; 13.2) for the patients with the median mCRP level or higher. The higher mCRP level is associated with the more pronounced increase in PN and PH in patients with normal level of traditional inflammatory biomarkers and initially moderate cardiovascular SCORE risk.
Collapse
Affiliation(s)
- Ivan Melnikov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Laboratory of Gas Exchange, Biomechanics and Barophysiology, State Scientific Center of the Russian Federation – The Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ivan Melnikov
| | - Sergey Kozlov
- Laboratory of Problems of Atherosclerosis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Pogorelova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Tripoten
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Leyla Khamchieva
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga Saburova
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yuliya Avtaeva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria Zvereva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny Matroze
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Innovative Pharmacy, Medical Devices and Biotechnology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tatiana Kuznetsova
- Laboratory of Neurohormonal Regulation of Cardiovascular Diseases, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Prokofieva
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana Balakhonova
- Department of Ultrasound Diagnostics, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Cardiology, Functional and Ultrasound Diagnostics, Sechenov University, Moscow, Russia
| | - Zufar Gabbasov
- Laboratory of Cell Hemostasis, National Medical Research Centre of Cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation, Moscow, Russia
- Zufar Gabbasov
| |
Collapse
|
529
|
Rief M, Raggam R, Rief P, Metnitz P, Stojakovic T, Reinthaler M, Brodmann M, März W, Scharnagl H, Silbernagel G. Comparison of Two Nuclear Magnetic Resonance Spectroscopy Methods for the Measurement of Lipoprotein Particle Concentrations. Biomedicines 2022; 10:biomedicines10071766. [PMID: 35885071 PMCID: PMC9312544 DOI: 10.3390/biomedicines10071766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Measuring lipoprotein particle concentrations may help to improve cardiovascular risk stratification. Both the lipofit (Numares) and lipoprofile (LabCorp) NMR methods are widely used for the quantification of lipoprotein particle concentrations. Objective: The aim of the present work was to perform a method comparison between the lipofit and lipoprofile NMR methods. In addition, there was the objective to compare lipofit and lipoprofile measurements of standard lipids with clinical chemistry-based results. Methods: Total, LDL, and HDL cholesterol and triglycerides were measured with ß-quantification in serum samples from 150 individuals. NMR measurements of standard lipids and lipoprotein particle concentrations were performed by Numares and LabCorp. Results: For both NMR methods, differences of mean concentrations compared to ß-quantification-derived measurements were ≤5.5% for all standard lipids. There was a strong correlation between ß-quantification- and NMR-derived measurements of total and LDL cholesterol and triglycerides (all r > 0.93). For both, the lipofit (r = 0.81) and lipoprofile (r = 0.84) methods, correlation coefficients were lower for HDL cholesterol. There was a reasonable correlation between LDL and HDL lipoprotein particle concentrations measured with both NMR methods (both r > 0.9). However, mean concentrations of major and subclass lipoprotein particle concentrations were not as strong. Conclusions: The present analysis suggests that reliable measurement of standard lipids is possible with these two NMR methods. Harmonization efforts would be needed for better comparability of particle concentration data.
Collapse
Affiliation(s)
- Martin Rief
- Division of General Anaesthesiology, Emergency- and Intensive Care Medicine, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, A-8036 Graz, Austria; (M.R.); (P.M.)
| | - Reinhard Raggam
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Peter Rief
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Philipp Metnitz
- Division of General Anaesthesiology, Emergency- and Intensive Care Medicine, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, A-8036 Graz, Austria; (M.R.); (P.M.)
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, A-8036 Graz, Austria;
| | - Markus Reinthaler
- Department of Cardiology (CBF), Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany;
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, A-8036 Graz, Austria;
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, A-8036 Graz, Austria;
- Correspondence: ; Tel.: +43-(0)316-385-86030
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| |
Collapse
|
530
|
Abstract
Lipid disorders involving derangements in serum cholesterol, triglycerides, or both are commonly encountered in clinical practice and often have implications for cardiovascular risk and overall health. Recent advances in knowledge, recommendations, and treatment options have necessitated an updated approach to these disorders. Older classification schemes have outlived their usefulness, yielding to an approach based on the primary lipid disturbance identified on a routine lipid panel as a practical starting point. Although monogenic dyslipidemias exist and are important to identify, most individuals with lipid disorders have polygenic predisposition, often in the context of secondary factors such as obesity and type 2 diabetes. With regard to cardiovascular disease, elevated low-density lipoprotein cholesterol is essentially causal, and clinical practice guidelines worldwide have recommended treatment thresholds and targets for this variable. Furthermore, recent studies have established elevated triglycerides as a cardiovascular risk factor, whereas depressed high-density lipoprotein cholesterol now appears less contributory than was previously believed. An updated approach to diagnosis and risk assessment may include measurement of secondary lipid variables such as apolipoprotein B and lipoprotein(a), together with selective use of genetic testing to diagnose rare monogenic dyslipidemias such as familial hypercholesterolemia or familial chylomicronemia syndrome. The ongoing development of new agents-especially antisense RNA and monoclonal antibodies-targeting dyslipidemias will provide additional management options, which in turn motivates discussion on how best to incorporate them into current treatment algorithms.
Collapse
Affiliation(s)
- Amanda J Berberich
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| | - Robert A Hegele
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
531
|
Patel N, Mittal N, Choubdar PA, Taub PR. Lipoprotein(a)—When to Screen and How to Treat. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
532
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
533
|
Schekatolina S, Lahovska V, Bekshaev A, Kontush S, Le Goff W, Kontush A. Mathematical Modelling of Material Transfer to High-Density Lipoprotein (HDL) upon Triglyceride Lipolysis by Lipoprotein Lipase: Relevance to Cardioprotective Role of HDL. Metabolites 2022; 12:metabo12070623. [PMID: 35888747 PMCID: PMC9317498 DOI: 10.3390/metabo12070623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) contributes to lipolysis of triglyceride-rich lipoprotein (TGRL) by lipoprotein lipase (LPL) via acquirement of surface lipids, including free cholesterol (FC), released upon lipolysis. According to the reverse remnant-cholesterol transport (RRT) hypothesis recently developed by us, acquirement of FC by HDL is reduced at both low and extremely high HDL concentrations, potentially underlying the U-shaped relationship between HDL-cholesterol and cardiovascular disease. Mechanisms underlying impaired FC transfer however remain indeterminate. We developed a mathematical model of material transfer to HDL upon TGRL lipolysis by LPL. Consistent with experimental observations, mathematical modelling showed that surface components of TGRL, including FC, were accumulated in HDL upon lipolysis. The modelling successfully reproduced major features of cholesterol accumulation in HDL observed experimentally, notably saturation of this process over time and appearance of a maximum as a function of HDL concentration. The calculations suggested that the both phenomena resulted from competitive fluxes of FC through the HDL pool, including primarily those driven by FC concentration gradient between TGRL and HDL on the one hand and mediated by lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) on the other hand. These findings provide novel opportunities to revisit our view of HDL in the framework of RRT.
Collapse
Affiliation(s)
| | - Viktoriia Lahovska
- Odessa National Technological University, 65000 Odessa, Ukraine; (S.S.); (V.L.)
| | - Aleksandr Bekshaev
- Physics Research Institute, I.I. Mechnikov Odessa National University, 65082 Odessa, Ukraine; (A.B.); (S.K.)
| | - Sergey Kontush
- Physics Research Institute, I.I. Mechnikov Odessa National University, 65082 Odessa, Ukraine; (A.B.); (S.K.)
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM), le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France;
| | - Anatol Kontush
- Unité de Recherche sur les Maladies Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale (INSERM), le Métabolisme et la Nutrition, ICAN, Sorbonne Université, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-(1)-40-77-96-33; Fax: +33-(1)-40-77-96-45
| |
Collapse
|
534
|
Kirkpatrick CF, Willard KE, Maki KC. Keto is Trending: Implications for Body Weight and Lipid Management. Curr Cardiol Rep 2022; 24:1093-1100. [PMID: 35794438 DOI: 10.1007/s11886-022-01731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Very-low-carbohydrate (VLC) and ketogenic diets (KDs) have been used for weight loss and more recently in patients with insulin resistance and type 2 diabetes. The impact of VLC and KDs on lipids/lipoproteins is a concern. The purpose of this review is to discuss the impact of KDs on body weight and lipids/lipoproteins. RECENT FINDINGS VLC/KDs contribute to greater weight loss in the short term (< 6 months) compared to higher carbohydrate diets, but there is typically no difference between the diets by 12 months. Triglyceride and high-density lipoprotein cholesterol levels generally improve, but there is a variable response in low-density lipoprotein cholesterol levels, with some individuals experiencing a dramatic increase, particularly those with latent genetic dyslipidemias. Healthcare professionals should educate patients on the risks and benefits of following VLC/KDs and encourage the consumption of carbohydrate-rich foods associated with positive health outcomes.
Collapse
Affiliation(s)
- Carol F Kirkpatrick
- Midwest Biomedical Research, Suite 3, Addison, IL, USA. .,Kasiska Division of Health Sciences, Idaho State University, Pocatello, ID, 83209, USA.
| | | | - Kevin C Maki
- Midwest Biomedical Research, Suite 3, Addison, IL, USA.,Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN, 47405, USA
| |
Collapse
|
535
|
Lee SB, Choi JE, Park B, Cha MY, Hong KW, Jung DH. Dyslipidaemia-Genotype Interactions with Nutrient Intake and Cerebro-Cardiovascular Disease. Biomedicines 2022; 10:biomedicines10071615. [PMID: 35884923 PMCID: PMC9312854 DOI: 10.3390/biomedicines10071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
A comprehensive understanding of gene-diet interactions is necessary to establish proper dietary guidelines to prevent and manage cardio-cerebrovascular disease (CCD). We investigated the role of genetic variants associated with dyslipidaemia (DL) and their interactions with macro-nutrients for cardiovascular disease using a large-scale genome-wide association study of Korean adults. A total of 58,701 participants from a Korean genome and epidemiology study were included. Their dietary intake was assessed using a food frequency questionnaire. Dyslipidaemia was defined as total cholesterol (TCHL) ≥ 240 mg/dL, high-density lipoprotein (HDL) < 40 mg/dL, low-density lipoprotein (LDL) ≥ 160 mg/dL, triglycerides (TG) ≥ 200 mg/dL, or dyslipidaemia history. Their nutrient intake was classified as follows: protein intake: high ≥ 30%, 30% > moderate ≥ 20%, and 20% > low in daily total energy intake (TEI); carbohydrate intake: high ≥ 60%, 60% > moderate ≥ 50%, and 50% > low; fat intake: high ≥ 40%, 40% > moderate ≥ 30%, and 30% > low. Odds ratios and 95% confidence intervals were calculated after adjusting for age; sex; body mass index (BMI); exercise status; smoking status; alcohol intake; principal component 1 (PC1); principal component 2 (PC2); and intake of carbohydrates, fats, and proteins. This analysis included 20,596 patients with dyslipidaemia and 1027 CCD patients. We found that rs2070895 related to LIPC was associated with HDL-cholesterol. Patients with the minor allele (A) in rs2070895 had a lower risk of CCD than those carrying the reference allele (G) (odds ratio [OR] = 0.8956, p-value = 1.78 × 10−2). Furthermore, individuals consuming protein below 20% TEI with the LIPC reference allele had a higher risk of CCD than those with the minor allele (interaction p-value 6.12 × 10−3). Our findings suggest that the interactions of specific polymorphisms associated with dyslipidaemia and nutrients intake can influence CCD.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Department of Family Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 22972, Korea;
| | - Ja-Eun Choi
- Department of Healthcare, Theragen Bio Co., Ltd., Daewangpangyo-ro 700, Seongnam-si 13488, Korea; (J.-E.C.); (M.-Y.C.)
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Mi-Yeon Cha
- Department of Healthcare, Theragen Bio Co., Ltd., Daewangpangyo-ro 700, Seongnam-si 13488, Korea; (J.-E.C.); (M.-Y.C.)
| | - Kyung-Won Hong
- Department of Healthcare, Theragen Bio Co., Ltd., Daewangpangyo-ro 700, Seongnam-si 13488, Korea; (J.-E.C.); (M.-Y.C.)
- Correspondence: (K.-W.H.); (D.-H.J.)
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: (K.-W.H.); (D.-H.J.)
| |
Collapse
|
536
|
Xu Y, Han Y, Wang Y, Gong J, Li H, Wang T, Chen X, Chen W, Fan Y, Qiu X, Wang J, Xue T, Li W, Zhu T. Ambient Air Pollution and Atherosclerosis: A Potential Mediating Role of Sphingolipids. Arterioscler Thromb Vasc Biol 2022; 42:906-918. [PMID: 35652334 DOI: 10.1161/atvbaha.122.317753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution. METHODS This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 μm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1-30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses. RESULTS We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%-91%) of the sphingolipids were also observed in 30-day time window. CONCLUSIONS Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Tao Xue
- School of Public Health (T.X.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| |
Collapse
|
537
|
Impact of small dense low-density lipoprotein cholesterol and triglyceride-rich lipoproteins on plaque rupture with ST-segment elevation myocardial infarction. J Clin Lipidol 2022; 16:725-732. [PMID: 36038471 DOI: 10.1016/j.jacl.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
|
538
|
Martin A, Lang S, Goeser T, Demir M, Steffen HM, Kasper P. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr Atheroscler Rep 2022; 24:533-546. [PMID: 35507279 PMCID: PMC9236990 DOI: 10.1007/s11883-022-01028-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Patients with non-alcoholic fatty liver disease (NAFLD), often considered as the hepatic manifestation of the metabolic syndrome, represent a population at high cardiovascular risk and frequently suffer from atherogenic dyslipidemia. This article reviews the pathogenic interrelationship between NAFLD and dyslipidemia, elucidates underlying pathophysiological mechanisms and focuses on management approaches for dyslipidemic patients with NAFLD. RECENT FINDINGS Atherogenic dyslipidemia in patients with NAFLD results from hepatic and peripheral insulin resistance along with associated alterations of hepatic glucose and lipoprotein metabolism, gut dysbiosis, and genetic factors. Since atherogenic dyslipidemia and NAFLD share a bi-directional relationship and are both major driving forces of atherosclerotic cardiovascular disease (ASCVD) development, early detection and adequate treatment are warranted. Thus, integrative screening and management programs are urgently needed. A stepwise approach for dyslipidemic patients with NAFLD includes (i) characterization of dyslipidemia phenotype, (ii) individual risk stratification, (iii) definition of treatment targets, (iv) lifestyle modification, and (v) pharmacotherapy if indicated.
Collapse
Affiliation(s)
- Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Hypertension Center, Faculty of Medicine - University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine - University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
539
|
Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, Zhang W, Wang L, Zhang Y, Ren Z, Liang B. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol 2022; 21:123. [PMID: 35778734 PMCID: PMC9250269 DOI: 10.1186/s12933-022-01548-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Insulin resistance (IR), endothelial dysfunction, inflammation, glucose and lipid metabolism disorders, and thrombosis are believed involved in coronary heart disease (CHD) and non-alcoholic fatty liver disease (NAFLD). Triglyceride-glucose (TyG) index, a new IR indicator, is correlated with NAFLD occurrence and severity, but its relationship with CHD risk remains unclear. This study investigated the correlation between TyG index and CHD risk among NAFLD patients. Methods This cross-sectional study included 424 patients with NAFLD and chest pain in the Department of Cardiology, The Second Hospital of Shanxi Medical University, from January 2021 to December 2021. The TyG index was calculated and coronary angiography performed. All individuals were divided into NAFLD + CHD and NAFLD groups and then by TyG index level. The t-test, Mann–Whitney U-test, or one-way analysis of variance compared differences in continuous variables, while the chi-square test or Fisher’s exact test compared differences in categorical variables. Logistic regression analysis determined the independent protective or hazardous factors of NAFLD with CHD. The receiver operating characteristic curve evaluated the ability of different TyG index rule-in thresholds to predict CHD. The relationship between Gensini score and TyG index was evaluated using linear correlation and multiple linear regression. Results CHD was detected in 255 of 424 patients. Compared to NAFLD group, multivariate logistic regression showed that TyG index was a risk factor for CHD among NAFLD patients after adjustment for age, sex, hypertension, and diabetes mellitus with the highest odds ratio (OR, 2.519; 95% CI, 1.559–4.069; P < 0.001). TG, low-density lipoprotein cholesterol, FBG and TYG–body mass index were also risk factors for CHD among NAFLD patients. High-density lipoprotein cholesterol level was a protective factor for CHD events in patients with NAFLD. In an in-depth analysis, multivariate logistic regression analysis showed that each 1-unit increase in TyG index was associated with a 2.06-fold increased risk of CHD (OR, 2.06; 95% CI, 1.16–3.65; P = 0.013). The multifactor linear regression analysis showed each 0.1-unit increase in TyG in the NAFLD-CHD group was associated with a 2.44 increase in Gensini score (β = 2.44; 95% CI, 0.97–3.91; P = 0.002). Conclusions The TyG index was positively correlated with CHD risk in NAFLD patients and reflected coronary atherosclerosis severity.
Collapse
Affiliation(s)
- Jianqi Zhao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Ting Wang
- Department of Neurology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Bing Yu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Shaobin Mao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xun Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Wenjing Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Leigang Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yao Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
540
|
Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J 2022; 46:517-532. [PMID: 35929170 PMCID: PMC9353557 DOI: 10.4093/dmj.2022.0198] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that targets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 (ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel antisense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a potential treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Henry N. Ginsberg
- Department of Preventive Medicine and Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,
USA
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
541
|
Ying Q, Ronca A, Chan DC, Pang J, Favari E, Watts GF. Effect of a PCSK9 inhibitor and a statin on cholesterol efflux capacity: A limitation of current cholesterol-lowering treatments? Eur J Clin Invest 2022; 52:e13766. [PMID: 35294778 PMCID: PMC9541635 DOI: 10.1111/eci.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cellular cholesterol efflux is a key step in reverse cholesterol transport that may impact on atherosclerotic cardiovascular risk. The process may be reliant on the availability of apolipoprotein (apo) B-100-containing lipoproteins to accept cholesterol from high-density lipoprotein. Evolocumab and atorvastatin are known to lower plasma apoB-100-containing lipoproteins that could impact on cholesterol efflux capacity (CEC). METHODS We conducted a 2-by-2 factorial trial of the effects of subcutaneous evolocumab (420 mg every 2 weeks) and atorvastatin (80 mg daily) for 8 weeks on CEC in 81 healthy, normolipidaemic men. The capacity of whole plasma and apoB-depleted plasma, including ATP-binding cassette transporter A1 (ABCA1)-mediated and passive diffusion, to efflux cholesterol, was measured. RESULTS Evolocumab and atorvastatin independently decreased whole plasma CEC (main effect p < .01 for both). However, there were no significant effects of evolocumab and atorvastatin on apoB-depleted plasma, ABCA1-mediated and passive diffusion-mediated CEC (p > .05 in all). In the three intervention groups combined, the reduction in whole plasma CEC was significantly correlated with the corresponding reduction in plasma apoB-100 concentration (r = .339, p < .01). In the evolocumab monotherapy group, the reduction in whole plasma CEC was also significantly correlated with the corresponding reduction in plasma lipoprotein(a) concentration (r = .487, p < .05). CONCLUSIONS In normolipidaemic men, evolocumab and atorvastatin decrease the capacity of whole plasma to efflux cellular cholesterol. These effects may be chiefly owing to a fall in the availability of apoB-100-containing lipoproteins. Reduction in circulating lipoprotein(a) may also contribute to the decrease in whole plasma cholesterol efflux with evolocumab monotherapy.
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
542
|
Fu Y, Feng H, Ding X, Meng QH, Zhang SR, Li J, Chao Y, Ji TT, Bi YH, Zhang WW, Chen Q, Zhang YH, Feng YL, Bian HM. Alisol B 23-acetate adjusts bile acid metabolisim via hepatic FXR-BSEP signaling activation to alleviate atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154120. [PMID: 35523117 DOI: 10.1016/j.phymed.2022.154120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Postmenopausal women have a high incidence of atherosclerosis. Phytosterols have been shown to have cholesterol-lowering properties. Alisa B 23-acetate (AB23A) is a biologically active plant sterol isolated from Chinese herbal medicine Alisma. However, the atherosclerosis effect of AB23A after menopause and its possible mechanism have not been reported yet. PURPOSE To explore whether AB23A can prevent atherosclerosis by regulating farnesoid X receptor and subsequently increasing fecal bile acid and cholesterol excretion to reduce plasma cholesterol levels. METHODS Aortic samples from premenopausal and postmenopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female LDLR-/- mice and free fatty acid (FFA)-treated L02 cells were used to analyze the effect of AB23A supplementation therapy. RESULTS AB23A increased fecal cholesterol and bile acids (BAs) excretion dependent on activation of hepatic farnesoid X receptor (FXR) in ovariectomized mice. AB23A inhibited hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) via inducing small heterodimer partner (SHP) expression. On the other hand, AB23A increased the level of hepatic chenodeoxycholic acid (CDCA), and activated the hepatic BSEP signaling. The activation of hepatic FXR-BSEP signaling by AB23A in ovariectomized mice was accompanied by the reduction of liver cholesterol, hepatic lipolysis, and bile acids efflux, and reduced the damage of atherosclerosis. In vitro, AB23A fixed abnormal lipid metabolism in L02 cells and increased the expression of FXR, BSEP and SHP. Moreover, the inhibition and silencing of FXR canceled the regulation of BSEP by AB23A in L02 cells. CONCLUSION Our results shed light into the mechanisms behind the cholesterol-lowering of AB23A, and increasing FXR-BSEP signaling by AB23A may be a potential postmenopausal atherosclerosis therapy.
Collapse
Affiliation(s)
- Yu Fu
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Rui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting-Ting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - You-Long Feng
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China.
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
543
|
Wilkins BP, Finch AM, Wang Y, Smith NJ. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis? Trends Endocrinol Metab 2022; 33:481-492. [PMID: 35550855 DOI: 10.1016/j.tem.2022.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described. Gpr146 deletion in mice reduces serum cholesterol and atherosclerotic plaque burden, confirming GPR146 as a potential therapeutic target for managing circulating cholesterol. Critically, this effect was independent of the low-density lipoprotein receptor. While still an orphan, the activation of GPR146 by serum suggests identification of its endogenous ligand is tantalisingly close. Herein, we discuss the evidence for GPR146 inhibition as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Brendan P Wilkins
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela M Finch
- Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nicola J Smith
- Orphan Receptor Pharmacology Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; Molecular Pharmacology Drug Design, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
544
|
Bassareo PP, O’Brien ST, Dunne E, Duignan S, Martino E, Martino F, Mcmahon CJ. Should We Be Screening for Ischaemic Heart Disease Earlier in Childhood? CHILDREN 2022; 9:children9070982. [PMID: 35883966 PMCID: PMC9320497 DOI: 10.3390/children9070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
Ischaemic heart disease is the most common cause of death in males and the second in the female gender. Yet we often only focus on identification and treatment of this foremost cause of death in adulthood. The review asks the question what form of coronary disease do we encounter in childhood, what predisposing factors give rise to atherosclerosis and what strategies in childhood could we employ to detect and reduce atherosclerosis development in later life.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae Hospital, Mater, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland; (S.T.O.); (E.D.); (S.D.); (C.J.M.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence:
| | - Stephen T. O’Brien
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland; (S.T.O.); (E.D.); (S.D.); (C.J.M.)
| | - Esme Dunne
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland; (S.T.O.); (E.D.); (S.D.); (C.J.M.)
| | - Sophie Duignan
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland; (S.T.O.); (E.D.); (S.D.); (C.J.M.)
| | - Eliana Martino
- Department of Paediatrics, La Sapienza University, 00185 Roma, Italy; (E.M.); (F.M.)
| | - Francesco Martino
- Department of Paediatrics, La Sapienza University, 00185 Roma, Italy; (E.M.); (F.M.)
| | - Colin J. Mcmahon
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland; (S.T.O.); (E.D.); (S.D.); (C.J.M.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
545
|
Shi R, Gao Y, Shen LL, Shi K, Wang J, Jiang L, Li Y, Yang ZG. The effect of LDL-C status on the association between increased coronary artery calcium score and compositional plaque volume progression in statins-treated diabetic patients: evaluated using serial coronary CTAs. Cardiovasc Diabetol 2022; 21:121. [PMID: 35773708 PMCID: PMC9248151 DOI: 10.1186/s12933-022-01556-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 02/08/2023] Open
Abstract
Background In statins-treated diabetic mellitus (DM) patients, longitudinal coronary CTA (CCTA) evidence is scarce regarding the relationship between coronary Agatston artery calcification scores (CACs) and coronary plaque progression. This study was designed to investigate whether the association between CACs progression and compositional plaque volumes (PVs) progression differed between follow-up low-density lipoprotein cholesterol (LDL-C) controlled and uncontrolled groups in statins-treated DM patients. Methods From January 2015 to June 2021, 208 patients who submitted serial clinically indicated CCTAs in our hospital were included in this study. Participants were further subdivided into LDL-C controlled (n = 75) and LDL-C uncontrolled (n = 133) groups according to whether the LDL-C reached the treatment goals at follow-up. Baseline and follow-up CCTA image datasets were quantified analysis at per-patient and per-plaque levels. The annual change of total PV (TPV), calcific PV(CPV), non-calcific PV (NCPV), low-density non-calcific PV (LD-NCPV), and CACs were assessed and further compared according to follow-up LDL-C status. The effect of CACs progression on the annual change of componential PVs was evaluated according to follow-up LDL-C status at both per-patient and per-plaque levels. Results The annual change of CACs was positively associated with the annual change of TPV (β = 0.43 and 0.61, both p < 0.001), CPV (β = 0.23 and β = 0.19, p < 0.001 and p = 0.004, respectively), NCPV (β = 0.20 and β = 0.42, p < 0.001 and p = 0.006, respectively), and LD-NCPV (β = 0.08 and 0.13, p < 0.001 and p = 0.001, respectively) both on per-patients and per-plaque levels. LDL-C status had no effect on the annual change of TPV, CPV, NCPV, and LD-NCPV (all p > 0.05). After adjusting for confounding factors, on the per-patient level, the increase in CACs was independently associated with annual change of TPV (β = 0.650 and 0.378, respectively, both p < 0.001), CPV (β = 0.169 and 0.232, respectively, p = 0.007 and p < 0.001), NCPV (β = 0.469 and 0.144, respectively, both p = 0.001), and LD-NCPV (β = 0.082 and 0.086, respectively, p = 0.004 and p = 0.006) in LDL-C controlled and LDL-C uncontrolled group. On the per-plaque level, the increase in CACs was independently associated with the annual change of NCPV and LD-NCPV in LDL-C uncontrolled patient (β = 0.188 and 0.106, p < 0.001), but not in LDL-C controlled group (β = 0.268 and 0.056, p = 0.085 and 0.08). Conclusions The increase of CACs in statins-treated DM patients indicates the progression of compositional PVs. From a per-plaque perspective, there might be increased instability of individual plaques concomitant with CACs increase in LDL-C uncontrolled patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01556-y.
Collapse
Affiliation(s)
- Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li-Ling Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
546
|
Non-Lipid Effects of PCSK9 Monoclonal Antibodies on Vessel Wall. J Clin Med 2022; 11:jcm11133625. [PMID: 35806908 PMCID: PMC9267174 DOI: 10.3390/jcm11133625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/07/2022] Open
Abstract
Elevated low density lipoprotein (LDL) cholesterol and lipoprotein(a) (Lp(a)) levels have an important role in the development and progression of atherosclerosis, followed by cardiovascular events. Besides statins and other lipid-modifying drugs, PCSK9 monoclonal antibodies are known to reduce hyperlipidemia. PCSK9 monoclonal antibodies decrease LDL cholesterol levels through inducing the upregulation of the LDL receptors and moderately decrease Lp(a) levels. In addition, PCSK9 monoclonal antibodies have shown non-lipid effects. PCSK9 monoclonal antibodies reduce platelet aggregation and activation, and increase platelet responsiveness to acetylsalicylic acid. Evolocumab as well as alirocumab decrease an incidence of venous thromboembolism, which is associated with the decrease of Lp(a) values. Besides interweaving in haemostasis, PCSK9 monoclonal antibodies play an important role in reducing the inflammation and improving the endothelial function. The aim of this review is to present the mechanisms of PCSK9 monoclonal antibodies on the aforementioned risk factors.
Collapse
|
547
|
Switching from tenofovir alafenamide to tenofovir disoproxil fumarate improves lipid profile and protects from weight gain. AIDS 2022; 36:1337-1344. [PMID: 35727143 DOI: 10.1097/qad.0000000000003245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Switching from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide (TAF) increases low-density lipoprotein cholesterol (LDL-C) and body weight. Metabolic effects of the opposite TAF-to-TDF switch are unknown. OBJECTIVES To investigate the effect of TAF-to-TDF switch on plasma lipids, body weight, and atherosclerotic cardiovascular disease (ASCVD) risk score. DESIGN A retrospective chart review. METHODS One hundred and forty-six patients with TAF-to-TDF switch (Switch group) were compared with 146 patients matched for sex, age, and third antiretroviral agent class who continued unchanged TAF-containing regimen (Control group). Data were collected at approximately 1 year (follow-up FU-1) and 2 years (follow-up FU-2) after baseline values. RESULTS In Switch group at FU-1, total cholesterol (TC) and LDL-C decreased 12.1% and 12.4% (P < 0.001 in both), respectively. High-density lipoprotein cholesterol (HDL-C) also decreased 8.2% (P < 0.001) in Switch group, but TC/HDL-C ratio did not change. No statistically significant changes were observed in Control group in any lipid values. TC remained similarly decreased through FU-2 in Switch group, but LDL-C increased from FU-1 to FU-2 in both groups. ASCVD risk score decreased from 6.3% at baseline to 6.0% at FU-2 (P = 0.012) in Switch group but increased from 8.4 to 9.1% (P = 0.162) in Control group. Body weight increased from 83.4 kg at baseline to 84.9 kg at FU-2 (P = 0.025) in Control group but remained stable in Switch group (83.1-83.7 kg, P = 0.978). CONCLUSIONS TAF-to-TDF switch improved plasma lipid profile and ASCVD risk score, as well as prevented weight gain, when compared with ongoing TAF-based antiretroviral therapy.
Collapse
|
548
|
Landmesser U, McGinniss J, Steg PG, Bhatt DL, Bittner VA, Diaz R, Dilic M, Goodman SG, Jukema JW, Loy M, Pećin I, Pordy R, Poulsen SH, Szarek M, White HD, Schwartz GG. Achievement of ESC/EAS LDL-C treatment goals after an acute coronary syndrome with statin and alirocumab. Eur J Prev Cardiol 2022; 29:1842-1851. [PMID: 35708715 DOI: 10.1093/eurjpc/zwac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022]
Abstract
AIMS European guidelines set low-density lipoprotein cholesterol (LDL-C) treatment goals <1.4 mmol/L after acute coronary syndrome (ACS), and <1.0 mmol/L for patients with recurrent cardiovascular events ≤2 years. Many ACS patients do not achieve these goals on statin alone. We examined actual goal achievement with alirocumab and projected achievement with ezetimibe, either added to optimized statin therapy. METHODS AND RESULTS The ODYSSEY OUTCOMES trial (NCT01663402) compared alirocumab with placebo in 18,924 patients with recent ACS and hyperlipidaemia despite high-intensity or maximum-tolerated statin therapy. This subanalysis comprised 17,589 patients with LDL-C ≥1.4 mmol/L at baseline who did not receive ezetimibe treatment. High-intensity statin treatment was used in 88.8%. Median (interquartile range) baseline LDL-C was 2.3 (1.9-2.7) mmol/L. With alirocumab, 94.6% of patients achieved LDL-C <1.4 mmol/L at ≥1 post-baseline measurement vs. 17.3% with placebo. Among 2236 patients with a previous cardiovascular event within 2 years (before the qualifying ACS), 85.2% vs. 3.5%, respectively, achieved LDL-C <1.0 mmol/L. Among patients not treated with ezetimibe, we projected that its use would have achieved LDL-C <1.4 and <1.0 mmol/L in 10.6% and 0%, respectively at baseline (assuming 18 ± 3% reduction of LDL-C). CONCLUSION Among patients with recent ACS and LDL-C ≥1.4 mmol/L despite optimized statin therapy, addition of alirocumab allowed 94.6% to achieve the 2019 European guideline LDL-C goal <1.4 mmol/L, and 85.2% of those with recurrent cardiovascular events to achieve <1.0 mmol/L. In contrast, addition of ezetimibe to optimized statin therapy was projected to achieve LDL-C <1.4 mmol/L in only 10.6% of patients at baseline.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ph Gabriel Steg
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, FACT (French Alliance for Cardiovascular Trials), INSERM U1148, Paris, France.,National Heart and Lung Institute, Imperial College, Royal Brompton Hospital, London, UK
| | - Deepak L Bhatt
- Department of Medicine, Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Vera A Bittner
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafael Diaz
- Estudios Clínicos Latino América, Instituto Cardiovascular de Rosario, Rosario, Argentina
| | - Mirza Dilic
- University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Shaun G Goodman
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada.,St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Wouter Jukema
- Leiden University Medical Center, Leiden, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| | | | - Ivan Pećin
- University of Zagreb, Zagreb School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | | | | | - Michael Szarek
- State University of New York, Downstate School of Public Health, Brooklyn, NY, USA.,CPC Clinical Research and Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Harvey D White
- Green Lane Cardiovascular Services Auckland City Hospital, Auckland, New Zealand
| | | | | |
Collapse
|
549
|
Giskeødegård GF, Madssen TS, Sangermani M, Lundgren S, Wethal T, Andreassen T, Reidunsdatter RJ, Bathen TF. Longitudinal Changes in Circulating Metabolites and Lipoproteins After Breast Cancer Treatment. Front Oncol 2022; 12:919522. [PMID: 35785197 PMCID: PMC9245384 DOI: 10.3389/fonc.2022.919522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
The multimodal treatment of breast cancer may induce long term effects on the metabolic profile and increase the risk of future cardiovascular disease. In this study, we characterized longitudinal changes in serum lipoprotein subfractions and metabolites after breast cancer treatment, aiming to determine the long-term effect of different treatment modalities. Further, we investigated the prognostic value of treatment-induced changes in breast cancer-specific and overall 10-year survival. In this study, serum samples from breast cancer patients (n = 250) were collected repeatedly before and after radiotherapy, and serum metabolites and lipoprotein subfractions were quantified by NMR spectroscopy. Longitudinal changes were assessed by univariate and multivariate data analysis methods applicable for repeated measures. Distinct changes were detectable in levels of lipoprotein subfractions and circulating metabolites during the first year, with similar changes despite large differences in treatment regimens. We detect increased free cholesterol and decreased esterified cholesterol levels of HDL subfractions, a switch towards larger LDL particles and higher total LDL-cholesterol, in addition to a switch in the glutamine-glutamate ratio. Non-survivors had different lipid profiles from survivors already at baseline. To conclude, our results show development towards an atherogenic lipid profile in breast cancer patients with different treatment regimens.
Collapse
Affiliation(s)
- Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Torfinn S. Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matteo Sangermani
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medicine, Stroke Unit, St. Olavs University Hospital, Trondheim, Norway
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi J. Reidunsdatter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
550
|
Zhang W, Gao M, Xiao X, Xu SL, Lin S, Wu QZ, Chen GB, Yang BY, Hu LW, Zeng XW, Hao Y, Dong GH. Long-term PM 0.1 exposure and human blood lipid metabolism: New insight from the 33-community study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119171. [PMID: 35314205 DOI: 10.1016/j.envpol.2022.119171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Ambient particles with aerodynamic diameter <0.1 μm (PM0.1) have been suggested to have significant health impact. However, studies on the association between long-term PM0.1 exposure and human blood lipid metabolism are still limited. This study was aimed to evaluate such association based on multiple lipid biomarkers and dyslipidemia indicators. We matched the 2006-2009 average PM0.1 concentration simulated using the neural-network model following the WRF-Chem model with the clinical and questionnaire data of 15,477 adults randomly recruited from 33 communities in Northeast China in 2009. After controlling for social demographic and behavior confounders, we assessed the association of PM0.1 concentration with multiple lipid biomarkers and dyslipidemia indicators using generalized linear mixed-effect models. Effect modification by various social demographic and behavior factors was examined. We found that each interquartile range increase in PM0.1 concentration was associated with a 5.75 (95% Confidence interval, 3.24-8.25) mg/dl and a 6.05 (2.85-9.25) mg/dl increase in the serum level of total cholesterol and LDL-C, respectively. This increment was also associated with an odds ratio of 1.25 (1.10-1.42) for overall dyslipidemias, 1.41 (1.16, 1.73) for hypercholesterolemia, and 1.90 (1.39, 2.61) for hyperbetalipoproteinemia. Additionally, we found generally greater effect estimates among the younger participants and those with lower income or with certain behaviors such as high-fat diet. The deleterious effect of long-term PM0.1 exposure on lipid metabolism may make it an important toxic chemical to be targeted by future preventive strategies.
Collapse
Affiliation(s)
- Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Xiang Xiao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gong-Bo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuantao Hao
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|