501
|
Ujvári A, Hsieh FK, Luse SW, Studitsky VM, Luse DS. Histone N-terminal tails interfere with nucleosome traversal by RNA polymerase II. J Biol Chem 2008; 283:32236-43. [PMID: 18815126 DOI: 10.1074/jbc.m806636200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined the effect of the N-terminal histone tails on nucleosome traversal by yeast and human RNA polymerase II (pol II). Removal of H2A/H2B tails, H3/H4 tails, or all tails increased complete traversal of the nucleosome by human pol II, although the increase varied considerably depending on the template and on which tails were removed. Human pol II achieved >80% traversal of one nucleosomal template lacking the H2A/H2B tails, but even in those reactions, the transcript elongation rate was lower than the rate on pure DNA templates. For yeast pol II, transcription proceeded much farther into the nucleosome in the absence of tails, but complete read-through was not substantially increased by tail removal. Transcription factor IIS provided roughly the same level of read-through stimulation for transcript elongation in the presence or absence of tails. FACT also stimulated elongation on nucleosomal templates, and this effect was similar regardless of the presence of tails. For both polymerases, removal of the H2A/H2B tails reduced pausing throughout the nucleosome, suggesting that histone tails affect a common step at most points during nucleosome traversal. We conclude that histone tails provide a significant part of the nucleosomal barrier to pol II transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
502
|
Abstract
FACT is an essential component of the machinery used by eukaryotic cells both to establish and to overcome the nucleosomal barrier to DNA accessibility, and it does so without hydrolyzing ATP. FACT is a transcription elongation factor, but this review stresses additional roles in DNA replication and initiation of transcription. The widely-held model that FACT functions by displacing an H2A-H2B dimer from a nucleosome is examined, and an alternative proposal is presented in which dimer loss can occur but is a secondary effect of a primary structural change induced by FACT binding which we have called "nucleosome reorganization." The structures of two domains of FACT have been determined and they reveal multiple potential interaction sites. Roles for these binding sites in FACT function and regulation are discussed.
Collapse
Affiliation(s)
- Tim Formosa
- University of Utah School of Medicine, Department of Biochemistry, 15 N Medical Drive East RM 4100, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
503
|
Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T. Visualization of Intrinsically Disordered Regions of Proteins by High-Speed Atomic Force Microscopy. Chemphyschem 2008; 9:1859-66. [DOI: 10.1002/cphc.200800210] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
504
|
Fleming AB, Kao CF, Hillyer C, Pikaart M, Osley MA. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 2008; 31:57-66. [PMID: 18614047 DOI: 10.1016/j.molcel.2008.04.025] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 01/15/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
Collapse
Affiliation(s)
- Alastair B Fleming
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
505
|
Abstract
Transcription of the major ribosomal RNAs by Pol I (RNA polymerase I) is a key determinant of ribosome biogenesis, driving cell growth and proliferation in eukaryotes. Hundreds of copies of rRNA genes are present in each cell, and there is evidence that the cellular control of Pol I transcription involves adjustments to the number of rRNA genes actively engaged in transcription, as well as to the rate of transcription from each active gene. Chromatin structure is inextricably linked to rRNA gene activity, and the present review highlights recent advances in this area.
Collapse
Affiliation(s)
- Joanna L. Birch
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Joost C.B.M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
506
|
Abstract
The FACT complex is a conserved cofactor for RNA polymerase II elongation through nucleosomes. FACT bears histone chaperone activity and contributes to chromatin integrity. However, the molecular mechanisms behind FACT function remain elusive. Here we report biochemical, structural, and mutational analyses that identify the peptidase homology domain of the Schizosaccharomyces pombe FACT large subunit Spt16 (Spt16-N) as a binding module for histones H3 and H4. The 2.1-A crystal structure of Spt16-N reveals an aminopeptidase P fold whose enzymatic activity has been lost. Instead, the highly conserved fold directly binds histones H3-H4 through a tight interaction with their globular core domains, as well as with their N-terminal tails. Mutations within a conserved surface pocket in Spt16-N or posttranslational modification of the histone H4 tail reduce interaction in vitro, whereas the globular domains of H3-H4 and the H3 tail bind distinct Spt16-N surfaces. Our analysis suggests that the N-terminal domain of Spt16 may add to the known H2A-H2B chaperone activity of FACT by including a H3-H4 tail and H3-H4 core binding function mediated by the N terminus of Spt16. We suggest that these interactions may aid FACT-mediated nucleosome reorganization events.
Collapse
|
507
|
FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 2008; 30:86-97. [PMID: 18406329 DOI: 10.1016/j.molcel.2008.02.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 11/22/2022]
Abstract
The phosphorylation of histone variant H2AX at DNA double-strand breaks is believed to be critical for recognition and repair of DNA damage. However, little is known about the molecular mechanism regulating the exchange of variant H2AX with conventional H2A in the context of the nucleosome. Here, we isolate the H2AX-associated factors, which include FACT (Spt16/SSRP1), DNA-PK, and PARP1 from a human cell line. Our analyses demonstrate that the H2AX-associated factors efficiently promote both integration and dissociation of H2AX and this exchange reaction is mainly catalyzed by FACT among the purified factors. The phosphorylation of H2AX by DNA-PK facilitates the exchange of nucleosomal H2AX by inducing conformational changes of the nucleosome. In contrast, poly-ADP-ribosylation of Spt16 by PARP1 significantly inhibits FACT activities for H2AX exchange. Thus, these data establish FACT as the major regulator involved in H2AX exchange process that is modulated by H2AX phosphorylation and Spt16 ADP-ribosylation.
Collapse
|
508
|
Jensen MM, Christensen MS, Bonven B, Jensen TH. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae. FEBS J 2008; 275:2956-64. [DOI: 10.1111/j.1742-4658.2008.06451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
509
|
Hadwiger LA. Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. PHYTOPATHOLOGY 2008; 98:372-9. [PMID: 18944184 DOI: 10.1094/phyto-98-4-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This mini-review points to the usefulness of the pea-Fusarium solani interaction in researching the biochemical and molecular aspects of the nonhost resistance components of peas. This interaction has been researched to evaluate the resistance roles of the phytoalexin, pisatin, the cuticle barrier, and the activation of the nonhost resistance response. Concurrently, evaluations of associated signaling processes and the tools possessed by the pathogen to contend with host obstacles were included. The properties of some pathogenesis-related genes of pea and their regulation and contribution to resistance are discussed. A proposed action of two biotic elicitors on both chromatin conformation and the architectural transcription factor, HMG A, is presented and includes time lines of events within the host immune response.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman 99164, USA.
| |
Collapse
|
510
|
de Jong RN, Truffault V, Diercks T, Ab E, Daniels MA, Kaptein R, Folkers GE. Structure and DNA binding of the human Rtf1 Plus3 domain. Structure 2008; 16:149-59. [PMID: 18184592 DOI: 10.1016/j.str.2007.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/17/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
The yeast Paf1 complex consists of Paf1, Rtf1, Cdc73, Ctr9, and Leo1 and regulates histone H2B ubiquitination, histone H3 methylation, RNA polymerase II carboxy-terminal domain (CTD) Ser2 phosphorylation, and RNA 3' end processing. We provide structural insight into the Paf1 complex with the NMR structure of the conserved and functionally important Plus3 domain of human Rtf1. A predominantly beta-stranded subdomain displays structural similarity to Dicer/Argonaute PAZ domains and to Tudor domains. We further demonstrate that the highly basic Rtf1 Plus3 domain can interact in vitro with single-stranded DNA via residues on the rim of the beta sheet, reminiscent of siRNA binding by PAZ domains, but did not detect binding to double-stranded DNA or RNA. We discuss the potential role of Rtf1 Plus3 ssDNA binding during transcription elongation.
Collapse
Affiliation(s)
- Rob N de Jong
- Bijvoet Centre for Biomolecular Research, Utrecht University, Faculty of Chemistry, Department NMR Spectroscopy, Padualaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
511
|
Rocha W, Verreault A. Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett 2008; 582:1938-49. [PMID: 18343227 DOI: 10.1016/j.febslet.2008.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
In eukaryotes, the packaging of DNA into chromatin is essential for cell viability. Several important DNA metabolic events require the transient disruption of chromatin structure, but cells have evolved a number of elaborate pathways that operate throughout the cell cycle to prevent the deleterious effects of chromatin erosion. In this review, we describe a number of distinct nucleosome assembly pathways that function during DNA replication, transcription, cellular senescence and early embryogenesis. In addition, we illustrate some of the physiological consequences associated with defects in nucleosome assembly pathways.
Collapse
Affiliation(s)
- Walter Rocha
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de Pathologie et de Biologie Cellulaire, Université de Montréal, B.P. 6128, Succursale Centre-Ville, Montréal (Qc), Canada H3C 3J7
| | | |
Collapse
|
512
|
Evidence of spatially varying selection acting on four chromatin-remodeling loci in Drosophila melanogaster. Genetics 2008; 179:475-85. [PMID: 18245821 DOI: 10.1534/genetics.107.085423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The packaging of DNA into proper chromatin structure contributes to transcriptional regulation. This packaging is environment sensitive, yet its role in adaptation to novel environmental conditions is completely unknown. We set out to identify candidate chromatin-remodeling loci that are differentiated between tropical and temperate populations in Drosophila melanogaster, an ancestrally equatorial African species that has recently colonized temperate environments around the world. Here we describe sequence variation at seven such chromatin-remodeling loci, four of which (chd1, ssrp, chm, and glu) exhibit strong differentiation between tropical and temperate populations. An in-depth analysis of chm revealed sequence differentiation restricted to a small portion of the gene, as well as evidence of clinal variation along the east coasts of both the United States and Australia. The functions of chd1, chm, ssrp, and glu point to several novel hypotheses for the role of chromatin-based transcriptional regulation in adaptation to a novel environment. Specifically, both stress-induced transcription and developmental homeostasis emerge as potential functional targets of environment-dependent selection.
Collapse
|
513
|
A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae. Genetics 2008; 178:649-59. [PMID: 18245327 DOI: 10.1534/genetics.107.084202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chromatin-modifying factors regulate both transcription and DNA replication. The yFACT chromatin-reorganizing complex is involved in both processes, and the sensitivity of some yFACT mutants to the replication inhibitor hydroxyurea (HU) is one indication of a replication role. This HU sensitivity can be suppressed by disruptions of the SET2 or CHD1 genes, encoding a histone H3(K36) methyltransferase and a chromatin remodeling factor, respectively. The additive effect of set2 and chd1 mutations in suppressing the HU sensitivity of yFACT mutants suggests that these two factors function in separate pathways. The HU suppression is not an indirect effect of altered regulation of ribonucleotide reductase induced by HU. set2 and chd1 mutations also suppress the HU sensitivity of mutations in other genes involved in DNA replication, including CDC2, CTF4, ORC2, and MEC1. Additionally, a chd1 mutation can suppress the lethality normally caused by disruption of either MEC1 or RAD53 DNA damage checkpoint genes, as well as the lethality seen when a mec1 sml1 mutant is exposed to low levels of HU. The pob3 defect in S-phase progression is suppressed by set2 or chd1 mutations, suggesting that Set2 and Chd1 have specific roles in negatively regulating DNA replication.
Collapse
|
514
|
Armstrong JA. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol 2008; 85:426-34. [PMID: 17713578 DOI: 10.1139/o07-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation by RNA polymerase II (Pol II) involves a host of enzymes, and the process of elongation appears similarly complex. Transcriptional elongation through chromatin requires the coordinated efforts of Pol II and its associated transcription factors: C-terminal domain kinases, elongation complexes, chromatin-modifying enzymes, chromatin remodeling factors, histone chaperones (nucleosome assembly factors), and histone variants. This review examines the following: (i) the consequences of the encounter between elongating Pol II and a nucleosome, and (ii) chromatin remodeling factors and nucleosome assembly factors that have recently been identified as important for the elongation stage of transcription.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Joint Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA.
| |
Collapse
|
515
|
Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 2008; 36:e17. [PMID: 18203739 PMCID: PMC2241906 DOI: 10.1093/nar/gkn001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chromatin immunoprecipitation (ChIP) assay is a major tool in the study of genomic processes in vivo. This and other methods are revealing that control of gene expression, cell division and DNA repair involves multiple proteins and great number of their modifications. ChIP assay is traditionally done in test tubes limiting the ability to study signaling of the complex genomic events. To increase the throughput and to simplify the assay we have developed a microplate-based ChIP (Matrix ChIP) method, where all steps from immunoprecipitation to DNA purification are done in microplate wells without sample transfers. This platform has several important advantages over the tube-based assay including very simple sample handling, high throughput, improved sensitivity and reproducibility, and potential for automation. 96 ChIP measurements including PCR can be done by one researcher in one day. We illustrate the power of Matrix ChIP by parallel profiling 80 different chromatin and transcription time-course events along an inducible gene including transient recruitment of kinases.
Collapse
Affiliation(s)
- Steve Flanagin
- UW Medicine Lake Union, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
516
|
Marton HA, Desiderio S. The Paf1 complex promotes displacement of histones upon rapid induction of transcription by RNA polymerase II. BMC Mol Biol 2008; 9:4. [PMID: 18194564 PMCID: PMC2265735 DOI: 10.1186/1471-2199-9-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The yeast Paf1 protein complex is required for efficient transcription elongation by RNA polymerase II (RNA pol II), but the precise role of the complex has been unclear. RESULTS Here we show that depletion of the Ctr9 or Paf1 component of the Paf1 complex delays the loss of histones from the GAL1 gene upon induction. This delay in histone removal is accompanied by a decrease in association of RNA pol II with GAL1 and altered distribution of the polymerase along the locus. CONCLUSION These observations may explain why initial induction of GAL transcripts is reduced in Ctr9- or Paf1-deficient cells, and is consistent with a model suggesting that the Paf1 complex and the histone modifications that it mediates increase efficiency of transcriptional elongation by promoting nucleosomal destabilization and histone removal.
Collapse
Affiliation(s)
- Heather A Marton
- Department of Molecular Biology and Genetics and Program in Immunology, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
517
|
Nelson JD, Flanagin S, Kawata Y, Denisenko O, Bomsztyk K. Transcription of laminin gamma1 chain gene in rat mesangial cells: constitutive and inducible RNA polymerase II recruitment and chromatin states. Am J Physiol Renal Physiol 2008; 294:F525-33. [PMID: 18184742 DOI: 10.1152/ajprenal.00299.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The laminin gamma1 chain, a critical component of the extracellular matrix, is encoded by the 125-kb-long Lamc1 locus. We profiled RNA polymerase II (Pol II) and histone modifications along the Lamc1 locus to explore transcription of this gene in its native chromatin environment. Treatment with 12-O-tetradecanoylphorbol-13-acetate increased Lamc1 mRNA in rat mesangial cells (RMC). This increase was matched by an increase in Pol II density along the entire length of the Lamc1 locus. In contrast, in the hepatocarcinoma cell line (HTC-IR) an increase in Pol II density was restricted to the promoter and was not followed by mRNA induction. The pattern of histone H3 methylation was similar for both cell types but an increase in H3 lysine 9 acetylation observed at the 5'-end was weaker in HTC-IR cells than in RMC. All of the histone modifications showed spatial patterns where levels differed greatly between the 5'- and 3'-ends of Lamc1. Conversely, at the short, highly induced egr-1 gene the differences in chromatin marks between the 5'- and 3'-ends were much smaller. The results of this study suggest that 1) Lamc1 transcription can be controlled after transcription initiation, to our knowledge, the first time this has been shown in an extracellular matrix gene, and 2) the length of a gene is a factor that can affect the chromatin environment for Pol II elongation.
Collapse
Affiliation(s)
- Joel D Nelson
- Molecular and Cellular Biology Program, University of Washington Medicine Lake Union, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
518
|
Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 2008; 9:15-26. [DOI: 10.1038/nrg2206] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
519
|
Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C. Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 2008; 67:435-47. [PMID: 18067542 PMCID: PMC2610267 DOI: 10.1111/j.1365-2958.2007.06057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Trypanosoma brucei genome is colonized by the site-specific non-LTR retrotransposon SLACS, or spliced leader-associated conserved sequence, which integrates exclusively into the spliced leader (SL) RNA genes. Although there is evidence that the RNA interference (RNAi) machinery regulates SLACS transcript levels, we do not know whether RNAi deficiency affects the genomic stability of SLACS, nor do we understand the mechanism of SLACS transcription. Here, we report that prolonged culturing of RNAi-deficient T. brucei cells, but not wild-type cells, results in genomic rearrangements of SLACS. Furthermore, two populations of SLACS transcripts persist in RNAi-deficient cells: a full-length transcript of approximately 7 kb and a heterogeneous population of small SLACS transcripts ranging in size from 450 to 550 nt. We provide evidence that SLACS transcription initiates at the +1 of the interrupted SL RNA gene and proceeds into the 5' UTR and open reading frame 1 (ORF1). This transcription is carried out by an RNA polymerase with alpha-amanitin sensitivity reminiscent of SL RNA synthesis and is dependent on the SL RNA promoter. Additionally, we show that both sense and antisense small SLACS transcripts originate from ORF1 and that they are associated with proteins in vivo. We speculate that the small SLACS transcripts serve as substrates for the production of siRNAs to regulate SLACS expression.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | | | | | | | |
Collapse
|
520
|
Bell O, Wirbelauer C, Hild M, Scharf AND, Schwaiger M, MacAlpine DM, Zilbermann F, van Leeuwen F, Bell SP, Imhof A, Garza D, Peters AHFM, Schübeler D. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J 2007; 26:4974-84. [PMID: 18007591 DOI: 10.1038/sj.emboj.7601926] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 10/24/2007] [Indexed: 12/21/2022] Open
Abstract
Post-translational modifications of histones are involved in transcript initiation and elongation. Methylation of lysine 36 of histone H3 (H3K36me) resides promoter distal at transcribed regions in Saccharomyces cerevisiae and is thought to prevent spurious initiation through recruitment of histone-deacetylase activity. Here, we report surprising complexity in distribution, regulation and readout of H3K36me in Drosophila involving two histone methyltransferases (HMTases). Dimethylation of H3K36 peaks adjacent to promoters and requires dMes-4, whereas trimethylation accumulates toward the 3' end of genes and relies on dHypb. Reduction of H3K36me3 is lethal in Drosophila larvae and leads to elevated levels of acetylation, specifically at lysine 16 of histone H4 (H4K16ac). In contrast, reduction of both di- and trimethylation decreases lysine 16 acetylation. Thus di- and trimethylation of H3K36 have opposite effects on H4K16 acetylation, which we propose enable dynamic changes in chromatin compaction during transcript elongation.
Collapse
Affiliation(s)
- Oliver Bell
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
De Koning L, Corpet A, Haber JE, Almouzni G. Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 2007; 14:997-1007. [PMID: 17984962 DOI: 10.1038/nsmb1318] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.
Collapse
Affiliation(s)
- Leanne De Koning
- Laboratory of Nuclear Dynamics and Genome Plasticity (UMR 218), Institut Curie, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | |
Collapse
|
522
|
Modulation of SRF-dependent gene expression by association of SPT16 with MKL1. Exp Cell Res 2007; 314:629-37. [PMID: 18036521 DOI: 10.1016/j.yexcr.2007.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/13/2023]
Abstract
MKL1 (MRTF-A/MAL) is a member of the myocardin-related transcription factor family that plays a key role in the development and differentiation of smooth muscle cells (SMCs) via activation of serum response factor (SRF)-dependent SMC gene expression. MKL1 associates with SRF and stimulates its transcriptional activity. Here, by performing matrix-assisted laser desorption/ionization-time of flight mass spectrometric analysis combined with in vitro glutathione S-transferase pull-down assay, we identified 4 candidate proteins that associate with MKL1 through the N-terminus region of MKL1. SPT16, ATP citrate lyase, nucleolin and radixin were identified, and the physical and functional interactions between MKL1 and SPT16 were examined. SPT16 is a component of the FACT (facilitating chromatin transcription) complex that allows RNA polymerase II to traverse the nucleosomes. SPT16 associates with MKL1 in vitro and in vivo; moreover, SSRP1, another component of the FACT complex, associates with the N-terminus region of MKL1 in vitro. SPT16 synergistically activates the transcriptional activity of MKL1. These results show that the expression of nucleosomal SRF-dependent genes, including the SMC gene, is activated by MKL1 via activation of SRF and recruitment of the FACT complex.
Collapse
|
523
|
Abarrategui I, Krangel MS. Noncoding transcription controls downstream promoters to regulate T-cell receptor alpha recombination. EMBO J 2007; 26:4380-90. [PMID: 17882258 PMCID: PMC2034674 DOI: 10.1038/sj.emboj.7601866] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/30/2007] [Indexed: 01/08/2023] Open
Abstract
The T early alpha (TEA) promoter in the murine Tcra locus generates noncoding transcripts that extend across the 65 kb Jalpha array. Here, we have analyzed the significance of TEA transcription for Tcra locus regulation through the targeted introduction of a transcription terminator downstream of the TEA promoter. We demonstrate that noncoding transcription driven by this single promoter can instruct both positively and negatively the activity of downstream Jalpha promoters, and can similarly instruct alterations in Jalpha chromatin structure and Jalpha recombination. TEA transcription activates promoters associated with relatively proximal Jalpha segments and stimulates histone acetylation, histone methylation and chromatin accessibility in this region. In contrast, at more distal locations, TEA transcription inhibits promoter activity through transcriptional interference and suppresses chromatin accessibility. In combination, these effects target initial Valpha-to-Jalpha recombination to TEA-proximal Jalpha segments and promote the ordered usage of the Jalpha array. The ability of TEA transcription to coordinate the activity of multiple downstream promoters maximizes the biological potential of the Jalpha array and diversifies the Tcra repertoire.
Collapse
MESH Headings
- Acetylation
- Animals
- Base Sequence
- Chromatin/chemistry
- Histones/chemistry
- Mice
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombination, Genetic
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Iratxe Abarrategui
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Duke University, 318 Jones Bldg, Box 3010, Durham, NC 27710, USA. Tel.: +1 919 684 4985; Fax: +1 919 684 8982; E-mail:
| |
Collapse
|
524
|
Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H, Tempst P, Glass CK, Rosenfeld MG. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 2007; 27:609-21. [PMID: 17707232 PMCID: PMC2709280 DOI: 10.1016/j.molcel.2007.07.024] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/20/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Deciphering the epigenetic "code" remains a central issue in transcriptional regulation. Here, we report the identification of a JAMM/MPN(+) domain-containing histone H2A deubiquitinase (2A-DUB, or KIAA1915/MYSM1) specific for monoubiquitinated H2A (uH2A) that has permitted delineation of a strategy for specific regulatory pathways of gene activation. 2A-DUB regulates transcription by coordinating histone acetylation and deubiquitination, and destabilizing the association of linker histone H1 with nucleosomes. 2A-DUB interacts with p/CAF in a coregulatory protein complex, with its deubiquitinase activity modulated by the status of acetylation of nucleosomal histones. Consistent with this mechanistic role, 2A-DUB participates in transcriptional regulation events in androgen receptor-dependent gene activation, and the levels of uH2A are dramatically decreased in prostate tumors, serving as a cancer-related mark. We suggest that H2A ubiquitination represents a widely used mechanism for many regulatory transcriptional programs and predict that various H2A ubiquitin ligases/deubiquitinases will be identified for specific cohorts of regulated transcription units.
Collapse
Affiliation(s)
- Ping Zhu
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenlai Zhou
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jianxun Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Janusz Puc
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kenneth A. Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
525
|
Biswas D, Dutta-Biswas R, Stillman DJ. Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 2007; 27:6279-87. [PMID: 17620414 PMCID: PMC2099615 DOI: 10.1128/mcb.00978-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHD1 encodes an ATP-dependent chromatin remodeler with two chromodomains. Deletion of CHD1 suppresses the temperature-sensitive growth defect caused by mutations in either SPT16 or POB3, which encode subunits of the yFACT chromatin-reorganizing complex. chd1 also suppresses synthetic defects caused by combining an spt16 mutation with other transcription factor mutations, including the synthetic lethality caused by combining an spt16 mutation with TATA binding protein (TBP) or TFIIA defects. Binding of TBP and RNA polymerase II to the GAL1 promoter is reduced in a pob3 mutant, resulting in low levels of GAL1 expression, and all three defects are suppressed by removing Chd1. These results suggest that Chd1 and yFACT have opposing roles in regulating TBP binding at promoters. Additionally, overexpression of Chd1 is tolerated in wild-type cells but is toxic in spt16 mutants. Further, both the ATPase and chromodomain are required for Chd1 activity in opposing yFACT function. Similar to the suppression by chd1, mutations in the SET2 histone methyltransferase also suppress defects caused by yFACT mutations. chd1 and set2 are additive in suppressing pob3, suggesting that Chd1 and Set2 act in distinct pathways. Although human Chd1 has been shown to bind to H3-K4-Me, we discuss evidence arguing that yeast Chd1 binds to neither H3-K4-Me nor H3-K36-Me.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
526
|
Duina AA, Rufiange A, Bracey J, Hall J, Nourani A, Winston F. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics 2007; 177:101-12. [PMID: 17603125 PMCID: PMC2013732 DOI: 10.1534/genetics.106.067140] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previous study of histone H3 in Saccharomyces cerevisiae identified a mutant with a single amino acid change, leucine 61 to tryptophan, that confers several transcriptional defects. We now present several lines of evidence that this H3 mutant, H3-L61W, is impaired at the level of transcription elongation, likely by altered interactions with the conserved factor Spt16, a subunit of the transcription elongation complex yFACT. First, a selection for suppressors of the H3-L61W cold-sensitive phenotype has identified novel mutations in the gene encoding Spt16. These genetic interactions are allele specific, suggesting a direct interaction between H3 and Spt16. Second, similar to several other elongation and chromatin mutants, including spt16 mutants, an H3-L61W mutant allows transcription from a cryptic promoter within the FLO8 coding region. Finally, chromatin-immunoprecipitation experiments show that in an H3-L61W mutant there is a dramatically altered profile of Spt16 association over transcribed regions, with reduced levels over 5'-coding regions and elevated levels over the 3' regions. Taken together, these and other results provide strong evidence that the integrity of histone H3 is crucial for ensuring proper distribution of Spt16 across transcribed genes and suggest a model for the mechanism by which Spt16 normally dissociates from DNA following transcription.
Collapse
Affiliation(s)
- Andrea A Duina
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
527
|
Abstract
An important development in understanding the influence of chromatin on gene regulation has been the finding that DNA methylation and histone post-translational modifications lead to the recruitment of protein complexes that regulate transcription. Early interpretations of this phenomenon involved gene regulation reflecting predictive activating or repressing types of modification. However, further exploration reveals that transcription occurs against a backdrop of mixtures of complex modifications, which probably have several roles. Although such modifications were initially thought to be a simple code, a more likely model is of a sophisticated, nuanced chromatin 'language' in which different combinations of basic building blocks yield dynamic functional outcomes.
Collapse
Affiliation(s)
- Shelley L Berger
- The Wistar Institute, 3601 Spruce Street, Room 201, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
528
|
Shandilya J, Gadad S, Swaminathan V, Kundu TK. Histone chaperones in chromatin dynamics: implications in disease manifestation. Subcell Biochem 2007; 41:111-24. [PMID: 17484126 DOI: 10.1007/1-4020-5466-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Histone chaperones are the histone interacting factors that stimulate histone transfer reaction without being a part of the final product. They are involved in the histone storage, histone translocation to the nucleus, and histone exchange and histone deposition onto the DNA for replication dependent chromatin assembly. Interestingly, they have also been demonstrated to possess the histone removal activity. While the involvement of the histone chaperones in chromatin transcription is undisputed, the question of their local versus global involvement is under scrutiny. This review enumerates the role played by various histone chaperones in the establishment of chromatin structure and regulation of chromatin transcription. The role of histone chaperones in disease manifestation is not very clear, preliminary results with few histone chaperones suggest that expression and function of these factors dramatically alters in carcinogenesis. This review will also focus on the possible role of histone chaperones in cancer diagnosis and progression
Collapse
Affiliation(s)
- Jayasha Shandilya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P O, Bangalore 560064, India
| | | | | | | |
Collapse
|
529
|
Zahir F, Firth HV, Baross A, Delaney AD, Eydoux P, Gibson WT, Langlois S, Martin H, Willatt L, Marra MA, Friedman JM. Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. J Med Genet 2007; 44:556-61. [PMID: 17545556 PMCID: PMC2597953 DOI: 10.1136/jmg.2007.050823] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
METHODS AND RESULTS We identified de novo submicroscopic chromosome 14q11.2 deletions in two children with idiopathic developmental delay and cognitive impairment. Vancouver patient 5566 has a approximately 200 kb deletion and Vancouver patient 8326 has a approximately 1.6 Mb deletion. The Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER) revealed a third patient with idiopathic developmental delay and cognitive impairment, DECIPHER patient 126, who has a approximately 1.1 Mb deletion of 14q11.2. The deletion of patient 5566 overlaps that of patient 126 and both of these deletions lie entirely within that of patient 8326. All three children have similar dysmorphic features, including widely-spaced eyes, short nose with flat nasal bridge, long philtrum, prominent Cupid's bow of the upper lip, full lower lip and similar auricular anomalies. CONCLUSION The minimal common deletion region on chromosome 14q11.2 is only approximately 35 kb (from 20.897 to 20.932, University of California at Santa Cruz (UCSC) Genome Browser; build hg18, March 2006) and includes only two genes, SUPT16H and CHD8, which are good candidate genes for the phenotypes. The non-recurrent breakpoints of these patients, the presence of normal copy number variants in the region and the local genomic structure support the notion that this region has reduced stability.
Collapse
Affiliation(s)
- Farah Zahir
- Department of Medical Genetics, University of British Columbia, Children's and Women's Hospital, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
530
|
Gamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 2007; 14:548-55. [PMID: 17529993 DOI: 10.1038/nsmb1248] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 04/06/2007] [Indexed: 11/09/2022]
Abstract
The histone chaperone SET is required for transcription of chromatin templates by RNA polymerase Pol II (Pol II) in vitro. Here we uncover a positive role for SET in dislodging DEK and PARP1, which restrict access to chromatin in the absence of SET and the PARP1 substrate NAD(+). SET binds chromatin, dissociating DEK and PARP1 to allow transcription in the absence of NAD(+). In the absence of SET, depletion of DEK restores chromatin accessibility to endonuclease but does not permit Mediator recruitment or transcription. In the presence of NAD(+), PARP1 poly(ADP-ribosyl)ates and evicts DEK (and itself) from chromatin to permit Mediator loading and transcription independent of SET. An artificial DEK variant resistant to SET and PARP1 represses transcription, indicating a requirement for DEK removal. Therefore, SET, DEK and PARP1 constitute a network governing access to chromatin by the transcription machinery.
Collapse
Affiliation(s)
- Matthew J Gamble
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, New York 10021, USA
| | | |
Collapse
|
531
|
Värv S, Kristjuhan K, Kristjuhan A. RNA polymerase II determines the area of nucleosome loss in transcribed gene loci. Biochem Biophys Res Commun 2007; 358:666-71. [PMID: 17498649 DOI: 10.1016/j.bbrc.2007.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/01/2007] [Indexed: 11/25/2022]
Abstract
Upon transcriptional activation, nucleosomes are removed from not only promoters but also coding regions of highly transcribed genes. However, the mechanisms and factors determining the borders of nucleosome-depleted loci are not known. Here, we identify elongating RNA polymerase II as a major factor for defining the region of nucleosome removal in transcribed genes. We also show that upon shut-down of transcription, newly synthesised histones are used for formation of nucleosomes in the coding region of recently transcribed gene locus.
Collapse
Affiliation(s)
- Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, Estonia
| | | | | |
Collapse
|
532
|
Abstract
Current research is demonstrating that the packaging of the eukaryotic genome together with histone proteins into chromatin is playing a fundamental role in DNA repair and the maintenance of genomic integrity. As is well established to be the case for transcription, the chromatin structure dynamically changes during DNA repair. Recent studies indicate that the complete removal of histones from DNA and their subsequent reassembly onto DNA accompanies DNA repair. This review will present evidence indicating that chromatin disassembly and reassembly occur during DNA repair and that these are critical processes for cell survival after DNA repair. Concomitantly, candidate proteins utilized for these processes will be highlighted.
Collapse
Affiliation(s)
- Jeffrey G. Linger
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045
| | - Jessica K. Tyler
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045
| |
Collapse
|
533
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
534
|
Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci U S A 2007; 104:8011-6. [PMID: 17470801 PMCID: PMC1859995 DOI: 10.1073/pnas.0702431104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Noncoding, or intergenic, transcription by RNA polymerase II (RNAPII) is remarkably widespread in eukaryotic organisms, but the effects of such transcription remain poorly understood. Here we show that noncoding transcription plays a role in activation, but not repression, of the Saccharomyces cerevisiae PHO5 gene. Histone eviction from the PHO5 promoter during activation occurs with normal kinetics even in the absence of the PHO5 TATA box, showing that transcription of the gene itself is not required for promoter remodeling. Nevertheless, we find that mutations that impair transcript elongation by RNAPII affect the kinetics of histone eviction from the PHO5 promoter. Most dramatically, inactivation of RNAPII itself abolishes eviction completely. Under repressing conditions, an approximately 2.4-kb noncoding exosome-degraded transcript is detected that originates near the PHO5 termination site and is transcribed in the antisense direction. Abrogation of this transcript delays chromatin remodeling and subsequent RNAPII recruitment to PHO5 upon activation. We propose that noncoding transcription through positioned nucleosomes can enhance chromatin plasticity so that chromatin remodeling and activation of traversed genes occur in a timely manner.
Collapse
Affiliation(s)
- Jay P. Uhler
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
| | - Christina Hertel
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 Munich, Germany
| | - Jesper Q. Svejstrup
- *Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
535
|
Razin SV, Iarovaia OV, Sjakste N, Sjakste T, Bagdoniene L, Rynditch AV, Eivazova ER, Lipinski M, Vassetzky YS. Chromatin domains and regulation of transcription. J Mol Biol 2007; 369:597-607. [PMID: 17466329 DOI: 10.1016/j.jmb.2007.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/27/2007] [Accepted: 04/02/2007] [Indexed: 12/20/2022]
Abstract
Compartmentalization and compaction of DNA in the nucleus is the characteristic feature of eukaryotic cells. A fully extended DNA molecule has to be compacted 100,000 times to fit within the nucleus. At the same time it is critical that various DNA regions remain accessible for interaction with regulatory factors and transcription/replication factories. This puzzle is solved at the level of DNA packaging in chromatin that occurs in several steps: rolling of DNA onto nucleosomes, compaction of nucleosome fiber with formation of the so-called 30 nm fiber, and folding of the latter into the giant (50-200 kbp) loops, fixed onto the protein skeleton, the nuclear matrix. The general assumption is that DNA folding in the cell nucleus cannot be uniform. It has been known for a long time that a transcriptionally active chromatin fraction is more sensitive to nucleases; this was interpreted as evidence for the less tight compaction of this fraction. In this review we summarize the latest results on structure of transcriptionally active chromatin and the mechanisms of transcriptional regulation in the context of chromatin dynamics. In particular the significance of histone modifications and the mechanisms controlling dynamics of chromatin domains are discussed as well as the significance of spatial organization of the genome for functioning of distant regulatory elements.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Heo K, Kim B, Kim K, Choi J, Kim H, Zhan Y, Ranish JA, An W. Isolation and characterization of proteins associated with histone H3 tails in vivo. J Biol Chem 2007; 282:15476-83. [PMID: 17403666 DOI: 10.1074/jbc.m610270200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The histone H3 amino-terminal tails play an important role in regulating chromatin transcription. Although the mechanisms by which the H3 tail modulates transcription are not well understood, recent discoveries of specific interactions of regulatory factors with H3 tails suggest that H3 tails are a key player in the precise regulation of transcription activity. To investigate the recruitment-based action of H3 tails in chromatin transcription, we purified H3 tail-associated proteins from HeLa cells that stably express epitope-tagged H3 tails. This approach resulted in the identification of multiple histone methyltransferase activities and transcription regulatory factors that are specifically associated with expressed H3 tail domains. Point mutations of Lys-9 and Lys-27 to block cellular modifications of the tail domains completely abolished the association of specific factors, including HP1 and several repressors. Importantly, our transcription analysis revealed that the purified factors can significantly stimulate p300-mediated transcription from chromatin templates. These results implicate that the H3 tail, when accessible in relaxed chromatin, acts as a transcriptional regulator by mediating recruitment of specific sets of cofactors.
Collapse
Affiliation(s)
- Kyu Heo
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
537
|
Martínez-Calvillo S, Saxena A, Green A, Leland A, Myler PJ. Characterization of the RNA polymerase II and III complexes in Leishmania major. Int J Parasitol 2007; 37:491-502. [PMID: 17275824 PMCID: PMC2939717 DOI: 10.1016/j.ijpara.2006.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Transcription of protein-coding genes in Leishmania major and other trypanosomatids differs from that in most eukaryotes and bioinformatic analyses have failed to identify several components of the RNA polymerase (RNAP) complexes. To increase our knowledge about this basic cellular process, we used tandem affinity purification (TAP) to identify subunits of RNAP II and III. Mass spectrometric analysis of the complexes co-purified with TAP-tagged LmRPB2 (encoded by LmjF31.0160) identified seven RNAP II subunits: RPB1, RPB2, RPB3, RPB5, RPB7, RPB10 and RPB11. With the exception of RPB10 and RPB11, and the addition of RPB8, these were also identified using TAP-tagged constructs of one (encoded by LmjF34.0890) of the two LmRPB6 orthologues. The latter experiments also identified the RNAP III subunits RPC1 (C160), RPC2 (C128), RPC3 (C82), RPC4 (C53), RPC5 (C37), RPC6 (C34), RPC9 (C17), RPAC1 (AC40) and RPAC2 (AC19). Significantly, the complexes precipitated by TAP-tagged LmRPB6 did not contain any RNAP I-specific subunits, suggesting that, unlike in other eukaryotes, LmRPB6 is not shared by all three polymerases but is restricted to RNAP II and III, while the LmRPB6z (encoded by LmjF25.0140) isoform is limited to RNAP I. Similarly, we identified peptides from only one (encoded by LmjF18.0780) of the two RPB5 orthologues and one (LmjF13.1120) of the two RPB10 orthologues, suggesting that LmRPB5z (LmjF18.0790) and LmRPB10z (LmjF13.1120) are also restricted to RNAP I. In addition to these RNAP subunits, we also identified a number of other proteins that co-purified with the RNAP II and III complexes, including a potential transcription factor, several histones, an ATPase involved in chromosome segregation, an endonuclease, four helicases, RNA splicing factor PTSR-1, at least two RNA binding proteins and several proteins of unknown function.
Collapse
Affiliation(s)
| | - Alka Saxena
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Amanda Green
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Aaron Leland
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
| | - Peter J. Myler
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109-5219 USA
- Department of Pathobiology, University of Washington, Seattle, WA 98195 USA
- Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
538
|
Abstract
Chromatin structure imposes significant obstacles on all aspects of transcription that are mediated by RNA polymerase II. The dynamics of chromatin structure are tightly regulated through multiple mechanisms including histone modification, chromatin remodeling, histone variant incorporation, and histone eviction. In this Review, we highlight advances in our understanding of chromatin regulation and discuss how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Collapse
Affiliation(s)
- Bing Li
- Stowers Medical Research Institute, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
539
|
Jamai A, Imoberdorf RM, Strubin M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 2007; 25:345-55. [PMID: 17289583 DOI: 10.1016/j.molcel.2007.01.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/17/2006] [Accepted: 01/19/2007] [Indexed: 11/21/2022]
Abstract
We investigated the dynamics of histone-DNA interactions in yeast by using inducible forms of epitope-tagged histones H2B and H3. Chromatin assembly of newly synthesized histones was assessed by chromatin immunoprecipitation in G1-arrested cells to prevent replication-coupled histone incorporation. We find that while histone deposition within a subtelomeric region is strictly linked to DNA replication, histone H2B is continuously incorporated at the promoter and coding regions of both transcriptionally active and inactive loci. In contrast, incorporation of histone H3 occurs only at active genes, being predominant at the promoter and showing a dynamics along the gene that inversely correlates with the average nucleosomal density. Similar results were obtained with N-terminally truncated H2B and H3 variants. We infer that replication-independent incorporation of H2B and H3 are distinct events, each occurring independently of the histone tail, and that nucleosome loss at active promoters reflects a dynamic equilibrium between histone deposition and dissociation.
Collapse
Affiliation(s)
- Adil Jamai
- Department of Microbiology and Molecular Medicine, University Medical Centre, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
540
|
Tanny JC, Erdjument-Bromage H, Tempst P, Allis CD. Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev 2007; 21:835-47. [PMID: 17374714 PMCID: PMC1838534 DOI: 10.1101/gad.1516207] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription by RNA polymerase II (polII) is accompanied by dramatic changes in chromatin structure. Numerous enzymatic activities contribute to these changes, including ATP-dependent nucleosome remodeling enzymes and histone modifying enzymes. Recent studies in budding yeast document a histone modification pathway associated with polII transcription, whereby ubiquitylation of histone H2B leads to methylation of histone H3 on specific lysine residues. Although this series of events appears to be highly conserved among eukaryotes, its mechanistic function in transcription is unknown. Here we document a significant functional divergence between ubiquitylation of H2B and methylation of Lys 4 on histone H3 in the fission yeast Schizosaccharomyces pombe. Loss of H2B ubiquitylation results in defects in cell growth, septation, and nuclear structure, phenotypes not observed in cells lacking H3 Lys 4 methylation. Consistent with these results, gene expression microarray analysis reveals a greater role for H2B ubiquitylation in gene regulation than for H3 Lys 4 methylation. Chromatin immunoprecipitation (ChIP) experiments demonstrate that loss of H2B ubiquitylation alters the distribution of polII and histones in gene coding regions. We propose that ubiquitylation of H2B impacts transcription elongation and nuclear architecture through its effects on chromatin dynamics.
Collapse
Affiliation(s)
- Jason C. Tanny
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Hediye Erdjument-Bromage
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | - C. David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
- Corresponding author.E-MAIL ; FAX (212) 327-7849
| |
Collapse
|
541
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
542
|
Williams SK, Tyler JK. Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 2007; 17:88-93. [PMID: 17307351 DOI: 10.1016/j.gde.2007.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 02/06/2007] [Indexed: 01/17/2023]
Abstract
The packaging of the eukaryotic genome into chromatin severely restricts the access of the transcriptional machinery to the DNA. Recent studies reveal that histones are removed and replaced to enable or restrict, respectively, access of the transcription machinery to regulate transcription. Chromatin disassembly at promoters enables transcriptional activation, whereas promoter chromatin reassembly represses transcription. Histone loss also occurs within transcription units to enable passage of the RNA polymerase, but in this case the histones are rapidly replaced, sometimes by 'variant' histones with specific properties that might serve as a memory of transcriptional competence. Furthermore, the ultimate goal of some epigenetic modifications might well turn out to be the regulation of histone occupancy on the DNA.
Collapse
Affiliation(s)
- Stephanie K Williams
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | |
Collapse
|
543
|
Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17:80-6. [PMID: 17157503 DOI: 10.1016/j.tcb.2006.11.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/30/2006] [Indexed: 11/28/2022]
Abstract
Nucleolin is an abundant, ubiquitously expressed protein that is found in various cell compartments, especially in the nucleolus, of which it is a major component. This multifunctional protein has been described as being a part of many pathways, from interactions with viruses at the cellular membrane to essential processing of the ribosomal RNA in the nucleolus. However, most of the molecular details of these different functions are not understood. Here, we focus on the role of nucleolin in transcription, especially some recent findings describing the protein as a histone chaperone [with functional similarity to the facilitates chromatin transcription (FACT) complex] and a chromatin co-remodeler. These new properties could help reconcile discrepancies in the literature regarding the role of nucleolin in transcription.
Collapse
Affiliation(s)
- Fabien Mongelard
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | |
Collapse
|
544
|
Rickards B, Flint SJ, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol 2007; 27:937-48. [PMID: 17130237 PMCID: PMC1800701 DOI: 10.1128/mcb.01584-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/04/2006] [Accepted: 11/14/2006] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.
Collapse
Affiliation(s)
- Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
545
|
Yoh SM, Cho H, Pickle L, Evans RM, Jones KA. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev 2007; 21:160-74. [PMID: 17234882 PMCID: PMC1770899 DOI: 10.1101/gad.1503107] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/27/2006] [Indexed: 11/25/2022]
Abstract
Spt6 promotes transcription elongation at many genes and functions as a histone H3 chaperone to alter chromatin structure during transcription. We show here that mammalian Spt6 binds Ser2-phosphorylated (Ser2P) RNA polymerase II (RNAPII) through a primitive SH2 domain, which recognizes phosphoserine rather than phosphotyrosine residues. Surprisingly, a point mutation in the Spt6 SH2 domain (R1358K) blocked binding to RNAPIIo without affecting transcription elongation rates in vitro. However, HIV-1 and c-myc RNAs formed in cells expressing the mutant Spt6 protein were longer than normal and contained splicing defects. Ectopic expression of the wild-type, but not mutant, Spt6 SH2 domain, caused bulk poly(A)+ RNAs to be retained in the nucleus, further suggesting a widespread role for Spt6 in mRNA processing or assembly of export-competent mRNP particles. We cloned the human Spt6-interacting protein, hIws1 (interacts with Spt6), and found that it associates with the nuclear RNA export factor, REF1/Aly. Depletion of endogenous hIws1 resulted in mRNA processing defects, lower levels of REF1/Aly at the c-myc gene, and nuclear retention of bulk HeLa poly(A)+ RNAs in vivo. Thus binding of Spt6 to Ser2-P RNAPII provides a cotranscriptional mechanism to recruit Iws1, REF1/Aly, and associated mRNA processing, surveillance, and export factors to responsive genes.
Collapse
Affiliation(s)
- Sunnie M. Yoh
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Helen Cho
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Loni Pickle
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ronald M. Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A. Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
546
|
Abstract
Chromatin modifications play a crucial role in regulating DNA metabolism. Chromatin structures can be remodeled by covalently modifying histones, by shifting nucleosomes along the DNA, and by changing the histone composition of nucleosomes. Lately, nucleosome displacement has been extensively described within transcribed genes and DNA breaks. This review focuses on recently published work that describes the relationships between histone modification/exchange and nucleosome displacement.
Collapse
Affiliation(s)
- Antonin Morillon
- CNRS CGM, 1, avenue de la terrasse, 91198 Gif/Yvette cedex, France.
| |
Collapse
|
547
|
Abstract
Homologues of nucleosome assembly protein 1 (NAP1) have been identified in all eukaryotes. Although initially identified as histone chaperones and chromatin-assembly factors, additional functions include roles in tissue-specific transcription regulation, apoptosis, histone shuttling, and cell-cycle regulation, and extend beyond those of a simple chaperone and assembly factor. NAP1 family members share a structurally conserved fold, the NAP domain. Here we review current knowledge of the NAP family of proteins within the context of the recently determined crystal structure of the NAP1 family's first representative, NAP1 from yeast.
Collapse
Affiliation(s)
- Young-Jun Park
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, CO State University, Fort Collins, CO 80523-1870, USA.
| | | |
Collapse
|
548
|
Li Y, Zeng SX, Landais I, Lu H. Human SSRP1 has Spt16-dependent and -independent roles in gene transcription. J Biol Chem 2007; 282:6936-45. [PMID: 17209051 DOI: 10.1074/jbc.m603822200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facilitating chromatin transcription (FACT) complex, a heterodimer of SSRP1 and Spt16, has been shown to regulate transcription elongation through a chromatin template in vitro and on specific genes in cells. However, its global role in transcription regulation in human cells remains largely elusive. We conducted spotted microarray analyses using arrays harboring 8308 human genes to assess the gene expression profile after knocking down SSRP1 or Spt16 levels in human non-small cell lung carcinoma (H1299) cells. Although the changes of these transcripts were surprisingly subtle, there were approximately 170 genes whose transcript levels were either reduced or induced >1.5-fold. Approximately 106 genes with >1.2-fold change at the level of transcripts were the common targets of both SSRP1 and Spt16 ( approximately 1.3%). A subset of genes was regulated by SSRP1 independent of Spt16. Further analyses of some of these genes not only verified this observation but also identified the serum-responsive gene, egr1, as a novel target for both SSRP1 and Spt16. We further showed that SSRP1 and Spt16 are important for the progression of elongation RNA pol II on the egr1 gene. These results suggest that SSRP1 has Spt16-dependent and -independent roles in regulating gene transcription in human cells.
Collapse
Affiliation(s)
- Yanping Li
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
549
|
Korolev N, Vorontsova OV, Nordenskiöld L. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 95:23-49. [PMID: 17291569 DOI: 10.1016/j.pbiomolbio.2006.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2006] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions between DNA and DNA-packaging proteins, the histones, contribute substantially to stability of eukaryotic chromatin on all levels of its organization and are particularly important in formation of its elementary structural unit, the nucleosome. The release of DNA from the histones is an unavoidable stage in reading the DNA code. In the present review, we discuss the disassembly/assembly process of the nucleosome from a thermodynamic standpoint by considering it as a competition between an excess of polyanions (DNA and acidic/phosphorylated domains of the nuclear proteins) for binding to a limited pool of polycations (the histones). Results obtained in model systems are used to discuss conditions for the electrostatic component of DNA-protein interactions contributing to chromatin statics and dynamics. We propose a simple set of "electrostatic conditions" for the disassembly/assembly of nucleosome/chromatin and apply these to put forward a number of new interpretations for the observations reported in literature on chromatin. The approach sheds light on the functions of acidic domains in the nuclear proteins (nucleoplasmin and other histone chaperones, HMG proteins, the activation domains in transcriptional activators). It results in a putative explanation for the molecular mechanisms behind epigenetic regulation through histone acetylation, phosphorylation, and other alterations ("the language of covalent histone modification"). We also propose a new explanation for the role of phosphorylation of C-terminal domain of RNA polymerase II for regulation of the DNA transcription. Several other examples from literature on chromatin are discussed to support applicability of electrostatic rules for description of chromatin structure and dynamics.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
550
|
Mousson F, Ochsenbein F, Mann C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 2006; 116:79-93. [PMID: 17180700 DOI: 10.1007/s00412-006-0087-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Nucleosome assembly involves deposition of a heterotetramer of histones H3/H4 onto DNA followed by two heterodimers of histones H2A/H2B. Cycles of nucleosome assembly and disassembly are essential to cellular events such as replication, transcription, and DNA repair. After synthesis in the cytoplasm, histones are shuttled into the nucleus where they are associated with chaperone proteins. Chaperones of histones H3/H4 include CAF-I, the Hir proteins, and Asf1. CAF-I and the Hir proteins function as replication-coupled and replication-independent deposition factors for H3/H4, respectively, whereas Asf1 may play a role in both pathways. In addition to acting as assembly factors, histone chaperones assist nucleosome dissociation from DNA and they may recruit other proteins to chromatin. The past few years have witnessed a notable accumulation of genetic, biochemical, and structural data on Asf1, which motivated this review. We discuss the sequence and structural features of Asf1 before considering its roles in nucleosome assembly/disassembly, the cellular response to DNA damage, and the regulation of gene expression. We emphasize the key role of Asf1 as a central node in a network of partners that place it at the crossroads of chromatin and DNA checkpoint pathways.
Collapse
Affiliation(s)
- Florence Mousson
- Département de Biologie Joliot-Curie, Service de Biophysique des Fonctions Membranaires, CEA/Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|