501
|
Berrocal M, Marcos D, Sepúlveda MR, Pérez M, Ávila J, Mata AM. Altered Ca
2+
dependence of synaptosomal plasma membrane Ca
2+
‐ATPase in human brain affected by Alzheimer's disease. FASEB J 2009; 23:1826-34. [DOI: 10.1096/fj.08-121459] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y GenéticaFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Daniel Marcos
- Departamento de Bioquímica y Biología Molecular y GenéticaFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - M. Rosario Sepúlveda
- Departamento de Bioquímica y Biología Molecular y GenéticaFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Mar Pérez
- Centro de Biología Molecular “Severo Ochoa,”Autónoma de MadridCampus de CantoblancoMadridSpain
| | - Jesuús Ávila
- Centro de Biología Molecular “Severo Ochoa,”Autónoma de MadridCampus de CantoblancoMadridSpain
| | - Ana M. Mata
- Departamento de Bioquímica y Biología Molecular y GenéticaFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| |
Collapse
|
502
|
Kunjilwar KK, Fishman HM, Englot DJ, O'Neil RG, Walters ET. Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. J Neurophysiol 2009; 101:1351-60. [PMID: 19144743 DOI: 10.1152/jn.91012.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.
Collapse
Affiliation(s)
- Kumud K Kunjilwar
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
503
|
Valsecchi F, Esseling JJ, Koopman WJH, Willems PHGM. Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1130-7. [PMID: 19171191 DOI: 10.1016/j.bbadis.2009.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/04/2009] [Indexed: 02/07/2023]
Abstract
Proper cell functioning requires precise coordination between mitochondrial ATP production and local energy demand. Ionic calcium (Ca(2+)) plays a central role in this coupling because it activates mitochondrial oxidative phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine how mitochondrial dysfunction affects cytosolic and mitochondrial Ca(2+)/ATP handling, we performed life-cell quantification of these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal mitochondrial ([ATP](m)) and cytosolic ([ATP](c)) ATP concentration, a normal cytosolic Ca(2+) concentration ([Ca(2+)](c)), but a reduced Ca(2+) content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species (ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the peak increases in [Ca(2+)](c), mitochondrial Ca(2+) concentration ([Ca(2+)](m)), [ATP](c) and [ATP](m) were reduced in patient cells. In agreement with these results, ATP-dependent Ca(2+) removal from the cytosol was slower. Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca(2+) and ATP handling, and summarize our findings in patient fibroblasts in an integrative model.
Collapse
Affiliation(s)
- Federica Valsecchi
- Department of Membrane Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
504
|
Horn AP, Frozza RL, Grudzinski PB, Gerhardt D, Hoppe JB, Bruno AN, Chagastelles P, Nardi NB, Lenz G, Salbego C. Conditioned medium from mesenchymal stem cells induces cell death in organotypic cultures of rat hippocampus and aggravates lesion in a model of oxygen and glucose deprivation. Neurosci Res 2009; 63:35-41. [DOI: 10.1016/j.neures.2008.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/15/2008] [Accepted: 10/01/2008] [Indexed: 11/16/2022]
|
505
|
Bakota L, Brandt R. Chapter 2 Live‐Cell Imaging in the Study of Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:49-103. [DOI: 10.1016/s1937-6448(09)76002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
506
|
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60:575-90. [PMID: 18478527 DOI: 10.1002/iub.91] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.
Collapse
Affiliation(s)
- Urszula Wojda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
507
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
508
|
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008; 10:1941-88. [PMID: 18774901 PMCID: PMC2774718 DOI: 10.1089/ars.2008.2089] [Citation(s) in RCA: 440] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiol-disulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (protein-SSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of protein-SSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of protein-SSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb protein-thiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John J Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | |
Collapse
|
509
|
Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med 2008; 10:259-74. [PMID: 19191039 PMCID: PMC2682367 DOI: 10.1007/s12017-008-8052-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 10/02/2008] [Indexed: 12/16/2022]
Abstract
The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca(2+)-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
| | - Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
510
|
Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods 2008; 46:143-51. [PMID: 18929663 DOI: 10.1016/j.ymeth.2008.09.025] [Citation(s) in RCA: 397] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022] Open
Abstract
Our understanding of the underlying mechanisms of Ca2+ signaling as well as our appreciation for its ubiquitous role in cellular processes has been rapidly advanced, in large part, due to the development of fluorescent Ca2+ indicators. In this chapter, we discuss some of the most common chemical Ca2+ indicators that are widely used for the investigation of intracellular Ca2+ signaling. Advantages, limitations and relevant procedures will be presented for each dye including their spectral qualities, dissociation constants, chemical forms, loading methods and equipment for optimal imaging. Chemical indicators now available allow for intracellular Ca2+ detection over a very large range (<50 nM to >50 microM). High affinity indicators can be used to quantify Ca2+ levels in the cytosol while lower affinity indicators can be optimized for measuring Ca2+ in subcellular compartments with higher concentrations. Indicators can be classified into either single wavelength or ratiometric dyes. Both classes require specific lasers, filters, and/or detection methods that are dependent upon their spectral properties and both classes have advantages and limitations. Single wavelength indicators are generally very bright and optimal for Ca2+ detection when more than one fluorophore is being imaged. Ratiometric indicators can be calibrated very precisely and they minimize the most common problems associated with chemical Ca2+ indicators including uneven dye loading, leakage, photobleaching, and changes in cell volume. Recent technical advances that permit in vivo Ca2+ measurements will also be discussed.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
511
|
Rollo CD. Dopamine and Aging: Intersecting Facets. Neurochem Res 2008; 34:601-29. [DOI: 10.1007/s11064-008-9858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
512
|
Drago D, Cavaliere A, Mascetra N, Ciavardelli D, Di Ilio C, Zatta P, Sensi SL. Aluminum Modulates Effects of βAmyloid1–42 on Neuronal Calcium Homeostasis and Mitochondria Functioning and Is Altered in a Triple Transgenic Mouse Model of Alzheimer's Disease. Rejuvenation Res 2008; 11:861-71. [DOI: 10.1089/rej.2008.0761] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Denise Drago
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Alessandra Cavaliere
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Nicola Mascetra
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Domenico Ciavardelli
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Carmine Di Ilio
- Department of Biochemistry, Biochemistry Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
| | - Paolo Zatta
- CNR-Institute for Biomedical Technologies, Padua “Metalloproteins” Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L. Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University ‘G. d'Annunzio’, Chieti, Italy
- Department of Neurology, University of California–Irvine, Irvine, California
| |
Collapse
|
513
|
Zieminska E, Lazarewicz JW, Couladouros EA, Moutsos VI, Pitsinos EN. Open-chain half-bastadins mimic the effects of cyclic bastadins on calcium homeostasis in cultured neurons. Bioorg Med Chem Lett 2008; 18:5734-7. [PMID: 18851910 DOI: 10.1016/j.bmcl.2008.09.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 12/24/2022]
Abstract
Constraining the catechol aryl ether moiety of bastadins by incorporation into a macrocyle is not necessary in order to mimic the effects of these marine natural products on neuronal calcium homeostasis. Simple, acyclic analogs that embody the 'western' or 'eastern' parts of bastadins were found to evoke comparable responses with bastadin 5.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
514
|
Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JXJ, Masliah E. Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS One 2008; 3:e3135. [PMID: 18769546 PMCID: PMC2519786 DOI: 10.1371/journal.pone.0003135] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 08/08/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) and Parkinson's disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid beta protein (Abeta) oligomers has been identified as one of the central toxic events in AD, accumulation of alpha-synuclein (alpha-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Abeta promotes alpha-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. METHODOLOGY/PRINCIPAL FINDINGS In order to understand the molecular mechanisms involved in potential Abeta/alpha-syn interactions, immunoblot, molecular modeling, and in vitro studies with alpha-syn and Abeta were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Abeta and alpha-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Abeta binds alpha-syn monomers, homodimers, and trimers, forming hybrid ring-like pentamers. Interactions occurred between the N-terminus of Abeta and the N-terminus and C-terminus of alpha-syn. Interacting alpha-syn and Abeta dimers that dock on the membrane incorporated additional alpha-syn molecules, leading to the formation of more stable pentamers and hexamers that adopt a ring-like structure. Consistent with the simulations, under in vitro cell-free conditions, Abeta interacted with alpha-syn, forming hybrid pore-like oligomers. Moreover, cells expressing alpha-syn and treated with Abeta displayed increased current amplitudes and calcium influx consistent with the formation of cation channels. CONCLUSION/SIGNIFICANCE These results support the contention that Abeta directly interacts with alpha-syn and stabilized the formation of hybrid nanopores that alter neuronal activity and might contribute to the mechanisms of neurodegeneration in AD and PD. The broader implications of such hybrid interactions might be important to the pathogenesis of other disorders of protein misfolding.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- San Diego Super Computer Center, University of California San Diego, La Jolla, California, United States of America
| | - Leslie Crews
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Gideon M. Shaked
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Yuriy Sharikov
- San Diego Super Computer Center, University of California San Diego, La Jolla, California, United States of America
| | - Hideya Mizuno
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Oleksandr Platoshyn
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jason X.-J. Yuan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
515
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
516
|
Abstract
Mounting evidence points to soluble peptide oligomers as the primary agents in various amyloid and prion diseases. Multiple mechanisms appear to contribute to the cytotoxic effects of these oligomers. Here, an additional, general mechanism is proposed - that soluble amyloid peptide oligomers serve as "all-purpose"beta strands that can interact with transiently unfolded or nascent proteins where interior beta-sheet edges are exposed. The proteins, trapped in misfolded states through this interaction, become substrates for ubiquitination, targeting them for proteasomal degradation. The increased load of ubiquitinated proteins could contribute to the impairment of the ubiquitin/proteasome system (UPS) seen in many amyloid-related diseases. This "misfolding trap" mechanism could be especially stressful in the endoplasmic reticulum, where the amyloid oligomers would compete with chaperones for nascent beta-sheet proteins. If the bound amyloid oligomer dissociates at some point after the misfolded protein is committed to the UPS pathway, the oligomer could then repeat the process, adding a catalytic aspect to the misfolding mechanism. Direct proof of this proposed mechanism requires detection of amyloid oligomer-beta-sheet protein complexes, and a co-immunoprecipitation experiment is proposed. This hypothesis supports therapies that increase amyloid oligomer degradation or sequestration, as well as therapies that upregulate chaperone activity, for combating amyloid-related diseases.
Collapse
Affiliation(s)
- James M Gruschus
- Laboratory of Computational Biology, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
517
|
Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59:214-25. [PMID: 18667150 DOI: 10.1016/j.neuron.2008.06.008] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/14/2008] [Accepted: 06/03/2008] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is characterized by the deposition of senile plaques and progressive dementia. The molecular mechanisms that couple plaque deposition to neural system failure, however, are unknown. Using transgenic mouse models of AD together with multiphoton imaging, we measured neuronal calcium in individual neurites and spines in vivo using the genetically encoded calcium indicator Yellow Cameleon 3.6. Quantitative imaging revealed elevated [Ca(2+)]i (calcium overload) in approximately 20% of neurites in APP mice with cortical plaques, compared to less than 5% in wild-type mice, PS1 mutant mice, or young APP mice (animals without cortical plaques). Calcium overload depended on the existence and proximity to plaques. The downstream consequences included the loss of spinodendritic calcium compartmentalization (critical for synaptic integration) and a distortion of neuritic morphologies mediated, in part, by the phosphatase calcineurin. Together, these data demonstrate that senile plaques impair neuritic calcium homeostasis in vivo and result in the structural and functional disruption of neuronal networks.
Collapse
Affiliation(s)
- Kishore V Kuchibhotla
- Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
518
|
Rocher AB, Kinson MS, Luebke JI. Significant structural but not physiological changes in cortical neurons of 12-month-old Tg2576 mice. Neurobiol Dis 2008; 32:309-18. [PMID: 18721884 DOI: 10.1016/j.nbd.2008.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/26/2008] [Accepted: 07/25/2008] [Indexed: 11/29/2022] Open
Abstract
Amyloid-beta (Abeta) plays a key role in the etiology of Alzheimer's disease, and pyramidal cell dendrites exposed to Abeta exhibit dramatic structural alterations, including reduced dendritic spine densities. To determine whether such structural alterations lead to electrophysiological changes, whole-cell patch clamp recordings with biocytin filling were used to assess both the electrophysiological and morphological properties of layer 3 pyramidal cells in frontal cortical slices prepared from 12-month-old Tg2576 amyloid precursor protein (APP) mutant vs. wild-type (Wt) mice. Tg2576 cells exhibited significantly increased dendritic lengths and volumes and decreased spine densities, while the total number of spines was not different from Wt. Tg2576 and Wt cells did not differ with regard to passive membrane, action potential firing or glutamatergic spontaneous excitatory postsynaptic current properties. Thus, overexpression of mutated APP in young Tg2576 mice leads to significant changes in neuronal morphological properties which do not have readily apparent functional consequences.
Collapse
Affiliation(s)
- Anne B Rocher
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
519
|
Szklarczyk A, Ewaleifoh O, Beique JC, Wang Y, Knorr D, Haughey N, Malpica T, Mattson MP, Huganir R, Conant K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. FASEB J 2008; 22:3757-67. [PMID: 18644839 DOI: 10.1096/fj.07-101402] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of approximately 65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.
Collapse
Affiliation(s)
- Arek Szklarczyk
- Johns Hopkins University, Department of Neurology, Pathology Bldg. Rm. 625, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
520
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
521
|
Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 2008; 10:291-315. [PMID: 18566920 DOI: 10.1007/s12017-008-8044-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/22/2008] [Indexed: 12/22/2022]
Abstract
Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Freidriech ataxia. Further, several lines of evidence suggest that mitochondrial dysfunction is an early event in most late-onset neurodegenerative diseases. Biochemical and animal model studies of inherited neurodegenerative diseases have revealed that mutant proteins of these diseases are associated with mitochondria. Mutant proteins are reported to block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, and, ultimately, damage neurons. This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.
Collapse
|
522
|
Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-kappaB. Mol Cell Biol 2008; 28:5061-70. [PMID: 18541671 DOI: 10.1128/mcb.00578-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-kappaB, which regulates cell proliferation and survival, is activated by glutamate; however, the glutamate receptor-induced signaling pathways that lead to this activation are not clearly defined. Here we investigate the glutamate-induced activation of NF-kappaB in glial cells of the CNS, including primary astrocytes. We show that glutamate induces phosphorylation, nuclear accumulation, DNA binding, and transcriptional activation function of glial p65. The glutamate-induced activation of NF-kappaB requires calcium-dependent IkappaB kinase alpha (IKKalpha) and IKKbeta activation and induces p65-IkappaBalpha dissociation in the absence of IkappaBalpha phosphorylation or degradation. Moreover, glutamate-induced IKK preferentially targets the phosphorylation of p65 but not IkappaBalpha. Finally, we show that the ability of glutamate to activate NF-kappaB requires cross-coupled signaling with the epidermal growth factor receptor. Our results provide insight into a glutamate-induced regulatory pathway distinct from that described for cytokine-induced NF-kappaB activation and have important implications with regard to both normal glial cell physiology and pathogenesis.
Collapse
|
523
|
On the key role played by altered protein conformation in Parkinson’s disease. J Neural Transm (Vienna) 2008; 115:1285-99. [DOI: 10.1007/s00702-008-0072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/14/2008] [Indexed: 12/29/2022]
|
524
|
Ausseil J, Desmaris N, Bigou S, Attali R, Corbineau S, Vitry S, Parent M, Cheillan D, Fuller M, Maire I, Vanier MT, Heard JM. Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One 2008; 3:e2296. [PMID: 18509511 PMCID: PMC2396504 DOI: 10.1371/journal.pone.0002296] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/16/2008] [Indexed: 01/11/2023] Open
Abstract
Background In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. Methodology/Principal Findings In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1α were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. Conclusions/Significance These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease.
Collapse
Affiliation(s)
- Jérôme Ausseil
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Nathalie Desmaris
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Stéphanie Bigou
- Service de Neurologie Pédiatrique, Hôpital Bicêtre, Assistance Publique/Hôpitaux de Paris, INSERM U802, 94000, le Kremlin-Bicêtre, France
| | - Ruben Attali
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Sébastien Corbineau
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Sandrine Vitry
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | - Mathieu Parent
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
| | | | - Maria Fuller
- Genetic Medicine, Children, Youth and Women's Health Service, North Adelaïde, Australia
| | - Irène Maire
- Groupement hospitalier est, CBPE, Bron, France
| | | | - Jean-Michel Heard
- Unité Rétrovirus et Transfert Génétique, INSERM U622, Department of Neuroscience, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
525
|
Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci 2008; 28:4551-60. [PMID: 18434534 DOI: 10.1523/jneurosci.5694-07.2008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-beta protein (Abeta) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP(3) receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mM), BAPTA (10 microM), and RNAi silencing of IP(3) receptor, NMDA receptor, or SERCA1 attenuated caspase-3 activation. Memantine (4 microM) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients.
Collapse
|
526
|
Komary Z, Tretter L, Adam-Vizi V. H2O2 generation is decreased by calcium in isolated brain mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:800-7. [PMID: 18522799 DOI: 10.1016/j.bbabio.2008.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/30/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Release of H(2)O(2) in response to Ca(2+) loads (1-100 microM) was investigated using Amplex red fluorescent assay in isolated guinea-pig brain mitochondria respiring on glutamate plus malate or succinate. In mitochondria challenged with Ca(2+) (10 microM), in the absence of adenine nucleotides and inhibitors of the respiratory chain, the rate of H(2)O(2) release, taken as an indication of H(2)O(2) production, was decreased by 21.8+/-1.6% in the presence of NADH-linked substrates and by 86.5+/-1.8% with succinate. Parallel with this, a Ca(2+)-induced loss in NAD(P)H fluorescence, sustained depolarization, decrease in fluorescent light scattering signal and in calcein fluorescence were detected indicating an increased permeability and swelling of mitochondria, which were prevented by ADP (2 mM). In the presence of ADP H(2)O(2) release from mitochondria was decreased, but Ca(2+) no longer influenced the generation of H(2)O(2). We suggest that the decreased H(2)O(2) generation induced by Ca(2+) is related to depolarization and NAD(P)H loss resulting from a non-specific permeability increase of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Zsofia Komary
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group, Hungarian Academy of Sciences, Szentagothai Knowledge Center, Hungary
| | | | | |
Collapse
|
527
|
Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, Kotov NA. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS NANO 2008; 2:928-38. [PMID: 19206490 DOI: 10.1021/nn7004393] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent advances and progress in nanobiotechnology have demonstrated many nanoparticles (NPs) as potential and novel drug delivery vehicles, therapeutic agents, and contrast agents and luminescent biological labels for bioimaging. The emergence of new biomedical applications based on NPs signifies the need to understand, compare, and manage their cytotoxicity. In this study, we demonstrated the use of high-content screening assay (HCA) as a universal tool to probe the cytotoxicity of NPs and specifically cadmium telluride quantum dots (CdTe QDs) and gold NPs (Au NPs) in NG108-15 murine neuroblastoma cells and HepG2 human hepatocellular carcinoma cells. Neural cells represent special interest for NP-induced cytotoxicity because the optical and electrical functionalities of materials necessary for neural imaging and interfacing are matched well with the properties of many NPs. In addition, the cellular morphology of neurons is particularly suitable for automated high content screening. HepG2 cells represent a good model for high content screening studies since they are commonly used as a surrogate for human hepatocytes in pharmaceutical studies. We found the CdTe QDs to induce primarily apoptotic response in a time- and dosage-dependent manner and produce different toxicological profiles and responses in undifferentiated and differentiated neural cells. Au NPs were found to inhibit the proliferation and intracellular calcium release of HepG2 cells.
Collapse
Affiliation(s)
- Edward Jan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
528
|
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44:507-18. [PMID: 18440065 DOI: 10.1016/j.ceca.2008.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/17/2023]
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) form the catalytic core in gamma-secretase complexes and mutations in these proteins result in aberrant cleavage of amyloid precursor protein leading to accumulation of the beta-amyloid in the brain of familial Alzheimer Disease patients. PS2 possesses a hydrophilic cytoplasmic N-terminal domain (PS2 NTF1-87) dispensable for gamma-secretase activity with physiological functions yet to be determined. The effects of this soluble 87 amino acid fragment of mouse PS2 on single channel activity of mouse brain ryanodine receptors (RyR) were determined. PS2 NTF1-87 application to the cytoplasmic side of the RyR significantly increased single channel activity by favoring higher sublevel openings. The Ca(2+) activation and desensitization ranges for RyRs were unchanged. We demonstrate facilitation of RyR gating by PS2 NTF1-87, which might represent a general mechanism of RyR regulation by presenilins potentially prone to be affected by mutations or external stimuli contributing to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Volodya Hayrapetyan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
529
|
Ng AN, Toresson H. Gamma-secretase and metalloproteinase activity regulate the distribution of endoplasmic reticulum to hippocampal neuron dendritic spines. FASEB J 2008; 22:2832-42. [PMID: 18424769 DOI: 10.1096/fj.07-103903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuronal endoplasmic reticulum (ER) contributes to many physiological and pathological processes in the brain. A subset of dendritic spines on hippocampal neurons contains ER that may contribute to synapse-specific intracellular signaling. Distribution of ER to spines is dynamic, but knowledge of the regulatory mechanisms is lacking. In live cell imaging experiments we now show that cultured hippocampal neurons rapidly lost ER from spines after phorbol ester treatment. ER loss was reduced by inhibiting gamma-secretase (DAPT at 2 microM) and metalloproteinase (TAPI-0 and GM6001 at 4 microM) activity. Inhibition of protein kinase C also diminished loss of ER by preventing exit of ER from spines. Furthermore, gamma-secretase and metalloproteinase inhibition, in the absence of phorbol ester, triggered a dramatic increase in spine ER content. Metalloproteinases and gamma-secretase cleave several transmembrane proteins. Many of these substrates are known to localize to adherens junctions, a structural specialization with which spine ER interacts. One interesting possibility is thus that ER content within spines may be regulated by proteolytic activity affecting adherens junctions. Our data demonstrate a hitherto unknown role for these two proteolytic activities in regulating dynamic aspects of cellular ultrastructure, which is potentially important for cellular calcium homeostasis and several intracellular signaling pathways.
Collapse
Affiliation(s)
- Ai Na Ng
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
| | | |
Collapse
|
530
|
Zhang H, Das S, Li QZ, Dragatsis I, Repa J, Zeitlin S, Hajnóczky G, Bezprozvanny I. Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts. BMC Neurosci 2008; 9:38. [PMID: 18412970 PMCID: PMC2377268 DOI: 10.1186/1471-2202-9-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background The polyglutamine expansion in huntingtin (Htt) protein is a cause of Huntington's disease (HD). Htt is an essential gene as deletion of the mouse Htt gene homolog (Hdh) is embryonic lethal in mice. Therefore, in addition to elucidating the mechanisms responsible for polyQ-mediated pathology, it is also important to understand the normal function of Htt protein for both basic biology and for HD. Results To systematically search for a mouse Htt function, we took advantage of the Hdh +/- and Hdh-floxed mice and generated four mouse embryonic fibroblast (MEF) cells lines which contain a single copy of the Hdh gene (Hdh-HET) and four MEF lines in which the Hdh gene was deleted (Hdh-KO). The function of Htt in calcium (Ca2+) signaling was analyzed in Ca2+ imaging experiments with generated cell lines. We found that the cytoplasmic Ca2+ spikes resulting from the activation of inositol 1,4,5-trisphosphate receptor (InsP3R) and the ensuing mitochondrial Ca2+ signals were suppressed in the Hdh-KO cells when compared to Hdh-HET cells. Furthermore, in experiments with permeabilized cells we found that the InsP3-sensitivity of Ca2+ mobilization from endoplasmic reticulum was reduced in Hdh-KO cells. These results indicated that Htt plays an important role in modulating InsP3R-mediated Ca2+ signaling. To further evaluate function of Htt, we performed genome-wide transcription profiling of generated Hdh-HET and Hdh-KO cells by microarray. Our results revealed that 106 unique transcripts were downregulated by more than two-fold with p < 0.05 and 173 unique transcripts were upregulated at least two-fold with p < 0.05 in Hdh-KO cells when compared to Hdh-HET cells. The microarray results were confirmed by quantitative real-time PCR for a number of affected transcripts. Several signaling pathways affected by Hdh gene deletion were identified from annotation of the microarray results. Conclusion Functional analysis of generated Htt-null MEF cells revealed that Htt plays a direct role in Ca2+ signaling by modulating InsP3R sensitivity to InsP3. The genome-wide transcriptional profiling of Htt-null cells yielded novel and unique information about the normal function of Htt in cells, which may contribute to our understanding and treatment of HD.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
531
|
Levanti MB, Montalbano G, Laurà R, Ciriaco E, Cobo T, García-Suarez O, Germanà A, Vega JA. Calretinin in the peripheral nervous system of the adult zebrafish. J Anat 2008; 212:67-71. [PMID: 18173770 DOI: 10.1111/j.1469-7580.2007.00836.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts.
Collapse
Affiliation(s)
- M B Levanti
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Facoltà di Medicina Veterinaria, Università di Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
532
|
Dziennis S, Yang D, Cheng J, Anderson KA, Alkayed NJ, Hurn PD, Lein PJ. Developmental exposure to polychlorinated biphenyls influences stroke outcome in adult rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:474-80. [PMID: 18414629 PMCID: PMC2291013 DOI: 10.1289/ehp.10828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 01/14/2008] [Indexed: 05/15/2023]
Abstract
BACKGROUND The "developmental origins of adult disease" hypothesis was originally derived from evidence linking low birth weight to cardiovascular diseases including stroke. Subsequently, it has been expanded to include developmental exposures to environmental contaminants as risk factors for adult onset disease. OBJECTIVE Our goal in this study was to test the hypothesis that developmental exposure to poly-chlorinated biphenyls (PCBs) alters stroke outcome in adults. METHODS We exposed rats to the PCB mixture Aroclor 1254 (A1254) at 0.1 or 1 mg/kg/day in the maternal diet throughout gestation and lactation. Focal cerebral ischemia was induced at 6-8 weeks of age via middle cerebral artery occlusion, and infarct size was measured in the cerebral cortex and striatum at 22 hr of reperfusion. PCB congeners were quantified in brain tissue by gas chromatography with microelectron capture detection, and cortical and striatal expression of Bcl2 and Cyp2C11 were quantified by quantitative reverse transcriptase-polymerase chain reaction. RESULTS Developmental exposure to A1254 significantly decreased striatal infarct in females and males at 0.1 and 1 mg/kg/day, respectively. Predominantly ortho-substituted PCB congeners were detected above background levels in brains of adult females and males exposed to A1254 at 1 but not 0.1 mg/kg/day. Effects of developmental A1254 exposure on Bcl2 and Cyp2C11 expression did not correlate with effects on infarct volume. CONCLUSION Our data provide proof of principle that developmental exposures to environmental contaminants influence the response of the adult brain to ischemic injury and thus represent potentially important determinants of stroke susceptibility.
Collapse
Affiliation(s)
- Suzan Dziennis
- Department of Anesthesiology and Peri-Operative Medicine and
| | - Dongren Yang
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jian Cheng
- Department of Anesthesiology and Peri-Operative Medicine and
| | - Kim A. Anderson
- Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | | | | | - Pamela J. Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
- Address correspondence to P.J. Lein, 3181 SW Sam Jackson Park Rd., CROET/L606, Oregon Health & Science University, Portland, OR 97239 USA. Telephone: (503) 494-9279. Fax: (503) 494-3849. E-mail:
| |
Collapse
|
533
|
Perova T, Wasserman MJ, Li PP, Warsh JJ. Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 2008; 11:185-96. [PMID: 17681086 DOI: 10.1017/s1461145707007973] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Substantial evidence implicates abnormalities of intracellular calcium (Ca2+) dynamics in the pathophysiology of bipolar disorder (BD). However, the precise mechanisms underlying such disturbances are poorly understood. To further elaborate the nature of altered intracellular Ca2+ signalling dynamics that occur in BD, we examined receptor- and store-operated Ca2+ responses in B lymphoblast cell lines (BLCLs), which have been found in earlier studies to 'report' BD-associated disturbances. Basal Ca2+ concentrations ([Ca2+]B), and lysophosphatidic acid (LPA)- and thapsigargin-stimulated Ca2+ responses were determined in BLCLs from 52 BD-I patients and 30 healthy comparison subjects using fura-2, and ratiometric fluorometry. ANOVA revealed a significant effect of diagnosis, but not gender, on [Ca2+]B (F1,63=4.4, p=0.04) and the rate of rise (F1,63=5.2, p=0.03) of LPA-stimulated Ca2+ responses in BLCLs from patients compared with those from healthy subjects. A significant genderxdiagnosis interaction on the LPA-induced rate of rise (F1,63=4.6, p=0.03) was accounted for by a faster rate of rise (97%) in BLCLs from BD-I males compared with healthy males but not in those from female patients compared with healthy females. A genderxdiagnosis interaction in thapsigargin-evoked Ca2+ influx (F1,61=3.8, p=0.05) resulted from a significantly higher peak [Ca2+]influx (24%) in BLCLs from female compared with male patients. The results suggest more rapid LPA-stimulated Ca2+ responses occur in BLCLs from BD-I patients compared with controls, which are probably mediated, in part, by canonical transient receptor potential type 3 (TRPC3)-like channels. Additionally, this study highlights sex-dependent differences that can occur in the pathophysiological disturbances involved in BD.
Collapse
Affiliation(s)
- Tatiana Perova
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
534
|
Del Río P, Montiel T, Massieu L. Contribution of NMDA and Non-NMDA Receptors to In vivo Glutamate-Induced Calpain Activation in the Rat Striatum. Relation to Neuronal Damage. Neurochem Res 2008; 33:1475-83. [DOI: 10.1007/s11064-008-9612-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/28/2008] [Indexed: 11/29/2022]
|
535
|
Piacentini R, Gangitano C, Ceccariglia S, Fà AD, Azzena GB, Michetti F, Grassi C. Dysregulation of intracellular calcium homeostasis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin. J Neurochem 2008; 105:2109-21. [DOI: 10.1111/j.1471-4159.2008.05297.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
536
|
Velho S, Marques-Vidal P, Baptista F, Camilo ME. Dietary intake adequacy and cognitive function in free-living active elderly: A cross-sectional and short-term prospective study. Clin Nutr 2008; 27:77-86. [DOI: 10.1016/j.clnu.2007.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 12/31/2022]
|
537
|
Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56:106-17. [PMID: 17963266 DOI: 10.1002/glia.20593] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional studies of brain changes in normal aging have concentrated on gray matter as the locus for cognitive dysfunction. However, there is accumulating evidence from studies of normal aging in the rhesus monkey that changes in white matter may be a more critical factor in cognitive decline. Such changes include ultrastructural and biochemical evidence of myelin breakdown with age, as well as more recent magnetic resonance imaging of global loss of forebrain white matter volume and magnetic resonance diffusion tension imaging evidence of increased diffusivity in white matter. Moreover, many of these white matter changes correlate with age-related cognitive dysfunction. Based on these diverse white matter findings, the present work utilized high-density oligonucleotide microarrays to assess gene profile changes associated with age in the white matter of the corpus callosum. This approach identified several classes of genes that were differentially expressed in aging. Broadly characterized, these genes were predominantly related to an increase in stress factors and a decrease in cell function. The cell function changes included increased cell cycle inhibition and proteolysis, as well as decreased mitochondrial function, signal transduction, and protein translation. While most of these categories have previously been reported in functional brain aging, this is the first time they have been associated directly with white matter. Microarray analysis has also enabled the identification of neuroprotective response pathways activated by age in white matter, as well as several genes implicated in lifespan. Of particular interest was the identification of Klotho, a multifunctional protein that regulates phosphate and calcium metabolism, as well as insulin resistance, and is known to defend against oxidative stress and apoptosis. Combining the findings from the microarray study enabled us to formulate a model of white matter aging where specific genes are suggested as primary factors in disrupting white matter function. In conclusion, the overall changes described in this study could provide an explanation for aging changes in white matter that might be initiated or enhanced by an altered expression of life span associated genes such as Klotho.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
538
|
Sharov VS, Schöneich C. Chapter 6 Oxidative Modification of Ca2+ Channels, Ryanodine Receptors, and the Sarco/Endoplasmic Reticulum Ca2+-ATPase. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
539
|
Miura H, Takano K, Kitao Y, Hibino S, Choshi T, Murakami R, Suzuki H, Yamada M, Ogawa S, Hori O. A Carbazole Derivative Protects Cells Against Endoplasmic Reticulum (ER) Stress and Glutathione Depletion. J Pharmacol Sci 2008; 108:164-71. [DOI: 10.1254/jphs.08136fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
540
|
Okutsu S, Hatakeyama H, Kanazaki M, Tsubokawa H, Nagatomi R. Electric Pulse Stimulation Induces NMDA Glutamate Receptor mRNA in NIH3T3 Mouse Fibroblasts. TOHOKU J EXP MED 2008; 215:181-7. [DOI: 10.1620/tjem.215.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Saeko Okutsu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| | | | - Makoto Kanazaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, School of Medicine
| | | | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| |
Collapse
|
541
|
Nathalie Lacor P. Advances on the understanding of the origins of synaptic pathology in AD. Curr Genomics 2007; 8:486-508. [PMID: 19415125 PMCID: PMC2647163 DOI: 10.2174/138920207783769530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/14/2022] Open
Abstract
Although Alzheimer's disease (AD) was first discovered a century ago, we are still facing a lack of definitive diagnosis during the patient's lifetime and are unable to prescribe a curative treatment. However, the past 10 years have seen a "revamping" of the main hypothesis about AD pathogenesis and the hope to foresee possible treatment. AD is no longer considered an irreversible disease. A major refinement of the classic beta-amyloid cascade describing amyloid fibrils as neurotoxins has been made to integrate the key scientific evidences demonstrating that the first pathological event occurring in AD early stages affects synaptic function and maintenance. A concept fully compatible with synapse loss being the best pathological correlate of AD rather than other described neuropathological hallmarks (amyloid plaques, neurofibrillary tangles or neuronal death). The notion that synaptic alterations might be reverted, thus offering a potential curability, was confirmed by immunotherapy experiments targeting beta-amyloid protein in transgenic AD mice in which cognitive functions were improved despite no reduction in the amyloid plaques burden. The updated amyloid cascade now integrates the synapse failure triggered by soluble Abeta-oligomers. Still no consensus has been reached on the most toxic Abeta conformations, neither on their site of production nor on their extra- versus intra-cellular actions. Evidence shows that soluble Abeta oligomers or ADDLs bind selectively to neurons at their synaptic loci, and trigger major changes in synapse composition and morphology, which ultimately leads to dendritic spine loss. However, the exact mechanism is not yet fully understood but is suspected to involve some membrane receptor(s).
Collapse
|
542
|
Chen CCV, Zechariah A, Hsu YH, Chen HW, Yang LC, Chang C. Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis. Exp Neurol 2007; 210:322-30. [PMID: 18201701 DOI: 10.1016/j.expneurol.2007.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 11/03/2007] [Indexed: 11/18/2022]
Abstract
Atrophy of the corpus callosum (CC) is a well-documented observation in clinically definite multiple sclerosis (MS) patients. One recent hypothesis for the neurodegeneration that occurs in MS is that ion dyshomeostasis leads to neuroaxonal damage. To examine whether ion dyshomeostasis occurs in the CC during MS onset, experimental autoimmune encephalomyelitis (EAE) was utilized as an animal MS model to induce autoimmunity-mediated responses. To date, in vivo investigations of neuronal ion homeostasis has not been feasible using traditional neuroscience techniques. Therefore, the current study employed an emerging MRI method, called Mn2+-enhanced MRI (MEMRI). Mn2+ dynamics is closely associated with important neuronal activity events, and is also considered to be a Ca2+ surrogate. Furthermore, when injected intracranially, Mn2+ can be used as a multisynaptic tracer. These features enable MEMRI to detect neuronal ion homeostasis within a multisynaptic circuit that is connected to the injection site. Mn2+ was injected into the visual cortex to trace the CC, and T1-weighted imaging was utilized to observe temporal changes in Mn2+-induced signals in the traced pathways. The results showed that neuroaxonal functional changes associated with ion dyshomeostasis occurred in the CC during an acute EAE attack. In addition, the pathway appeared normal, although EAE-induced immune-cell infiltration was visible around the CC. The findings suggest that ion dyshomeostasis is a major neuronal aberration underlying the deterioration of normal-appearing brain tissues in MS, supporting its involvement in neuroaxonal functioning in MS.
Collapse
Affiliation(s)
- Chiao-Chi V Chen
- Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
543
|
A cytoskeleton motor protein genetic variant may exert a protective effect on the occurrence of multiple sclerosis: the janus face of the kinesin light-chain 1 56836CC genetic variant. Neuromolecular Med 2007; 9:335-9. [PMID: 17999208 DOI: 10.1007/s12017-007-8014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/28/2007] [Indexed: 01/11/2023]
Abstract
Although the main pathomechanism of multiple sclerosis (MS) is not known, an autoimmune response is presumed to involve its evolution and propagation. In this study, we examined how the kinesin light-chain 1 (KLC1) G56836C (rs8702) single nucleotide polymorphism (SNP) in intron 13 affects the occurrence of MS. This genetic variant was found to be associated with cognitive disturbances and neurodegeneration, and it was presumed to affect the kinesin function. Kinesin serves as a main cytoskeleton motor protein by carrying mitochondria and the molecular apparatus of myelin basic protein synthesis. The present association analysis of this genetic variant was performed in 102 relapsing-remitting MS patients and in 207 neuroimaging alteration-free controls. The KLC1 56836CC variant proved to exert a significant protective effect on the occurrence of MS (2.0% vs. 9.7%, P < 0.02; crude OR: 0.19, 95% CI: 0.04-0.82, P < 0.05; adjusted OR: 0.21, 95% CI: 0.018-0.88, P < 0.05). Our results draw attention to possible roles of the cytoskeleton in MS.
Collapse
|
544
|
Toescu EC, Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 2007; 6:267-73. [PMID: 17517038 DOI: 10.1111/j.1474-9726.2007.00296.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aging is a complex, multifactorial process. One of the features of normal aging of the brain is a decline in cognitive functions and much experimental attention has been devoted to understanding this process. Evidence accumulated in the last decade indicates that such functional changes are not due to gross morphological alterations, but to subtle functional modification of synaptic connectivity and intracellular signalling and metabolism. Such synaptic modifications are compatible with a normal level of activity and allow the maintenance of a certain degree of functional reserve. This is in contrast to the changes in various neurodegenerative diseases, characterized by significant neuronal loss and dramatic and irreversible functional deficit. This whole special issue has been initiated with the intention of focusing on the processes of normal brain aging. In this review, we present data that shows how subtle changes in Ca(2+) homeostasis or in the state of various Ca(2+)-dependent processes or molecules, which occur in aging can have significant functional consequences.
Collapse
Affiliation(s)
- Emil C Toescu
- Department of Physiology, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|